public class LinResult
extends java.lang.Object
Modifier and Type | Field and Description |
---|---|
double[][] |
A
The original matrix A.
|
double[][] |
A_plus
Store the pseudoinverse here.
|
double[][] |
Ainv
Put the inverse in Ainv.
|
double[] |
b
The original vector b in Ax=b.
|
double[][] |
C
Use this for the Gram-Schmidt coefficients.
|
boolean[] |
isPivotColumn
isPivotColumn[i]=true if column i is a pivot column.
|
boolean |
isUniqueSolution
Set uniqueSolution=true, if there's a solution to Ax=b.
|
double[] |
lambda
Use this for the eigenvalues.
|
int[] |
pivotRow
pivotRow[k]=r if the k-th column has a pivot and the pivot
is in row r.
|
double[][] |
Q
Use this for the Q in QR decomposition.
|
double[][] |
R
Use this for the R in QR decomposition.
|
int |
rank
Set the rank.
|
double[][] |
ref
Store the REF here.
|
double[][] |
rref
Store the RREF here.
|
double[][] |
S
S should store the eigenvectors.
|
double[] |
sigma
Singular values.
|
double[][] |
Sigma
Singular values in an r x r matrix.
|
double[][] |
Sinv
The inverse of S for the spectral decomposition.
|
boolean |
solutionExists
Set solutionExists=true, if there's a solution to Ax=b.
|
double[][] |
U
The matrix U.
|
double[][] |
V
Use this for the Gram-Schmidt vectors and for the V matrix of the SVD.
|
double[] |
x
Put the solution to Ax=b in x.
|
public double[][] A
public double[] b
public double[][] ref
public double[][] rref
public boolean[] isPivotColumn
public int[] pivotRow
public int rank
public boolean solutionExists
public boolean isUniqueSolution
public double[] x
public double[][] Ainv
public double[][] V
public double[][] C
public double[][] Q
public double[][] R
public double[] lambda
public double[][] S
public double[][] Sinv
public double[] sigma
public double[][] Sigma
public double[][] U
public double[][] A_plus