\( \newcommand{\blah}{blah-blah-blah} \newcommand{\eqb}[1]{\begin{eqnarray*}#1\end{eqnarray*}} \newcommand{\eqbn}[1]{\begin{eqnarray}#1\end{eqnarray}} \newcommand{\bb}[1]{\mathbf{#1}} \newcommand{\mat}[1]{\begin{bmatrix}#1\end{bmatrix}} \newcommand{\nchoose}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\defn}{\stackrel{\vartriangle}{=}} \newcommand{\rvectwo}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\rvecthree}[3]{\left(\begin{array}{r} #1 \\ #2\\ #3\end{array}\right)} \newcommand{\rvecdots}[3]{\left(\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right)} \newcommand{\vectwo}[2]{\left[\begin{array}{r} #1\\#2\end{array}\right]} \newcommand{\vecthree}[3]{\left[\begin{array}{r} #1 \\ #2\\ #3\end{array}\right]} \newcommand{\vecfour}[4]{\left[\begin{array}{r} #1 \\ #2\\ #3\\ #4\end{array}\right]} \newcommand{\vecdots}[3]{\left[\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right]} \newcommand{\eql}{\;\; = \;\;} \definecolor{dkblue}{RGB}{0,0,120} \definecolor{dkred}{RGB}{120,0,0} \definecolor{dkgreen}{RGB}{0,120,0} \newcommand{\bigsp}{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\plss}{\;\;+\;\;} \newcommand{\miss}{\;\;-\;\;} \newcommand{\implies}{\Rightarrow\;\;\;\;\;\;\;\;\;\;\;\;} \)


Review: Part III

Part I    Part II


r.9    Summary of useful results

 

We will tersely list, in no particular order, a number of results we've established that will be useful in the future:

 


r.10    Summary of some key theorems

 

We will not list all the important theorems nor every part of a theorem, just the most important ones (and most important parts):

 

Finally, let's point out two important things to remember:

  • Consider \(\mathbb{R}^n\), the set of all n-component vectors:
    • Then, \(\mathbb{R}^n\) needs exactly \(n\) vectors for a basis.
    • That is, \(n\) linearly independent vectors are sufficient and necessary.

  • If \({\bf w}\) is in the span of linearly independent vectors \({\bf v}_1, {\bf v}_2,\ldots,{\bf v}_m\), then there's a unique linear combination that expresses \({\bf w}\) in terms of the \({\bf v}_i\)'s.
    • To prove this, try two different linear combinations and subtract. Then use the linear independence of the \({\bf v}_i\)'s.


© 2020, Rahul Simha