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My research focuses on constructing differential geometric approaches for dynamics and control of
complex systems evolving on a nonlinear manifold. In particular, these have been successfully applied
to various autonomous unmanned aerial vehicles, explicitly demonstrating their efficacy and promises
in control engineering and robotics through numerical simulations and flight experiments. Recently,
geometric control and estimation have been further extended to be integrated with stochastic Bayesian
learning and optimization to improve performances by recollecting prior experiences.

1 Why Does Geometry Matter?

Then, what is really geometric control, and how does geometry play a fundamental role in aerial robotics?
While it can be interpreted in several ways, geometric controls defined here refers to controller design
and stability analysis carried out directly on a manifold, which is a topological space that resembles
Euclidean space at every point, but cannot be globally identified with a Euclidean space. If a manifold is
accompanied with group structures, it is referred to as a Lie group. Simply speaking, geometric control
is opposed to nonlinear controls formulated on a Euclidean space, or Rn.

As the fundamental idea of geometric controls is formulating and resolving a control problem on
a manifold, it is readily extended to other topics of dynamics and control system engineering, such
as Lagrangian/Hamiltonian systems, optimization, uncertainty propagation, estimation, and learning,
through which my research portfolio has been developed. In any case, geometric formulation on a
manifold takes full advantages of the following properties.

Intrinsic Formulation Most of dynamic systems in aerial robotics, such as unmanned aerial vehicles
with a robotic manipulator, evolve on a manifold. This is because any rotational maneuver cannot
be formulated globally on any Euclidean space. For example, one-dimensional planar rotations, two-
dimensional direction, and three-dimensional attitude of a rigid body are formulated in the embedded
manifolds of the unit-circle, the unit-sphere, and the three-dimensional orthogonal group, respectively.
As such, it is most natural to describe the dynamics of aerial vehicles directly on a manifold.

Global Formulation The most common approach to for-
mulate dynamics and control on a manifold is utilizing local
coordinates. This can be considered as partitioning the man-
ifold into several parts such that each part can be identified
as Rn, as illustrated on the right, where the unit sphere is
sliced into multiple planar patches. The issue is that they are
local, and as such, multiple sets of coordinates are required to cover the complete manifold. It causes
singularities and complexities when putting together a complex trajectory covered by several sets of
coordinates. Whereas, geometric controls completely avoid such issues, as they are formulated directly
on the manifold. More importantly, the resulting stability properties hold globally for any aggressive
maneuver visiting any part of the manifold.
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Structured Formulation Furthermore, geometric approaches yield a more structured, elegant form
of control, especially when the dynamics of the controlled system is complicated. Consider an aerial
manipulator or a micro flapping-wing aerial vehicle composed of articulated rigid bodies, which evolve
on a high-dimensional manifold. The equations of motion written in local coordinates, such as Euler
angles, would involve lengthy, complicated combinations of trigonometric functions, which prevent any
reasonable analysis to grasp the underlying structures. Formulating the dynamics on the configuration
manifold provides a more structured, simplified form that may provide valuable insight in control system
design and streamline stability analysis.

General Formulation Also, geometric approaches provides powerful machineries to construct control
systems on an abstract manifold, or on an abstract Lie group. For example, the PI has shown that the
Euler–Lagrange equation for a mechanical system on a Lie group G is formulated as

d

dt
DξL(g, ξ)− ad∗ξ ·DξL(g, ξ)− T∗

eLg ·DgL(g, ξ) = 0,

where L(g, ξ) corresponds to the Lagrangian dependent of (g, ξ) ∈ G × g. While it relies on several
operations that are uncommon in engineering 1, for dynamic systems considered in aerial robotics, they
can be easily interpreted as familiar matrix operations. The desirable feature of the above intrinsic
formulation is that it is applied to any mechanical system on a Lie group. For example, an optimal
control theory developed for the above can be specialized to any aerial robotic system.

Characteristic Formulation Finally, dy-
namic systems evolving on a compact man-
ifold may exhibit unique characteristics that
cannot be described properly in Euclidean
space. For example, a cat turn its body in
the air by utilizing so-called geometric phase
effects, which are caused by the curvature
of the configuration manifold. Any smooth
control system on a compact manifold cannot achieve global asymptotic stability due to the topological
restriction. The right most figure illustrates the phase portrait of a control system on the unit circle,
where the region of attraction to the desired equilibirum excludes a set of zero measure, denoted by a
red curve. These phenomenon inherent to a nonlinear manifold can be characterized properly only if
the controlled dynamics is formulated on the manifold.

2 Geometric Mechanics and Control for Aerial Robotics

While the above motivation for geometric may sound abstract and distant, geometric approaches are
particularly useful for non-trivial maneuvers of complex dynamic systems. The section summarizes a
selected set of examples for geometric approaches applied to aerial robotics.

2.1 Geometric Control for Quadrotor

The PI has developed geometric control systems for multi-rotor unmanned aerial vehicles on the special
Euclidean group SE(3), which is the semi-direct product of the special orthogonal group SO(3), and the

1See for example, J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer 1999.
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three-dimensional Euclidean space R3 that represent the attitude and the position of the vehicle, respec-
tively.
The multi-rotor aerial vehicles are under-actuated
in the sense that the direction of the resultant
thrust is always fixed to the body, i.e., to change
the direction of the thrust, the body should be
rotated. As such its attitude dynamics is tightly
coupled to the translational dynamics. The PI
has proposed a backstepping approach, where the
desired attitude is formulated to follow a given
desired position trajectory, and the attitude is controlled on SO(3) [1]. It is illustrated that this geometric
approach can be utilized for acrobatic maneuvers, for example multiple flipping as shown above. This
approach has been one of de facto approaches, which has been adopted to various quadrotor control
systems, and the corresponding IEEE CDC paper [1] has been well cited.

Later, this idea has been extended to various directions: geometric PID control [2], geometric
adaptive control [3, 4], nonlinear robust control [5, 6], tethered quadrotor control [7], decoupled yaw
control [8, 9], neural-network based adaptive learning control [10, 11]. The geometric formulation has
been further utilized in extended Kalman filter [12, 13], and system identification [14] for quadrotor as
well.

2.2 Autonomous Flight Experiments

The desirable properties of geometric control have been illustrated by various autonomous flight exper-
iments as well. The PI’s lab has designed and developed both of flight software and hardware in-house.
The flight hardware is composed of a compact computing module with GPU (NVidia Jetson TX2) run-
ning a linux operating system, which can be connected to various sensors (IMU, camera, event camera,
Lidar, and GPS) and wireless communication links (WIFI. Bluetooth). The flight software is developed
in C++ with multi-threads that allows multiple tasks of control, estimation, communication, and data
logging simultaneously. It is connected to ROS/Gazebo for standardized packaging and simulation, and
it is maintained in Github.

Indoor Flight Experiments For indoor flight experiments, the position of the quadrotor is measured
by an infrared motion capture system. Notable experiments include backflipping [4], and landing on
an inclined surface [15, 16], as shown below: the inclination and height of the surface are estimated
by capturing a pattern projected by laser points, and the landing trajectory is planned based on the
estimation results, before the landing maneuver is executed.
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Another interesting experiment is rejecting the wind disturbance caused by an industrial fan [10, 11],
where the unknown effects of turbulent wind is compensated by neural networks. First, the advan-
tages over conventional adaptive control were demonstrated (left), followed by performing an aggressive
maneuver under the wind gusts (right).

Outdoor Flight Experiments Utilizing a low-cost, real-time kinematic (RTK) GPS, outdoor flight
tests have been performed. An extended Kalman filter on SE(3) is extended to handle the delayed
measurements of GPS [17]. After verifying stability of controlled flights with RTK GPS in grounds, we
are performing flight experiments in Chesapeake Bay, MD for autonomous landing on a USNA research
vessel.

2.3 Geometric Control for Aerial Transportation

The next application of geometric control is aerial transportation of a cable-suspended payload. Com-
pared with attaching a payload rigidly, connecting it with a cable is desirable when transporting a large
object with collaborating, multiple aerial vehicles, or when transporting in rough terrains where it is
challenging to identify a safe landing/take-off site. It also addresses safety issues in urban areas as
it can avoid flights in close-proximity to recipients. However, considering the dynamic coupling be-
tween payload, cable, and multiple UAV in control system design is challenging due to the inherent
complexities.

The PI has formulated the complicated dynamics in a higher-dimensional manifold using geometric
mechanics, and design geometric control systems such that the trajectory of the payload asymptotically
follow given desired trajectories, under various assumptions including a single point mass payload with
one or multiple quadrotors [18–20], a rigid body payload [21, 22], transportation with flexible cables [23–
26]. It is further extended to control of a flying, inverted spherical pendulum, and concurrent formation
control to avoid collision [27].
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The proposed control systems
have been verified indoor flight
experiments for stabilization of a
point mass [24], stabilization of a
rod with two quadrotors [26], and
tracking a point mass with a single
quadrotor [28]

2.4 Autonomous Aerial Exploration

Autonomous aerial exploration is for multiple UAVs actively planning their paths to build a map of an
unknown area of interests. Compared with simultaneous localization and mapping (SLAM), where the
vehicles passively follow a trajectory determined by a user, in exploration, the aerial vehicles should
decide where to go to complete a map. The map is often constructed with a depth sensor, such as
stereo vision or Lidar, that can provides a set of points for closest objects or walls, referred to as point
cloud.

The PI has developed an exact Bayesian inverse sensor model, where the probability of occupancy
in each cell of a 3D grid is determined by point clouds [29]. The proposed probabilistic formulation of
3D mapping naturally leads to autonomous exploration, where the motion of aerial vehicles are planned
to minimize the uncertainties of mapping measured by Shannon’s entropy. The following figures show
a flight experiment performed at US Naval Research Lab, where a large area is explored by a quadrotor
with depth sensors to build a 3D map [30–32].

This has further developed into autonomous aerial patrol [33]. Assuming that the probabilistic map
diffuses over time, minimizing map uncertainties causes the vehicles to revisit particular areas that were
mapped a while ago. The following figures illustrate collaborative 3D patrol for a large building.

This idea has been applied to space systems, for Mars surface exploration [34] (left) and for asteroid
shape mapping [35–37] (right).
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2.5 Supervised Learning Control for Micro Flapping-Wing UAV

Monarch is one of the most common butterfly species in North America. They exhibit remarkable flight
characteristics migrating over 3000 miles, which is the longest range among the similar-sized insects.
Compared with other insects, Monarch has relative-large wings flapping at a lower frequency. To develop
micro flapping-wing UAV inspired by Monarch, the PI is collaborating with Dr. Kang at the University
of Alabama, Huntsville, who has a facility to capture the flapping motion of a live Monarch butterfly
and perform CFD analysis with fluid-structure interaction.

The PI has developed a dynamic model on a manifold, for an articulated rigid body model that char-
acterizes wing flapping and abdomen undulation [38, 39]. Due to the complexity of the aerodynamics
and the higher dimension of control inputs, it is challenging to design a control system via conventional
techniques.

We have proposed supervised learn-
ing control, where a neural network learns
optimal control trajectories that minimize
the tracking error. Due to their ability
of consistent generalization, the learned
neural network successfully stabilize the
complicated flapping motion. More im-
portantly, the training process is carefully

designed such that the Floquet stability of the periodic motion of flapping is guaranteed along the
controlled dynamics. This is being further extended to on-line learning.

3 Future Directions

Based on the preceding success with geometric controls, the following directions, especially in stochastic
learning, are being currently investigated and planned for futures.

3.1 Concurrent Bayesian Learning and Bayesian Estimation

Despite numerous fascinating applications of model-free reinforcement learning, completely discarding
the underlying dynamics might not be desirable in various control problems in aerial robotics, as by doing
so, valuable information encoded in the dynamics will be lost. A more reasonable approach would be
identifying the discrepancy between the pre-determined mathematical model and the actual response,
or constructing a dynamic model completely from experiences.

In such cases, it is critical to formulate a measure of confidence in the learned model such that
the corresponding controller becomes aware of risky actions caused by large uncertainties in the learned
model, or to avoid the model being constantly drifted by noisy measurements. Bayesian learning, often
described as a neural network which is aware of what it does not know, will address such issue of learning
with uncertainties. However, in learning a dynamic model, we often don’t have a direct access to the
sample values of unknown terms. Instead, a subset of the state or a lower-dimensional function of state
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is measured by a sensor. For example, unmanned aerial vehicles are rarely equipped with a velocity
sensor, and the velocity is estimated by measurements of position and acceleration.

As such, Bayesian learning should be integrated with Bayesian estimation for stochastic learning of
dynamics. But most of learning-based control systems often assume that the state is available such
that the uncertain term can be directly inferred. Concurrent stochastic learning and estimation is one of
the main directions that I plan to pursue in the next five years. Figures below illustrate one preliminary
result, where the uncertain part of the dynamics (red) is learned as a function of state with a Gaussian
process (blue) that is extended to handles uncertainties in the input [40].

3.2 Geometric Stochastic Analysis on a Manifold

To perform Bayesian learning and estimation on a manifold, we should be able to formulate probability
densities intrinsic to the manifold. The common approach is adopting Gaussian distributions for local
coordinates of a manifold. Due to the several reasons discussed in Section 1, this causes singularities and
complexities especially for large uncertainties. More formally, they don’t even satisfy the fundamental
property of a density function that should be normalized to one.

In one of my prior attempts, a global form of probability densities on SO(3) × Rn is defined by
non-commutative harmonic analysis, which is essentially Fourier analysis on a Lie group. According to
Peter-Weyl theorem, irreducible unitary representations on a Lie group serve as an orthogonal basis for
square-integrable functions on the group, through which an arbitrary density function on the group is
defined naturally. The following figures show one particular application to uncertainty propagation for
attitude dynamics [41, 42].
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While the above approach addresses the problem
of defining a density function on a manifold, it is not
suitable for real-time application in aerial robotics, due
to computational complexities associated with non-
commutative harmonic analysis. Recently, the PI
has proposed a more regularized form of density on
SO(3)×Rn, referred to as Matrix Fisher–Gaussian Dis-
tribution, and developed a Bayesian estimator for atti-
tude and gyro bias [43–45]. This approach is bench-
marked against multiplicative extended Kalman filter and unscented Kalman filter to illustrate substantial
improvements in estimation accuracy.
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Formulating a density function is a fundamental question of statistics. Stochastic analysis on a
manifold will be investigated continually, for both of theoretical perspectives and application to Bayesian
learning.

3.3 Accelerated Symplectic Learning Optimization

In machine learning, the task of learning is often formulated as numerical optimization. As such, there
has been increased efforts to improve gradient-based optimization techniques, among which momentum-
based approaches have become popular. The idea is that optimization is considered as finding the lowest
point of terrain defined by the objective function, and descending along the gradient can be accelerated
as if a ball rolling down a hill is accelerated. In other words, an accelerated optimization algorithm can
be defined by discretizing a mechanical system analogous to gradient descent schemes.

0 20 40 60 80 100 120 140

Iteration

10
-5

10
0

 |
| 

C
(R

) 
||

Accelerated Gradient Descent

Gradient Descent

The PI has developed geometric nu-
merical integration schemes, referred
to as Lie group variational integra-
tor for Hamiltonian systems on a Lie
group [46, 47]. They exhibit long-term
structural stability in numerical simula-
tion, as both of sympletic structures of
Hamiltonian systems and Lie group structures are preserved concurrently. Recently, a Lie group vari-
ational integrator has been utilize to construct accelerated gradient-descent optimization scheme on
SO(3) [48], and it is applied to spherical shape matching. It is shown that the desirable properties of
variational integrators improves computational efficiency of optimization. This idea of integrating nu-
merical optimization for learning and structure-preserving integration on a manifold will be investigated
continually.

3.4 Large-Scale Aerial Transportation

Besides the above theoretical research, two particular applications of geometric control will be pursued.
The first is large-scale aerial transportation. While geometric controls for autonomous transportation
have been illustrated under various assumptions, flight experiments are limited by one or two quadrotors
transporting a fictitious payload in a lab environment. Upon availability of more resources, such as a
larger outdoor space for flight experiments, I envision a larger scale aerial transportation, where several
aerial vehicles transporting a sizable payload through cluttered environments.

3.5 Drone Racing: Tight-Coupling Between Perception and Control

The next application is autonomous drone racing. The PI is well posed to drone racing, particularly
for designing geometric time-optimal controls involving complex maneuvers and developing flight hard-
ware/software. Beyond control and optimization, another important aspect of drone racing is vision-
based perception. After recognizing my lack of expertise in computer vision and perception, I decided
to organize a new graduate course in Robotics Vision and Perception in Spring 21, to train myself and
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my students in depth. The materials in this course will be utilized in drone racing for short-term future,
and more interestingly, tight-coupling between perception and control, bypassing the traditional pipeline
of estimation, planning, and control, in long-term future.
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