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Abstract— This paper considers a Gaussian multi-antenna
broadcast channel with individual power constraints on each
antenna, rather than the usual sum power constraint over
all antennas. Per-antenna power constraints are more realistic
because in practical implementations each antenna has its own
power amplifier. The main contribution of this paper is a new
derivation of the duality result for this class of broadcast channels
that allows the input optimization problem to be solved efficiently.
Specifically, we show that uplink-downlink duality is equivalent
to Lagrangian duality in minimax optimization, and the dual
multiple-access problem has a much lower computational com-
plexity than the original problem. This duality applies to the
entire capacity region. Further, we derive a novel application
of Newton’s method for the dual minimax problem that finds
an optimal search direction for both the minimization and the
maximization problems at the same time. This new computational
method is much more efficient than the previous iterative water-
filling-based algorithms and it is applicable to the entire capacity
region. Finally, we show that the previous QR-based precoding
method can be easily modified to accommodate the per-antenna
constraint.

I. INTRODUCTION

A downlink transmission scenario with a base-station
equipped with n transmit antennas and K remote users, each
equipped with mk receive antennas, is often modelled as a
Gaussian vector broadcast channel:

Yi = HiX + Zi, i = 1, . . . ,K, (1)

where X is an n × 1 vector and Hi’s are mi × n channel
matrices, and Zi are additive white Gaussian noise. A sum
power constraint is usually imposed on the transmitter

EXT X ≤ P. (2)

Recently, a great deal of progress has been made in character-
izing its capacity region. Under a sum power constraint, Caire
and Shamai [1] showed that the so-called dirty-paper pre-
coding strategy [2] is optimal for the broadcast channel with
two transmit antennas. This result has since been generalized
using several different approaches to broadcast channel with an
arbitrary number of users and an arbitrary number of antennas
[4] [5] [6]. In particular, [4] showed that the precoding strategy
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is equivalent to successive decoding in a generalized decision-
feedback equalizer (GDFE) and the sum capacity can be
characterized by a minimax expression, while independent
work [5] [6] showed that the broadcast channel dirty-paper
region can be found via solving a dual multiple-access channel.
The dirty-paper region is then conjectured to be indeed the
capacity region of MIMO broadcast channel. Toward this end,
Weingarten, Steinberg and Shamai [7] introduced a new notion
of enhanced broadcast channels and finally substantiated this
conjecture. The sum capacity results in [4] and that in [5]
and [6], although equivalent, also have subtle differences. The
GDFE approach [4] is applicable to broadcast channel with
arbitrary input constraints, but only sum capacity is solved.
The alternative approach in [5] [6] establishing the duality of
broadcast channel dirty-paper region and reciprocal multiple-
access channel capacity region, appears to be applicable to
broadcast channels with a sum power constraint only. On the
other hand, the dual multiple-access channel is much more
amendable to numerical computation. So, solving the dual
problem gives an efficient numerical solution for the original
minimax problem.

The duality of uplink and downlink channels is no accident.
One of the main objectives of this paper is to show that
uplink-downlink duality is in fact equivalent to Lagrangian
duality in optimization. This approach is different from the
approach in [9], which is based on a manipulation of the
KKT conditions for the minimax problem. This new viewpoint
allows the duality theory to be extended beyond the sum power
constrained channels. In particular, we focus on a practical
scenario where an individual power constraint needs to be
satisfied at each transmit antenna:

EX(i)X(i) ≤ Pi , for i = 1, . . . , n. (3)

where X(i) is the ith component of vector X . The per-
antenna power constraint arises from the power consumption
limits of physical amplifiers at the transmitter and is more
realistic in practical implementations for both wireless and
wired applications.

The main results of the paper are as follows. First, a
new duality result for broadcast channels with per-antenna
power constraints is derived. The new derivation is based
on Lagrangian duality in minimax optimization, and uplink-
downlink duality is equivalent to convex duality. It turns out
that the Lagrangian dual is also a minimax problem, which cor-
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responds to a multiple-access channel with linearly constrained
noise. This duality result also generalizes to entire capacity
region. Second, we observe that the dual minimax problem
is convex-concave and lies in a much lower dimensional
space. Thus, the input optimization problem can be much
more efficiently solved in the dual domain. Toward this end,
we apply a novel form of Newton’s method for minimax
optimization [8] that finds an efficient search direction for both
the maximization and the minimization problems at the same
time, as it approaches the minimax saddle-point directly. The
new algorithm not only outperforms previous iterative water-
filling based approaches [10] [11], it also admits a rigorous
convergence analysis. Finally, we apply the new duality result
to the downlink transmission channel with high SNR and show
that the previous QR-based approach can easily be modified
to accommodate the per-antenna power constraint.

II. DUALITY WITH PER-ANTENNA POWER CONSTRAINTS

The sum capacity of a Gaussian vector broadcast channel is
the saddle-point of a minimax mutual information expression,
where the maximization is over all transmit covariance matri-
ces subject to the input constraint and the minimization is over
all noise covariance matrices subject to a diagonal constraint
[3] [4]. Under the per-antenna power constraint (3), the sum
capacity minimax problem is as follows:

C = min
Sz

max
Sx

1
2

log
|HSxHT + Sz|

|Sz| . (4)

s.t. S(i,i)
x ≤ Pi , for i = 1, . . . , n.

S(i,i)
z = Imi×mi

, for i = 1, . . . , K.

where H = [HT
1 , · · · ,HT

K ]T and the transmit and noise
covariance matrices Sx and Sz also have to be positive semi-
definite.

The main result of this section is a derivation of a dual
multiple-access channel for this broadcast channel. We use
a novel approach that shows that uplink-downlink duality is
equivalent to Lagrangian duality in convex optimization. It
also provides a natural generalization for the previous duality
results on sum power constrained broadcast channels [5] [6].

Theorem 1: The capacity region of a MIMO Gaus-
sian broadcast channel with per-antenna power constraints
(P1, . . . , Pn) is the same as the capacity region of a dual
multiple-access channel with uncertain noise, where the input
covariance is constrained by (6) below and the noise covari-
ance is constrained by (8) below. In particular, for the sum
capacity point, the Lagrangian dual of the minimax problem
(4) is the following minimax problem:

max
Σx

min
Σz

1
2

log
|HT ΣxH + Σz|

|Σz| . (5)

s.t. tr(Σx) ≤ 1, (6)

Σx is block diagonal, Σx ≥ 0 (7)

tr(ΣzP ) ≤ 1, (8)

Σz is diagonal, Σz ≥ 0 (9)

where P is a diagonal matrix diag(P1, · · · , Pn).

Proof: For simplicity, we will only focus on sum capacity in
this paper. However, the duality result applies to entire capacity
region. Suppose (Sx,Sz) to be the optimal solution for problem
(4), which is not full rank. H is not necessarily invertible. The
first step in deriving the duality is to factorize

P− 1
2 SxP− 1

2 = UT
1 Sx̃U1 and Sz = UT

2 Sz̃U2, (10)

where Sx̃ and Sz̃ are full rank matrices, U1 and U2 are
matrices consisting of orthonormal row vectors. (U1U

T
1 = I

and U2U
T
2 = I) Then we rewrite optimization problem (4) to

a minimax problem on Sx̃ and Sz̃ with normalized individual
power constraints:

C = min
Sx̃

max
Sz̃

1
2

log
|H̃Sx̃H̃T + Sz̃|

|Sz̃| . (11)

s.t. (UT
1 Sx̃U1)(i,i) ≤ 1 , for i = 1, . . . , n.

(UT
2 Sz̃U2)(i,i) = Imi×mi

, for i = 1, . . . ,K.

where H = UT
2 H̃U1P

1
2 and H̃ is the equivalent channel. It

is not difficult to see that optimization problems (4) and (11)
are equivalent. Further, Sx̃ and Sz̃ have the same rank and H̃
is square and invertible. (Refer to [12] for details.)

With this observation, the Lagrangian dual is derived in two
stages. First, form the Lagrangian for the maximization part
of (11):

L(Sx̃, Q) = log
|H̃Sx̃H̃T + Sz̃|

|Sz̃| −tr[Q(UT
1 Sx̃U1−I)]. (12)

where the dual variable Q is a diagonal matrix with non-
negative entries. (For simplicity, the coefficient 1

2 is omitted
throughout the derivation.) The dual objective is therefore

g(Q) = max
Sx̃

L(Sx̃, Q). (13)

where the optimization is over the constraint set Sx̃ ≥ 0. At
optimum, ∂L/∂Sx̃ = 0. Thus

H̃T (H̃Sx̃H̃T + Sx̃)−1H̃ − U1QUT
1 = 0. (14)

Let Q̃ = U1QUT
1 . We claim that Lagrangian multiplier Q̃ is

full rank, otherwise some diagonal components of Sx̃ become
unbounded. We can solve for Sx̃:

Sx̃ = Q̃−1 − H̃−1Sz̃H̃
−T . (15)

Substitute this into (12), we get the expression for g(Q̃).
Further, since strong duality holds, the dual objective reaches
a minimum at the optimal value of the primal problem. Thus,
maximization problem (11) has a equivalent dual problem
min

Q̃
g(Q̃) as follows, in the sense of Lagrangian duality.

min
Q̃

− log |H̃−T Q̃H̃−1| + tr(Q̃) − m

+tr(Sz̃H̃
−T Q̃H̃−1) − log |Sz̃|. (16)

s.t. UT
1 Q̃U1 is diagonal and Q̃ ≥ 0.
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where m is the total number of receive antennas. The dual
minimization problem above is easier to solve numerically.

The minimax problem (4) now becomes a double-
minimization problem consisting of a dual minimization on
Q̃ and the original minimization on Sz̃:

min
Q̃

min
Sz̃

− log |H̃−T Q̃H̃−1| + tr(Q̃) − m

+tr(Sz̃H̃
−T Q̃H̃−1) − log |Sz̃|. (17)

s.t. UT
1 Q̃U1 is diagonal, Q̃ ≥ 0.

(UT
2 Sz̃U2)(i,i) = Imi×mi

, for i = 1, . . . , K.

The next step is to use the same procedure to find the dual
problem for the minimization with respect to constrained Sz̃ .
Considering only the terms containing Sz̃:

min
Sz̃

− log |Sz̃| + tr(Sz̃H̃
−T Q̃H̃−1). (18)

s.t. (UT
2 Sz̃U2)(i,i) = Imi×mi

, for i = 1, . . . , K.

Form its Lagrangian:

L(Sz̃,Φ1, . . . ,ΦK) = − log |Sz̃| + tr(Sz̃H̃
−T Q̃H̃−1)

+
K∑

i=1

tr[Φi((UT
2 Sz̃U2)(i,i) − I)].

where Φi’s are the dual variables associated with diagonal
constraints on UT

2 Sz̃U2 and Φi’s are mi × mi positive semi-
definite matrices. Let Φ̃ = U2diag(Φ1, . . . ,ΦK)UT

2 . The
optimality condition for Sz is then

∂L/∂Sz̃ = H̃−T Q̃H̃−1 − S−1
z̃ + Φ̃ = 0. (19)

The dual problem for the primal minimization is therefore

max
Φ̃

log |H̃−T Q̃H̃−1 + Φ̃| + m − tr(Φ̃). (20)

s.t. UT
2 Φ̃U2 is block diagonal, Φ̃ ≥ 0.

Again because of the strong duality, the dual problem achieves
a maximum value at the minimum value of the primal objec-
tive. Replacing the minimization in (17) by its above dual, we
derive the following Lagrangian dual problem for the minimax
problem (4):

max
Φ̃

min
Q̃

log
|H̃T Φ̃H̃ + Q̃|

|Q̃| + tr(Q̃) − tr(Φ̃)

s.t. UT
2 Φ̃U2 is block diagonal, Φ̃ ≥ 0.

UT
1 Q̃U1 is diagonal, Q̃ ≥ 0. (21)

To derive the uplink-downlink duality under per-antenna power
constraint, the above result need to be further modified. The
key is to introduce another optimization variable λ,

max
Φ̃

max
λ

min
Q̃

log
|H̃T Φ̃H̃ + Q̃|

|Q̃| + tr(Q̃) − λ.

s.t. UT
2 Φ̃U2 is block diagonal, tr(Φ̃) ≤ λ.

λ ≥ 0
UT

1 Q̃U1 is diagonal, Q̃ ≥ 0. (22)

Finally, consider Σx = 1
λUT

2 Φ̃U2 , Σz = 1
λP− 1

2 UT
1 Q̃U1P

− 1
2

and λ as the new optimization variable. The optimization
problem becomes

max
Σx

max
λ

min
Σz

log
|HT ΣxH + Σz|

|Σz| + λ[tr(ΣzP ) − 1].

s.t. Σx is block diagonal, tr(Σx) ≤ 1.

λ ≥ 0
Σz is diagonal, Σz ≥ 0. (23)

Note that the minimization with respect to Σz and the max-
imization with respect to λ can be combined. In fact, this
minimax is just the dual for primal maximization problem on
Σz with the inequality constraint tr(ΣzP ) ≤ 1, with λ serves
as the dual variable. Again, by strong duality, we can replace
the dual problem with the primal problem. This establishes (5)
�

Because Σx is diagonal, (5) represents the sum capacity of
a multiple access channel. The dual multiple access channel
has a sum power constraint across all the transmitters and a
linear constraint on the diagonal noise. This is a generalization
of previous result on broadcast channel with sum power
constraint [5] [6]. Further, the input optimization for the
broadcast channel can therefore be solved via its dual channel.

III. INPUT OPTIMIZATION VIA DUALITY

The dual minimax problem is convex-concave and lies in
a much lower dimensional space as compared to the original
problem. Thus, it is easier to solve. The goal of this section is
to derive a Newton’s method to compute the capacity region
of the dual multiple-access channel. We will proceed with the
minimax problem (5) of sum capacity, however, all results
directly apply to the entire capacity region. The proposed
method differs from the usual Newton’s method in two crucial
aspects. First, as opposed to solving a pure maximization or a
pure minimization problem, the minimax problem demands
the maximization and the minimization to be done at the
same time. Second, we recognize that the inequality trace
constraints in (5) can be replaced by equality constraints. This
greatly speeds up the computation. The methods proposed in
this section draw heavily from materials in the optimization
literature [8].

As a first step, let’s assume for now that the optimal Σx and
Σz are strictly positive definite so that the constraints Σz ≥ 0
and Σx ≥ 0 are superfluous. This situation corresponds to a
broadcast channel in which the number of transmit antennas
is about the same as the total number of receive antennas. The
positivity constraints are always superfluous, for example, in
a digital subscriber line application.

Then, write Σx and Σz as vectors, call them Σ(v)
x and Σ(v)

z ,
respectively. This is automatic for Σ(v)

z , which is already diag-
onal. For block-diagonal Σ(v)

x with block sizes (m1, · · · ,mK),
mi(mi + 1)/2 entries are involved for each block. Now,
recognize that the inequality constraints in (5) are always
satisfied with equality, i.e. tr(Σx) = 1 and tr(ΣzP ) = 1. To see
this, consider all possible Σx’s in the set {Σx : tr(Σx) < 1}.
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We can properly allocate the remaining power (1 − tr(Σx))
based on the current covariance matrix Σx. This strictly
increases the sum capacity. The same augment works for Σz .
Thus, solving (5) is equivalent to solving

max
Σ

(v)
x

min
Σ

(v)
z

f(Σ(v)
x ,Σ(v)

z ) (24)

s.t. AΣ(v)
x = 1,

BΣ(v)
z = 1.

where f(Σ(v)
x ,Σ(v)

z ) denote the minimax expression and matri-
ces A and B represent the linear constraints on Σ(v)

x and Σ(v)
z .

The KKT condition for this minimax problem now becomes:

r1 = ∇Df(Σ(v)
x ,Σ(v)

z ) + AT ν = 0, (25)

r2 = ∇Zf(Σ(v)
x ,Σ(v)

z ) + BT µ = 0, (26)

r3 = AΣ(v)
x − 1 = 0, (27)

r4 = BΣ(v)
z − 1 = 0. (28)

where ν and µ are Lagrangian multipliers associated with the
equality constraints AΣ(v)

x = 1 and BΣ(v)
z = 1, respectively.

For notational convenience, ∇x is used to denote ∇
Σ

(v)
x

, and
likewise for ∇z . Here r = [r1r2r3r4] is called the residue. The
optimality condition is completely satisfied when the residue
is driven down to zero.

We can now reformulate the minimax problem based on an
unconstrained minimization (i.e. zero-forcing) of r. To proceed
with the minimization, we approximate r(Σ(v)

x ,Σ(v)
z , ν, µ) as a

linear function using its gradient, and solve the equation r = 0
as if it is linear. The update of (∆Σ(v)

x ,∆Σ(v)
z ) can then be

found as:

[∆Σ(v)
x ∆Σ(v)

z ∆ν ∆µ]T = −(∇r)−1r (29)

More explicitly, the above equation can be written as:



∇2
xxf ∇2

xzf AT 0
∇2

zxf ∇2
zzf 0 BT

AT 0 0 0
0 BT 0 0







∆Σ(v)
x

∆Σ(v)
z

ν
µ


 =




−∇xf
−∇zf

1 − AΣ(v)
x

1 − BΣ(v)
z




The search direction for (∆Σ(v)
x ,Σ(v)

z ) is found via a matrix
inversion.

The search direction derived above is actually a Newton’s
direction for both the minimization and the maximization
at the same time! This observation is first made in [8] for
concave-convex optimization. One way to interpret the search
direction defined by (29) is that the minimax problem is
being approximated by a quadratic minimax problem at each
step, and the Newton’s step represents a direction toward
the saddle-point of the quadratic approximation. Note that
unlike conventional Newton’s method, where the value of the
objective function can be used to ensure that the behaviour of
the algorithm is monotonic, for minimax problems, a different
metric is needed. The natural metric in our case is the norm
of residue, which can be used in the backtrack line search.

The derivation so far assumes that the optimal Σx is strictly
positive definite. When the number of remote users exceeds

the number of base-station antennas, Σx can become semi-
definite. In this case, the positivity constraint needs to be taken
into account using interior-point method via a logarithmic
barrier. More specifically, let φ(Σx) = log |Σx| and define:

ft = f +
1
t
φ, (30)

then the earlier derivation follows with f replaced by ft.
We summarize the Newton’s method for the minimax prob-

lem as follows:
Given initial Σx, Σz , t > 0, γ > 1, tolerance ε > 0.

1) Centering step:

- Initialize α ∈ (0, 1/2) and β ∈ (0, 1).
- Compute Σx and Σz .
- Backtracking line search until
||r(Σ∗

x,Σ∗
z)||2 < (1 − αs)||r(Σx,Σz)||2.

- Update Σx := Σ∗
x and Σz := Σ∗

z .
- Stop if ||r||2 < ε.

2) Σx := Σ∗
x and Σz := Σ∗

z .
3) Stop if n/t < ε.
4) Update t := γt.

Furthermore, if the objective function satisfies a strongly
convexity condition, the Newton’s method in fact admits
an analytic bound on the maximum number of iterations.
Although ft here is not strongly convex by itself, strong
convexity can always be ensured by an addition of superfluous
constraints

||Σ(v)
x || ≤ l and ||Σ(v)

z || ≤ l, (31)

where l is a constant chosen sufficiently large as to make the
constraints inactive. The proof of this fact is lengthy, and is
omitted here. The analytical bound is stated as follows:

Theorem 2: For l > 1, the objective of the proposed New-
ton’s method satisfies strong convexity condition and ∇2ft

satisfies the Lipschitz condition:

||∇2ft(x1) −∇2ft(x2)||2 ≤ L||x1 − x2||2 (32)

mI ≤ ∇2
zzft ≤ MI, −MI ≤ ∇2

xxft ≤ −mI (33)

where xi = (Σxi
,Σzi

). Further, upper bound on the number
of iterations is given by L, m, M and Newton’s method
parameters for each centering step as follows:

N ≤ log2(log2(
2

εK2L
)) +

||r(0)||K2
(M,m)Lβ

α
, (34)

where r(0) is the initial residue, and K is a constant depending
on m and M .

A numerical example with a base station with 5 transmit an-
tennas and 15 receivers each with three antennas is presented.
The iterative algorithm is run with a guaranteed error gap less
than 10−6. The interior point method parameter γ is set to 5,
and backtracking line search parameter α = 1/3 and β = 2/3.
The norm of residue as a function of iteration number is plotted
in Fig. 1. Each horizontal portion corresponds to one fixed t.
The proposed algorithm is quite effective.
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Fig. 1. Convergence of Newton’s method for a minimax problem.

IV. EXTENSIONS

The primary motivation for studying uplink-downlink du-
ality is that it allows the spectrum optimization problem to
be solved efficiently. In this section, we show how the results
of last section extend previous QR-based precoding method.
Consider a Gaussian vector channel under high SNR

Y = Hx + z. (35)

In QR precoding [1] [13], we first form HT = QR, where
R is triangular and Q is orthogonal. Then, we let x = Qu,
where u is the transmit symbol. This effectively triangularizes
a full matrix channel. Precoding can then be used to cancel
the off-diagonal entries of R. QR precoding works because u
and Qu have the same total power. QR precoding is optimal
in the high SNR regime.

However, multiplication by an orthogonal matrix does not
preserve individual power on each antenna. The goal of this
section is to illustrate how to modify QR precoding to preserve
pre-antenna power constraint.

The key observation is that optimization (4) with per-
antenna power constraint is equivalent to the following op-
timization problem with linear power constraint,

min
Sz

max
Sx

1
2

log
|HSxHT + Sz|

|Sz| . (36)

s.t. tr(Σ∗
zSx) ≤ 1

S(i,i)
z = Imi×mi

, for i = 1, . . . ,K.

where Σ∗
z is the minimizing noise in the dual multiple access

channel. Note that (36) and (4) have the same objective, the
only difference is the constraint involving Σ∗

z . This relation
can be established by finding the KKT conditions for the op-
timization problem in (4), (5) and (36). These KKT conditions
are equivalent based on a simple manipulation. (Refer to [9]
for details.)

A modified QR-based precoding methods for broadcast
channels with per-antenna constraint is then straightforward.
We only need to consider Heq = HΣ−1/2

z as the equivalent
channel. Under the high SNR condition Sx � Sz , the

minimizing Σ∗
z in (5) has an approximate solution Σ∗

z = P−1.
Recall that P is just the diagonal matrix formed by the power
constraint of each transmitter antenna. The QR factorization
now becomes

P 1/2HT = QR. (37)

Thus, the modified QR-based precoding under the per-antenna
constraints is the QR factorization of a scaled channel matrix.
Transmit precoding would then eliminate the off-diagonal
values of the triangular matrix R.

V. CONCLUSION

This paper contains several new results. First, an uplink-
downlink duality relation is derived for Gaussian MIMO
broadcast channel with per-antenna power constraints. This
novel derivation illustrates the equivalence between uplink-
downlink duality and Lagrangian duality in convex optimiza-
tion. It turns out that the dual of a broadcast channel under
the per-antenna constraint is also a minimax problem. Second,
a new application of Newton’s method is used to solve the
minimax problem. The numerical algorithm finds an efficient
search direction for the maximization and the minimization at
the same time, and is much more efficient than previously
proposed solutions. Finally, the duality result is applied to
channels under high SNR.

REFERENCES

[1] G. Caire and S. Shamai, “On Achievable Rates in a Multi-antenna
Broadcast Downlink”, IEEE Trans. on Inform. Theory, Vol. 49, No. 7,
pp. 1691–1706, July 2003.

[2] M.H.M. Costa, “Writing on dirty paper”, IEEE. Trans. Inf. Theory,
v.29, pp.439-441, May 1983.

[3] H. Sato, “An Outer Bound on the Capacity Region of Broadcast
Channel”, IEEE. Trans. Inf. Theory, v.24, pp.374-377, May 1978.

[4] W. Yu and J. Cioffi, “Sum Capacity of Gaussian Vector Broadcast
Channels”, IEEE Transactions on Information Theory, Sept. 2004.

[5] P. Viswanath and D. Tse, “Sum Capacity of the Multiple Antenna
Gaussian Broadcast Channel and Uplink-Downlink Duality”, IEEE
Transactions on Information Theory, vol 49(8), pp. 1912-1921, August,
2003.

[6] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, Achievable
Rates, and Sum-Rate Capacity of Gaussian MIMO Broadcast Chan-
nels”, IEEE Trans. on Information Theory, Volume 49, Issue 10, pp.
2658-2668, Oct. 2003.

[7] H. Weingarten, Y. Steinberg and S. Shamai, “The Capacity Region of
the Gaussian MIMO Broadcast Channel”, Conference on Information
Science and Systems, March, 2004.

[8] S. Boyd, L. Vandenberghe “Convex Optimization”, Chapter 9 and
chapter 10, December 2002.

[9] W. Yu, T. Lan “Minimax Duality of Gaussian Vector Broadcast
Channels”, IEEE International Symposium on Information Theory,
July 2004.

[10] W. Yu, “A Dual Decomposition Approach to the Sum Power Gaussian
Vector Multiple Access Channel Sum Capacity Problem”, 37th Annual
Conference on Information Sciences and Systems (CISS), March 2003.

[11] S. Vishwanath, W. Rhee, N. Jindal, S. Jafar, A. Goldsmith, “Sum
power iterative waterfilling for Gaussian vector broadcast channels”,
IEEE International Symposium on Information Theory, June, 2003.

[12] W. Yu, “Uplink-Downlink Duality via Minimax Duality“, Submitted
to IEEE Transactions on Information Theory, April 2004.

[13] G. Ginis, J. Cioffi, “Vectored transmission for digital subscriber line
systems”, IEEE J. Sel. Areas Comm. Vol.20(5), pp.1085 - 1104, June
2002.

[14] N. Jindal, S. Vishwanath, and A. Goldsmith, “On the duality of
Gaussian multiple-access and broadcast channels”, IEEE Trans. on
Information Theory, Vol. 50, No. 5, pp. 768-783, May 2004.

Globecom 2004 424 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       


