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ABSTRACT
Energy accounting determines how much a software principal con-
tributes to the total system energy consumption. It is the foundation
for evaluating software and for operating system based energy man-
agement. While various energy accounting policies have been tried,
there is no known way to evaluate them directly simply because it
is hard to track all hardware usage by software in a heterogeneous
multicore system like modern smartphones and tablets.

In this work, we argue that energy accounting should be formu-
lated as a cooperative game and that the Shapley value provides
the ultimate ground truth for energy accounting policies. We reveal
the important flaws of existing energy accounting policies based
on the Shapley value theory and provide Shapley value-based en-
ergy accounting, a practical approximation of the Shapley value,
for battery-powered mobile systems. We evaluate this approxima-
tion against existing energy accounting policies in two ways: (i)
how well they identify the top energy consuming applications, and
(ii) how effective they are in system energy management. Using a
prototype based on Texas Instruments Pandaboard and smartphone
workload, we experimentally demonstrate existing energy account-
ing policies can deviate by 400% in attributing energy consumption
to running applications and can be up to 25% less effective in sys-
tem energy management when compared to Shapley value-based
energy accounting.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management

Keywords
Energy accounting; Energy management; Mobile systems

1. INTRODUCTION
The ability to account system resource usage by software is key

to the design and operation of computers. While modern computers
can account CPU and memory usage by software easily, they can
not yet do so for energy, an increasingly important system resource
due to electricity and thermal concerns. We use software principals
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to denote the software entities to which energy consumption has to
be attributed. Examples of software principal include applications,
processes, threads, and tasks. Given the system energy consump-
tion E and the set of software principals N = {1,2, . . . ,n} that are
active during time interval T , energy accounting determines the en-
ergy contribution of each software principal in N. Energy account-
ing is the foundation for evaluating software by their energy use,
e.g., [23, 19], and for operating system (OS) based energy manage-
ment that schedules processes for tradeoffs between system energy
consumption and process utility, e.g., [32, 25].

Energy accounting is a long-standing hard problem for multipro-
cessing systems in which multiple software principals can be active
at the same time. In the past decade, many energy accounting poli-
cies have been tried for various applications as exemplified recently
by [33, 23, 19, 31], including the “Battery” feature in Android.
However, there is no known ground truth against which a policy
could be evaluated. The fundamental reason is that it is practically
infeasible to track how software uses each hardware component in a
heterogeneous multicore system like modern mobile devices. Usu-
ally, only the total system energy consumption can be measured,
and the usage of only a few hardware components, e.g., CPU and
memory, can be attributed to a software principal.

In this work, we explore cooperative game theory for energy ac-
counting, reveal the important flaws of existing policies, and sug-
gest a novel policy that does not have these flaws. Our key insight
is that energy accounting can be formulated as a cooperative game
theory problem: when multiple players participate in a game and
the game produces a surplus, how should that surplus be divided
among the players? Note that “cooperative” implies that the play-
ers can influence each other via both collaboration and competition.
In energy accounting, the game is the system during time interval
T , players software principals, and energy consumption the sur-
plus. We show that the Shapley value [27], a single value solution
to this problem, provides the theoretical ground truth for energy
accounting. We show how existing accounting policies violate the
four self-evident properties that uniquely define the Shapley value.

We further provide a practical approximation of the Shapley value,
called Shapley value-based energy accounting, for battery-powered
mobile devices. It is infeasible to obtain the exact Shapley value
in practice because calculating it requires the system energy con-
sumption for all possible combinations of software principals under
question, i.e., E(S) ∀ S ⊆ N. Our Shapley value-based energy ac-
counting acquires system energy consumption in situ for very short
time intervals, down to 10 ms, uses heuristics to estimate E(S)
for unobserved S, and extend the Shapley value theory to work
with partially defined cooperative games and non-deterministic en-
ergy consumption E(S). We report a prototype implementation



based on Google Android, Texas Instruments PandaBoard ES with
OMAP4460, and MAXIM DS2756 battery fuel gauge.

Using this prototype, we experimentally demonstrate how erro-
neous existing energy accounting policies can be (up to 400%),
how little difference in energy management can they make, and
that Shapley value-based energy accounting outperforms other en-
ergy accounting policies in energy management by up to 25%. Our
results also show that sophisticated energy accounting policies used
in recent work are not better than very simple ones as long as they
guarantee that energy contributions from all software principals add
up to the total system energy consumption. Our results mandate a
rethinking of energy accounting and its application in energy man-
agement. Not only can existing energy accounting policies be off-
the-mark by a large degree (now we know why many Android users
feel the “Battery” feature is inaccurate), but also existing budget-
based energy management may be unnecessarily complicated yet
underperforming. While our prototype and evaluation are based
on battery-powered mobile systems, we believe most of our results
are directly applicable to other computer systems as long as fairly
high-frequency system energy measurements are available.

In summary, we make the following contributions to energy ac-
counting in both theory and practice.

• We show that energy accounting should be formulated as a
cooperative game and that the Shapley value provides the
theoretical ground truth. We reveal how existing accounting
policies fail the axiomatic properties required by this ground
truth.

• We provide Shapley value-based energy accounting, a practi-
cal approximation of the Shapley value, for battery-powered
mobile devices. Using a prototype realization, we demon-
strate our approximation is superior to existing energy ac-
counting policies experimentally.

The rest of this paper is organized as follows. Section 2 provides
necessary background and introduces existing energy accounting
policies. Section 3 presents the Shapley value as ground truth for
energy accounting. Section 4 describes key techniques to acquire
system energy consumption in short time intervals in situ in order
to realize Shapley value-based energy accounting. Section 5 and
Section 6 present system implementation and evaluation, respec-
tively. Section 7 surveys related work. Section 8 discusses how
this work can be extended and concludes the paper.

2. BACKGROUND
We first provide some background to the problem and describe

existing energy accounting policies.

2.1 Problem Definition and Notations
Energy accounting determines how much a software principal

contributes to the system energy consumption. Let T denote the
time during which the system energy consumption E must be at-
tributed; N = {1,2, . . . ,n} denote the software principals that are
active during this time. An energy accounting policy determines the
contribution φi by process i ∈ N to the system energy consumption
E. Mathematically a policy is a family of mapping {φi(E(N)), ∀i∈
N} from total energy consumption E(N) to per-software principal
energy consumptions φi.

A self-evident property that an energy accounting policy must
have is: ∑i φi = E(N). That is, the sum of energy contributions by
all software principals must be the same as the total system energy
consumption. We call this property Efficiency according to [27].

Table 1 summarizes the main notations used in this paper.

Table 1: Notations

Symbol Description
T Time in which system energy consumption is under question
N A set of n software principals that are active during T
m Max number of concurrent software principals allowed
S A subset of N; a coalition of software principals

E(S) System energy consumption in T if only S are active
φi Contribution by software principal i to E(N)
σ System state that is out of the control of the processes

E(S,σ) System energy consumption when S are active with state σ

2.2 Existing Energy Accounting Policies
We next discuss the major types of energy accounting policies

reported in the literature.

Policy I: φi = E(N)/|N|. This policy states that the energy con-
tributed by software principal i is equal to the total energy con-
sumption divided by the number of software principals. That is,
each software principal gets an equal share of the total energy con-
sumption.
Policy II: φi = E({i}). This policy states that the energy con-
tributed by software principal i is the same as its stand-alone en-
ergy consumption E({i}) when only software principal i is running
in the system. WattsOn [19] utilizes such policy to obtain the en-
ergy consumption of each mobile application to enable third-party
app developers to improve energy efficiency of their products.
Policy III: φi = E(N)− E(N \ {i}). This policy states that the
energy contributed by software principal i is equal to its marginal
energy contribution, which is the difference between system energy
consumption when software principal i is running and when it is not
running, while all other conditions remain unchanged [34].
Policy IV: The energy contributed by software principal i is equal
to the sum of system energy consumption over all scheduling inter-
vals when software principal i is scheduled in CPU. PowerScope [12]
used this policy to account energy consumption of each program
running in a system. Obviously, this approach will work only if
one software principal can be running at the same time.
Policy V: This sophisticated policy relies on a system energy model
E = f (x1,x2, ...,xp) where xk,k = 1,2, ...p, are predictors that can
be obtained in software such as CPU and memory usage. The pol-
icy figures out how much software principal i contributes to each
of the predictors, xk,i and determines the energy contribution by i
by plugging xk,i back into f , i.e., φi = f (x1,i,x2,i, . . . ,xk,i, . . . ,xp,i).
To have the Efficiency property described above, however, f must
be a linear function, i.e., E = β0 +∑p

k=1 βk · xk and there must be
a heuristic to split the constant β0 among the software principals.
Variants of Policy V have been used by Android [1], PowerTu-
tor [2] and AppScope [31] for smartphones, by ECOSysem [32] for
laptops, by Joulemeter [14] and Power Container [28] for servers,
and by Quanto [13] for sensor networks. Policy V, however, is
fundamentally limited because how it determines the energy con-
tribution by a software principal depends on how it estimates the
system energy consumption. In particular, the estimation can only
consider resource usage that can be attributed to individual soft-
ware principals; and the estimation must employ a linear model.
These two limitations can be very problematic for modern mobile
systems where many hardware components including some major
energy consumers are invisible to the OS [20], e.g., system bus
and graphics, and others whose usage cannot be easily attributed
to a software principal, e.g., GPS and display. Moreover, it has
been shown that linear models are inadequate for estimating sys-
tem energy consumption [17, 8]. As a result, Policy V can not only



significantly underestimate the energy contribution by a software
principal but also fail to attribute a significant portion of system en-
ergy consumption to running software principals. Due to the lack
of ground truth for energy accounting, the problems of Policy V
have never been quantified.

In the rest of the paper, we will reveal the fundamental flaws
of these energy accounting policies analytically (Section 3.3) and
quantitatively (Section 6.3).

3. SHAPLEY VALUE AS GROUND TRUTH
We now introduce the Shapley value as the ground truth for en-

ergy accounting. We will discuss how the theory can be applied to
energy accounting and demonstrate how existing energy account-
ing policies lack one or more of the four properties that uniquely de-
fine the Shapley value. In Section 4 and Section 5, we will discuss
how to address system challenges of realizing Shapley value-based
energy accounting and provide a practical, approximate implemen-
tation, respectively.

3.1 Shapley Value
We observe a problem similar to energy accounting has been ex-

tensively studied in cooperative game theory: how to determine
the contribution of each individual player in a game with multiple
players? Consider a cooperative game where a set of n players,
N = {1, . . . ,n}, collectively generate a grand surplus v(N). The
set of players, N, is also called the grand coalition. Plainly speak-
ing, “cooperative” here refers to the fact the players are not playing
in isolation: they can influence each other via both collaboration
and competition. Let v : 2n → R be a characteristic function that
describes the payoff v(S) a subset of players S ⊆ N can gain by
playing the same game. A powerful result proven by Shapley in
1953 [27] defines the Shapley value φi(v) for i = 1, . . . ,n as the
unique way to distribute the grand surplus v(N) among the n play-
ers that satisfies four simple axioms:

Efficiency: The sum of share of all players is the grand surplus,
i.e. ∑i φi(v) = v(N). This is the Efficiency property mentioned in
Section 2.2.
Symmetry: Symmetric players receive equal shares, i.e., if v(S∪
{i}) = v(S∪{ j}) ∀S⊆ (N\{i, j})), then φi(v) = φ j(v). That is, if
replacing player i with player j in any coalition does not change the
game surplus and vice versa, the shares of the two players should
be identical.
Null Player: Player i receives zero share if he does not change the
payoff in any coalition S, i.e., if v(S∪ {i}) = v(S) ∀S ⊆ N, then
φi(v) = 0. That is, if adding a player to any coalition does not
change the game surplus, the player should receive zero.
Additivity: The share to player i in a sum of two games is the sum
of the allocations to the player in each individual game, i.e., φi(v)+
φi(w) = φi(v+w), ∀i. That is, if we view two games as a single
game, the share a player receives from the combined game should
be the same as the sum of what he would receive from each of the
two original games.

The Shapley value is the unique distribution function that satis-
fies the above four axioms:

φi(v) = ∑
S⊆N\{i}

v(S∪{i})− v(S)
(|N|− |S|)

(|N|
|S|
) , (1)

where |S| is the cardinality of S, i.e., the number of members of
S; similarly, |N| is the number of members of N, or n;

(|N|
|S|
)

is
|N|-choose-|S|. The Shapley value captures the average marginal

contribution of player i, averaging over all the different sequences
according to which the grand coalition (N) could be built up from
the empty coalition. It has been widely applied for solving bene-
fit/cost sharing problems in diverse fields, including computer sci-
ence, e.g., [18, 11]. To calculate the Shapley value φi(v), one need
not only the grand surplus when all n players play, v(N), but also
the surplus when any subset of the n players play, or v(S) for all
S⊆ N.

3.2 Ground Truth for Energy Accounting
We argue the Shapley value provides a natural and intuitive ground

truth for energy accounting. We treat the time interval T in which
the system under question consumes energy as the cooperative game;
the software principals active in the same time interval N the play-
ers; and total system energy consumption, E(N), the grand surplus
to distribute. Thus, the energy contribution φi by software principal
i is given by the Shapley value φi(v) of the game with v(S) = E(S)
∀S ⊆ N in Equation (1). Note that to calculate the Shapley value,
one must know the system energy consumption in the same time
interval T if only a subset of N are active during T for all possible
subsets, i.e., E(S) ∀S⊆N. This poses a significant challenge to the
practical use of the Shapley value as the ground truth for energy
accounting. In Section 4, we will present techniques that partially
overcome this challenge to provide a practical approximation of the
ground truth.

Since the Shapley value is uniquely defined by the four axioms,
we show that these four axioms are self-evident and logical for
energy accounting. (i) Efficiency requires the sum of the energy
contributions by all software principals be equal to the total sys-
tem energy consumption. In other words, an energy accounting
policy must be able to apportion energy consumption among soft-
ware principals without any residual left. This is the same Effi-
ciency property discussed in Section 2.2. (ii) Symmetry requires
two software principals to be assigned the same energy contribu-
tion if replacing one with the other under any circumstances does
not change the system energy consumption. (iii) Null Player re-
quires that if adding a software principal under any circumstances
does not change the system energy consumption, the energy con-
tribution by this software principal should be zero. Finally, (iv)
Additivity says that if we break T into multiple time intervals and
apply the same accounting policy to them, the energy attributed to
a software principal in T should be equal to the sum of energy at-
tributed to it in these shorter time intervals under the same energy
accounting policy.

It is important to note that these four axioms are the properties
for energy accounting policies; they are not assumptions made for
the computer or its software. The Shapley value is the only possible
policy that has all four properties and should be considered as the
ground truth for energy accounting.

3.3 Existing Policies Against the Shapley Value
While it is infeasible to obtain the Shapley value in practice, we

can reveal the flaws of the five types of existing policies against
the four axioms that uniquely define the Shapley value. Table 2
summarizes how they violate the four axioms. In Section 6, we
will offer quantitative evidence regarding their flaws.

Policy I violates Null Player because a software principal always
gets positive energy contribution according to it.

Policy II violates Efficiency. For example, consider a system
with two software principals. According to Policy II, energy con-
tributed by software principal 1, or software principal 2, is equal
to its stand-alone energy consumption E({1}), or E({2}), respec-
tively. However, to satisfy Efficiency requires φ1 +φ2 = E({1})+



Table 2: How existing energy accounting policies violate the axioms
that define the Shapley value

Policies Efficiency Symmetry Null Player Additivity
I ×
II × ×
III × ×
IV × ×
V × × ×

E({2}) = E({1,2}). Unfortunately, the last equality does not hold
in many cases, e.g., when software principals 1 and 2 share some
system resources, one usually observes E({1})+E({2})>E({1,2}).

Policy III violates Efficiency. Using the same example above,
Policy III requires φ1 = E({1,2})−E({2}) and φ2 = E({1,2})−
E({1}). Thus, the sum of shares is φ1+φ2 = 2E({1,2})−E({1})−
E({2}). Again, E({1})+E({2}) = E({1,2}) is necessary for Ef-
ficiency to hold. The LEA2P platform [26] utilizes an improved
Policy III that normalizes all the φi = E(N)−E(N\{i}) to enforce
Efficiency. However, the normalization will lead to violation of
Additivity because different normalization factors may be used in
different time intervals.

Policy IV does not work for multiprocessing systems. To ex-
tend Policy IV for multiprocessing systems, one can attribute en-
ergy consumption to software principals based on their CPU usage,
as in [3]. Such extension, however, violates Null Player because a
software principal always has positive CPU usage and thus positive
energy contribution according to the policy. It further violates Sym-
metry due to its heavy dependency on timing of energy consump-
tion. For instance, the same software principal may be charged dif-
ferent energy bills when it consumes energy through asynchronous
I/O operations and suffers random delays, as mentioned by [32].

Policy V violates the Efficiency, Symmetry, and Null Player. First,
the inaccuracy in its energy model as highlighted in Section 2.2
may lead to violation of Efficiency. Second, there may exist soft-
ware principals that make use of different hardware components,
but make the same energy contributions in all coalitions. These
software principals are indistinguishable with respect to their en-
ergy behaviors and therefore should be charged equal energy bills
according to Symmetry. However, if they make different contribu-
tions to the predictors in the used energy model, Policy V would
dictate that these software principals make different energy contri-
butions and thus would violate Symmetry. Finally, a software prin-
cipal always gets positive energy contribution because it requires
CPU time and system resources so that it always makes positive
contributions to the predictors of the energy model.

4. SHAPLEY VALUE-BASED ENERGY AC-
COUNTING

While we argue that the Shapley value should be considered as
the ground truth for energy accounting, this ground truth is practi-
cally impossible to obtain via measurement. The key problem is to
obtain E(S) for all S⊆N, which poses three system challenges. (i)
First, there are 2n subsets for n software principals. One must ob-
tain E(S) for all the 2n different coalitions, which can be practically
infeasible. (ii) Second, E(S) depends on not only which software
principals are running, but also the dynamics of software execution
such as the CPU time of each software principal and the execution
order. Therefore, E(S) is not a fixed number but a random variable.
The variance of E(S) introduces uncertainty in energy accounting
by the Shapley value. (iii) Finally, E(S) is further affected by the
hardware state in a mobile system such as CPU frequency, LCD

brightness, and WiFi active/idle mode. This will introduce even
more variance in E(S).

In this section, we present techniques to partially overcome the
above challenges so that we can implement an energy accounting
policy that is based on the Shapley value yet practical. We call this
policy Shapley value-based energy accounting. This policy is not
the same as the Shapley value but rather an approximate, in the
sense that the input for the Shapley value calculations, E(S), are
estimated using practical methods.

4.1 Key Ideas
We tackle the first two challenges by using very short time inter-

vals, i.e.,10 ms, as the game. In a shorter time interval, fewer soft-
ware principals can run and the software execution dynamics has
less impact on energy consumption. On the other hand, measuring
or estimating the system energy consumption E for them will be
less accurate and less efficient. Our experience with our prototype
reported later has led us to believe 10 ms strives a good balance
between these two aspects. By monitoring the system energy con-
sumption in situ for an extended period of time, one can potentially
acquire E(S) for many different S. Modern mobile systems already
have a battery interface that measures system energy consumption
at a modest rate [8]. Using this interface, it has been shown that sys-
tem energy consumption for 10 ms time intervals can be estimated
in situ with about 80% accuracy [8]. In Section 5.1, we present an
enhanced battery interface that is able to measure system energy
consumption of 10 ms time intervals with an accuracy over 95%.

We address the third challenge by incorporating hardware states
as a condition into E(S). Let σ denote current hardware state. We
can estimate system energy consumption for a coalition S given the
hardware state σ , denoted by E(S,σ). As a result, one can apply
the Shapley value separately to time intervals with a given hard-
ware state. However, such an approach will further increase the
number of E(S,σ). As a result, there will be E(S,σ) for numer-
ous S and σ that are not observed by measurement. Therefore, we
employ two solutions to estimate unknown E(S,σ) from measured
E(S,σ) in historical data.This is the focus of Section 4.2. Finally,
we extend Shapley value-based energy accounting to deal with non-
deterministic factors in system energy consumption in Section 4.3.

4.2 Partially Defined Shapley Value
When E(S,σ) is not observed for some S or σ , the classic Shap-

ley value cannot be applied directly to determine per-software prin-
cipal contribution. In such a cooperative game with unknown coali-
tion values, the Shapley value is “partially” defined [30]. We now
describe our techniques to determine the partially-defined Shapley
value for per-software principal energy accounting. All the E(S,σ)
can be represented in a two-dimension matrix, with only a part of
the all the elements can be obtained by measurement. As shown
in Figure 1, we use recursive definition to fill all the columns, and
linear estimation to fill all the rows. Finally, we use M-games to
reduce the number of rows needed.

4.2.1 Recursive Definition
We first present a method to recursively define the Shapley value

for all partially defined games. The key idea is to approximate
E(S) for unobserved S by the energy costs allocated to members
of S, which are presumably solvable by the Shapley value. We
introduce the following extension of a partially defined game E to
a fully defined one:

Ê(S) =
{

E(S) if S is known
∑i∈S φi(Ê) otherwise (2)



Here φi(Ê) is the Shapley value of the fully defined game Ê, cor-
responding to energy cost attributed to software principal i. By
extending E to Ê, we are assuming that the energy cost of an un-
known coalition S is approximately the sum of the energy cost of
members of the coalition S. To complete the definition, φi(Ê) is the
standard Shapley value for Ê as defined by Equation (1).

We note that the definition above is recursive since Ê and φi(Ê)
are defined by each other. Therefore, we use an iterative algorithm
to compute the Shapley value φi(Ê). At each iteration, we compute
φi(Ê) for the fully defined game Ê, and whenever the computation
needs to probe an unknown coalition S, then Ê(S) is calculated
using the Shapley value φi(Ê) obtained in previous iteration.

4.2.2 Linear Estimation
We further utilize a linear model to estimate energy costs of un-

observed coalitions for different E(S,σy) with the same coalition S
but different power states σy, y = 1,2, . . . ,K. Suppose that an un-
known energy cost E(Sx,σy) of coalition Sx needs to be estimated
for the set of resulting feasible coalitions to form a desired struc-
ture. We can employ the least-square method to find a linear substi-
tute for σy based on the energy costs of other coalition in the same
states, e.g., E(Sl ,σy), l ∈ 1,2, . . . ,L and E(Sl ,σk), k = 1,2, . . . ,K,
k ̸= y. More precisely, we derive K + 1 parameters θ0,θ1, . . . ,θK
by solving the following optimization problem:

minimize ∑
l:l ̸=x

∥E(Sl ,σy)−
K

∑
k=1;k ̸=y

θk ×E(Sl ,σk)∥

Then we can calculate E(Sx,σy) by

E(Sx,σy) =
K

∑
k=1;k ̸=y

θk ×E(Sx,σk). (3)

4.2.3 M-games
We consider a symmetric, partially-defined game where the num-

ber of software principals in the coalition, or |S|, solely determines
whether E(S) is known. For example, if any set of up to m concur-
rent software principals have been measured for their energy con-
sumption, we can use the measurements to find energy consump-
tion for all coalitions S satisfying |S| ≤ m, while coalition of size
greater than m are treated as unknown. Let M be a set of known
coalition sizes. An M-game is defined through energy costs E(S)
for coalitions whose sizes are in M, i.e., |S|∈ M. Notice that we as-
sume that the energy cost of the grand coalition N is always known.
It is easy to see that an M-game becomes a fully-defined coopera-
tive game if M contains all possible coalition sizes.

A reduced Shapley value is defined on M-games [30] and it satis-
fies the axioms of additivity, efficiency, dummy-player and symme-
try. For an M-game, the energy contribution of software principal i
is given by

φi =
1
n ∑

m∈M

[
∑|S|=m,i∈S E(S)

(n−1
m−1

) −
∑|R|=m,i/∈R E(R)

(n−1
m
)

]
(4)

This formula can be interpreted as the average, over all known
coalition sizes, of the differences between the coalitions S contain-
ing software principal i and that coalitions R not containing soft-
ware principal i. If all coalitions are known, then the average is
taken among all coalition sizes and reduces to the classic Shapley
value defined in (1).

4.3 Dealing with Non-deterministic E(S)
So far we have attributed a single value of energy consumption

to a software principal given the hardware states. However, the en-
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Figure 1: Estimation from partial information. Columns are filled by
recursive definition and rows are filled by linear estimation.

ergy contribution by a software principal may vary due to many fac-
tors other beyond the hardware states considered. For example, the
transmission power of the 3G/4G radio interface highly depends on
volatile cellular signal strength and thus results in non-deterministic
energy consumption. Uncertainty also arises from CPU schedul-
ing and memory management. As a result, E(S) should be treated
as a non-deterministic variable, instead of single value. To take
non-deterministic E(S) into account, we extend our Shapley value-
based energy accounting framework by treating E(S) as a random
variable and leverage all the theory work on random Shapley value
that require the distribution. The only thing that requires modi-
fication in our system is the Shapley value calculation, while the
statistics of E(S), e.g., mean and variance can be obtained from the
history.

For each coalition S, we regard its energy consumption E(S) as
a random variable, whose distribution can be measured from the
history. For random E(S), we still use the Shapley value defined in
(1) in Section 3 to calculate per-software principal energy φ⃗i(E) for
i = 1, . . . ,N, which now becomes a random variable. It is easy to
see that the distribution of φ⃗i(E) can be obtained by a convolution
of the PDFs of energy consumption variables E(S). In this sec-
tion, we are mostly interested in the mean and variance of φ⃗i(E),
which indicate the average per-software principal energy consump-
tion and how far it is spread out. Let µ [X ] be the expectation of a
random variable X and Var the variance. Using (1), we can derive
the mean of per-software principal energy

µ [φi(v)] = ∑
S⊆N\{i}

µ [E(S∪{i})]−µ [E(S)]
(|N|− |S|)

(|N|
|S|
) , (5)

and the variance of per-software principal energy

Var[φi(v)] = ∑
S⊆N\{i}

Var[E(S∪{i})]+Var[E(S)]
{
(|N|− |S|)

(|N|
|S|
)}2 , (6)

A small variance indicates that the per-software principal energy
tends to be very close to the mean and hence to be less volatile,
while a high variance indicates that the per-software principal en-
ergy is very spread out from the mean and has large volatility.

4.4 What is Approximated?
It is important to note that when the measurement and estimation

of E(S) and E(S,σ) are accurate, the above heuristics will lead to
the exact Shapley value. Unfortunately there is inaccuracy in both
the in situ measurement and the heuristics-based estimation of un-
known E(S,σ). As a result, our design approximates the payoffs of
the game, essentially approximating the game itself. The approxi-
mation of provided by our Shapley value-based energy accounting
is indeed the actual Shapley value of the approximate game.



Figure 2: Prototype: a TI PandaBoard ES and a MAXIM DS2756 bat-
tery fuel gauge evaluation module.

5. IMPLEMENTATION
We have implemented a prototype of Shapley value-based en-

ergy accounting described in Section 4. The prototype includes a
Texas Instruments (TI) PandaBoard ES [4] and a MAXIM DS2756
battery fuel gauge evaluation module (EVM) [5], as shown in Fig-
ure 2. The PandaBoard ES serves as a mobile system and is pow-
ered by an external battery pack. It comes with Android 4.04 and
a TI OMAP4460 application processor, similar to that used by the
Galaxy Nexus smartphone and RIM Playbook. The DS2756 EVM
serves as an enhanced battery interface and measures the energy
consumption by the Pandaboard ES from the external battery pack
at 200 Hz. The measurement data is transferred from DS2756 EVM
to the PandaBoard ES through GPIO using the 1-wire communica-
tion protocol.

The prototype uses application as software principal. We chose
application instead of OS process because end users often care
about the energy contribution by application, not by process, and
because there are much fewer applications than processes. Ac-
cording to a recent study [29], the top ten most frequently used
applications account for the total usage time by as much as 90%.
Therefore, the prototype only considers the top ten applications for
each user and treat other applications as a single software princi-
pal “other”. It also combines all the Android system activities as
a single software principal to be consistent with Android’s Battery
feature. As a result, the prototype accounts energy for up to 12
software principals.

We next elaborate the implementations of the enhanced battery
interface and the software.

5.1 In Situ Measurement of E(S)
As explained in Section 4, the key to Shapley value-based en-

ergy accounting is to efficiently obtain the system energy consump-
tion for very short time intervals, i.e., 10 ms. While prior work
has demonstrated reasonably accurate estimation for 10 ms inter-
vals using battery interfaces in commodity mobile devices [8], our
prototype employ an enhanced battery interface that achieves even
higher accuracy, i.e., over 95%. It does so with an ultra low-power
system-on-a-chip consisting of a 16-bit microcontroller (MCU), 32
KB on-chip memory and two 14-bit analog-to-digital converters
(ADCs) that comes with the DS2756 EVM, overall with a few
hundred µW of active power consumption. Prior to prototyping,
we performed extensive analysis to determine the measurement re-
quirement: 8-bit ADC at 200 Hz as summarized in Section 5.1.1.

Our implementation includes both software in the mobile system
and an enhanced battery interface as illustrated by Figure 3. The
MCU in the enhanced battery interface periodically measures the
voltage of and the discharge current from the battery using two 14-
bit ADCs, calculates the energy consumption, and writes it to the
local memory along with a timestamp. The battery interface driver
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Figure 3: Architecture of the in situ high-speed, high-accuracy energy
measurement solution: The battery interface measures energy period-
ically and stores the measurement data with timestamps in its local
memory; the mobile system also maintains a timestamped data struc-
ture of application combination executed in the OS kernel, utilizes a
driver to read the energy measurement data structure from the local
memory in the battery interface, and combines the two data structures
to get all the E(S).

running in the mobile system reads the local memory in the battery
interface via a serial bus in the standard smart battery interface upon
a request from the mobile OS. The driver also keeps a timestamped
record for the Android UID of applications that are running in each
OS scheduling period as well as the hardware state of the system.
Then the mobile OS combines the timestamped energy data from
the battery interface and the local timestamped UID data to obtain
the system energy consumption for each scheduling period.

It is critical to synchronize the UID data collected by the battery
interface driver in the mobile system and the energy data collected
by the battery interface. The UID data collected by the driver is
timestamped with a timer based on a high accuracy clock. The
energy data, however, is timestamped by the timer based on a lo-
cal low-accuracy clock of the MCU, usually implemented using an
LC oscillator to achieve power efficiency. Inaccuracy in the en-
ergy data timestamp will lead to that the energy data misalign with
the UID data. To tackle this challenge, the prototype employs two
techniques. First, the driver periodically writes the OS timestamp
to a specific memory location in the battery interface and the lat-
ter utilizes this timestamp to correct its own timer. Then, the data
transfer delay between the mobile system and the battery interface
is further accounted with a simple calibration procedure.

5.1.1 Measurement Requirement
The key component of the enhanced battery interface in Figure 3

is the ADC. The most important properties of an ADC are sampling
rate and resolution. Insufficient sampling rate or resolution will
cause error in energy measurement while excessive high sampling
rate or resolution will lead to energy waste.

In order to determine the sufficient sampling rate and resolution,
we characterize the power consumption traces of three commercial
smartphones (Samsung Galaxy S, S II, and S III), and ten popular
applications as shown in Table 3. We employ one external power
supply for constant 4.2 V input and measure the current drawn.
We employ a high-speed Oscilloscope to collect the ground truth
power traces, using 500 KHz sampling rate, for each of the device
and application.

Sampling Rate: By examining the spectrum of the power traces,
we are able to identify 200 Hz as sufficient to include 99% of power
density in spectrum for all the applications. As an example, Fig-
ure 4 (left) shows the power spectrum of Galaxy S III running
the Phone application. We can see most of energy locates in the
low-frequency range, while the high-frequency spectrum is flat. As
shown in the black curve in the figure, 200 Hz sampling rate in-
cludes over 99% of the signal energy. The power traces of other
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Figure 4: Smartphone workload power characterization for sampling
rate: 200 Hz sampling rate is able to cover 99% of the signal infor-
mation of the power trace (left); 200 Hz sampling rate introduces 1%
error in energy measurement of each 10 ms (right).
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Figure 5: Smartphone workload power characterization for resolution:
dynamic range of power trace is around 100 dB and requires a 16-
bit ADC for faithful measurement (left); using a 8-bit ADC introduces
0.1% error in energy measurement of each 10 ms (right).

Table 3: Sufficient sampling rate for applications to have 99% of the
signal energy of the power consumption trace (Unit: Hz)

Application Galaxy S Galaxy S II Galaxy S III
Phone 197 185 200
SMS 97.1 88.5 93.3
Web Browser 102 105 95.4
Facebook 107 95.5 102
Google Hangout 87.2 85.3 80.8
YouTube 97.4 91.6 102
CamCorder 18.9 24.1 15.1
GPS Navigation 32.5 46.1 30.7
Quake III 67.2 85.6 90.8
Angry Bird 28.4 45.5 57.2

applications show similar characteristics (See Table 3). We next
use the 500 KHz data traces as the ground truth and investigate the
average error in each 10 ms introduced by using a sampling rate
less than 500 KHz. Figure 4 (right) shows the three applications
with the highest errors. As shown in the figure, a 200 Hz sampling
rate introduces less than 1% error for 10 ms intervals. Therefore,
we conclude that 200 Hz sampling rate is sufficient for all the char-
acterized applications on all the smartphones in our experiment.

Resolution: Resolution of an ADC is determined by the dynamic
range of the input signal. We characterize the dynamic range by re-
ducing quantization noise below the background noise. As shown
in Figure 5 (left), background noise is around -100 dB in normal-
ized spectrum; this implies the effective number of bit (ENOB)
should be 16 or more because SNR = 1.76+6.02×ENOB. Thus,
a 16-bit ADC is sufficient to record transient power trace. We also
study how much error will be introduced by using an ADC of lower
resolution. As shown in Figure 5 (right), the quantization error in-
troduced by using a 8-bit ADC only introduces 0.1% error in the
system energy measurement for each 10 ms.

To summarize, an 8-bit ADC with 200 Hz sampling rate is suf-
ficient for the system energy measurement for 10 ms time intervals
needed by Shapley valued-based energy accounting. Thanks to fast
development in low-power CMOS technology, a 15-bit audio ADC,
with sampling rate higher than 20 KHz, only consumes less than
200 µW [24]. The power consumption of a 8-bit ADC with 200
Hz sampling rate should be negligible.

5.2 Software
Our prototype includes two software modules: one energy mea-

surement module running in the enhanced battery interface and one
energy accounting module running in the mobile system. The en-
ergy measurement module provides timestamped 200 Hz energy
measurement data. The energy accounting module collects E(S,σ),

estimates the missing E(S,σ), and calculates energy contribution
by each application using Shapley value-based energy accounting.

The energy measurement module is a stand-alone process run-
ning in the battery interface’s MCU, developed in C language with
about 830 lines of code. We use software interrupts to realize
the 200 Hz energy measurement. After synchronization described
above, the MCU acquires the Android OS timestamp from the mo-
bile system, updates its local timer, and uses this local timer to
trigger interrupts to get ADC readings of voltage and current mea-
surement and calculate the energy consumption accordingly.

The energy accounting module in the mobile system includes
two sub-modules: E(S,σ) collection and Shapley value calcula-
tion. The E(S,σ) collection sub-module includes two parts, i.e.,
a kernel modification to align timestamp and energy measurement
and a user-space thread to collect data. We modify the Android
kernel to include the timestamped data structure (See Figure 3) in
the kernel space. Upon process context switch, the OS updates the
data structure by appending a new entry to it. This data structure
is exposed to the user-space thread in the /sys virtual file system.
The E(S,σ) collection sub-module is developed on the top of the
Android 4.04 code base with 17 files change and totally 2700 lines
of code modification.

The Shapley value calculation sub-module is a user-space ap-
plication. It periodically reads the timestamped data structure from
the virtual file system before the data structure overflows and stores
the measurement data in the SD card. When the measurement data
in the SD card accumulates to a threshold, the user-space thread
launches a routine to estimate unknown E(S,σ) from historical
measurement data, as illustrated in Figure 1. In our current im-
plementation, we set the threshold as 100 MB, approximately the
data of one day.

6. EVALUATION
Using the prototype described in Section 5, we next report a two-

part evaluation of energy accounting policies. First, we evaluate
how well our Shapley value-based energy accounting approximates
the Shapley value and outperforms existing accounting policies in
three aspects: (i) the accuracy of E(S) estimation; (ii) the capability
to identify “top energy consumer”; and (iii) the application in en-
ergy management. Second, we evaluate energy accounting results
from existing policies and those from Shapley value-based energy
accounting and demonstrate how different they can be.

6.1 Experimental Setup
In our experiment, we employ four benchmarks: (i) Download:

Network intensive process that downloads a large file using HTTP
protocol via WiFi. (ii) Web: Android built-in web browser appli-
cation to visit web pages as recorded in a URL list via WiFi. Each
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Figure 6: Error in obtaining E(S,σ): Over 90% of energy measure-
ment by the battery interface are with error less than 5% and synchro-
nization does improve accuracy (left); estimation has a median error of
10% using one third of total E(S,σ) (right).

webpage is loaded and shown for thirty seconds before next one
is loaded. (iii) Video: Video player based on ffmpeg. (iv) Game:
Quake 3, an open source 3D video game, played with the included
demo scripts.

Out of the four benchmarks, Video, Web and Game cannot run
at the same time because they must be executed in the foreground
to present content on the screen. Therefore, we further define three
scenarios that represent three typical use cases with multiple appli-
cations concurrently running:

• Scenario 1: Web + Download + Android.
• Scenario 2: Video + Download + Android.

• Scenario 3: Game + Download + Android.

We leverage the LiveLab mobile usage traces [29] to comple-
ment the above benchmarks. The LiveLab usage traces record daily
mobile app and web usage for 34 iPhone 3GS users from six to
twelve months and are available from [6]. The URL list used in
Web includes top twenty most visited websites from the LiveLab
traces. For each website, we randomly selected ten pages from the
database for the URL list.

6.2 Shapley Value-based Energy Accounting
As described in Section 3, the Shapley value should be the ground

truth for energy accounting in theory. In practice, however, it is in-
feasible for one to obtain the “true” Shapley value. Therefore, we
choose to use three following indirect ways to evaluate how our
Shapley value-based energy accounting approximates the Shapley
value and outperforms other accounting policies. First, we evalu-
ate how accurate the E(S) can be estimated by our implementation.
Second, we evaluate how much better our implementation, com-
pared to existing policies, can identify the “top energy consumer”
or the app that contributes most to the total system energy con-
sumption. Third, we evaluate how much better our implementation
can help energy management in enhancing utility value compared
to existing policies.

6.2.1 Accuracy of E(S) estimation
We first evaluate the accuracy of energy measurement by the pro-

totype by comparing the measurement results against readings by
a high-end oscilloscope. As shown in Figure 6 (left), over 90%
of measurement are with error less than 5%. This is significantly
better than the accuracy achieved using existing battery interface
as reported in [8]. Figure 6 (left) also illustrates the importance of
synchronization. As shown in the figure, 90% of measurement are
with error less than 30% without synchronization.

We then evaluate the accuracy of energy estimation from partial
data. The prototype support 12 states in total, i.e., four states for
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Figure 7: Footprint of all the missing E(S,σ) (grey cells) and obtained
E(S,σ) from measurement (white cells) in all three scenarios.

CPU and three states for WiFi. There are 10 application combi-
nations for each of the three scenarios included in our experiment.
Therefore, thee are 120 E(S,σ) for each scenarios. In our experi-
ment, we run each scenarios for a sufficient long period and finally
obtain 97, 102, and 86 E(S,σ), respectively. The footprint of the
missing E(S,σ) and obtained E(S,σ) from measurement are il-
lustrated in Figure 7. Each of the 10 by 12 matrix represents a
scenario where each row represents each application combination
S and each column represents each states σ . A grey cell means the
corresponding E(S,σ) is missing while a white cell means the cor-
responding E(S,σ) is obtained from measurement. We treat these
obtained E(S,σ) (white cells) as ground truth and randomly choose
part of these E(S,σ) to estimate the remaining part. Figure 6 (right)
shows the results. As shown in the figure, our estimation algorithms
can achieve a median error of 10% only using one third, or 40 out
of 120, of the total number of E(S,σ).

6.2.2 Identify Top Energy Consumer
We next evaluate how well energy accounting policies can iden-

tify the mobile application that contributes most to the system en-
ergy consumption in a day of use, or top energy consumer. In par-
ticular, we compare our implementation of Shapley value-based en-
ergy accounting against Policy V, the most widely used policy by
many systems including Android. Our methodology is to replay
real-world mobile application usage traces on our prototype with
reduced fidelity.

We use the LiveLab mobile usage traces for replay. Because the
LiveLab traces are collected from iPhone and have up to hundreds
of iOS foreground applications, all without user input, we have to
reduce them in the following ways in order to replay them on our
Android prototype. First, we reduce the foreground applications to
only five software principals: Web, Video, Game, Mail, and Mu-
sic. We categorize all the apps from the LiveLab traces into one
of these five software principals. For example, we treat all game
apps as Game; all email and instant messenger apps as Mail; and
all web browsing and social networking apps as Web. We ignore
applications that do not belong to any of the five types, such as
Map, Alarm and Calculator. To replay Web, Video, and Game, we
invoke the Web, Video, and Game Android benchmarks described
in Section 6.1, respectively. We invoke the Android native email
client to send a precomposed email and receive in order to replay
Mail and invoke ffmpeg to play an MP3 file to replay Music. Sec-
ond, we use the Download benchmark described in Section 6.1 to
mimic background services in Android such as data sync of social
networking apps. In our experiment, we make Download start ev-
ery fifteen minutes and run for one minute. These reductions lead
to replay traces with only six software principals, i.e., Web, Video,
Game, Mail, Music and Download.

We also make the following changes to our prototype described
in Section 5 for replay. First, we change the power supply from the



Table 4: Top energy consumers identified by Shapley value-based ac-
counting (Shapley) and Policy V when they disagree for 19 out of the 50
days of LiveLab data tested

# User Shapley Policy V # User Shapley Policy V
1 A Game Download 11 B Video Mail
2 A Game Download 12 B Music Download
3 A Game Download 13 C Web Download
4 A Game Download 14 C Web Download
5 A Game Mail 15 C Music Download
6 A Game Mail 16 C Music Mail
7 A Game Mail 17 D Game Mail
8 B Game Download 18 D Music Download
9 B Game Download 19 E Mail Web
10 B Video Download

external battery pack to a USB cable connected to a PC to support
sufficient long time for our experiment. As a result, the enhanced
battery interface measures the voltage (around 5V) and the current
in the USB cable and calculates the power consumption. Second,
we deploy an Android ADB based testing framework in the PC to
automatically launch and terminate applications in the PandaBaord
through the USB cable. By feeding the usage trace to the testing
framework, we are able to replay the reduced LiveLab usage traces
on our prototype.

We randomly select five out of the 34 users in the LiveLab trace
database and label them as User A to User E. We then randomly
choose ten days of usage traces for each user to produce 50 days
of usage traces. We evaluate the energy accounting policies by
how well they identify the top energy consumer for each of the
50 days of usage when the traces are replaced in the prototype as
described above. Out of the 50 days, Policy V and Shapley value-
based energy accounting disagree on the top energy consumer for
19 days as summarized by Table 4.

We then replay the traces of the 19 days two more times but in
each time we exclude the top energy consumer reported by Pol-
icy V and Shapley value-based accounting, respectively. We find
that, for all 19 cases, the energy consumption excluding top energy
consumers identified by Shapley value-based energy accounting is
lower than its Policy V counterpart. This finding indicates Shapley
value-based energy accounting identifies an application that con-
tributes more energy than that identified by Policy V does. As
shown in Table 4, many disagreements are due to Policy V un-
derestimating the energy contribution of GPU, e.g., in the case of
a heavy mobile gamer like User A. We also observe that Policy V
tends to overestimate network related applications such as Down-
load and Mail. The reason is that the network interface wakeup and
timeout to enter the sleep state consumes a significant amount of
energy; when the network interface is already active, the additional
energy consumed by the a short period of data traffic is relatively
small. Policy V, however, only estimates energy consumption base
on the amount of data traffic, which easily leads to false accounting
results. This also confirms the observations by [22].

6.2.3 Application in Energy Management
Energy accounting is the foundation to OS-based energy man-

agement that seeks to control the energy use by processes and sched-
ule their execution to maximize aggregate system utility under en-
ergy constraints. Various energy accounting policies have been
tried [12, 32, 14, 28, 25, 15]. We now evaluate energy account-
ing policies in the context of energy management, in particular,
the popular budget-driven energy management (BEM) [32, 25, 15].
We show that existing accounting policies achieve 5% to 25% less
utility compared to our Shapley value-based energy accounting.

In BEM, each process receives an independent energy budget
and disburses it according to the energy accounting policy. The use
of per-process budget not only enables a single energy source to be

t=0�
T1� T2� T3� T4�

time t�

Process 1�

Process 2�

Process 3�

Process 4�

A1={1,2,3,4}� A2={2,3,4}� A3={2,3}� A4={3}�

Figure 8: Illustration of four processes and their executions under
budget-based energy management (BEM).

shared by applications in a fair and simple fashion, but also offers
composability among processes. For instance, in a smartphone, an
energy budget can be reserved for phone calls to guarantee cer-
tain talk time. Each process is assigned a utility function Ui(ti),
which measures the utility of process i receiving run time ti. Ui(ti)
is assumed to be monotonically increasing and concave [7]. The
goal of BEM is to allocate per-process budgets B1, . . . ,Bn among n
processes, in order to maximize aggregate utility ∑n

i=1 Ui(ti) under
total energy available. We next present the problem formulation.

Process Run Time: We consider n independent processes, denoted
by N = {1,2, . . . ,n}. Under BEM, each process is scheduled to
run until its energy budget reaches zero. To determine process
run time, we suppose that processes deplete their energy budgets
in the following order: π(1),π(2), . . . ,π(n), where π(k) be the
kth process that runs out of energy budget (If multiple processes
reach zero budget simultaneously, then their ordering can be arbi-
trary). Then, the execution of all n processes can be divided into
n epochs, T1,T2, . . . ,Tn, where each epoch Tk represents the time
interval between successive energy depletion of processes π(k−1)
and π(k). It is easy to verify that the sequence of active processes
Ak = {π(k),π(k+1), . . . ,π(n)} within each epoch Tk form a con-
traction with Ak+1 ⊆ Ak for k = 1, . . . ,n.

Figure. 8 illustrates our model for n = 4 processes. Given pro-
cess π(1) = {1} is the first to run out of budget, epoch T1 con-
sists of 4 active processes A1 = {1,2,3,4}, while epoch T2 con-
sists of 3 active processes A2 = {2,3,4}. Similarly, π(2) = {4}
and π(3) = {2} means that epoch T3 contains 2 active processes
A3 = {2,3} and epoch T4 contains a single process A4 = {3}. Us-
ing these notations, we can describe process execution under BEM
by n distinct epochs. The total run time received by process i is
given by ti = ∑π−1(i)

k=1 Tk where process i depletes its budget at the
end of π−1(i)-th epoch, and the summation is over all epochs where
i is active. We refer to ti as the run time assigned to process i.

Energy Constraints: BEM relies on energy accounting to split total
energy consumption among individual processes. Let φi(E(S)) de-
note the energy consumption attributed to process i according to the
energy accounting policy during a scheduling unit in which S are
scheduled to run and i ∈ S. After this scheduling period, φi(E(S))
will be deducted from process i’s energy budget Bi. When a process
runs out of budget, it will not be scheduled any more. Using our no-
tations above, total energy attributed to each process i is the sum of
individual energy bill φi(E(Ak)) over all epochs k = 1, . . . ,π−1(i)
where process i is active. It implies that

π−1(i)

∑
k=1

φi(E(Ak)) ·Tk = Bi. (7)

Further, the total system energy consumption must be bounded
by the battery capacity, C, i.e., ∑n

i=1 Bi ≤C.
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Figure 9: Optimal utility values achieved by BEM with various energy
accounting policies. All numbers are normalized by that achieved by
Shapley value-based accounting (S).

Utility Optimization: Each process is assigned a utility function
Ui(ti), which measures the utility of process i receiving run time
ti. We make the common assumption that Ui(ti) is assumed to be
monotonically increasing and concave [7].

The goal of BEM is to allocate per-process budgets B1, . . . ,Bn
among n processes, in order to maximize aggregate utility ∑n

i=1 Ui(ti)
under energy capacity C. More precisely, we formulate it as the fol-
lowing utility optimization:

Problem BEM :

maximize
n

∑
i=1

Ui(ti) (8)

subject to ti =
π−1(i)

∑
k=1

Tk, ∀i, (9)

π−1(i)

∑
k=1

φi(E(Ak)) ·Tk = Bi ∀i (10)

n

∑
i=1

Bi ≤C (11)

variables π,Bi,Tk. (12)

Notice that the optimization is a joint maximization over per-process
budgets Bi, epoch length Tk, and process ordering π , which are not
independent. It is easy to see that Problem BEM is non-convex due
to arbitrary process ordering π .

We implement BEM with various energy accounting policies
on top of Android’s own kernel scheduler. Our implementations
uses application instead of process as the schedule entity for the
same reason described in Section 5.1 To solve the BEM optimiza-
tion problem, we uses the GNU Scientific Library to implement the
standard Newton Method [7]. The BEM optimization is triggered
when a new application is launched or every 100 seconds, depend-
ing on which comes first. The BEM optimization can take as long
as several milliseconds in our experiment, which is comparable to
the length of process scheduling period itself.

Our results show that Shapley value-based energy accounting is
superior compared to other accounting policies, achieving the high-
est optimal utility value in BEM. In our experiment, we combine
BEM with energy accounting based on each of Policy I to V and
Shapley value-based accounting, as shown in Figure 9. To guaran-
tee fairness, we set the utility function as the total execution time
of the two applications in three scenarios using the proportional
fairness utility function, the weights for the foreground application
and background application is 80% and 20%, respectively. Figure 9
shows the corresponding optimal utility values of the optimization
for the six combinations. Among all the combinations, Shapley
value-based energy accounting (S) has the highest utility value and
we make it as the baseline to normalize the utility values of other
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Figure 10: Energy accounting results for Shapley value-based account-
ing (S) and Policy I-V. The energy consumption (Y axis) is normalized
by the total system energy consumption.

combinations. As shown in the figure, all other energy accounting
policies achieve 5% to 25% less utility value than Shapley value-
based energy accounting. In particular, Policy II and Policy III have
the least utility values because they violate Axiom of Efficiency.
This is because, when Efficiency does not hold, the energy budget
of an application can either be depleted earlier than expected or be
left unfinished in the end. In both cases, the total energy will not be
used efficiently, eventually leading to reduced utility value.

Moreover, we observe that Policy V, the most sophisticated pol-
icy used in recent work, is no better than much simpler Policy I
and Policy IV in energy management. This suggests that existing
budget-based energy management solutions may be unnecessarily
complicated. This result is unsurprising because Policy I, IV, and
V are all applying a linear function to divide the total energy con-
sumption to multiple components, each component for an applica-
tion. The only difference is the coefficients in the linear function.
By solving the BEM optimization, one can always find the optimal
budget for the linear function as long as the Efficiency property
holds. In Chapter 3 of [9], a formal proof of this property is pro-
vided.

6.3 Evaluating Existing Policies
The previous evaluation experiments demonstrate our implemen-

tation performs well as an approximation of the Shapley value. We
next evaluate the five types of energy accounting policies described
in Section 2.2 by comparing their results against those from our
approximation of the Shapley value. The implementations of Pol-
icy I to IV are straightforward. We implement Policy V using the
system energy model from the open source project PowerTutor [2],
which is very similar to Android’s own. We update the coefficients
of the model following the procedures described in [33] based on
offline power benchmarking and linear regression using the bench-
mark data. The accuracy of the updated model is higher than 90%
for one reading per second.

Figure 10 presents the accounting results for the three scenarios.
The Y axis is normalized by the total system energy consumption.
If a policy meets the Axiom of Efficiency, the stacked energy con-
tribution should be exactly 100%.

All the five types of energy accounting policies can deviate from
our approximation of the Shapley value significantly. Policy II and
Policy III obviously violate the Axiom of Efficiency, corroborat-
ing our analysis summarized in Table 2. Policy IV is inaccurate
because it only considers the usage of CPU. Therefore, Policy IV
tends to overestimate for applications that require high CPU activ-
ities such as Video in Scenario 2. Policy V is inaccurate because
its energy model does not account the usage of GPU. This is ob-
vious in Scenario 3 where Game extensively uses GPU and Policy
V significantly underestimate its energy use. As a result, Policy V
overestimates the energy contribution of Download by four times.



7. OTHER RELATED WORK
In Section 2.2, we already discussed representative work in en-

ergy accounting and evaluated their policies throughout the paper.
We next discuss related work in the applications of energy account-
ing, i.e., energy management and software evaluation, where Shap-
ley value-based energy accounting can be readily applied. Due to
the space limit, we mainly discuss related work in mobile systems.

Energy Management: ECOSystem [32] presents “currentcy”, an
abstraction of energy and incorporates it into energy management.
Energy consumption by each hardware component is modeled as
charge in “currentcy” that attributed to each running process. This
is exactly the BEM approach as described in 6.2.3. Like ECOSys-
tem, Cinder [25] also utilize BEM, but advances ECOSystem by
providing more sophisticated mechanisms for processes to dele-
gate. Both energy management solutions employ a version of Pol-
icy V that uses a software-based energy model. Therefore, their
performance is limited by the drawbacks of Policy V as discussed
in Section 3.3 and experimentally demonstrated in Section 6.3.

Evaluating Software for Energy Efficiency: Energy accounting
is also popularly used for evaluating software. Existing work of-
ten employs various forms of Policy V for this purpose. Pathak
et al [23] developed a framework based on their FSM model [22].
Such framework logs the traces of system calls by each applica-
tion and performs an offline analysis that assigns energy contri-
bution to each application based on the FSM model and the sys-
tem call traces. To solve the same problem, Carat [21] resorts to
crowdsouring. Carat samples the battery level of an iPhone peri-
odically and what applications are actively running in each sample
period. After collecting sufficient data from many users, Carat can
identify energy-hungry applications. There is also work that ad-
dresses energy issues of smartphones without direct information of
energy consumption. For example, eDoctor [16] is able to iden-
tify abnormal battery drain issues on smartphones by capturing the
execution-phase time-varying behavior of each application.

8. CONCLUDING REMARKS

In this paper we answer an important and long-standing question
about energy accounting with theory, practical approximation, and
experimental evaluation: how to evaluate an energy accounting pol-
icy? Our answer is: the Shapley value should serve as the ground
truth for energy accounting. We analytically show how existing en-
ergy accounting policies violate the four self-evident axioms that
define the Shapley value. More importantly, we also show that
an approximation of the Shapley value can be practically realized
with in situ high-rate energy measurement. Using a mobile system
development board, we realize this approximation, called Shapley
value-based energy accounting, and show existing energy account-
ing policies deviate significantly from it. Our results are fundamen-
tal to evaluating energy accounting policies that have been widely
used in software evaluation and energy management.

Shaley value-based accounting vs. Policy V
It is important to reflect on why our Shapley valued-based energy
accounting actually works better than other energy accounting poli-
cies. While the limitations of Policies I to IV are obvious, Policy V
warrants more discussion. Policy V takes a spatial view of energy
consumption. That is, it views energy consumption as resulting
from a collection of energy-consuming hardware resources. There-
fore, it reduces energy accounting to (i) resource usage accounting
that relates resource usage to software principals and (ii) energy
modeling that relates energy consumption to resource usage. To

improve the accuracy of this approach, one has to improve resource
usage accounting, especially the “spatial” resolution of resource
usage accounting. While the usage of many hardware resources
can be easily attributed to software principals in modern comput-
ers, e.g., CPU, memory and network interface, that of many others
cannot. This is particularly true for the system-on-chips used in
mobile systems that often integrate a large number of specialized
hardware modules not visible to the OS. To account the usage of
these modules requires per-module hardware support like that ex-
ploited by iCount [10]. That is, hardware modification to improve
the “spatial” resolution of resource usage accounting is likely to be
distributed, making it costly. More importantly, without better re-
source usage accounting, one cannot improve Policy V with more
energy measurement data.

In contrast, Shapley value-based energy accounting takes a tem-
poral view of energy consumption. That is, it views energy con-
sumption as resulting from a collection of time intervals, or games.
It reduces energy accounting to (i) measuring the system energy
consumption and (ii) knowing which software principals are active
in each time interval. The challenge to this approach, as highlighted
at the beginning of Section 4, lies in that one has to obtain the en-
ergy consumption of time intervals in which all possible coalitions
of software principals under question are active. That is, we need
E(S) ∀ S ⊆ N. Shapley value-based energy accounting addresses
this by in situ energy measurement of very short time intervals and
by using heuristics to estimate the energy consumption (E(S)) for
unobserved coalitions (S). To improve it, one needs (i) more accu-
rate, higher rate energy measurement and (ii) more measurements
so that more coalitions (S) are observed. In contrast to how Pol-
icy V has to be improved, the required hardware modification is
localized, i.e., only the battery interface, and more measurements
will help. Therefore, we believe our Shapley value-based energy
accounting not only is better than versions of Policy V in use today
but also has a brighter prospect in practice moving forward.

Shortcomings aside, Policy V does have practical values, espe-
cially in evaluating and optimizing software for energy efficiency.
It can be very good at identifying top energy consumers or energy-
draining misbehaviors that consume energy via the hardware re-
sources accounted by the policy, e.g., CPU, memory and data traf-
fic. Because it relates system energy consumption to resource us-
age, it can offer insight into how software is draining energy and
provide guideline for software optimization. In contrast, Shapley
value-based energy accounting does not provide such insight at all.

Potential improvements
Again, the key to Shapley value-based energy accounting is to ob-
tain E(S) ∀ S ⊆ N. While we provide a suite of techniques to ac-
quire and estimate E(S) in Section 4, our solutions can be further
improved in three important ways.

Using better resource usage accounting: Policy V can be im-
proved with better resource usage accounting as discussed above.
Improved resource usage accounting can equally improve Shapley
value-based energy accounting: instead of using Shapley value-
based energy accounting for the whole system energy consumption,
one can now use it only for the portion of system energy consump-
tion that cannot be attributed to accounted resource usage.

Using the crowd: In Section 4, we presented a few heuristics to
obtain E(S) for S ⊆ N that are not observed in the system under
question. As a model of smartphone is usually used by hundreds of
thousands of users, the users of the same model can help each other
by contributing their own observations of E(S). Each observation
includes the energy consumption, unique identities of the running
software principals (S), device model, hardware state (σ ). The ob-



servations made by one device can be compacted and uploaded to
a central server occasionally, e.g., when connected via WiFi and
wall-powered. Similarly, a device can look up the same server for
observations for the same model that are unavailable locally.

Our work can also be extended to further attribute the energy
use by the OS to processes. Our current implementation treats the
OS as a separate principal and allocates its own share of energy use.
The OS, however, can perform a service on behalf of a process, e.g.,
sending a packet out through TCP/IP. Therefore, it is reasonable
to attribute the energy use by such services to the process being
served. Our implementation can be easily modified for this purpose
because a modern OS like Linux keeps track of the processes that it
is serving. Our implementation will be able to calculate the energy
use by the OS when serving a process; the only modification is to
attribute this energy use to the process, instead of the OS itself.
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