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While coverage-based greybox fuzzing has gained great success in the field of vulnerability detection due to its simplicity
and efficiency, it could become less powerful when applied directly to protocol fuzzing due to the unique challenges of
protocol fuzzing. In particular, (1) The implementation of protocols usually involves multiple program binaries, i.e., multiple
fuzzing entries; (2) The communication among multiple ends contains more than one packet, which are not necessarily
dependent upon each other, i.e., fuzzing single (usually the first) packet can only achieve extremely limited code coverage. In
this paper, we study such challenges and demonstrate the limitation of current non-stateful greybox fuzzer. In order to achieve
higher code coverage, we design and implement a stateful protocol fuzzer, yFuzz, to explore the code related to different
protocol states. yFuzz is built on AFL (a mainstream greybox fuzzer), and incorporates a stateful fuzzer (which contains a state
switching engine) together with a multi-state forkserver (which enables multi-state program forking) to consistently and
flexibly fuzz different states of a compiler-instrumented protocol program. Our experimental results on OpenSSL show that
yFuzz improves the code coverage by 73% and increases the number of identified unique crashes by 100% when comparing
against AFL fuzzing the first packet during a protocol handshake.

1 INTRODUCTION
Vulnerabilities in network protocols (such as Heartbleed in OpenSSL [20] and Remote Code Execution in
SNMP [12]) are among the most devastating security problems since their exploitation typically exposes hundreds
of thousands of networked devices to catastrophic risk. Efforts have been made toward developing automatic
and scalable techniques to detect vulnerabilities in large protocol codebase. In particular, fuzzing has gained
increasing popularity due to its simplicity and efficiency in practice, as compared to other testing techniques
such as symbolic/concolic executions.

Existing protocol fuzzers can be broadly categorized into two classes. 1) The fuzzer is part of the communication
chain by either directly mimicking a client/server in the protocol or acting as a Man-In-The-Middle (MITM)
proxy. It generates/intercepts packets among multiple network entities, mutates and relays them. This could be
implemented as a whitebox fuzzer (where the protocol specifications are known), or a blackbox fuzzer (where
the protocol details are not known beforehand). 2) The fuzzer works together with a proper testing program
(TP) provided for the network protocol. This is often known as a greybox fuzzer. It feeds the mutated inputs
to the TP, which is responsible for executing the protocol, while the fuzzer stays out of the communication
between clients and servers. For example, OpenSSL has several “official” testing programs [28] for LibFuzzer [33]
and AFL [45]. A whitebox protocol fuzzer such as 𝑠𝑢𝑙𝑙𝑒𝑦 [1] and 𝑏𝑜𝑜 𝑓 𝑢𝑧𝑧 [30] assumes that the user knows
the packet formats, thus she is able to construct packets based on this knowledge and to mutate packet fields
separately. It monitors the program execution and network behaviors of the server/client, to detect possible
failures triggered by the mutated packets/inputs. On the other hand, a blackbox protocol fuzzer [2, 16, 19] typically
consists of a MITM proxy, a packet reverse engineering module, and a mutation engine. Since the packet formats
and protocol states are unknown, the fuzzer starts with packet monitoring, reverse engineering and packet
clustering. Then, mutations are applied to each packet cluster based on state transitions and information learned.
Blackbox fuzzing can also infer the state machine of protocols and identify flaws through the inferred state
machine automatically [14]. While both whitebox and blackbox protocol fuzzers perform “blind” fuzzing and
fail to leverage some useful program execution information, the blackbox fuzzers particularly suffer from the
inaccuracy of protocol reverse engineering. Finally, greybox fuzzers [4, 5, 21, 25, 33, 37, 39, 45? ] instruments the
TP to track runtime information such as code coverage and dynamic data flow, to guide future testcase generation
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and the exploration of additional code. Extensive studies have focused on better testcase generations and TP
transformation [26, 29] for efficient greybox fuzzing.
Challenges: Despite recent progress on fuzzing tools, a number of fundamental limitations and challenges

still exist for stateful protocol fuzzing. 1) Communication protocols are typically implemented through state
machines on servers/clients with state transitions driven by critical protocol events such as packet exchange.
Although proxies can be employed to mutate and fuzz packets on the fly [3], the fuzzing is often not stateful and
lacks the ability to drive protocol to a specific state of interest, trap it in the state, and keep replaying and fuzzing
it. Stateful fuzzing is necessary for communication protocols. 2) A general program takes inputs when being
launched, and the execution status depends solely on the inputs (excluding irrelevant factors such as system
status and user interruptions). However, in protocols, there are multiple rounds of message flights that contain
both independent and dependent packets/fields. Simply fuzzing one single packet/field limits achievable code
coverage. Protocol fuzzers need to identify the dependence and adapt its fuzzing strategies accordingly. 3) Finally,
protocol implementations need to be properly instrumented/transformed in order to be directly fuzzed by popular
tools such as AFL [45] and VUzzer [32]. For instance, socket communications need to be logged and converted to
direct data operations for higher efficiency. We explain in detail the inefficiency of stateless and individual-packet
fuzzing in Section 2.2.

Our approach: A protocol fuzzer needs to be stateful. To achieve maximum code coverage and fuzzing depth,
it should be able to identify, replicate, and switch between different protocol states while maintaining execution
consistency. In this paper, we propose yFuzz, a yield-driven progressive fuzzer for stateful communication
protocols. It (i) makes novel use of a multi-state forkserver to fork protocol execution states, (ii) intelligently
switch selected protocol states, based on both state information and fuzzing yield, e.g., code coverage and unique
crashes, fuzz the corresponding packets, and switch states when necessary. In particular, yFuzz is built on
an industry-level greybox fuzzer-AFL. yFuzz consists of a state-aware fuzzer, a multi-state forkserver and an
instrumented testing program (TP). The state-aware fuzzer builds multiple fuzzing states across the TP execution
and identifies the corresponding fuzzing targets (i.e., packets and fields) for different fuzzing states. It then
commands the forkserver when to replicate protocol states, progress (move forward to the next fuzzing state), and
regress (roll back to the previous fuzzing state), based on the fuzzing yield achieved on the fly. The instrumented
TP, once cloned by the forkserver, will take the mutated inputs from the state-aware fuzzer, execute them
from the current protocol state, and send back the status information to the fuzzer. This feedback is analyzed
by the state-aware fuzzer to decide the next fuzzing state. The state-aware fuzzer, multi-state forkserver and
instrumented TP work in concert to identify testcases that change the protocol states, change fuzzing states, and
explore the program execution space efficiently. The fuzzing state may move forward and backward to identify
the sweet spot for highest fuzzing yield, until the fuzzer can no longer find interesting testcases. We implement
a prototype of yFuzz (as an open-source tool available at [44]). Evaluations using real-world protocols like the
OpenSSL library show that yFuzz can achieve significantly improvement in terms of better code coverage and
ability to find unique crashes.
In summary, this work makes the following contributions.

• We propose a novel framework, yFuzz, for stateful protocol fuzzing. It consists of three key components, a
state-aware fuzzer, a multi-state forkserver and an instrumented TP, which work in concert to identify,
replicate, and switch between different protocol states while maintaining execution consistency during
fuzzing.

• Leveraging the multi-state forkserver, yFuzz demonstrates how to intelligently replay selected proto-
col states, fuzz the corresponding packets, and switch states when deemed necessary using both state
information and fuzzing yield, e.g., code coverage and unique crashes.
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• We enable flexible power schedules1 to fully capitalize the potential of yFuzz. In this paper, we implement
and evaluate a new yield-driven power schedule that continuously focuses on fuzzing the (current) most
rewarding protocol states.

• Our experimental results of fuzzing the OpenSSL library show that yFuzz can improve the code coverage
by 73% within same period of time (24 hours) and discover 2 times of unique crashes compared with the
default AFL.

2 BACKGROUND

2.1 Overview of AFL
AFL [45] is a popular coverage-guided greybox fuzzer. It maintains a queue of the testcases. Starting from the
seed testcase provided by the user, AFL will select one testcase at a time, map the file from disk to a memory
buffer for mutation. Each testcase will go through multiple rounds of mutations with various mutation operations
(such as bit flips, additions, replacement and so on). After each mutation, the modified buffer will be written to a
file, which will be the input to the TP. Then the fuzzer will signal the TP to execute and wait for the execution to
finish to collect information such as code coverage and exit status.
Instead of blindly generating testcases to the TP, AFL utilizes compile-time instrumentation to track the

program execution. It does so by recording basic block transitions in the TP. A basic block is a sequence of binary
code that only has one entry, one exit and no branch within the block. Each basic block of the TP will have a
unique ID and the pair of two IDs can represent the control flow transitions (called edges, which we will use
throughout the following sections). AFL stores the occurrence of edges in a 64KB memory (shared between the
fuzzer and the TP). For each execution, the TP will update the shared memory about the edges information and
the fuzzer will get such information. If new edges occur or the numbers of edge occurences change (counts are
categorized by value range buckets), the fuzzer will consider the current testcase as an interesting one. Such
testcases will be appended to the queue for further mutation. Intuitively, the testcase that can result in more code
coverage will get more attention and serve as the base for later mutations.

Forkserver: In order to accelerate the fuzzing process, AFL develops a forkserver to avoid repeated program
initializations. Without the forkserver, the fuzzer would call 𝑒𝑥𝑒𝑐𝑣𝑒 () to run the TP every time a new testcase is
generated. And the TP will have to start from beginning, e.g., repeating the library initialization and dynamic
linking. Such repeated program initialization is unnecessary and could occupy a large ratio of the total execution
time. Hence, AFL designs a forkserver to call 𝑒𝑥𝑒𝑐𝑣𝑒 () only once. The forkserver logic is shown in Fig. 1. The
fuzzer will launch after some configurations and it will call 𝑓 𝑜𝑟𝑘 () to generate the forkserver. The forkserver will
perform some configuration first and then call 𝑒𝑥𝑒𝑐𝑣𝑒 () to execute the TP. The TP will execute until a function
called __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () (which is placed at the TP by users at desired positions beforehand)2. In __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 (),
the TP will enter an infinity𝑤ℎ𝑖𝑙𝑒 loop. Every time the fuzzer finishes one mutation of the input and generates a
new testcase, it will send a signal to the forkserver, informing that the new input file is ready. The forkserver then
receives such signal from the fuzzer and calls 𝑓 𝑜𝑟𝑘 () to generate a cloned TP that reads the input and execute till
exit. The forkserver also collects the exit status (by𝑤𝑎𝑖𝑡𝑝𝑖𝑑 ()) of the TP and sends it to the fuzzer. In Fig. 1, the
fork 1○ denotes the forking in fuzzer to generate forkserver and the fork 2○ denotes the forking in forkserver to
generate the process that reads inputs and executes as in a normal TP. In this way, the 𝑒𝑥𝑒𝑐𝑣𝑒 () is called only
once in forkserver. After that, the forkserver can simply clone itself from the point where program initialization

1The power schedule is the policy of assigning time to each testcase. In yFuzz, power schedule also denotes the time spent on each protocol
state.
2The function __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 ( ) is visible to users, it is actually a macro that represents the function __𝑎𝑓 𝑙_𝑚𝑎𝑛𝑢𝑎𝑙_𝑖𝑛𝑖𝑡 ( ) , which will
call the function __𝑎𝑓 𝑙_𝑠𝑡𝑎𝑟𝑡_𝑓 𝑜𝑟𝑘𝑠𝑒𝑟𝑣𝑒𝑟 ( ) , where the infinite 𝑤ℎ𝑖𝑙𝑒 loop truly resides. However, to simply the description, we will use
__𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 ( ) throughout this paper. The behavior of default __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 ( ) is shown in Algorithm 2 in Appendix
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Fig. 1. Simplified AFL forking workflow. FS: forkserver, TC/TC’: testcase, TP: testing program

is already done. Note that if the function __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () is not specified by the user, AFL will automatically put
it right before the𝑚𝑎𝑖𝑛() function. However it would be better for the user to put it manually in a later stage of
the program to skip more program initialization/computation.

2.2 Motivating example
Though the forkserver mechanism “speeds up the fuzzing of many common image libraries by a factor of two
or more” [46], one obvious limitation is that, it can only deal with one program state at a time. The forking
point of the TP is fixed before runtime, and there is only one forkserver that maintains the TP process. while
it works on general single-state programs (such as image processing softwares, PDF viewers, 𝑏𝑖𝑛𝑢𝑡𝑖𝑙𝑠 and so
on), it will not suffice when it comes to multi-state program (such as protocol) fuzzing. Our experiments show
that single-state fuzzing performs poorly on a simple OpenSSL handshake testing program. During the OpenSSL
handshake process, while fuzzing the first and second packets yield similar code coverages at around 10% (using
the same amount of time), fuzzing the third and fourth packet suffers from extremely low code coverages. When
fuzzing late-stage packets, the program execution is close to its end, and the amount of remaining code available
for exploration is significantly limited. However, the same experimental results of code coverage composition
also show that there exists unique code related to each packet, which means simply fuzzing any single packet
will not be able to explore all the code (as shown in Fig. 7). The details will be explained in Section 5.
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Fig. 2. Forking example of a four-stage TLS handshake
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The forkserver framework in AFL cannot handle multi-state protocols. As shown in Fig. 2, there will be
typically four packet flights between a TLS client and server when performing handshake: 𝑝1: 𝑐𝑙𝑖𝑒𝑛𝑡_ℎ𝑒𝑙𝑙𝑜 ,
𝑝2: 𝑠𝑒𝑟𝑣𝑒𝑟_ℎ𝑒𝑙𝑙𝑜 (with optional 𝑐𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒 , 𝑠𝑒𝑟𝑣𝑒𝑟_𝑘𝑒𝑦_𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒) +𝑠𝑒𝑟𝑣𝑒𝑟_ℎ𝑒𝑙𝑙𝑜_𝑑𝑜𝑛𝑒 , 𝑝3: 𝑐ℎ𝑎𝑛𝑔𝑒_𝑐𝑖𝑝ℎ𝑒𝑟_𝑠𝑝𝑒𝑐
(with optional 𝑐𝑙𝑖𝑒𝑛𝑡_𝑘𝑒𝑦_𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒) +𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 and 𝑝4: 𝑐ℎ𝑎𝑛𝑔𝑒_𝑐𝑖𝑝ℎ𝑒𝑟_𝑠𝑝𝑒𝑐 + 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 . Suppose we have a TP
that is already programmed to combine client and server in a single program binary and socket communications
are already converted to file operations. The packet will be first generated by the sender, and be put into memory
buffer. The receiver will read the packet from the buffer, then process it, and respond. If the default AFL-style
fuzzing is applied to fuzz 𝑝1, the __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () will be placed right after 𝑝1 is generated by the client, before it
is read by the server, such that the testcase generated by AFL 𝑝1′ can be read from file and used to replace 𝑝1 in
the memory buffer. The server will then read 𝑝1′ instead of p1 to continue program execution.
However, later-stage packets may not be completely dependent on 𝑝1. There could be extension fields in 𝑝2

that are only determined by the server but not the client side, which means that no matter how we mutate 𝑝1,
there are still some code related to 𝑝2 that cannot be covered. This is different from general programs where the
TP takes inputs once at the beginning and no independent inputs are needed.

Consider coverage-guided fuzzing, where if 𝑝1′ is found to be valid and interesting, what AFL will do is to
add 𝑝1′ to the testcase queue and mutate it later to generate more related testcases, which will never affect the
independent fields in 𝑝2. It’s worth keeping 𝑝1′ as well as the current program state of the client and server,
to continue fuzzing 𝑝2 to explore code related to the independent fields in 𝑝2. In order to fuzz 𝑝2 using interesting
𝑝1′, we need to accomplish the following.

• We will need to transfer the “forking point” from 𝑝1 to 𝑝2 such that the forkserver can continue to work. If
the forking point (the position of function __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 ()) is right after 𝑝2 is generated, then the “new”
forkserver will fork every time the fuzzer generates 𝑝2′ and 𝑝2 can get replaced.

• The packet 𝑝1′ needs to be reused and the program execution before sending 𝑝1′ should remain unchanged.
To reuse 𝑝1′, an intuitive idea is to store the interesting 𝑝1′ and perform packet replay to further fuzz 𝑝2.
However, it will not work in protocols that involve randomness (which is true in TLS). When an interesting
𝑝1′ occurs, it is bound with the current state of client 𝑆1𝑐 as shown in Fig. 2. If we restart client to replay
𝑝1′, the state of client is no longer 𝑆1𝑐 . Hence, we need to keep the exact program state 𝑆1𝑐 when 𝑝1′ occurs.

In yFuzz, we implement a multi-state forkserver to achieve the state trapping and transition. In the fuzzer side,
yFuzz has a state decision engine that commands the forkserver and the TP to work on the same state and fuzz
the target packet. The code coverage mechanism in yFuzz is similar to that in AFL.

3 SYSTEM DESIGN

3.1 Overview
yFuzz achieves stateful protocol fuzzing by combining a state-aware fuzzer(Section 3.3), a multi-state forkserver
(Section 3.4) and an instrumented TP(Section 3.2) as shown in Fig. 3. The fuzzer contains an array of queues. Each
queue is used to only store the testcases that belong to the same fuzzing stage. For the example in Fig. 2, there will
be four queues for 𝑝1, 𝑝2, 𝑝3 and 𝑝4. The fuzzer will collect the execution status and code coverage information
after one execution of the TP, then decides whether to move forward (𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) or backward (𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛).
The corresponding queue will be chosen based on such decision to store the target testcases. Meanwhile, the
fuzzer also sends such decision to the forkserver. The forserver will then fork at the right point by moving one
step forward or backward (detailed in Section 3.4). When the forkserver is ready, it will keep listening to the
fuzzer, waiting for signals to fork and generate a new process of the TP. We will explain each module separately
in the following subsections. At the end of this section, we will detail the communication and cooperation among
different modules. (A summary of yFuzz workflow is also described in Appendix Algorithm 3 due to space limit.)
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Fig. 3. System Overview of yFuzz. FS: forkserver, multiQ: queues for storing different types of testcases, TP: testing program

3.2 Testing program
For better understanding, we first show the changes of the TP for protocol fuzzing in this subsection, then explain
how the fuzzer and forkserver work with the TP in following subsections. The difference between a protocol
implementation and a general single-state program is that, there are multiple “inputs”(packets) across the protocol
while there is one input for single-state programs. As explained in Section 2, the function __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () is used
to mark the forking point in the TP so that the forkserver will always clone itself at that position. In practice,
state machines of protocols are implemented in a while loop, such as in OpenSSL. A simplified TLS client/server
model can also be developed for fuzzing [3], where socket communication is transformed to file operations3. We
unroll the while loop into three states to better demonstrate the instrumentation of __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () as shown
in the shadowed area in the TP, Fig. 3, but the ideal and actual implementation of yFuzz are not limited by the
number of states a protocol may have. In the TP, we also add a variable 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 to indicate the current protocol
state of the TP. The function __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () in Fig. 3 will be invoked conditionally, when the 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 matches
the target fuzzing state of the fuzzer (which is 𝑓 𝑠𝑡𝑎𝑡𝑒 , as will be explained in Section 3.4). While the forkserver is
only initialized once in AFL, yFuzz conditionally initializes the forkserver multiple times for different fork points
in the TP.
In addition to the forking points, the communications between the TP and the fuzzer are also injected to the

TP to share code coverage information (by default in AFL) and the protocol state information through shared
memory.

3.3 State-aware fuzzer
The fuzzer passes forking and fuzzing state information to forkserver, based on the execution status of the TP. It
collects protocol state and code coverage information from the TP after each execution, and in turn, analyze such
information to decide the forking state of forkserver and the TP in the next execution. These decisions are done
by the state engine in the fuzzer. At the core of the state engine is the data structure𝑚𝑢𝑙𝑡𝑖𝑄 and the methods
operate on it: 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑄 , 𝑠𝑡𝑜𝑟𝑒𝑄 , 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑄 , 𝑠𝑤𝑖𝑡𝑐ℎ𝑄 . Each𝑚𝑢𝑙𝑡𝑖𝑄 struct will store the queue entries with the
same type (basically a linked list) as well as the global variables associated with them for logging and analysis.

The reason for designing the multiple fuzzing queues is that, packets in various stages typically have different
formats. It is obviously inefficient to uniformly mutate these types of packets to generate new testcases for
3In general, tools such as 𝑝𝑟𝑒𝑒𝑛𝑦 [47] can be used to convert socket communications into file operations through preloading customized
libraries, if the source code of the TP is not available
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whatever state the TP has. And simply putting all packets into one queue will definitely disrupt the analyses
that are only meant for one queue. For general programs, one queue will suffice as what is done in AFL, because
it only needs to consider a single state of the TP. All the inputs denoted by the queue entries (no matter what
content they contain), will be read by the TP at exactly the same location during the execution, which is not the
case for protocols as mentioned in Section 2.
After each execution of the TP, the fuzzer analyzes the protocol state, exit status of the TP as well as code

coverage, as denoted by arrow 5○ and 6○ in Fig. 3. In AFL, there is a 64kB shared memory between the fuzzer and
the TP to track the code coverage. yFuzz also shares the protocol states between them (as explained in Section 3.5).
The protocol state is updated per execution of the TP. Once the fuzzer detects new states (or decides to move to
the next/previous state), it will invoke 𝑄-related methods to store/destroy current fuzzing queue, and switch to
the new queue, as denoted by arrow 1○. Meanwhile, it sends the state information to forkserver (as denoted by
arrow 2○).

The state engine utilizes flexible policies for progression (moving to the next state) and regression (rolling back
to the previous state) based on the specifications of the target protocol or the user’s requirement, as explained in
Section 4.

3.4 Multi-state forkserver
The multi-state forkserver is not only the parent of all cloned TPs (that actually execute the mutated testcases),
but also a switch that shifts to the right state when receiving commands from the fuzzer (in order to fork TPs with
different protocol states). The forkserver in AFL can only be initialized once, i.e., the function __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () is
called only once, when the first __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () statement is entered. It works well if we only want to fuzz one
packet memorylessly regardless of the previous and following packets. To fuzz later packets efficiently (by utilizing
early stage packet states), we need to “remember” the execution state of previous packets generation/processing,
and need to switch to new fuzzing states without restarting the TP (which will call 𝑒𝑥𝑒𝑐𝑣𝑒 () repeatedly). The
forkserver needs to know the current fuzzing state, the next fuzzing state (when progressing) and possibly
previous fuzzing state (when regressing).

The forkserver accomplishes this by comparing the protocol state information (received from fuzzer) against
the status of __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () in the current forkserver process. In particular, we use 𝑝𝑠𝑡𝑎𝑡𝑒 to indicate the current
fuzzing packet and 𝑓 𝑠𝑡𝑎𝑡𝑒 to indicate the status of current forkserver. Initially, if the user starts yFuzz to mutate
the first packet, then the value of 𝑝𝑠𝑡𝑎𝑡𝑒 and 𝑓 𝑠𝑡𝑎𝑡𝑒 are both 1. The forkserver with 𝑓 𝑠𝑡𝑎𝑡𝑒 = 𝑥 + 1 are forked by
the forkserver with 𝑓 𝑠𝑡𝑎𝑡𝑒 = 𝑥 , where 𝑥 is in range [𝑓 𝑠𝑡𝑎𝑡𝑒_𝑚𝑖𝑛, 𝑓 𝑠𝑡𝑎𝑡𝑒_𝑚𝑎𝑥 − 1]. In yFuzz, we set 𝑓 𝑠𝑡𝑎𝑡𝑒_𝑚𝑖𝑛

to 1, and 𝑓 𝑠𝑡𝑎𝑡𝑒_𝑚𝑎𝑥 will be updated by the maximum number of forkservers seen so far.
In Fig. 4, to better illustrate both progression and regression, we start from forkserver 𝐹𝑆2 (because 𝐹𝑆1 cannot

regress), which means we are currently mutating 𝑝2 (𝑝𝑠𝑡𝑎𝑡𝑒 is 2) when 𝑓 𝑠𝑡𝑎𝑡𝑒 is also 2. Once the fuzzer has
decided the next fuzzing state, it will pass the new value of 𝑝𝑠𝑡𝑎𝑡𝑒 to 𝐹𝑆2 (will be explained in Section 3.5), denoted
by 𝑝𝑠𝑡𝑎𝑡𝑒′. Then 𝐹𝑆2 compares 𝑝𝑠𝑡𝑎𝑡𝑒′ with 𝑓 𝑠𝑡𝑎𝑡𝑒 and take one of the following actions.

• Staying: If they are equal, which means the fuzzer wants to continue mutating 𝑝2, then 𝐹𝑆2 will get the
forking signal from the fuzzer to clone a new process (𝑇𝑃 ), to run with the newly generated testcase, as
shown in box 2. The 𝐹𝑆2 will get the return status of the TP and send that information to the fuzzer.

• Progressing: If 𝑝𝑠𝑡𝑎𝑡𝑒 > 𝑓 𝑠𝑡𝑎𝑡𝑒 , which means that the fuzzer wants to move forward and mutate the
next packet 𝑝3, the 𝐹𝑆2 will fork immediately to generate 𝐹𝑆3. Then 𝐹𝑆3 will resume execution, until the
point that __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () is called again in the TP as shown in Fig. 3 (the line before 𝑟𝑒𝑎𝑑_𝑝3()). The
condition for entering this __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () is that the current protocol state 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 is equal to 𝑓 𝑠𝑡𝑎𝑡𝑒 .
After 𝐹𝑆3 is generated (by cloning 𝐹𝑆2), the 𝑓 𝑠𝑡𝑎𝑡𝑒 in 𝐹𝑆3 is incremented by 1 (set to 3), such that when
𝐹𝑆3 enters the while loop in __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () and performs the same check as 𝐹𝑆2 just did, it will find that
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w_regress
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Fig. 4. Multi-state forkserver in yFuzz. Suppose current fuzzing state is 𝐹𝑆2 and the next fuzzing state could be one of the
three: staying in 𝐹𝑆2, progressing to 𝐹𝑆3 and regressing to 𝐹𝑆1.

𝑓 𝑠𝑡𝑎𝑡𝑒 == 𝑝𝑠𝑡𝑎𝑡𝑒 == 3. Hence, 𝐹𝑆3 will take over the forking task from 𝐹𝑆2. By listening to the fuzzer,
𝐹𝑆3 will keep generating the 𝑇𝑃 and perform the actual executions. Meanwhile, the 𝐹𝑆2 will be put on
hold, waiting for 𝐹𝑆3 to finish and regress (decided by the fuzzer). The 𝐹𝑆2 also reduces the value of
𝑝𝑠𝑡𝑎𝑡𝑒 , setting it to 2, such that when 𝐹𝑆3 regress to 𝐹𝑆2, 𝐹𝑆2 can start normal forking immediately (when
𝑝𝑠𝑡𝑎𝑡𝑒 == 2 == 𝑓 𝑠𝑡𝑎𝑡𝑒). Note that the 𝑝𝑠𝑡𝑎𝑡𝑒 changed by 𝐹𝑆2 is in 𝐹𝑆2’s address space after forking, this
change will not affect the value of 𝑝𝑠𝑡𝑎𝑡𝑒 in 𝐹𝑆3’s address space (which is 3).

• Regressing: If 𝑝𝑠𝑡𝑎𝑡𝑒 < 𝑓 𝑠𝑡𝑎𝑡𝑒 , which means that the fuzzer has decided to roll back to the previous
state (mutating 𝑝1). Then 𝐹𝑆2 will exit and give control to the state that generated it, which is 𝐹𝑆1. Recall
the status of forkserver that is being held as the 𝐹𝑆2 in the previous condition, 𝐹𝑆1 had been held when
generating 𝐹𝑆2. When 𝐹𝑆1 knows that 𝐹𝑆2 exits, it will take back the control to fork when the fuzzer
commands so.

The above decision procedure repeats itself for each 𝑝𝑠𝑡𝑎𝑡𝑒 received from the fuzzer to achieve a continuous
multi-state forking and fuzzing. Note that though Fig. 4 only shows one path of state transition, the actual
transition involves multiple paths. The transition has a tree-based structure where each node represents a fuzzing
state. Each node could have multiple children. When a progression happens, the fuzzing state switches to one of
the children of the current node; And when a regression happens, the fuzzing state goes back to its parent node.

3.5 Communication and Coordination

Fig. 5. Communication among the fuzzer, forkserver and TP. R/W in the pipes stand for the packet read/write. The solid
arrows denotes messages passed by pipes and dashed arrows denotes values shared through shared memory.
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AFL already has communications between the fuzzer and forkserver through pipes and shared memory. In
yFuzz, we utilize the existing infrastructure to construct our state-aware communication. As shown in Fig. 5,
there are two pipes used to build the communication channels between the fuzzer and forkserver. The fuzzer gets
the write end of the top pipe and the read end of the bottom pipe, while the forkserver has read end of top pipe
and write end of bottom pipe. In yFuzz, the pipe ends will be duplicated when the forkserver forks, i.e., all fork
servers will share the same pipe ends and are able to read and write through them. However, since there is only
one active forkserver at a time, there will not be race conditions for different forkservers.

When yFuzz starts to work, the fuzzer will send protocol state information (𝑝𝑠𝑡𝑎𝑡𝑒) to the forkserver through
𝑊1 as indicated by arrow 1○. The forkserver reads 𝑝𝑠𝑡𝑎𝑡𝑒 from 𝑅1 and compares it against the value of 𝑓 𝑠𝑡𝑎𝑡𝑒
that it currently has, denoted by arrow 2○. Meanwhile, it will also write 𝑝𝑠𝑡𝑎𝑡𝑒 to the shared memory to inform
the TP (as denoted by arrow 3○ and 4○). After proper state transition as explained in Section 3.4, the forkserver
will read the forking signal from the fuzzer through 𝑅1, then it forks the TP at the right position and the TP will
execute. The forkserver also sends the process ID of the TP to the fuzzer through𝑊2. After execution, the TP
writes the value of 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 (as well as code coverage information) to the shared memory with the fuzzer (as
denoted by arrow 5○). The forkserver will get the exit status of the TP and write it to pipe through𝑊2 and the
fuzzer will read it from 𝑅2. At last, the fuzzer will analyze the execution status of the TP based on code coverage,
the TP exit status and protocol state 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 , to decide the next fuzzing state (which is one of stay, progression
or regression). Then the fuzzer will start over by repeating the procedure described above.

The reason of using pipes to send and receive 𝑝𝑠𝑡𝑎𝑡𝑒 is that a race condition does exist if using shared memory
to do so. Suppose the fuzzer decides to move from 𝑝𝑠𝑡𝑎𝑡𝑒 = 1 to 𝑝𝑠𝑡𝑎𝑡𝑒 = 2, so it writes the 𝑝𝑠𝑡𝑎𝑡𝑒 = 2 to the
shared memory, then it signals the forkserver to fork, which means that the forkserver only needs the signal
to fork but does not need any signal to read 𝑝𝑠𝑡𝑎𝑡𝑒 from shared memory. Since the forkserver keeps looping
in __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 (), it may already read the old value of 𝑝𝑠𝑡𝑎𝑡𝑒 from the shared memory even before the fuzzer
updates it. A 𝑟𝑒𝑎𝑑𝑏𝑒 𝑓 𝑜𝑟𝑒𝑤𝑟𝑖𝑡𝑒 race condition exists, which causes the forkserver to stay in the current state even
though the fuzzer wants it to proceed.

During the communication using pipes, yFuzz performs another checking to avoid double reads. Recall that the
fuzzer writes two messages in arrow 1○: the 𝑝𝑠𝑡𝑎𝑡𝑒 and the forking signal. The current forkserver will always read
𝑝𝑠𝑡𝑎𝑡𝑒 first to decide the next state. If the forkserver jumps from 𝐹𝑆2 to 𝐹𝑆3, then 𝐹𝑆3 should not read 𝑝𝑠𝑡𝑎𝑡𝑒 again
since the 𝑝𝑠𝑡𝑎𝑡𝑒 message is consumed by 𝐹𝑆2 and does not exist in the pipe any more.In fact, the next message in
pipe should be the forking signal. Interestingly, when 𝐹𝑆3 performs further forking, it has to read 𝑝𝑠𝑡𝑎𝑡𝑒 from the
pipe to perform (potential) state transition. Hence, there exist two different reading operations for 𝐹𝑆3. On the
other side, when 𝐹𝑆3 at some point perform state regression and goes back to 𝐹𝑆2, the 𝑝𝑠𝑡𝑎𝑡𝑒 would have been
already consumed by 𝐹𝑆3. The resumed 𝐹𝑆2 is not allowed to try to read 𝑝𝑠𝑡𝑎𝑡𝑒 again, while 𝐹𝑆2 has to read 𝑝𝑠𝑡𝑎𝑡𝑒
in normal fuzzing. In general, double reads exist when newly generated/resumed forkserver tries to read 𝑝𝑠𝑡𝑎𝑡𝑒 ,
which is consumed by the parent/child forkserver. yFuzz uses three additional variables to ensure the correct read
behavior: 𝑓 𝑠_𝑖𝑛𝑖𝑡 , 𝑙𝑜𝑜𝑝𝑒𝑑 and𝑤_𝑟𝑒𝑔𝑟𝑒𝑠𝑠 . And the meaning of these variables are as follows. a) 𝑓 𝑠_𝑖𝑛𝑖𝑡 is a global
variable that is initialized to 0 and only be set once, when the function __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () is called at the first time.
This is used to identify the first time the forkserver is initialized because the first occurrence of __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 ()
should read the 𝑝𝑠𝑡𝑎𝑡𝑒 . b) 𝑙𝑜𝑜𝑝𝑒𝑑 is a local variable in function __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 (). It is initialized to 0 outside the
infinite 𝑤ℎ𝑖𝑙𝑒 loop (where repeated fork() takes place). Inside the loop, 𝑙𝑜𝑜𝑝𝑒𝑑 will be set to 1. This is used to
distinguish the first round of newly generated forkserver. As mentioned previously, the first round of newly
generated forkserver should not read 𝑝𝑠𝑡𝑎𝑡𝑒 while in the rest of loop rounds it should. c)𝑤_𝑟𝑒𝑔𝑟𝑒𝑠𝑠 is used to
mark the forkserver that is held and waiting for regression of its child forkserver, such that when it resumes
forking, it will not read 𝑝𝑠𝑡𝑎𝑡𝑒 . 𝑤_𝑟𝑒𝑔𝑟𝑒𝑠𝑠 is assigned to 0 in the 𝑠𝑡𝑎𝑦𝑖𝑛𝑔 branch of forkserver and assigned to
1 in the 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔 branch as mentioned in Section 3.4. Thus, the condition for reading the 𝑝𝑠𝑡𝑎𝑡𝑒 value is as
shown in Algorithm 1.
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Algorithm 1: Conditions of reading the 𝑝𝑠𝑡𝑎𝑡𝑒 from the pipe of multi-state forkserver in yFuzz. Other
operations such as forking and state transitions are intentionally omitted.

1 𝑙𝑜𝑜𝑝𝑒𝑑 = 0;
2 while TRUE do
3 if (looped | | !𝑓 𝑠_𝑖𝑛𝑖𝑡 ) && !𝑤_𝑟𝑒𝑔𝑟𝑒𝑠𝑠 then
4 read 𝑝𝑠𝑡𝑎𝑡𝑒;
5 ...;
6 𝑓 𝑠_𝑖𝑛𝑖𝑡 = 1;
7 𝑙𝑜𝑜𝑝𝑒𝑑 = 1;
8 if 𝑓 𝑠𝑡𝑎𝑡𝑒 == 𝑝𝑠𝑡𝑎𝑡𝑒/*stay*/;
9 then
10 𝑤_𝑟𝑒𝑔𝑟𝑒𝑠𝑠 = 0;
11 ...;
12 else if 𝑓 𝑠𝑡𝑎𝑡𝑒 < 𝑝𝑠𝑡𝑎𝑡𝑒/*progression*/;
13 then
14 ...;
15 𝑤_𝑟𝑒𝑔𝑟𝑒𝑠𝑠 = 1;
16 else
17 /*regression*/ ...;

In summary, yFuzz performs program fuzzing flexibly at multiple execution points with “memory” of precedent
program states, by incorporating a state-aware fuzzer, a multi-state forkserver and a stateful TP into a closed
loop. The fuzzer analyzes the information provided by the forkserver and the TP to decided fuzzing state. The
forkserver carries out the state transition for the TP. The policies of state transitions (i.e., when to 𝑠𝑡𝑎𝑦, 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠
or 𝑟𝑒𝑔𝑟𝑒𝑠𝑠) will be discussed in Section 4 and evaluated in Section 5.

4 IMPLEMENTATION
We implement yFuzz based on AFL to utilize its coverage-guided testcase generation and the infrastructure of
communication. Our code consists of 3234 different lines of C code compared with default AFL, together with 601
lines of Python code for automated testing and analyzing. The code of the state-aware fuzzer, multi-state forkserver
and the instructions to instrument the TP are ready to be released. We select some core components/functions
from yFuzz and show them in Fig. 6 with the components unique to yFuzz being shaded.
The𝑚𝑢𝑙𝑡𝑖𝑄 is composed of the data structure𝑚𝑢𝑙𝑡𝑖𝑄 and methods such as 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑄 , 𝑠𝑡𝑜𝑟𝑒𝑄 , 𝑑𝑒𝑠𝑡𝑟𝑜𝑦𝑄 ,

in-memory 𝑟𝑒𝑠𝑢𝑚𝑒𝑄 and 𝑠𝑤𝑖𝑡𝑐ℎ𝑄 , as well as the handling of file descriptors, path constructions and cleanups.
The core function of state engine is ℎ𝑎𝑠_𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 (), where the information from the forkserver and the TP
is analyzed to decided next fuzzing state. Once the decision is made, then 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛/𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is called to
change fuzzing state, or none of them is called and the fuzzer will continue working on current fuzzing state.
On the forkserver side, yFuzz instruments the LLVM pass used by 𝑎𝑓 𝑙-𝑐𝑙𝑎𝑛𝑔-𝑓 𝑎𝑠𝑡 to implement multi-state

forkserver. The function 𝑖𝑛𝑖𝑡_𝑦𝐹𝑢𝑧𝑧 is used to initialize some global variables, such as those used to determine
the 𝑟𝑒𝑎𝑑 condition (as explained in Section 3.5). The state transition implements the three branches (𝑠𝑡𝑎𝑦𝑖𝑛𝑔,
𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) mentioned in Section 3.4. And the 𝑟𝑒𝑐𝑣𝑠𝑖𝑔𝑛𝑎𝑙 components stands for the logic of
reading from/writing to the pipes and shared memory.
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Fig. 6. Implementation of yFuzz based on AFL

The TP is also instrumented as follows. (1) Multiple program locations are selected and set as the forking
points for the multi-state forkserver initialization. Both the server and the client are instrumented for fuzzing.
This step is done manually. (2) In addition to the code coverage and exit status, the TP will share information
such as 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 and 𝑝𝑠𝑡𝑎𝑡𝑒 with the state engine in the fuzzer. (3) The fuzzer and the TP also communicate to
record the packets when progressions are performed, such that yFuzz can keep track of the chain of packets that
lead to vulnerabilities.

The logic of reading 𝑝𝑠𝑡𝑎𝑡𝑒 is shown in Algorithm 1. During the communication using pipes, yFuzz performs
another checking to avoid double reads. Recall that the fuzzer writes two messages in arrow 1○: the 𝑝𝑠𝑡𝑎𝑡𝑒 and the
forking signal. The current forkserver will always read 𝑝𝑠𝑡𝑎𝑡𝑒 first to decide the next state. If the forkserver jumps
from 𝐹𝑆2 to 𝐹𝑆3, then 𝐹𝑆3 should not read 𝑝𝑠𝑡𝑎𝑡𝑒 again since the 𝑝𝑠𝑡𝑎𝑡𝑒 message is consumed by 𝐹𝑆2 and does
not exist in the pipe any more.In fact, the next message in pipe should be the forking signal. Interestingly, when
𝐹𝑆3 performs further forking, it has to read 𝑝𝑠𝑡𝑎𝑡𝑒 from the pipe to perform (potential) state transition. Hence,
there exist two different reading operations for 𝐹𝑆3. On the other side, when 𝐹𝑆3 at some point perform state
regression and goes back to 𝐹𝑆2, the 𝑝𝑠𝑡𝑎𝑡𝑒 would have been already consumed by 𝐹𝑆3. The resumed 𝐹𝑆2 is not
allowed to try to read 𝑝𝑠𝑡𝑎𝑡𝑒 again, while 𝐹𝑆2 has to read 𝑝𝑠𝑡𝑎𝑡𝑒 in normal fuzzing. In general, double reads exist
when newly generated/resumed forkserver tries to read 𝑝𝑠𝑡𝑎𝑡𝑒 , which is consumed by the parent/child forkserver.
yFuzz uses three additional variables to ensure the correct read behavior: 𝑓 𝑠_𝑖𝑛𝑖𝑡 , 𝑙𝑜𝑜𝑝𝑒𝑑 and𝑤_𝑟𝑒𝑔𝑟𝑒𝑠𝑠 . And the
meaning of these variables are as follows. a) 𝑓 𝑠_𝑖𝑛𝑖𝑡 is a global variable that is initialized to 0 and only be set once,
when the function __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () is called at the first time. This is used to identify the first time the forkserver is
initialized because the first occurrence of __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 () should read the 𝑝𝑠𝑡𝑎𝑡𝑒 . b) 𝑙𝑜𝑜𝑝𝑒𝑑 is a local variable in
function __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 (). It is initialized to 0 outside the infinite𝑤ℎ𝑖𝑙𝑒 loop (where repeated fork() takes place).
Inside the loop, 𝑙𝑜𝑜𝑝𝑒𝑑 will be set to 1. This is used to distinguish the first round of newly generated forkserver.
As mentioned previously, the first round of newly generated forkserver should not read 𝑝𝑠𝑡𝑎𝑡𝑒 while in the rest
of loop rounds it should. c)𝑤_𝑟𝑒𝑔𝑟𝑒𝑠𝑠 is used to mark the forkserver that is held and waiting for regression of
its child forkserver, such that when it resumes forking, it will not read 𝑝𝑠𝑡𝑎𝑡𝑒 .𝑤_𝑟𝑒𝑔𝑟𝑒𝑠𝑠 is assigned to 0 in the
𝑠𝑡𝑎𝑦𝑖𝑛𝑔 branch of forkserver and assigned to 1 in the 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔 branch as mentioned in Section 3.4.

Search Policy: Based on the structure of the multi-state forkserver, yFuzz implements a DFS-like searching
policy to transit among different fuzzing states. Taking the example in Fig. 2 as an example, when interesting 𝑝1′
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occurs, yFuzz will use the program state of 𝑝1′ and starts to fuzz 𝑝2. If interesting 𝑝2′ is generated, then yFuzz
will follow the program state of 𝑝1′ and 𝑝2′ to fuzz 𝑝3, and so on. During any state in-between 𝑝1 and 𝑝4, if no
interesting case is generated, then yFuzz will regress to previous fuzzing state (𝑝4 → 𝑝3, 𝑝3 → 𝑝2 or 𝑝2 → 𝑝1).
When yFuzz comes back at 𝑝1, then it continues fuzzing 𝑝1 and wait for the next progression.

The conditions of progression and regression define the power schedule of yFuzz. yFuzz will perform pro-
gression to move the fuzzing state forward when 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 satisfies certain conditions (such as the increase of
the number of packets occurred during the current execution). In particular, the increase of number of packets
indicates that the packet currently being fuzzed has triggered a new protocol state, as well as new code coverage.
However, such condition will potentially prevent progression from happening when 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 already reaches its
maximum value and cannot increase any more. In Fig. 2, suppose yFuzz is fuzzing 𝑝1, the initial seed of 𝑝1 might
not be valid and the number of packet flights is 2 (𝑝1 and 𝑝2, where 𝑝2 terminates the session). After certain
amount of mutation, a valid 𝑝1 is generated (𝑝1′) and 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 reaches 4. yFuzz will start to fuzz 𝑝2 based on the
program state of 𝑝1′. At this point the 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 will not exceed 4 any more, which means progression will not
be triggered to fuzz 𝑝3 and 𝑝4. To solve this problem, in addition to the 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 monitoring, yFuzz also adopts
a profile-based progression policy. In particular, the fuzzing process is separated into two stages: profiling and
testing. During the profiling stage, each packet is fuzzed for a fixed amount of time (say, one hour) to provide an
overview of code coverage and fuzzing queue related to each packet. All the fuzzing states form a tree-based
structure, where each node is a fuzzing state and the edges represent the transition. We agree that there might be
multiple states for the same packet, e.g., one node could have multiple children. However, the purpose of profiling
is to let each packet build their children nodes, so that we have an approximation of the number of children
nodes each node has. Based on this information, we can have a "smarter" starting schedule for the actual fuzzing
process (after profiling). The goal of profiling is not to get all and correct states of the protocol, but to have a
broad view of the structure of the tree. After profiling, the probability of progression at each state is decided.
Intuitively, the fuzzing state that has higher code coverage and more pending queue entries will be assigned more
fuzzing time, and the probability of progressing to this fuzzing state is assigned a larger value. In the testing stage,
yFuzz perform random progression based on the probabilities determined during profiling. Periodically, yFuzz
updates the probabilities by jointly consider the code coverage (and queue entries) in the profiling and testing
stages. yFuzz also assign a higher score to the packets that trigger new protocol states, giving more mutation
time to these packets.

A similar mechanism is applied to regression, i.e., the fuzzing state with higher code coverage and more pending
queue entries will have lower probability of regressing to previous fuzzing state. Also, yFuzz sets other thresholds
for regression such as𝑚𝑎𝑥_𝑄_𝑐𝑦𝑐𝑙𝑒𝑠 and𝑚𝑎𝑥_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 . When the current fuzzing state finishes𝑚𝑎𝑥_𝑄_𝑐𝑦𝑐𝑙𝑒𝑠
(as depicted in Algorithm 3 line 33) or the index of current queue entry exceeds𝑚𝑎𝑥_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 (Algorithm 3 line
30), yFuzz will enforce regression to prevent wasting too much resources upon current fuzzing state.

Note that we set the search policy in yFuzz heuristically. In fact, the progression and regression conditions can
be easily changed to adapt to different protocols.

5 EVALUATION
In this section, we evaluate yFuzz to answer the following questions: (i) What is the performance of yFuzz
with respect to metrics such as code coverage and number of unique crashes? (ii) How does it compare with
non-stateful fuzzing like default AFL? (iii) What is the runtime overhead of yFuzz due to state forking and replay?
(iv) What are the benefits of yield-driven fuzzing strategy?
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Fig. 7. Code coverage trend of fuzzing single packet at four different stages with OpenSSL 1.0.1f and 1.1.0f.

5.1 Environment Setup
All experiments are done on a ubuntu server (16.04.5 LTS) with 48 cores (Intel(R) Xeon(R) Gold 6126 CPU @
2.60GHz) and 92 GB RAM. Each fuzzer runs on a single core in the same environment. We choose OpenSSL (with
version 1.0.1f, 1.1.0f) as our benchmark. As mentioned in [3], we first compile OpenSSL using 𝑎𝑓 𝑙-𝑐𝑙𝑎𝑛𝑔-𝑓 𝑎𝑠𝑡
to generate the static libraries which are invoked from the instrumented TP to perform handshake. We add
𝑖𝑛𝑖𝑡_𝑦𝑓 𝑢𝑧𝑧 () after each packet is generated, under the condition “𝑝𝑠𝑡𝑎𝑡𝑒 == 𝑇𝑃𝑠𝑡𝑎𝑡𝑒”. In the TP, we also get the
shared memory pointer through the environment variable “__𝐴𝐹𝐿_𝑆𝐻𝑀_𝐼𝐷”, which is created by the fuzzer and
shared among its children processes. We use the number of packets occurred in the execution as the value of
𝑇𝑃𝑠𝑡𝑎𝑡𝑒 . Hence, each time 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 changes, we will consider a state change in the protocol. We utilize AFL’s
built-in support for ASAN [18] (a compile-time tool that is able to discover memory corruption bugs) to consider
more crash conditions.
We conduct each batch of experiments with the same parameters (w.r.t OpenSSL version, fuzzer settings,

fuzzing time) four times and show the average numbers where it applies.

5.2 Effect of single-packet fuzzing
We evaluate the performance (in terms of code coverage and unique crashes) of fuzzing single packet during
OpenSSL handshake to demonstrate the limitations of default non-stateful fuzzing. The TP is constructed by
following the idea in [3].
In the case of OpenSSL version 1.0.1f, fuzzing different packet results in different code coverage as shown in

Fig. 7. Fuzzing the first and second packet typically can yield more code coverage than fuzzing the third and
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Table 1. Statistics of fuzzing single packet (OpenSSL 1.0.1f) at four different stages using default AFL for 6 and 24 hours.

Code
Coverage(%)

Unique
Crashes

Cycles
Done

Total # of
Executions(M)

Time
(hours)

p1 9.51 1 4 7.87 6
p2 10.18 9 0 12.68 6
p3 5.56 9 15 12.21 6
p4 2.61 6 157 12.43 6

Code
Coverage(%)

Unique
Crashes

Cycles
Done

Total # of
Executions(M)

Time
(hours)

p1 9.64 11 30 42.05 24
p2 11.16 9 6 49.58 24
p3 5.6 14 410 66.20 24
p4 2.61 9 1308 54.80 24

fourth packet. The average numbers are shown in Table 1. In particular, fuzzing the first and second packet
during OpenSSL handshake for 6 hours can achieve 9.51% and 10.18% code coverage, respectively. However, the
third and fourth packet fuzzing can only reach 5.56% and 2.61% code since the code space for them to explore is
greatly reduced when starting from the late stage of handshake. Correspondingly, the completed fuzzing queue
cycle of later stage fuzzing (𝑝3 and 𝑝4) are much larger than early stage fuzzing (𝑝1 and 𝑝2), which means that
AFL cannot find interesting testcases anymore, so the length of queue is much less and it will finish one round of
fuzzing quickly then start the next cycle. When the experiments are conducted for 24 hours, the code coverage
results are similar. This indicates that the growth of code coverage when fuzzing single packet is extremely slow
after 6 hours or less.

Table 2. Code coverage breakdown: the code explored by fuzzing four individual packet. Time is in hours. The total size
of bitmap is 64kB (65536 Bytes). U𝑖 stands for the number of edges that are only explored when fuzzing packet 𝑖 but not
explored when fuzzing other packets (i.e., edges that is unique to packet 𝑖).

Version Hours Covered U1 U2 U3 U4
6 7677 563 955 30 386
10 8879 373 962 29 3601.0.1f
24 8896 312 966 32 359
6 10721 1472 755 26 296
10 10093 2123 81 15 2931.1.0f
24 11272 2054 738 22 295

Among the different code coverage explored by fuzzing different packets, some are common code (edges) and
others may be unique to each packet. We want to find out the composition of the code coverage by fuzzing
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Fig. 8. AFL vs yFuzz: bottom bars show the composition of code coverage and top bars show the number of unique crashes.
Note that we subtract the initial code coverage (7.9% in this case) explored by the seed 𝑝1 from each bottom bar to show the
increments of code coverage. And the code coverage is represented as the number of discovered edges.

individual packets. However, the default AFL assign ID to basic blocks randomly during runtime. If we restart the
program to fuzz 𝑝2 after fuzzing 𝑝1, then the assignment of block IDs will be different, which means that the
same edge could appear in different position of the bitmap. Hence, we fuzz the four different packets in one run,
each for 6, 10, 24 hours. When the current packet fuzzing lasts for 6 (or 10, 24) hours, we force the progression
to fuzz the next packet, by clearing the code coverage bitmap (the global variable 𝑣𝑖𝑟𝑔𝑖𝑛_𝑏𝑖𝑡𝑠 in AFL) without
relaunching AFL. The experiment results are shown in Table 2. We can see that the total code coverage of 24
hours’ fuzzing (for each packet, the fuzzing time is 6 hours) is 7677/64kB = 11.71%, which is higher than any of
the four single-packet fuzzing shown in Table 1, due to the unique code coverage. Further, we analyze the bitmap
(which is used to store the code coverage information in AFL), and get the unique edges explored by each packet,
as shown in Table 2 column𝑈 1,𝑈 2,𝑈 3 and𝑈 4.

In summary, the experiments conducted in this section have shown that:
• By only fuzzing one packet, the code coverage is limited. Fuzzing early-stage packets results in higher code
coverage.

• Different packet fuzzing can discover unique code. Which is to say, even though late-stage packet fuzzing
achieves less code coverage, it still discovers the code that cannot be discovered by early-stage packet
fuzzing. (And early-stage packet fuzzing also discovers unique code that cannot be explored by late-stage
packet fuzzing).

The two conclusions above have proven the need of stateful fuzzing, which is to fuzz different packets
interactively and heuristically.

5.3 yFuzz: progression and regression
After the profiling stage (as mentioned in Section 4), yFuzz starts to perform progression and regression based on
the protocol state changes and the probability (based on code coverage and fuzzing queue during profiling stage).
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Table 3. Comparison between yFuzz, AFLNET and TLS-fuzzer for detecting total crashes.

Time/h 1 6 12 18 24
yFuzz 283 548 1162 1846 2443

AFLNET 0 465 988 1354 1773
TLS-fuzzer 338 338 338 338 338

Fig. 9. Total crashes detected by yFuzz, AFLNET and TLS-fuzzer over 24 hours.

In the case of AFL, fuzzing 𝑝1 or 𝑝2 results in better code coverage and unique crashes as shown in Table 1. In
addition, AFL tends to stop discovering new code soon after a short amount of time when there is no interesting
testcases. yFuzz is able to “escape” the fuzzing stages that are no longer profitable and flexibly switch between
different states to discover new code. We compare a typical run of yFuzz and AFL in Fig. 8, as well as the code
coverage breakdown of yFuzz for each fuzzing stage. The left 𝑦 − 𝑎𝑥𝑖𝑠 marks the absolute number of edges
(defined as the execution pair of basic blocks as mentioned in Section 2) explored by the fuzzers and the right
𝑦 − 𝑎𝑥𝑖𝑠 marks the number of unique crashes. We show the code coverage discovered by yFuzz in four different
stages: 𝑝1, 𝑝2, 𝑝3 and 𝑝4. All the four fuzzing stages of yFuzz grow considerably along the timeline while the
default AFL (the grey bar) yield slow growth. As a result, yFuzz finds almost double amount of unique crashes
compared with AFL.
On average of four 24-hour fuzzing, yFuzz is able to discover 19.27% code (of a total size of 64kB shared

memory). In particular, fuzzing packet 𝑝1, 𝑝2, 𝑝3 and 𝑝4 contributes 10%, 4.65%, 1.73% and 2.79% code coverage (of
a total size of 64kB shared memory) respectively. In other words, fuzzing 𝑝1 contributes a percentage of 10/19.27
= 52.41% of the entire discovered code. Similarly, fuzzing 𝑝2, 𝑝3 and 𝑝4 contributes 24.13%, 8.98% and 14.48%. And
the air time spent on each fuzzing stage is 7.2, 11, 1.4 and 4.4 hours. In terms of unique crashes, yFuzz founds 43
unique crashes during 24 hours (on average), while AFL found 11 when fuzzing 𝑝1 (for 24 hours) or 14 when
fuzzing 𝑝3 (for 24 hours).

5.4 Comparison with other baselines
We compare yFuzz with two baselines to demonstrate the effectiveness of our design in finding total crashes.
The first baseline is AFLNET [31], which is a grey-box fuzzer for protocol implementations. Similar to yFuzz, it
takes a mutational approach and uses sate-feedback to guide the fuzzing process in addition to code-coverage
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feedback. However, unlike yFuzz, AFLNET does not support a multi-state forkserver (with staying, progressing,
and regressing actions) for implementing different state-aware fuzzing strategies. The second baseline is TLS-
fuzzer [23]. It is a test suite for SSL/TLS implementations by leveraging the written scripts to verify correct error
handling while using simple fuzzing techniques for testing. Despite slight differences in testing environments, we
compare yFuzz with AFLNET and TLS-fuzzer over OpenSSL with respect to the number of total crashes found
through fuzzing. We note that unlike yFuzz, which can be applied on both the client-side and server-side, the two
selected baselines can only be performed on the latter. Therefore, we collected the number of total crashes over
time on the server-side in Table 3 and showed how the number of crashes grow over time for each baseline in
Fig. 9.

We ran controlled experiments for a total of 24 hours and collected the data every 6 hours (except the first group,
which is recorded 1 hour after the starting of the test.). As shown in Table 3, AFLNET detects less crashes than
yFuzz at any time during the experiments. In the end, yFuzz is able to find 38% more crashes than AFLNET. Even
though AFLNET is also a stateful fuzzing tool, there is no memorization of the protocol states. In contrast, yFuzz
can memorize “interesting” protocol states to flexibly schedule resources to the states that are more promising to
locate more latent crashes. As shown in Fig. 9, the gap between yFuzz and AFLNET also widens, since different
fuzzing actions (i.e., staying, progressing, and regressing actions) enabled by yFuzz allows fuzzing strategies with
both high coverage and concentration on regions of interest. When it comes to another fuzzing tool TLS-fuzzer.
While it utilizes fuzzing techniques for testing (e.g., randomization of available inputs), the scripts are generally
written in a way that verifies correct error handling with limited fuzzing capabilities. The experiment shows that
it only generates a small number of valid input mutations, and therefore limits the performance of TLS-fuzzer in
finding more crashes. Increasing fuzzing time from 6 to 24 hours, it fails to find more crashes. yFuzz outperforms
both baselines in detecting total crashes.

5.5 Runtime overhead of state transitions
Even yFuzz outperforms the default non-stateful fuzzing using AFL, we still want to evaluate the runtime overhead
of yFuzz. In particular, (1) in the multi-state forkserver, yFuzz has extra code that compares the conditions for
progression/regression. (2) and in the fuzzer side, when progression/regression happens, extra code is applied to
update the𝑚𝑢𝑙𝑡𝑖𝑄 . We want to answer the question that does yFuzz slow down the fuzzing process because of
state condition checking and transition.
From Table 1, we can derive that when fuzzing single packet 𝑝1, the average number of the TP execution is

42.05/24 = 1.75 (million/hour), when the fuzzing time is 24 hours. On average of 4 times of 24-hour fuzzing, yFuzz
finishes 1.74 million TP executions per hour, which indicates a negligible slowdonw of 0.57%. Our explanation
is that, (1) the overhead of condition checkings in the multi-state forkserver can be ignored since we use
𝑙𝑖𝑘𝑒𝑙𝑦()/𝑢𝑛𝑙𝑖𝑘𝑒𝑙𝑦() macros to help the branch prediction, and the number of progression and regression are
extremely minor to the total number of TP executions, so the branch prediction is correct most of the time; (2) the
vast majority of the time spent in fuzzing is the generation and execution of invalid testcases as indicated in [26],
which greatly downplay the overhead (such as𝑚𝑢𝑙𝑡𝑖𝑄 updates) caused by yFuzz.

6 RELATED WORK
Program fuzzing has enjoyed success in hunting bugs in real-world programs with researchers devoting tremen-
dous efforts into it.

Protocol fuzzing: Few greybox fuzzers are designed specifically for protocols (in general, stateful programs).
As discussed in Section 1, most of the existing protocol fuzzers are either whitebox [1, 30] or blackbox [2, 14, 16, 19].
The whitebox fuzzers typically only monitor process/network failures and lack the guidance for smarter testcase
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generation and power scheduling. Blackbox fuzzers inevitably suffer the incomplete/inaccurate packet reverse-
engineering analyses. yFuzz, on the other hand, is a state-aware greybox protocol fuzzer that leverages coverage-
guidance and stateful protocol fuzzing to efficiently explore deep into each protocol states. While grey-box
fuzzers like [31] for protocol implementations can also be stateful, they simply use sate-feedback to guide the
fuzzing process in addition to code-coverage feedback. In contrast, yFuzz leverages a multi-state forkserver to
support different fuzzing actions (i.e., staying, progressing, and regressing actions) and to enable different fuzzing
strategies with both high coverage and concentration on regions of interest. Compared with our preliminary
work [10], yFuzz makes a number of extensions. In particular, it provides a complete implementation of the
communication channels among the fuzzing engine, the forkserver and the testing program, as well as the
multi-state forkserver to enable various fuzzing strategies through the process of progression and regression.

Coverage guided fuzzing: Plenty of works focus on smarter testcase mutation/selction or search heuristics, to
help the fuzzer generate inputs that explore more/rare/buggy execution paths [15, 21, 25, 33, 37, 45? ]. AFLFast [5]
models testcase generation as a Markov chain. It changes the testcase power scheduling policy (scoring and
priority mechanism) of default AFL, to prevent AFL spending too much time on the high-frequency testcase, and
assigning more resource to low-frequency paths. Similarly, AFLGo [4] uses simulated annealing algorithm to
assign more mutation time to testcases that are “closer” to the target basic block, to quickly direct the fuzzing
towards the target code area. These works help AFL to find the target paths faster by changing the mutation time
assigned to each testcase, but cannot find new paths, e.g., new vulnerabilities. yFuzz, on the other hand, can not
only optimize the power schedule based on the protocol states, but also can explore new paths that the default
AFL could never explore by stateful progressions.

Symbolic execution and tainting: Techniques such as tainting and symbolic execution are also employed
to complement greybox fuzzing [24, 27]. Angora [7] implements byte-level tainting to locate the critical byte
sequences (that determines branch control flows) from the input, then use gradient descent algorithm to solve
branch condition to explore both branches. SYMFUZZ [6] utilizes tainting and symbolic execution to determine
the dependencies between input bytes and program control flow graph, in order to decide which bytes to mutate
(optimal input mutation ratio) during fuzzing. Drill [35] uses concolic execution to solve constraints of magic
numbers (to guide fuzzing) then apply fuzzing inside each code compartment (to mitigate path explosion).
Machine Learning: Some works take advantages of machine learning techniques to model/improve the

fuzzing [13, 17, 38, 43? ]. Angora [7] and NEUZZ [34] adopt gradient descent-based searching policies (instead
of code-coverage) to guide the input mutation. NEUZZ builds a feedforward neural network to mimic the code
coverage behavior of the TP. The neural network is trained by testcases and bitmaps (as ground truth) generated
by AFL, to find the critical bytes in testcases. When new testcases are executed, NEUZZ only mutate the critical
bytes to reduce redundant testcase generation.
Program transformation and rewriting: Program transformation and rewriting have also been applied

in the area of fuzzing and program security. Program transformation aims to facilitate fuzzing by transforming
testing programs [22, 26, 29]. T-Fuzz [29] dynamically traces the testing programs to locate and remove the
checks once the fuzzer gets stuck. Untracer [26] creates customized testing programs with software interrupts at
the beginning of each basic block. Instead of tracing every testcase for coverage information (as in AFL), Untracer
enables the the testing program to signal the fuzzer once new basic blocks are encountered, thus greatly reducing
the overhead caused by redundant testcase tracing. Program slicing/rewriting techniques have been used to
identify and remove undesired code in the program/protocol to reduce the attack surface through dynamic
tainting [8, 9, 11, 40] or static code clone analysis [41, 42].
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8 CONCLUSION
In this paper, we identify the challenges in fuzzing stateful protocols/programs and demonstrate the limitation of
existing greybox fuzzers when fuzzing protocols. In order to achieve higher code coverage for protocol fuzzing, we
propose a progressive stateful protocol fuzzer, yFuzz, to capture the state changes in protocols, and heuristically
explore code spaces that are related to multiple protocol states. We implemented yFuzz upon the popular greybox
fuzzer, AFL and evaluate yFuzz on OpenSSL. Our experimental results show that yFuzz can achieve almost
double code coverage and unique crashes when comparing to only fuzzing the first packet during the protocol
communication (which is adopted by current greybox fuzzer).
Our current design of yFuzz has the following limitations that we are going to improve.
Instrumention of TP: yFuzz would be a more general and powerful fuzzer if it can work with blackbox

program binaries. Thus, we plan to investigate techniques such as dynamic tainting (to locate the basic blocks
that generate/process packets) and static binary rewriting to make yFuzz functional on program binaries. Also,
currently inserting forking points need to be done manually, which requires understanding of the implementation
details of the protocol. we will investigate mechanisms to ease the efforts.
Flexible power schedules: There could be more options to improve the fuzzing performance for specific

protocols. For example, 1) the selection of 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 is flexible: In addition to choosing the number of packets seen
in one TP execution as the value of𝑇𝑃𝑠𝑡𝑎𝑡𝑒 ,𝑇𝑃𝑠𝑡𝑎𝑡𝑒 could also be the size of a particular packet, execution time
of the message flight(s), different dynamic state transitions and so on (and proper combinations of them). 2) the
conditions for progression and regression are also adjustable: we monitor several variables during the fuzzing
(such as 𝑇𝑃𝑠𝑡𝑎𝑡𝑒 , number of fuzzing cycles, number of progressions and regressions) to decide when to progress
and regress the fuzzing state. In addition to these, if the user has a particular target of fuzzing, the conditions
could be modified in the function ℎ𝑎𝑠_𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 () accordingly.
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9 APPENDIX

Algorithm 2: Behavior of default __𝐴𝐹𝐿_𝐼𝑁 𝐼𝑇 (). The logic is simplified.
18 while TRUE do
19 receive forking signal from fuzzer;
20 pid = fork();
21 if pid < 0 /*fork failed*/;
22 then
23 exit();
24 if pid == 0 /*in child process*/;
25 then
26 return; /*continue execute the TP*/
27 /*in parent process*/;
28 send pid to fuzzer;
29 wait for child to exit;
30 send child exit status to fuzzer;
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Algorithm 3:Workflow of yFuzz: FS: forkserver, TP: testing program
1 Data: multiQ[];
2 Initialization: Qid = 0 (or specified by user);
3 while fuzzing not stopped do
4 Fuzzer: current_entry = multiQ[Qid]→current_entry;
5 while fuzzing current_entry do
6 Fuzzer: testcase = mutate(current_entry);
7 Fuzzer: send_to_FS(Qid, forking signal);
8 FS: receive(Qid, forking signal);
9 FS: fork/progress/regress according to Qid;

10 if FS forked then
11 TP: execute and send_to_FS(exit status);
12 else if FS progressed then
13 FS: executes to the next forking point;
14 FS: fork and wait;
15 TP: fork at next point;
16 else /*FS regressed*/
17 TP: exit;
18 FS: go back to last forking point;
19 Fuzzer: collect execution information;
20 Fuzzer: if testcase is interesting then
21 add_to_Q(Qid);
22 Fuzzer: if new protocol state occurs then
23 Qid+=1;
24 proceed_fuzzing();
25 break;
26 Fuzzer: if give up current fuzzing state then
27 Qid-=1 ;
28 regress_fuzzing();
29 break;
30 Fuzzer: current_entry = current_entry→next;
31 if current_entry is NULL then
32 multiQ[Qid]→current_entry = multiQ[Qid]→head;
33 fuzzing_cycle[Qid] += 1;
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