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Abstract: Video streaming has become a major usage scenario for the Internet. The growing popular-
ity of new applications, such as 4K and 360-degree videos, mandates that network resources must be
carefully apportioned among different users, in order to achieve the optimal Quality of Experience
(QoE) and fairness objectives. This results in a challenging online optimization problem, as networks
grow increasingly complex and the relevant QoE objectives are often nonlinear functions. Recently,
data-driven approaches, deep Reinforcement Learning (RL) in particular, have been successfully ap-
plied to network optimization problems, by modeling them as Markov Decision Processes. However,
existing RL algorithms involving multiple agents fail to address nonlinear objective functions on dif-
ferent agents’ rewards. To this end, we leverage MAPG-finite, a Policy Gradient algorithm designed
for multi-agent learning problems with nonlinear objectives. It allows us to optimize bandwidth
distributions among multiple agents and to maximize QoE and fairness objectives on video streaming
rewards. Implementing the proposed algorithm, we compare MAPG-finite strategy with a number of
baselines — including static, adaptive, and single-agent learning policies. The numerical results show
that MAPG-finite significantly outperforms the baseline strategies with respect to different objective
functions and in various settings, including both constant and adaptive bitrate videos. Specifically,
our MAPG-finite algorithm maximizes QoE by 15.27% and maximizes fairness by 22.47% compared
to the standard SARSA algorithm for a 2000 KB/s link.

Keywords: Video Streaming; Resource Allocation; Reinforcement Learning; Policy Gradient.

1. Introduction

Video streaming has become a major usage scenario for Internet users, accounting
for over 60% of downstream traffic on the internet [1]. The growing popularity of new
applications and video formats, such as 4K and 360-degree videos, mandates that network
resources must be apportioned among different users in an optimal and fair manner, in
order to deliver satisfactory Quality of Experience (QoE). There are many factors impacting
the Quality of Experience of the video streaming service. For example, the peak signal-to-
noise ratio (PSNR) of the received video [2], or the structural similarity of the image (SSIM)
[3]. In particular, the stall time during streaming is a critical performance objective especially
for services that require low response time and highly rely on customer experience, e.g.,
online video streaming and autonomous vehicle networks [4]. Further, the streaming
device impacts the bitrate and in turn effects the QoE parameter (see [5] and the citations
within).

Online optimization of stall time and QoE in a dynamic network environment is a
very challenging problem which can be analyzed as optimization problem [6] or learning
problem [7]. Traditional optimization-based approaches often rely on precise models to
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crystalize the network system and the underlying optimization problems. For instance,
the authors in [8] construct the QoE aware utility functions using a two-term power series
model, while the authors in [9] leverage both “bSoft probe” and “Demokritos probe” to
model the QoE measurement, by analyzing the weight factors and exponents of all video-
straming service parameters, as well as quantifying the “Decodable Frame Rate” of three
different types of frames. However, these model-based approaches cannot solve the online
QoE optimization with incomplete or little knowledge about future system dynamics.

Recently, Reinforcement Learning (RL) has been proven as an effective strategy in
solving many online network optimization problems that may not yield a straightforward
analytical structure, such as wireless sensor networks (WSN) routing [10], vehicle net-
works spectrum sharing [11], data caching [7], and network service placement [12]. In
particular, deep RL employs neural networks to estimate a decision-making policy, which
self-improves based on collected experiential data to maximize the rewards. Compared
with traditional model-based decision making strategies, deep RL has a number of benefits:
(i) It does not require a complete mathematical model or analytical formulation that may
not be available in many complex practical problems; (ii) The use of deep neural networks
as function approximators makes the RL algorithms easily extensible to problems with
large state spaces; and (iii) It is capable of achieving fast convergence in online decision
making and dynamic environments that evolve over time.

The goal of this paper is to develop a new family of multi-agent reinforcement learning
algorithms to apportion download bandwidth on the fly among different users and to opti-
mize QoF and fairness objectives in video streaming. We note that existing RL algorithms
often focus on maximizing the sum of future (discounted) rewards across all agents and
fail to address inter-agent utility optimization, aiming at balancing the discounted reward
received by each individual agents. Such inter-agent utility optimizations are widely con-
sidered in video streaming problems, e.g., to optimize the fairness of network resource
allocation and to maximize a non-linear QoE function of individual agent’s performance
metrics. More precisely, in a dynamic setting, the problem being solved must be modeled
as an MDD, where agents take actions based on some policy 7t and observed system states,
causing the system to transition to a new state. A reward ry is fetched for each agent k.
The transition probability to the new state is dependent only on the previous state and
the action taken in the previous state. RL algorithms aim to find an optimal policy 7 to
maximize the sum of (discounted) rewards) ;° ; 7' Y 7« (t) for all users. However, when
QoE and fairness objectives are concerned, a nonlinear function f, such as the fairness
utility [13] and sigmoid QoE function reported by [14], must be applied to the rewards
received by different agents, resulting in the optimization of a new objective f (71,72, ...),
where 7, = % Zthl y!ri(t) is the average discounted reward for each agent k in a finite time
T. It is easy to see that such nonlinear functions will potentially violate the memoryless
rule of MDP which is required for RL since the optimization objective now depends on
all past rewards/states. In this paper, we will develop a new family of multi-agent rein-
forcement learning algorithms to optimize such nonlinear objectives for QoE and fairness
maximization in video streaming.

We propose Multi-agent Policy Gradient for Finite Time Horizon (MAPG-finite) for opti-
mize nonlinear objective functions of cumulative rewards of multiple agents with a finite
time horizon. We employ MAPG-finite in online video streaming with the goal of maxi-
mizing QoE and fairness objectives by adjusting the download bandwidth distribution.
To this end, we quantify stall time for online video streaming with multiple agents, under
a shared network link and dynamic video switching by the agents. At the end of the
time horizon, a nonlinear function f(-) of the agents’ individual cumulative rewards is
calculated. The choice of f(-) is able to capture different notions of fairness — e.g., the well-
known a-fairness utility [13] that incorporates proportional fairness and max-min fairness
as special cases, and the sigmoid-like QoE function reported by [14] which indicates that
users with mediocre waiting time tend to be more sensitive than the rest — and thus balances
the performance received by different agents in online video streaming. We leverage the
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Time slot 1: history Time slot 2: choose HD user

User A User B User A User B

aal
(1 [0
(1 [0

Case HD at Slot 2 Fairness Optimal Choice
User A In12 +1n8 = 4.56
Case 1 User B HD
User B In9+1In12 = 4.68
User A In8+1In9 = 4.28
Case 2 User A HD
User B In5+1In13 =4.17

Figure 1. An illustrative example showing that the optimal choice of bandwidth assignment must
depend on past rewards/states, in order to maximize a logarithmic fairness objective.

RL algorithm proposed in [15] to develop a model-free multi-agent reinforcement learning
algorithm to cope with the inter-agent fairness reward for multiple users. In particular, this
RL algorithm modifies the traditional Policy Gradient to find a proper ascending direction
for the nonlinear objective function using random sampling. We prove the convergence of
the proposed algorithm to at least a local optimal of the target optimization problem. The
proposed multi-agent algorithm is model-free and shown to efficiently solve the QoE and
fairness optimization in online video streaming.

To demonstrate the challenge associated with optimizing nonlinear objective functions,
consider the example shown in Figure 1. Two users, A and B, share a download link for
video streaming. Due to the bandwidth constraint, the link is only able to stream one
high-definition (HD) video and one low-definition (LD) video at a time. In each time slot
t, the two users’ QoE, denoted by r4(f) and rp(t), are measured by a simple policy that
multiplies the quality of the content (from 1 to 5 stars) and the resolution of the video (1 for
LD and 2 for HD). The service provider is interested in optimizing a logarithmic utility of
the users’ aggregate QoE, i.e., u = In(}; 74 (t)) + In(Y; rg(t)) (which corresponds to the
notion of maximum proportional fairness [13,16]), for the two time slots t = {1,2}. Itis
easy to see that in Case 1, user A received r4(1) = 6 in time slot 1 and user B r5(1) = 4.
If we stream HD to user A and LD to user B in the next time slot, then the total received
utility becomes In(6 + 6) + In(4 + 4) ~ 4.56, while the opposite assignment achieves a
higher utility In(6 + 3) + In(4 4 8) ~ 4.68. However, in Case 2, choosing user A in time
slot 2 to receive HD and user B LD gives the highest utility of In(2 + 6) + In(5 + 4) ~ 4.28.
Thus, the optimal decision in time slot 2 depends on the reward received in all past time
slots (while we have only shown the rewards in time slot 1 for simplicity in this example).
In general, the dependence of utility objective on all past rewards implies a violation of
the Markovian property, as the actions should only be affected by the currently observed
system state in MDP. This mandates a new family of RL algorithms that are able to cope
with nonlinear objective functions, which motives this paper.

We note that in video streaming optimization, the action space for learning-based
algorithms can still be prohibitively large, since the bandwidth assignment decisions are
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continuous (or at least fine-grained if we sample the continuous decision space), while the
action space suitable for RL algorithms should be small as the output layer sizes of neural
networks are limited. The action space for bandwidth assignment increases undesirably
with both the growing number of users and the increasing amount of network resources
in the video streaming system. To overcome this challenge, we propose an adaptive
bandwidth adjustment process. It leverages two separate reinforcement learning modules
running in parallel, each tasked to select a target user to increase or decrease his current
bandwidth by one unit. This effectively reduces the action space of each RL module to
exactly the number of users in the system, while both learning modules can be trained in
parallel with the same set of data through backpropagation. This technique significantly
reduces the action spaces in MAPG-finite and make the optimization problem tractable.

To evaluate the proposed algorithm, we develop a modularized testbed for event-
driven simulation of video streaming with multi-agent bandwidth assignment. In particular,
a Bandwidth Assigner is developed to observe the agent states, obtain an optimized
distribution from the activated Action Executor, and then adjust the bandwidth of each
agent on the fly. We implement this distribution generating solution along with the model-
free multi-agent deep Policy Gradient algorithm, and compare the performance with
static and dynamic baseline strategies, including “Even” (which guarantees balanced
bandwidths for all users), “Adaptive” (which assigns more bandwidth to users consuming
higher bitrates), and SARSA (which is a standard single-agent RL-driven policy that fails to
consider inter-agent utility optimization). By simulating various network environments as
well as both constant and adaptive bitrate policies, we validate that the proposed MAPG-
finite outperforms all other tested algorithms. With Constant Bitrate (CBR) streaming,
MAPG-finite is able to improve the achieved QoE by up to 169.66%, and the fairness by
up to 8.28% compared with baseline strategies. Further, with the Adaptive Bitrate (ABR)
streaming, up to 41.25% QoE improvement can be obtained.

We conclude the key contributions of this work are:

*  We model the bandwidth assignment problem for optimizing QoE and fairness ob-
jectives in multi-user online video streaming. The stall time is quantified for general
cases under system dynamics.

*  Due to the nature of the inter-agent fairness problem, we propose a multi-agent learn-
ing algorithm that is proven to converge and leverages two reinforcement learning
modules running in parallel to effectively reduce the action space size.

*  The proposed algorithm is implemented and evaluated on our testbed, which is able
to simulate various configurations, including different reward functions, network
conditions, and user behavior settings.

*  The numerical results show that MAPG-finite outperforms a number of baselines,
including “Even”, “Adaptive”, and single-agent learning policies. With CBR, MAPG-
finite achieves up to 169.66% improvement in the achieved QoE, and 8.28% improve-
ment in the logarithmic fairness; with ABR, MAPG-finite achieves up to 41.25% WoE
improvement.

2. Related Work

Multi-Agent Reinforcement Learning: In the past, the Multi-agent Reinforcement
Learning (MARL) technique [17] has been discussed for scenarios where all the agents make
decisions individually to achieve a global optimal. Existing works include Coordinated
Reinforcement Learning [18], coordinates both the action selections and the parameter
updates between users, Sparse Cooperative Q-learning [19] allows agents to jointly solve a
problem when the global coordination requirements are available, [20] uses the max-plus
algorithm as the elimination algorithm of the coordination graph, [21] compares multiple
known structural abstractions to improve the scalability, and [22] automatically expand an
agent’s state space when the convergence is lacking. Apart from the standard Q-learning
[23] and policy gradient [24] algorithms, there is rich literature on meta-heuristic algorithms
for reinforcement learning. [25] provide an ant-colony optimization method for swarm
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reinforcement learning which improves empirically over the Q-learning based methods by
using parallel learning inspired by ant-swarms. Building on biological inspired algorithms,
[26] provide a genetic algorithm to search for parameters for deep-reinforcement learning.
[27] provide a modification of ant-colony optimization by considering e-greedy policies
combined with Levy flight for random exploration to search for possible global optima.
[28] considered a multi-period optimization using an ant-colony optimization inspired
algorithm relaxation induced neighborhood search algorithm for performing search in
large neighborhoods.

Recently, along with the development of neural networks and deep learning, the
deep-MARL [29] is proposed to resolve real-world problems with larger state spaces.
With various aspects of deep-MARL researched — such as investigating the representational
power of network architectures [30], applying deep-MARL with discrete-continuous hybrid
action spaces [31], enhancing the experience selection mechanism [32], etc. — real-world
applications can be solved including wireless sensor networks (WSN) routing [10], vehicle
networks spectrum sharing [11], online ride-sourcing (driver-passenger paring) services
[33,34], video game playing [35], and linguist problems [29]. Comparing with existing work,
our proposed solution in this paper focuses on optimizing inter-agent fairness objectives in
reinforcement learning.

Video Streaming Optimization: To improve the performance of data streaming,
various techniques have been proposed. The mostly discussed method is Adaptive Bitrate
(ABR) [36] streaming, which dynamically adjusts the streaming bitrate to reduce the stall
time. The different algorithms include BBA [37], Bola [38], FastMPC [39], LBP [40], FastScan
[36], and Pensieve [41]. In addition to ABR and bandwidth allocation considered in this
paper, caching is also a popular technique to reduce the stall time and further improve QoE.
Inspired by the LRU cache replacement policy, [42] analyzes an alternative gLRU designed
for video streaming application, and DeepChunk [7] proposes a Q-learning-based cache
replacement policy to jointly optimize hit ratio and stall time. Within an edge network
environment, the placement of calculations will also affect the streaming performance, thus
work [12] breaks hierarchical service placement problem into sub-trees, and further solve it
using Q-learning.

For video streaming services still using Constant Bitrate (CBR) systems, [43] proposed
QUVE which estimates the future network quality and controls video-encoding accordingly.
[44] considered maximizing QoE by optimizing cache content in edge servers. This is
different from our setup where we consider caching chunks at client devices. Similar to
us, [45] also provide a bandwidth allocation strategy to maximize QoE. However, they use
model-predictive control whereas we pose it as a learning problem and use reinforcement
learning. [46] consider a multi-user encoding strategy where the encoding schemes for
each user varies depending on their network condition. However, they use a Markovian
model and do not consider the possible future network conditions into account. [47]
consider a future dependent adaptive strategy where they estimate the TCP throughput
and success probability of chunk download. Similar to us, [48] consider a reinforcement
learning protocol to maximize QoE for multiple clients. However, they use average client
QoE at time ¢ as reward for time ¢ and use deterministic policies learnt from Q-learning [23].
We show that our formulation outperforms standard Q-learning algorithms by considering
stochastic policies and reward as function of QoE of the clients.

Our work, by using a model-free deep-RL policy [15], aims to maximize the overall
Quality of Experience of multiple agents. To measure the QoE, [14] considers the web page
loading time as a factor, [49] tracks graphic settings, [50] focuses on mobile networks such
that signal-to-noise ratio, load, and handovers matter. More mapping methodologies could
be found in the survey [51].

3. System Model

We consider a server with a total bandwidth of B streams videos to users in set
[K] ={1,2,---,K}, in which all the users are consuming videos continuously. We consider
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a streaming session to be divided into nonidentical logical slots. In each time slot, all
the users will maintain requesting/playing chunks from the same videos. Once any user
k € [K] starts a request for a new video in the current time slot /, the slot counter increments,
thus the new slot I + 1 starts for all users in [K], even if the video does not change for users
k' e [K]/{k}.

Using the logical time slot setting described above, at time slot! € [L] = {1,---,L},
a user k € [K] consumes downloading rate di(I) > 0 to fetch video v; which is coded
with bitrate r¢(I). The downloading speed is limited by Y ycx dix(l) = B,VI € [L], and
may update for all users when the time slot increments in the system. The video server
continuously sends video chunks to the user with downloading speed dy (1), and the user
plays the video with bitrate () which is defined by the property of the video. For
Adaptive Bitrate (ABR) videos, we update the bitrate of chunk on starting a new slot only.
So, all the chunks sent in slot | are of bitrate r¢(I). For Constant Bitrate (CBR) videos, 7, (I)
may remain constant across time slots I € [L] if multiple slots spans the video v.

Table 1. List of the variables used in the paper.

‘ Variable ‘ Description
K number of clients in the system
k index for agents, runs from 1 to K
B total bandwidth of the system
) slot index
L total slots considered
dr (1) download rate for user k in slot /
(1) bitrate of chunk sent to user k in slot /
(1) index of video streamed by user k in slot
m chunk index of the video v (1)
time at which user k starts playing chunk m for
bl m) video vi (1)
k
¢ (1, m) time at which server starts sending chunk m
ki for video vy (1)
F (1 m) time at which user k finishes playing chunk m
’ for video vy (1)

In each slot, we reset the clock to zero. We use t (I, m) to denote the time when the
server starts to send the m-th chunk of video vy in the time slot [, f;(I, m) to denote the time
when the user starts to play video chunk m, and f (I, m) to denote the moment that chunk
m is finished playing. For analysis, we consider that the size of each chunk is normalized
to 1 unit.

With our formulation, there will be two classes of users in a time slot [. The first class
is of the user who requested a new video and triggered the increment of time slot to /. Since
the user has requested a new video, it can purge the already downloaded chunks for the
previous video. Users in this class may observe a new downloading rate d (/) and video bit
rate 7 (). The second class of users are those who do not request a new video, but a new
streaming rate dj (1) is assigned to them because some other user k’ € [K] has requested a
new video and triggered a slot change. For these users, the video bitrates will remain the
same from the previous slot | — 1, or be adjusted solely by the ABR streaming policy when
CBR or ABR policies are activated. While for the downloading rate di(1), it is updated by
the bandwidth distribution policy. Note that a resource allocation scheme may still allocate
bandwidth to the user such that di(I) = di(l — 1), however, it may not be always true.

Next, we calculate the stall time in a slot I for both classes of users.

3.1. Class 1: User Requests a New Video

We first calculate the stall durations for user k that has requested a video change. As
shown in Figure 2, user k starts to fetch a video from the beginning of the slot /. We assume
that the chunk m is played in time-slot /, if not, the calculations for the stall duration for
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Downloading rate d, Stream bitrate 13,

1 — 710[S dwI],

tr(1,1)

1 101s duwii]

@
tp (1, 1)

tr(1,2) @
@ Fe(l 1)

tr(1,2)

tr(1,3) @
®

tr(1,2)
tr(1,3)
t(1,1)
Download Playback
Figure 2. The stall time calculation for users request a new video triggering the system to move to

slot [.

those chunks will be studied in Case 2. With the given downloading speed and bitrate, we
can observe the relationships between t'(I,m), t(1,m), and F(I, m):

PUm—1)+ -2, m>1,
ti(1,m) —{ 0"( )+ am 1 M
_ f max(ty(I,m),f(l,m—1)), m>1,
te(l,m) = { t;c(l,m), m=1, ()
_ 1

Since we will be limiting the analysis for user k in slot I, we will drop the subscript
k and the argument ! from t; (I, m), t;c(l, m), and Fi (I, m) for brevity. Let T denote the time
elapsed in time slot /, and let Ts(/, T, k) denote the stall time in slot [ till elapsed time T
for user k. Clearly, when the video downloading speed is equal to or higher than the
video bitrate (di(I) > (1)), the user only has to wait for the first chunk to arrive, then
experience a stall-free video playback. Otherwise, for di(I) < r(I), three conditions need
to be considered for T. If T is smaller than or equal to (1), no video chunk has been played
and the stall time is exactly the time elapsed T in the time slot. Otherwise, if T lands in an
interval in which a video chunk m is being played, the stall time of T equals to the stall time
of t(m), and if T lands in an interval where the user is waiting for the chunk m + 1 to be
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downloaded, the stall time needs an additional wait after the m-th chunk is played. Hence,

stall time till end of the slot I, T;(1, T, k), can be defined as a recursive conditional function,

To(l, t(m),k), t(m) < T < F(m),
dk(l) < rk(l),m >1,
LA, Tk) = T—Fm+ Hm)<T<tlm+1), @)

Ts(1, t(m), k), di (1) < ri(D),m > 1,
min(T,#(1)), otherwise.

In the condition of di (1) < r¢(1), the stall time before the m-th chunk is downloaded is the
key to obtain the stall time of T. The stall time of ¢(m) fits the second condition of Equation
(4). So we have:

Ts(l,t(m), k) = Ts(L,t(m —1),k) + t(m) —E(m —1),m > 1. (5)

According to Equations (1), (3), and (2), the difference between t(m) and f(m — 1) can be
calculated. Thus, Equation (5) can be written in a recursive form:

1

To(Lt(m—1),k) + = — ==, m>1,
Ts(1,t(m), k) = { Sl( ( )/ k) di(l)  ne(l) (6)
&0 m=1
and further solved as:
m m—1
Ts(l,t(m), k) = —~ — ——~—,m>1. 7
Finally, substitute Ts(tx(I, m)) into Equation (4), the stall time of time slot length T is:
—1 I
#(l) - 7,1((1)' t(m) < T < t(m),
di() <rie(D),m =1,
Ts(,T,k) =4 T— - Fm) < T<t(m+1), 8)

(1)’ -
dk(l) < rk(l),m >1,

min(T,#(1)), otherwise.

Note that if some other user kK’ # k requests a new video triggering increment in time
slot from [ to [ + 1, the stall duration analysis will fall to the second class of users. We
discuss the stall duration for the second class of users in the next section.

3.2. Class 2: Users Continuing with the Old Video

We now discuss the stall time model for users who continue the video from time slot
I —1 to time slot ! (Figure 3).

Assume that in the previous time slot | — 1, the total slot duration is T’. At the
moment of T/, a chunk — denoted by 0 — is being downloaded. Because of the chunks were
continuously downloaded, by evaluating T" and the download speed di(I — 1), we can
calculate the length or ratio of chunk 0 which hasn’t been downloaded by

lo = l—dk(l—l) : <T/ mod (9)

o

de(l-1) )

Note that since the length of chunks are normalized, we have: [,, = 1,Vm # 0.
Downloaded with speed d (1), the leftover chunk 0 with length [y needs time y/d (1)

to be ready for the user to play it. Following the continuous downloading rule, in time
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Downloading rate d, Stream bitrate 1,

| =

=

(@]

tI,( (l' _2) @ 2—
tL(l,—1) "
I E——— A

tx(,—1)
tp(l,1)

te(L,1)

Download Playback

Figure 3. The stall time calculation for users who continue with the video from previous time slot.

slot I, we have /(1) = ly/dy(1). Then similar with Equation (1), the rest of the #(m) can be
recursively obtained.

t'(m—1)+#<l), m>1,

/ _ ! _
t'(m) = AL m=1, (10)
0, m = 0.

We denote the last chunk being played in time slot I — 1 as chunk —n, which is the
video chunk ahead of chunk 0 by 1, and we denote its finish time calculated in the previous
time slot by #(—n). If n =1, and ¥(—1) < T’, we know that all chunks before chunk 0 are
finished playing in slot / — 1. Otherwise, chunk —n is being played half-way at the moment
of the time slot transition. For the latter case, user k will continue the play of video chunk
—n at the beginning of time slot I. Then in the new time slot /, because the video bitrate is
not changed, chunk —n will be finished at f(—n) = ¥(—n) — T". Since at the beginning of
slot /, chunk 0 is being downloaded, we know that chunks in interval {—#,---,—1} in ¢
are all ready to be played. So we can derive the play finish time of chunks {—#n,---, -1}
in slot ! as:

F(m)—T, m= —n. an

F(m — _1r —
F(m) = { Hom =1) + 7y, —n<m< -l
As the download finish time #'(1) and play finish time f(—1) are defined, the leftover
video chunk 0 is played at time £(0) = max(#'(1),#(—1)), and finished at #(0) = #(0) +
1/l’k(l)
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With all the leftover chunk issues tackled, we finally obtain the chunk time equations
for time slot I:

Pm—1)+ —~, m>1,
¢ (m) = { fo )*am (12)
m, m = 1,
t(m) = max(t'(m +1),f(m —1)),m >0, (13)
t(m) + ﬁ, m >0,
t(m) =< t(m)+ rk(l%l)’ 0>m>—n, (14)
f'(m)—T, m=—n.

With all the time equations obtained, we now can calculate for the stall time using
the similar procedure shown in the previous sub-section. Since for m < 0, all the chunks
are being played stall-free. So if the slot ends at time T < F(—1), the stall time will be
zero. From chunk m > 0, it’s possible that the stall appears between the gap where chunk

m — 1 is finished, while chunk m is not downloaded yet (f(m — 1) < t(m) = t'(m + 1)).

If T happens to be in this gap, the stall time T;s(T) will be the accumulated waiting time
of chunks [0,m — 1] (denoted as Ts(t(m — 1))) plus the additional time between T and
f(m — 1). Otherwise, if T happens to be during a chunk m being played, then the stall time
Ts(T) should be the accumulated stall time for chunks {0, - - - ,m}, which can be denoted
as Ts(1,t(m), k).

Ts(l, t(m), k), t(m) <T < Fm),

m>0,
Ts(, T, k) = Ts(l,t(m),k)+ Em) <T <t(m+1), (15)
T — f(m), m 2 _1/
0 otherwise.

~

3.3. Quality of Experience

The goal of this work is to maximize the inter-agent QoE utility for all users. In this
paper, we consider the fairness utility functions in [13] and optimize the inter-agent fairness
with two existing evaluations — the sigmoid-like QoE function and the logarithmic fairness
function. By analyzing real-world user rating statistics, a sigmoid-like relationship between
the web page loading time and the user QoE was reported in [14]. Inspired by that, we
draw a similar nonlinear, sigmoid-like QoE curve to map the streaming stall time ratio, and
fulfill that (i) Reducing the stall time for users who already have very low stall time or (ii)
Increasing the stall time for users who already suffer from high stall time do not impact the
QoE values, while (iii) Users with mediocre QoE are more sensitive to stall time changes:

1
fx) =7 T ol0(x—035)" (16)
We also consider a logarithmic utility function that achieves the well-known proportional
fairness [13] among the users:

f(x) =log,(—x+2). (17)

It is easy to see that, with unit stall time decrease, this utility function provides (i) Larger
QoE increment for users experiencing higher stall time, and (ii) Smaller increment for users
already enjoying good performance with low stall time.

In both Equations (16) and (17), x represents the stall time ratio for playing a video. It
is defined by:
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Ts(1, Ty, k)
T; ’

x(Lo, k) =)

€Ly

(18)

where L, denotes the time slots that video v has been played in, and Ts(I, T}, k) denotes the
stall time for user k in time slot / with slot length T;.

We note that (16) is only one representative QoE function, while other functions may
be used. Suppose that in L time slots, Vi (L) be the set of videos played by user k. Then the
total QoE of the L time slots obtained by user k are given as:

Q=) f(x(Lok)), (19)

ver(L)

and for all users, the total QoE is:

Q(L) =) Q. (20)

kek

Substituting (19) and (18) in (20), we have

oaw- T T () o

ke[K] veVi(L) leL,

Note that the QoE function defined in Equation (19) assigns higher Quality of Experi-
ence to lower stall time. The QoE metric remains constant for small stall times. If the stall
times are lower than a certain value and are not noticeable, QoE does not vary as obtained
in sigmoid-like function of Equation (19). Also, the QoE decreases rapidly with increasing
stall times and remains zero if the stall times exceed a certain value therefore ruining the
viewing experience.

4. Problem Formulation

In this section, we propose a slice assignment system to distribute the download
link bandwidth to users. Let 7(I) = (71(l),- -+, k() be a vector in [0, 1] such that
Y kek k(1) = 1. Each element 714 (1) denotes the portion of total bandwidth that user k is
assigned to. By this definition, user k’s downloading bandwidth d(!) under policy 7 (1)
can be calculated as 7t (I)B.

The Multi-Agent Video Streaming (MA-Stream) optimization problem is defined as
the following:

Problem MA-Stream :

max ), ) f(ZTS(Z}ZT”k)) (22)

ke[K]veVi(L) \I€Ly

st. Y d(l)=BVlie{l,---,L}, (23)
ke[K]

var. Tt (24)

We now discuss the MA-Stream optimization problem described in Equation (22)-(24).
The Equation (22) denotes the sum of the Quality of Experience for each user k € [K] across
each video played in L time slots. The control variable is the policy 7t (in Equation (24))
which directly controls the bandwidth allocation. This gives the constraint in Equation
(23) where the sum of allocated bandwidths, di (1), to each user k € [K] can be at most the
total bandwidth of the system for all slots I € [L]. Moreover, the QoE for any video is a
non-linear function of the cumulative stall-durations over each chunk in the video played.
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We utilize the deep Reinforcement Learning technique to optimize the bandwidth
distribution 77(1). In the following sub-sections, we define the state, action, and objective
for the decision making.

4.1. State

At time slot I, the observed state is defined by a 4K dimensional vector s(I) =
(v1(D), - ,ox(D),dy (1), -+ ,dg (D), z1(1), - -+ ,zx (1), c1(1), - - -, ck (1)), where vi(l) denotes
the video bitrates, di(I) represents the currently assigned download speeds, zj(!) tracks
the accumulated stall time for the current playing video until slot [, and ¢, (I) counts the
number of chunks which are downloaded but not yet played for user k € [K]. For brevity,
we use the notation s(I) = (3(1),d(l),z(1),é(1)) where o(I) = (v1(I), - ,vx(I)),d(l) =
(dq(1),---,dx(1)), z(1) = (z1(1),-- - ,zx(1)),e(I) = (c1(1),- - - ,ck(l)). We will expand the
corresponding vector when necessary. By considering the variables vy (I) and di(l), the
learning model should be able to estimate the downloaded and played video chunk infor-
mation in the current time slot /, while z(I) and ¢, (I) provide the objective-related history
information.

4.2. Action and State Transition

At the beginning of time slot /, in order to find the optimal download speed distribu-
tion, multiple decisions are needed to adjust the observed speed distribution. We utilize
two decision processes to get the optimal distribution 77(/) while maintaining the constraint
shown in Equation (23). One of the process is a decreasing process that decides for which
user the download speed will be decreased by 1 unit of rate, and the other process is an
increasing process that decides the user which will obtain the released 1 unit of download
speed.

The download speed distribution is iteratively adjusted to a final distribution by
recursively running the decreasing and increasing decision processes. A distribution will
not be assigned to the system until the final decision is concluded, and the system will
not transit into the next time slot. Assuming at time slot /, with the observed state s(I) =
(o(1),d(1),z(1),e(l)), actions a_, a4 ,a_ # a; are made by the decreasing and increasing
processes, the intermediate state s(7’) can be derived by

s(t') = (o(1),d.(1),- -+ ,da (1) —1,---,
da+(l)+1/"' /dK(Z)/Z(l)/C_(Z))' (25)

Now, this intermediate state s(7’) is used in the decision making for both processes. New
actions will be made to push the distribution towards the final state. Finally, at state s(7),
when both the increasing and decreasing processes give the same action a4 = a_, the
distribution 7 is obtained as 77(l) = (d{(7),d2(7),...,dx(7))/B.

According to 77(I), the system distributes the bandwidth to each user for the time slot
I. The next time slot / + 1 will be triggered when a user switches its playing video. We
assume that the new content request for all users follow Poisson arrival processes with
arrival rate Ay for user k, so the mean value of slot duration T; can be derived by 1/ } ycx A,
and the probability that user k triggers the state transition is Ax/ ) xcx Ax. For time slot
[ + 1, the initial system state s(I + 1) = (o(t +1),d(t +1),z(t + 1),&(t + 1)) should have
video bitrates v, (I + 1) = v, (1), (Vk € K,k # k) if CBR is activated as the bitrate policy,
and downloading speeds d(I + 1) = 7(1)B calculated in the previous time slot.

The accumulated stalls Z(!) can be calculated using Equations (4) and (15). Let vy (1)
be the video played by the user k in time slot /, and let [, ;) o be the time slot where user k
starts playing video vi(I). Let Ty denote the length of time slot I/, we have

-1
z()= Y T, Ty k). (26)
=Ly 1,0

Version June 22, 2022 submitted to Journal Not Specified https:/ /www.mdpi.com/journal /notspecified


https://www.mdpi.com/journal/notspecified

The number of remaining chunks ¢(!) can easily be tracked during the downloading/playing sso
procedures, and observed whenever the information is needed. Both the downloading and ~ se:
playing processes can be monitored. For the downloading process, let c;(I) = hy(l) + ps(1), 3s2
where h;(I) € N denotes the chunk being downloaded of the video being played at sss
the beginning of time slot /, and p;(!) € [0,1) denotes the ratio or percentage of chunk s
hy(1) that has been completed. The similar mechanism holds for the playing process, sss
cp(l) = hyp(l) + pp(1). Using both the processes, the remaining chunks c(I) can be calcu- s
lated by ¢(I) = c4(1) — cp(1) in any time slot [. 387

4.3. Feedback 388

As pointed in Equation (22), the goal of the controller is to maximize the average e
QoE. For our RL algorithm to learn an optimal policy to maximize the objective every slot e
provides a feedback of the value of the objective calculated from the average stall times for s
all users. 392

In Section 4.2, we mention that when the decreasing and increasing processes take sos
decisions a_(7’) # a4 (1'), the state transition only happens in a logic domain instead of e
the realistic time domain. During this intermediate state transition, no real stall time calcu- ses
lations exist and we assign zero rewards for actions a_ (7") # a4 (7’) in the intermediate 306
state before converging to 77(/)B. When the final distribution is achieved (a4 = a_), the o7
slot duration T; can be obtained and hence stall times T (I, T}, k) can be calculated for all  3es
users. We can also obtain rewards from the calculated stall times using Equation (21). 399

The complete schema is presented in Algorithm 1 400

Algorithm 1 Proposed MA-Stream Algorithm

1: Input: Set of users [K], maximum bandwidth B

2: forslot! > 0do

3. Observe state s(I) as described in Section 4.1

4:  Compute bandwidth allocations d(!) for all k € [K] using RL engine
5. while No user switches video do

6: Continue streaming with di (1) for all k € [K]

7 Store Stall duration, Ts(I, T, k) for slot [ for all k € [K]

8: end while

9: end for

5. Policy Gradient for MA-Stream s01

In the previous section, we define the network streaming problem MA-Stream for 4o
multiple users. Note that the objective defined in Section 4.3 is a nonlinear function 4o
(Equation (19)) of total stall duration till the current time instant. At any time slot /, the 4os
reward not only depends on the stall times observed by the users in the slot /, but also on the  40s
stall times observed by users in the previous time slots. Hence, the decision making module 06
needs to track not only the current state but also the history of the decision and the rewards 407
obtained to select current action. Hence, we are not able to utilize standard RL algorithms a0s
that require modeling the problems into MDP. To this end, we leverage Multi-agent Policy a0s
Gradient for Finite Time Horizon (MAPG-finite) [15], a novel multi-agent policy gradient a1
RL algorithm, which aims to solve optimization problems without the requirements of 41
MDP modeling. In the following Section 5.2, we give a short description of this algorithm. a2

5.1. Standard RL Algorithms a13

Standard RL problems consider an agent that interacts with a Markov Decision Process
M. The agent, at time ¢, observes the state s; of the environment and plays action a; to
obtain a reward r; and causes the environment to transition to state sy 1 [52]. Let the next
state transition probability be P%, = P(s;;1 = §'|s; = s,a; = a) and the expected reward
of playing action 4 in state s be R¢ = E[r¢|s; = s, a; = a]. The goal of the agent is to find a
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policy 7t(s,a;0) = P(a; = als; = s,0) parameterized on 0 that maximizes the discounted
cumulative reward

[e9)
Y 2'rilsol, (27)
t=0

where s is the initial state, and v < 1 is a discounted factor. Using linearity of cumulative
rewards in Equation (27), state action value function Qx(s, a) for policy 7 is defined as

Qn(s,a) =RE+7Y. ) PLim(s,a;0)Vr(s). (28)

Based on Equation (28) many algorithm have been proposed, e.g., SARSA [53-55],
Q-learning [23], Policy Gradient [24], etc. Based on these fundamental algorithms, many
deep learning based implementations are also proposed [52].

In many network optimization problems, the reward metrics are nonlinear when
multiple subjects are jointly optimized. One typical example is resource fairness among
agents/users in one network [56,57]. With a nonlinear reward function, the decision making
engine must be aware of the historical decisions and states in the past. To demonstrate the
requirement of policies that require history, we take the following example. Suppose that
there are K = 2 users who share the network resource and we want to allocate this network
resource fairly between the two users. If we use proportional fairness, the fairness for the
two users can be calculated as the sum of logarithms of the QoE indicators of the two users.
We call the users 1 and 2, and we assume that both users 1 and 2 start with the same video.
In slot 1 the bandwidth allocated to user 1 is higher than user 2 (d; (1) > d2(1)). This results
in higher stall times for user 2 compared to user 1.

Now, in the next time slot 2, user 2 switches the video with video bitrate same as the
previous video, and user 1 continues with the old video. Then, since the video bitrates
remain the same, allocating a higher download rate to user 2 (d(2) > d;(1)) will result
in lower stall times for user 2 and hence the fairness can be maximized. This requires
the controller to ensure that the decisions at time slot 2 are made keeping account of the
decision made in time slot 1. However, the state defined in Section 4.1 does not store the
cumulative stall duration of the previous video for the user triggering the current time slot.
The algorithm used in this paper to deal with such nonlinear problem is explained in the
next subsection.

We further note that one possible way to tackle the Non-Markovian nature is to
introduce a high-order Markov model by including the objective value till time slot [ — 1
in the state. This approach, however, potentially increases the state space dramatically to
(SA)L, where S is the number of states and A is the number of actions the controller can
take. Hence, we consider a multi-agent learning algorithm in the next session, which does
not require the use of high-order Markov models and allows individual agent to improve
its policy.

5.2. Model-Free Multi-Agent Policy Gradient Algorithm

In [15], a novel model-free algorithm is proposed in order to solve the nonlinear (in
time) optimization problems in a finite time horizon scenario. Like the traditional deep
policy gradient RL algorithm, the MAPG-finite algorithm utilizes the observed system
state s(t) as the input of a neural network which is parameterized by 6, then takes the
output of the neural network to be the decision policy 7y, which indicates the action
probabilities. Finally, according to the policy 77, an action is randomly chosen to interact
with the environment.

With proper training process, the neural network is improved by the reward feedback.
Expectedly, the neural network parameter 6 should evolve to stage 6* which maximizes
the objective function f:

0 = argmax f (1 = 1)k (1= K, ), (29)
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where ]g % denotes the long term reward obtained by agent k running policy 7t:

JE = Eoyag 51, Jim Z’y (Ts(1, Ty, k) |, (30)
so ~ po(so),a; ~ 7T(L71|Sl)f51+1 ~ P(s;11ls1,a1). (31)

Since the objective function f is differentiable (refer to Equation (16)), the gradient estima-
tion for Equation (29) can be obtained by:

Z a )]717 9]k

=(1- ’Y)( (1—7)]‘nf) (VoI™),

where J7 = (JT, ..., J§)T in which JT denotes the expected cumulative reward, and further
estimated as
N L
2 2 (1, Ty, k) (32)
n=11=0
In each episode n, time slots I runs from 0 to L. Finally, with learning rate j, the step
parameter update can be shown as:

Bii1 =6+ B0 =) (Ve f(D) (267, (33)

and further utilized for gradient ascent in the neural network.
We now state a formal result of convergence to a stationary point from the gradient
ascent steps.

Lemma 1. For a policy function parameterized with a neural network with softmax activations,
and function f with continuous gradients, Equation (33) converges to a stationary point.

Proof. Since we use softmax activations, gradient of policy 77, Vg7 is also continuous
in 0 and obtaining continuity of V] from [24, Theorem 2] with respect to parameter

8 we have continuity of VyJr. Using the continuity of gradient % from definition of f,

the continuity of VyJ[* and [58, Proposition 3.4] we have the convergence of policy to a
stationary point. [J

6. Evaluation

We conduct a hybrid simulation on a network containing five users over a shared
downloading link, and evaluate the performance of the proposed learning algorithm. In
particular, three users prefer to watch HD videos (with desired bitrates at 8Mbps and
5Mbps), while the other two users watch videos at lower resolution (with desired bitrates
at 2.5Mbps and 1Mbps). The video durations of all users follow an exponential distribution
with an identical 120 second average. We run the simulation on both channels with
different bandwidth, i.e., 1500KB /s and 2000KB/s channels. In both settings, our proposed
algorithm is shown to substantially outperform the baseline policies (relying on heuristics
and single-agent learning) in terms of QoE reward and fairness.

6.1. Evaluation Setup
6.1.1. Evaluated Policies

We evaluate our model-free MAPG-finite algorithm along with three baselines, which
are denoted by “Even”, “Adaptive”, and SARSA policies, as follows.

Policy MAPG-finite: Our proposed algorithm leverages model-free, multi-agent
policy gradient to optimize the download bandwidth distribution among agents. Recall
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that in the algorithm, multiple decisions/actions are made to either increase or decrease the
download speed of specific users by 1 unit. During the training process, the two decision
making processes (to increase and decrease download speeds) need to perform random
exploration in a non-cognitive fashion, which often leads to long exploration time and thus
slow convergence in the optimal policy. Suppose that the bandwidth distribution at time
t is 71;. To mitigate this problem during training, we suspend the exploration process if
the same bandwidth distribution is observed again in the future, i.e., 7141y = 71; for some
x € NT.

Policy “Even”: The downloading bandwidth is evenly distributed to all users in the
system. For instance, when the total bandwidth is 1500KB/s, each of the five users will
receive 300KB/ s for its downloading speed, regardless of its demand and preference. This
one-size-fits-all policy equally distributes bandwidth among the users.

Policy “Adaptive”: The download bandwidth is split between the users in proportion
to their desired video bitrates. This policy guarantees that users with high data rate demand
(i.e., those watching the high-resolution video) receive a higher downloading speed, while
users with low data rate demand receive a lower speed. Specifically, user k will be assigned
a bandwidth of dy, = vxB/)_.cx vk, Where vy is the desired video bit rate of user «.

Policy SARSA: This policy leverages single-agent learning, SARSA [53-55], to dis-
tribute download bandwidth to the users. It uses a standard Policy Gradient strategy
with the same state/action definition of our proposed MAPG-finite. Without considering
the nonlinear reward function feature, this policy simply utilizes the sum of step reward
as its immediate reward for learning. Note that we make the same state variables in-
cluding reward-related history information Z(/) known to the SARSA policy to boost the
performance of this baseline.

6.1.2. Reward Functions

Our proposed MAPG-finite algorithm allows the maximize of any nonlinear reward
in a finite time period. We consider two reward functions in the evaluation, namely QoE
and fairness, to compare the performances achieved by different policies.

For the QoE reward, we use a sigmoid-like function to measure the reward with
respect to the stall time. In particular, we choose parameters in Equation (16) to match
a stall-to-QoE curve reported by [14]. We plot our fitted reward function in Figure 4a,
which well matches the reported stall-to-QoE curve in [14]. While for the fairness objective,
we choose a logarithmic utility function shown in Equation (17) and Figure 4b of users’
received stall time. By maximizing the logarithmic function, the proportional-fair QoE
assignment between the users [13] is obtained.

Naturally, our proposed multi-agent learning algorithm is able to learn and optimize
any reward functions, linear or nonlinear. We note that even when the exact function is
unknown, the model-free algorithm can still be trained and evaluated using the real-world
user traces.

6.1.3. Users and Videos

We implement a network with five users and both high- and low-resolution videos. In
particular, three users prefer to watch high-resolution videos with bitrates of 8Mbps (1080p)
and 5Mbps (720p) (similar to Youtube videos [59]), while the other two users consume
2.5Mbps (480p) and 1Mbps (360p) videos randomly.

The video durations for all users follow an independent, identical exponential dis-
tribution with an average of 2 minutes. Thus, the combined video switching rate for all
five users is once every 24 seconds. When a user elects to switch video, a random video
is selected and starts streaming. Note that the new video may have the same or different
bitrate with the previous video. For example, when User 1 finished watching a video, the
new video will have a bitrate of 8Mbps or 5Mbps with the same 50% probabilities. The
user preferences and their corresponding probabilities are shown in Table 2.
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(a) A sigmoid QoE function. (b) A logarithmic fairness function.

Figure 4. The reward functions to evaluate the performances of different bandwidth assignment
algorithms. The QoE function is defined by Equation (16), and the fairness function is defined by
Equation (17).

Table 2. Simulated User Preferences.

User | Resolutions | Bitrates | Probabilities
1 1080p 8Mbps 0.5
720p 5Mbps 0.5
” 1080p 8Mbps 0.5
720p 5Mbps | 0.5
3 1080p 8Mbps 0.5
720p 5Mbps | 0.5
4 480p 2.5Mbps | 0.5
360p 1Mbps 0.5
5 480p 2.5Mbps | 0.5
360p 1Mbps 0.5

6.1.4. Implementation

We implement a testbed using Python 3.5. The workflow of the testbed is depicted
in Figure 5. First, at the beginning of a new cycle, according to the video switching rates
(which are resulted from the known video duration distributions), the Video Switch module
randomly schedules a user who will be the next candidate to change his video. The users
then start downloading video chunks continuously, and their Download Timers record the
timestamp when each chunk is successfully downloaded (i.e., ), in Figure 3). Next,
based on the download timestamps and the bitrate of the current video, the Playback Timer
schedules the playback and further obtains t,, and t,,. With all timestamps confirmed,
the Stall Calculator is able to calculate the stall time for the user/videos. Such stall time is
transferred to the distribution module for training and evaluation. Finally, the chosen user
randomly picks a new video from its Video Library at the end of the current cycle.

Recall from Section 4, the state variables utilized for MAPG-finite decision making
include video bitrates, downloading speeds, accumulated stall time, and residue video chunks,
which can be reported through output paths @, @, @), and D respectively, in Figure 5.
The state variables are then collected by the State Listener through input path ©. Further,
utilizing the Neural Network, a bandwidth distribution — as the action — is decided and sent
by the Action Sender to all the users via (). For training and evaluation purpose, a copy
of the stall ratio is also sent from @) to ®. It is processed by the Reward Function f(-) to
calculate either the QoE (Equation 16) or the fairness (Equation 17) reward. Finally, the
reward is delivered to the Neural Network for policy backpropagation, and also logged for
experiment evaluation. By input path B of each user, the users adjust their Download Rates
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Figure 5. The implementation of our testbed, where the blocks on the left and right show the internal
architectures of an individual user module and the MAPG-finite engine respectively. The four state
variables (v(t),d(t),z(t),c(t)) are collected/calculated by each user, and delivered to the Action

Execution module (via @, @, @, D — ®). The action is then sent back to each user via @ — ®.

Table 3. Reward breakdown for QoE function on 1500KB/s download link.

. User Average

Policy Total Reward User Stall Ratio | Reward

. 1,2,3 (HD) 0.64 0.07

Even 3877.05 4,5 (LD) 0.13 0.86

. . 1,2,3 (HD) 051 0.20

Adaptive 1773.30 4,5 (LD) 0.59 0.14

1 0.34 0.52

2 0.50 0.27

MAPG-finite 4781.88 3 0.39 0.44

4 0.07 0.91

5 0.08 091

according to the bandwidth decision from (). At this point, the testbed completes one
workflow cycle and prepares to initiate the next cycle starting with the Video Switch.

Using the modularized testbed implemented in this project, we are able to evaluate
different policies under various environment configurations, including with different
reward functions, network conditions, and user behavior settings. We note that with some
minor logic adjustments, we can even test the streaming performance in a discrete time
domain, while this paper focuses on continuous time evaluations.

6.2. Evaluation Results

The numerical results for the QoE reward function (Equation 16) is depicted in Figure
6. It is shown that our proposed MAPG-finite algorithm outperforms the static “Even” and
dynamic “Adaptive” strategies by 23.34% and 169.66% (in terms of achieved QoE) with the
shared download link of 1500KB/s. With the 2000KB /s download link, MAPG-finite still
obtains 15.30% and 32.58% higher QoE reward than the “Even” and “Adaptive” policies,
while the improvement becomes smaller because of smaller marginal QoE improvement
when stall time is already small under higher bandwidth. As for the SARSA policy;, it is
unable to cope with the nonlinear utility function and fails to achieve much improvement
over its initial decision policy — “Even”. Since the QoE reward function is nonlinear to the
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Figure 6. The QoE reward comparison. With the 1500KB /s download link, MAPG-finite outperforms
“Even” by 23.34%, “Adaptive” by 169.66%, and SARSA by 25.84%. With the 2000KB /s download
link, MAPG-finite outperforms “Even” by 15.30%, “Adaptive” by 32.58%, and SARSA by 15.27%.

Table 4. Reward breakdown for fairness function on 2500KB /s download link.

Policy Total Reward Users Usesrtfl‘l“l:{:gz Reward
“Eyen” 7796.12 1’4?'53(1(4%])3) 8:32 8:82
“Adaptive” 8251.66 1;5’53((LHD]))) 8%2 ggg
MarGimite | sa1zs | DROAY O g
LowDew | mad | DAY 00| o

assigned bandwidth, we also observe that the “Adaptive” policy (allocating bandwidth
proportional to desired video bitrate) performs worse than “Even” in both cases.

These can be further seen from Table 3, which shows the stall time and reward
breakdown of different policies. Apparently, the “Adaptive” policy achieves similar stall
time for both HD and LD users, while the “Even” policy sacrifices the performance of
HD users, and in return, significantly reduces the stall time of LD users, leading to higher
overall QoE. More precisely, according to the QoE reward curve shown in Figure 4a, the
reward boost for the LD users is much greater than the loss suffered by the HD users, which
finally results in the overall QoE improvement in the “Even” policy. As a learning-based
algorithm, MAPG-finite can achieve substantially better performance since it is aware of
the current network conditions and system states, in order to optimize the bandwidth
distribution between the users. For example, when a user has enough cached chunks for
future playback, its bandwidth can be temporarily turned over to the other users, who
recently started playing a new video or is suffering from a stall. Thus, all users are able
to obtain increased QoE rewards under the MAPG-finite strategy, compared with the
baselines.

Results for the fairness reward function is shown in Figure 7. We note that due to
the use of logarithmic fairness function, the improvement appears to be smaller when
measured by fairness reward than by QoE reward, while the gains should be interpreted
in the “multiplicative” sense. Our proposed MAPG-finite still outperforms the “Even”
and “Adaptive” strategies (in terms of the logarithmic fairness reward) by 4.83% and
6.75% for 2000KB/s downloading link, 8.28% and 2.30% for 2500KB/s link. With the
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Figure 7. The fairness reward comparison. With the 2000KB /s download link, MAPG-finite outper-
forms “Even” by 4.83%, “Adaptive” by 6.75%, and SARSA by 22.47%. With the 2500KB /s download
link, MAPG-finite outperforms “Even” by 8.28%, “Adaptive” by 2.30%, and SARSA by 30.15%.

2500KB /s downlink, Table 4 shows that the dynamic “Adaptive” strategy achieves similar
performances for all users, leading to better fairness reward than the “Even” policy, who
creates more difference between the HD and LD users that have significantly different
bitrate requirements. On the other hand, our MAPG-finite strategy reduces the average stall
ratio of HD users by 38.46%, with a cost of 37.50% higher stall ratio for LD users, compared
to the “Even” policy. This way, it is able to reduce the stall ratio deviation of all users from
0.1698 to 0.0712, and improves the fairness reward. Comparing with the “Adaptive” policy,
MAPG-finite has about 30% higher stall ratio deviation. However, the optimization object,
known as the proportional fairness utility [13], is not solely about “equalizing” different
users’ performance. (To illustrate this, we construct a “Low Dev” policy in Table 4 that has
close-to-zero stall ratio deviation but low fairness reward). The use of proportional fairness
reward function indeed balances two important objectives — efficiency (i.e., assigning more
bandwidth to users that can achieve higher reward per unit bandwidth) and fairness (i.e.,
balancing different users’” performance). MAPG-finite is able to attain the highest reward
under the choice of proportional fairness utilities, demonstrating its ability to achieve
complex optimization objectives.

The evaluation results show that the “Even”, “Adaptive”, and SARSA policies fail to
perform consistently under different application scenarios and network conditions, while
our learning-based MAPG-finite policy is able to achieve the highest reward. Figure 8
depicts the average download rate distribution decided by the MAPG-finite policy. The
gray bars represent the average video bitrates requested by the users. The white bars
represent the average download rate achieved by our MAPG-finite policy (for presentation
purpose, the unit of download rates is converted from KB/s to Mbps). It is can be seen that
to maximize the fairness reward, MAPG-finite ensures that (i) for users with the same HD
preference (e.g., users 1, 2, and 3), the same average downloading bandwidth is assigned
to obtain similar stall time for these users, and (ii) for users watching videos with lower
desired bitrates, less bandwidth is assigned to balance the stall time since video chunks
are consumed at a slower pace. According to Figure 7, the “Adaptive” policy gets a lower
fairness reward than “Even” under the total download link of 2000KB/s, which indicates
that proportionally adjusting the download bandwidth does not always achieve a better
result when fairness is concerned. Through exploration and training of RL, MAPG-finite is
able to self-teach, improve, and finally converge to an optimal policy, making the model-
free suitable to bandwidth allocation with complex networks and objectives that often do
not have a straightforward mathematical formulation.
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Figure 9. QoE reward comparisons with ABR feature activated /deactivated. The total download
bandwidth is 1500KB/s. MAPG-finite achieves 21.94%, 41.25%, and 37.11% than the “Even”, “Adap-
tive”, and SARSA policies.
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To further illustrate the agility of our proposed MAPG-finite algorithm, we perform eze
another evaluation on a 1500KB/s downlink, with an ABR streaming algorithm imple- ezr
mented. Figure 9 depicts the QoE performances for this evaluation. We utilize a basic ezs
Buffer-Based ABR algorithm proposed in [37]. Each time a video chunk is requested, if 620
the last chunk downloaded is already being played, the bitrate is adjusted to 80% of the 30
max bitrate of the video to avoid high stall time. When the number of residue cached s
chunks is more than three, the agent starts to request for the max bitrate, and thus better s
display quality is obtained. Comparing Figure 9 with Figure 6, all policies receive higher o33
rewards under ABR due to the benefits of bitrate adaptation. We note that MAPG-finite 34
still outperforms the “Even” policy by 21.94%, the “Adaptive” policy by 41.25%, and the 35
SARSA policy by 37.11% . In this evaluation, we choose the Buffer-Based strategy for ABR 36
due to its efficiency for implementation. According to the numerical results, our proposed  es7
MAPG-finite is able to adapt well to a dynamic bitrate environment. We are aware that s
new ABR policies — some are engined by RL algorithms themselves — have been proposed 630
and evaluated [36,38—41] to improve the streaming quality. The key aim of the evaluation a0
was to show that the proposed framework can work on ARB streaming strategies, while ea:
not to compare the different streaming strategies. Thus, any streaming algorithm can be s
used in our evaluations and our results show that efficient bandwidth distribution among s
multiple agents can be achieved with the proposed algorithms where each agent uses any ess
of the ABR/CBR streaming algorithm. 645

7. Conclusion 646

In this paper, we model the MA-Stream problem which apportions bandwidth to sz
multiple users in a video streaming network, to maximize nonlinear, non-convex objectives ess
such as QoE and fairness objectives. We propose a novel multi-agent reinforcement learning  ess
algorithm MAPG-finite that is able to work with nonlinear objective functions to solve eso
this optimization problem. Using our testbed implemented in Python, we verify that our s
proposed solution outperforms existing baseline policies (including “Even”, “Adaptive”, es2
and single-agent SARSA) measured by both QoE and fairness. Our algorithm improves ess
QoE by 15.27% and fairness by 22.47% for 2000 KB/s link data link. Further, it is able to  ess
adapt well in collaboration with existing Adaptive Bitrate (ABR) streaming algorithm by  ess
improving QoE more than 30% over the Adaptive algorithm. The interaction between ess
bandwidth distribution and ABR policies could be considered in future work to further s
improve the performance of video streaming. Another interesting future work is to perform  ess
large scale experiments with network scale users. 659
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