
Citation: Wang, Y.; Agarwal, M.; Lan,

T.; Aggarwal, V. Learning-based

Online QoE Optimization in

Multi-Agent Video Streaming. Journal

Not Specified 2022, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Learning-based Online QoE Optimization in Multi-Agent Video
Streaming
Yimeng Wang 1, Mridul Agarwal 2, Tian Lan3, and Vaneet Aggarwal 2,4,5,*

1 Google; 08211018@bjtu.edu.cn. He was with the George Washington University when this work was
performed.

2 Purdue University; {agarw180,vaneet}@purdue.edu
3 George Washington University; tlan@gwu.edu
4 King Abdulaziz University
5 King Abdullah University of Science and Technology; vaneet.aggarwal@kaust.edu.sa
* Correspondence: vaneet@purdue.edu

Abstract: Video streaming has become a major usage scenario for the Internet. The growing popular- 1

ity of new applications, such as 4K and 360-degree videos, mandates that network resources must be 2

carefully apportioned among different users, in order to achieve the optimal Quality of Experience 3

(QoE) and fairness objectives. This results in a challenging online optimization problem, as networks 4

grow increasingly complex and the relevant QoE objectives are often nonlinear functions. Recently, 5

data-driven approaches, deep Reinforcement Learning (RL) in particular, have been successfully ap- 6

plied to network optimization problems, by modeling them as Markov Decision Processes. However, 7

existing RL algorithms involving multiple agents fail to address nonlinear objective functions on dif- 8

ferent agents’ rewards. To this end, we leverage MAPG-finite, a Policy Gradient algorithm designed 9

for multi-agent learning problems with nonlinear objectives. It allows us to optimize bandwidth 10

distributions among multiple agents and to maximize QoE and fairness objectives on video streaming 11

rewards. Implementing the proposed algorithm, we compare MAPG-finite strategy with a number of 12

baselines – including static, adaptive, and single-agent learning policies. The numerical results show 13

that MAPG-finite significantly outperforms the baseline strategies with respect to different objective 14

functions and in various settings, including both constant and adaptive bitrate videos. Specifically, 15

our MAPG-finite algorithm maximizes QoE by 15.27% and maximizes fairness by 22.47% compared 16

to the standard SARSA algorithm for a 2000 KB/s link. 17

Keywords: Video Streaming; Resource Allocation; Reinforcement Learning; Policy Gradient. 18

1. Introduction 19

Video streaming has become a major usage scenario for Internet users, accounting 20

for over 60% of downstream traffic on the internet [1]. The growing popularity of new 21

applications and video formats, such as 4K and 360-degree videos, mandates that network 22

resources must be apportioned among different users in an optimal and fair manner, in 23

order to deliver satisfactory Quality of Experience (QoE). There are many factors impacting 24

the Quality of Experience of the video streaming service. For example, the peak signal-to- 25

noise ratio (PSNR) of the received video [2], or the structural similarity of the image (SSIM) 26

[3]. In particular, the stall time during streaming is a critical performance objective especially 27

for services that require low response time and highly rely on customer experience, e.g., 28

online video streaming and autonomous vehicle networks [4]. Further, the streaming 29

device impacts the bitrate and in turn effects the QoE parameter (see [5] and the citations 30

within). 31

Online optimization of stall time and QoE in a dynamic network environment is a 32

very challenging problem which can be analyzed as optimization problem [6] or learning 33

problem [7]. Traditional optimization-based approaches often rely on precise models to 34

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://www.mdpi.com/journal/notspecified


crystalize the network system and the underlying optimization problems. For instance, 35

the authors in [8] construct the QoE aware utility functions using a two-term power series 36

model, while the authors in [9] leverage both “bSoft probe” and “Demokritos probe” to 37

model the QoE measurement, by analyzing the weight factors and exponents of all video- 38

straming service parameters, as well as quantifying the “Decodable Frame Rate” of three 39

different types of frames. However, these model-based approaches cannot solve the online 40

QoE optimization with incomplete or little knowledge about future system dynamics. 41

Recently, Reinforcement Learning (RL) has been proven as an effective strategy in 42

solving many online network optimization problems that may not yield a straightforward 43

analytical structure, such as wireless sensor networks (WSN) routing [10], vehicle net- 44

works spectrum sharing [11], data caching [7], and network service placement [12]. In 45

particular, deep RL employs neural networks to estimate a decision-making policy, which 46

self-improves based on collected experiential data to maximize the rewards. Compared 47

with traditional model-based decision making strategies, deep RL has a number of benefits: 48

(i) It does not require a complete mathematical model or analytical formulation that may 49

not be available in many complex practical problems; (ii) The use of deep neural networks 50

as function approximators makes the RL algorithms easily extensible to problems with 51

large state spaces; and (iii) It is capable of achieving fast convergence in online decision 52

making and dynamic environments that evolve over time. 53

The goal of this paper is to develop a new family of multi-agent reinforcement learning 54

algorithms to apportion download bandwidth on the fly among different users and to opti- 55

mize QoE and fairness objectives in video streaming. We note that existing RL algorithms 56

often focus on maximizing the sum of future (discounted) rewards across all agents and 57

fail to address inter-agent utility optimization, aiming at balancing the discounted reward 58

received by each individual agents. Such inter-agent utility optimizations are widely con- 59

sidered in video streaming problems, e.g., to optimize the fairness of network resource 60

allocation and to maximize a non-linear QoE function of individual agent’s performance 61

metrics. More precisely, in a dynamic setting, the problem being solved must be modeled 62

as an MDP, where agents take actions based on some policy π and observed system states, 63

causing the system to transition to a new state. A reward rk is fetched for each agent k. 64

The transition probability to the new state is dependent only on the previous state and 65

the action taken in the previous state. RL algorithms aim to find an optimal policy π to 66

maximize the sum of (discounted) rewards∑∞
t=1 γt ∑k rk(t) for all users. However, when 67

QoE and fairness objectives are concerned, a nonlinear function f , such as the fairness 68

utility [13] and sigmoid QoE function reported by [14], must be applied to the rewards 69

received by different agents, resulting in the optimization of a new objective f (r̄1, r̄2, . . .), 70

where r̄k =
1
T ∑T

t=1 γtrk(t) is the average discounted reward for each agent k in a finite time 71

T. It is easy to see that such nonlinear functions will potentially violate the memoryless 72

rule of MDP which is required for RL since the optimization objective now depends on 73

all past rewards/states. In this paper, we will develop a new family of multi-agent rein- 74

forcement learning algorithms to optimize such nonlinear objectives for QoE and fairness 75

maximization in video streaming. 76

We propose Multi-agent Policy Gradient for Finite Time Horizon (MAPG-finite) for opti- 77

mize nonlinear objective functions of cumulative rewards of multiple agents with a finite 78

time horizon. We employ MAPG-finite in online video streaming with the goal of maxi- 79

mizing QoE and fairness objectives by adjusting the download bandwidth distribution. 80

To this end, we quantify stall time for online video streaming with multiple agents, under 81

a shared network link and dynamic video switching by the agents. At the end of the 82

time horizon, a nonlinear function f (·) of the agents’ individual cumulative rewards is 83

calculated. The choice of f (·) is able to capture different notions of fairness – e.g., the well- 84

known α-fairness utility [13] that incorporates proportional fairness and max-min fairness 85

as special cases, and the sigmoid-like QoE function reported by [14] which indicates that 86

users with mediocre waiting time tend to be more sensitive than the rest – and thus balances 87

the performance received by different agents in online video streaming. We leverage the 88

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


x 2

x 2

C
as

e 
1

C
as

e 
2

Case HD at Slot 2 Fairness Optimal Choice

Case 1
User A ln 12 + ln 8 = 4.56

User B HD
User B ln 9 + ln 12 = 4.68

Case 2
User A ln 8 + ln 9 = 4.28

User A HD
User B ln 5 + ln 13 = 4.17

Time slot 1: history Time slot 2: choose HD user

User A

User A User B

User B User A

User A User B

User B

Figure 1. An illustrative example showing that the optimal choice of bandwidth assignment must
depend on past rewards/states, in order to maximize a logarithmic fairness objective.

RL algorithm proposed in [15] to develop a model-free multi-agent reinforcement learning 89

algorithm to cope with the inter-agent fairness reward for multiple users. In particular, this 90

RL algorithm modifies the traditional Policy Gradient to find a proper ascending direction 91

for the nonlinear objective function using random sampling. We prove the convergence of 92

the proposed algorithm to at least a local optimal of the target optimization problem. The 93

proposed multi-agent algorithm is model-free and shown to efficiently solve the QoE and 94

fairness optimization in online video streaming. 95

To demonstrate the challenge associated with optimizing nonlinear objective functions, 96

consider the example shown in Figure 1. Two users, A and B, share a download link for 97

video streaming. Due to the bandwidth constraint, the link is only able to stream one 98

high-definition (HD) video and one low-definition (LD) video at a time. In each time slot 99

t, the two users’ QoE, denoted by rA(t) and rB(t), are measured by a simple policy that 100

multiplies the quality of the content (from 1 to 5 stars) and the resolution of the video (1 for 101

LD and 2 for HD). The service provider is interested in optimizing a logarithmic utility of 102

the users’ aggregate QoE, i.e., u = ln(∑t rA(t)) + ln(∑t rB(t)) (which corresponds to the 103

notion of maximum proportional fairness [13,16]), for the two time slots t = {1, 2}. It is 104

easy to see that in Case 1, user A received rA(1) = 6 in time slot 1 and user B rB(1) = 4. 105

If we stream HD to user A and LD to user B in the next time slot, then the total received 106

utility becomes ln(6 + 6) + ln(4 + 4) ≈ 4.56, while the opposite assignment achieves a 107

higher utility ln(6 + 3) + ln(4 + 8) ≈ 4.68. However, in Case 2, choosing user A in time 108

slot 2 to receive HD and user B LD gives the highest utility of ln(2 + 6) + ln(5 + 4) ≈ 4.28. 109

Thus, the optimal decision in time slot 2 depends on the reward received in all past time 110

slots (while we have only shown the rewards in time slot 1 for simplicity in this example). 111

In general, the dependence of utility objective on all past rewards implies a violation of 112

the Markovian property, as the actions should only be affected by the currently observed 113

system state in MDP. This mandates a new family of RL algorithms that are able to cope 114

with nonlinear objective functions, which motives this paper. 115

We note that in video streaming optimization, the action space for learning-based 116

algorithms can still be prohibitively large, since the bandwidth assignment decisions are 117

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


continuous (or at least fine-grained if we sample the continuous decision space), while the 118

action space suitable for RL algorithms should be small as the output layer sizes of neural 119

networks are limited. The action space for bandwidth assignment increases undesirably 120

with both the growing number of users and the increasing amount of network resources 121

in the video streaming system. To overcome this challenge, we propose an adaptive 122

bandwidth adjustment process. It leverages two separate reinforcement learning modules 123

running in parallel, each tasked to select a target user to increase or decrease his current 124

bandwidth by one unit. This effectively reduces the action space of each RL module to 125

exactly the number of users in the system, while both learning modules can be trained in 126

parallel with the same set of data through backpropagation. This technique significantly 127

reduces the action spaces in MAPG-finite and make the optimization problem tractable. 128

To evaluate the proposed algorithm, we develop a modularized testbed for event- 129

driven simulation of video streaming with multi-agent bandwidth assignment. In particular, 130

a Bandwidth Assigner is developed to observe the agent states, obtain an optimized 131

distribution from the activated Action Executor, and then adjust the bandwidth of each 132

agent on the fly. We implement this distribution generating solution along with the model- 133

free multi-agent deep Policy Gradient algorithm, and compare the performance with 134

static and dynamic baseline strategies, including “Even” (which guarantees balanced 135

bandwidths for all users), “Adaptive” (which assigns more bandwidth to users consuming 136

higher bitrates), and SARSA (which is a standard single-agent RL-driven policy that fails to 137

consider inter-agent utility optimization). By simulating various network environments as 138

well as both constant and adaptive bitrate policies, we validate that the proposed MAPG- 139

finite outperforms all other tested algorithms. With Constant Bitrate (CBR) streaming, 140

MAPG-finite is able to improve the achieved QoE by up to 169.66%, and the fairness by 141

up to 8.28% compared with baseline strategies. Further, with the Adaptive Bitrate (ABR) 142

streaming, up to 41.25% QoE improvement can be obtained. 143

We conclude the key contributions of this work are: 144

• We model the bandwidth assignment problem for optimizing QoE and fairness ob- 145

jectives in multi-user online video streaming. The stall time is quantified for general 146

cases under system dynamics. 147

• Due to the nature of the inter-agent fairness problem, we propose a multi-agent learn- 148

ing algorithm that is proven to converge and leverages two reinforcement learning 149

modules running in parallel to effectively reduce the action space size. 150

• The proposed algorithm is implemented and evaluated on our testbed, which is able 151

to simulate various configurations, including different reward functions, network 152

conditions, and user behavior settings. 153

• The numerical results show that MAPG-finite outperforms a number of baselines, 154

including “Even”, “Adaptive”, and single-agent learning policies. With CBR, MAPG- 155

finite achieves up to 169.66% improvement in the achieved QoE, and 8.28% improve- 156

ment in the logarithmic fairness; with ABR, MAPG-finite achieves up to 41.25% WoE 157

improvement. 158

2. Related Work 159

Multi-Agent Reinforcement Learning: In the past, the Multi-agent Reinforcement 160

Learning (MARL) technique [17] has been discussed for scenarios where all the agents make 161

decisions individually to achieve a global optimal. Existing works include Coordinated 162

Reinforcement Learning [18], coordinates both the action selections and the parameter 163

updates between users, Sparse Cooperative Q-learning [19] allows agents to jointly solve a 164

problem when the global coordination requirements are available, [20] uses the max-plus 165

algorithm as the elimination algorithm of the coordination graph, [21] compares multiple 166

known structural abstractions to improve the scalability, and [22] automatically expand an 167

agent’s state space when the convergence is lacking. Apart from the standard Q-learning 168

[23] and policy gradient [24] algorithms, there is rich literature on meta-heuristic algorithms 169

for reinforcement learning. [25] provide an ant-colony optimization method for swarm 170

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


reinforcement learning which improves empirically over the Q-learning based methods by 171

using parallel learning inspired by ant-swarms. Building on biological inspired algorithms, 172

[26] provide a genetic algorithm to search for parameters for deep-reinforcement learning. 173

[27] provide a modification of ant-colony optimization by considering ε-greedy policies 174

combined with Levy flight for random exploration to search for possible global optima. 175

[28] considered a multi-period optimization using an ant-colony optimization inspired 176

algorithm relaxation induced neighborhood search algorithm for performing search in 177

large neighborhoods. 178

Recently, along with the development of neural networks and deep learning, the 179

deep-MARL [29] is proposed to resolve real-world problems with larger state spaces. 180

With various aspects of deep-MARL researched – such as investigating the representational 181

power of network architectures [30], applying deep-MARL with discrete-continuous hybrid 182

action spaces [31], enhancing the experience selection mechanism [32], etc. – real-world 183

applications can be solved including wireless sensor networks (WSN) routing [10], vehicle 184

networks spectrum sharing [11], online ride-sourcing (driver-passenger paring) services 185

[33,34], video game playing [35], and linguist problems [29]. Comparing with existing work, 186

our proposed solution in this paper focuses on optimizing inter-agent fairness objectives in 187

reinforcement learning. 188

Video Streaming Optimization: To improve the performance of data streaming, 189

various techniques have been proposed. The mostly discussed method is Adaptive Bitrate 190

(ABR) [36] streaming, which dynamically adjusts the streaming bitrate to reduce the stall 191

time. The different algorithms include BBA [37], Bola [38], FastMPC [39], LBP [40], FastScan 192

[36], and Pensieve [41]. In addition to ABR and bandwidth allocation considered in this 193

paper, caching is also a popular technique to reduce the stall time and further improve QoE. 194

Inspired by the LRU cache replacement policy, [42] analyzes an alternative gLRU designed 195

for video streaming application, and DeepChunk [7] proposes a Q-learning-based cache 196

replacement policy to jointly optimize hit ratio and stall time. Within an edge network 197

environment, the placement of calculations will also affect the streaming performance, thus 198

work [12] breaks hierarchical service placement problem into sub-trees, and further solve it 199

using Q-learning. 200

For video streaming services still using Constant Bitrate (CBR) systems, [43] proposed 201

QUVE which estimates the future network quality and controls video-encoding accordingly. 202

[44] considered maximizing QoE by optimizing cache content in edge servers. This is 203

different from our setup where we consider caching chunks at client devices. Similar to 204

us, [45] also provide a bandwidth allocation strategy to maximize QoE. However, they use 205

model-predictive control whereas we pose it as a learning problem and use reinforcement 206

learning. [46] consider a multi-user encoding strategy where the encoding schemes for 207

each user varies depending on their network condition. However, they use a Markovian 208

model and do not consider the possible future network conditions into account. [47] 209

consider a future dependent adaptive strategy where they estimate the TCP throughput 210

and success probability of chunk download. Similar to us, [48] consider a reinforcement 211

learning protocol to maximize QoE for multiple clients. However, they use average client 212

QoE at time t as reward for time t and use deterministic policies learnt from Q-learning [23]. 213

We show that our formulation outperforms standard Q-learning algorithms by considering 214

stochastic policies and reward as function of QoE of the clients. 215

Our work, by using a model-free deep-RL policy [15], aims to maximize the overall 216

Quality of Experience of multiple agents. To measure the QoE, [14] considers the web page 217

loading time as a factor, [49] tracks graphic settings, [50] focuses on mobile networks such 218

that signal-to-noise ratio, load, and handovers matter. More mapping methodologies could 219

be found in the survey [51]. 220

3. System Model 221

We consider a server with a total bandwidth of B streams videos to users in set 222

[K] = {1, 2, · · · , K}, in which all the users are consuming videos continuously. We consider 223

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


a streaming session to be divided into nonidentical logical slots. In each time slot, all 224

the users will maintain requesting/playing chunks from the same videos. Once any user 225

k ∈ [K] starts a request for a new video in the current time slot l, the slot counter increments, 226

thus the new slot l + 1 starts for all users in [K], even if the video does not change for users 227

k′ ∈ [K]/{k}. 228

Using the logical time slot setting described above, at time slot l ∈ [L] = {1, · · · , L}, 229

a user k ∈ [K] consumes downloading rate dk(l) ≥ 0 to fetch video vk which is coded 230

with bitrate rk(l). The downloading speed is limited by ∑k∈K dk(l) = B, ∀l ∈ [L], and 231

may update for all users when the time slot increments in the system. The video server 232

continuously sends video chunks to the user with downloading speed dk(l), and the user 233

plays the video with bitrate rk(l) which is defined by the property of the video. For 234

Adaptive Bitrate (ABR) videos, we update the bitrate of chunk on starting a new slot only. 235

So, all the chunks sent in slot l are of bitrate rk(l). For Constant Bitrate (CBR) videos, rk(l) 236

may remain constant across time slots l ∈ [L] if multiple slots spans the video vk. 237

Table 1. List of the variables used in the paper.

Variable Description

K number of clients in the system
k index for agents, runs from 1 to K
B total bandwidth of the system
l slot index
L total slots considered

dk(l) download rate for user k in slot l
rk(l) bitrate of chunk sent to user k in slot l
vk(l) index of video streamed by user k in slot l

m chunk index of the video vk(l)

tk(l, m)
time at which user k starts playing chunk m for

video vk(l)

t′k(l, m)
time at which server starts sending chunk m

for video vk(l)

t̄k(l, m)
time at which user k finishes playing chunk m

for video vk(l)

In each slot, we reset the clock to zero. We use t′k(l, m) to denote the time when the 238

server starts to send the m-th chunk of video vk in the time slot l, tk(l, m) to denote the time 239

when the user starts to play video chunk m, and t̄k(l, m) to denote the moment that chunk 240

m is finished playing. For analysis, we consider that the size of each chunk is normalized 241

to 1 unit. 242

With our formulation, there will be two classes of users in a time slot l. The first class 243

is of the user who requested a new video and triggered the increment of time slot to l. Since 244

the user has requested a new video, it can purge the already downloaded chunks for the 245

previous video. Users in this class may observe a new downloading rate dk(l) and video bit 246

rate rk(l). The second class of users are those who do not request a new video, but a new 247

streaming rate dk(l) is assigned to them because some other user k′ ∈ [K] has requested a 248

new video and triggered a slot change. For these users, the video bitrates will remain the 249

same from the previous slot l − 1, or be adjusted solely by the ABR streaming policy when 250

CBR or ABR policies are activated. While for the downloading rate dk(l), it is updated by 251

the bandwidth distribution policy. Note that a resource allocation scheme may still allocate 252

bandwidth to the user such that dk(l) = dk(l − 1), however, it may not be always true. 253

Next, we calculate the stall time in a slot l for both classes of users. 254

3.1. Class 1: User Requests a New Video 255

We first calculate the stall durations for user k that has requested a video change. As 256

shown in Figure 2, user k starts to fetch a video from the beginning of the slot l. We assume 257

that the chunk m is played in time-slot l, if not, the calculations for the stall duration for 258

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


Download Playback

Downloading rate 𝑑𝑘 Stream bitrate 𝑟𝑘

1

2

1

2

3

T
im

e slo
t 𝑙

−
1

T
im

e slo
t 𝑙𝑡𝑘(𝑙, 1)

𝑡𝑘(𝑙, 2)

𝑡𝑘(𝑙, 3)

𝑡𝑘
′ 𝑙, 1

𝑡𝑘
′ 𝑙, 2

ҧ𝑡𝑘(𝑙, 1)

ҧ𝑡𝑘(𝑙, 2)

ҧ𝑡𝑘(𝑙, 1)

3

𝑡𝑘
′ (𝑙, 3)

Figure 2. The stall time calculation for users request a new video triggering the system to move to
slot l.

those chunks will be studied in Case 2. With the given downloading speed and bitrate, we 259

can observe the relationships between t′(l, m), t(l, m), and t̄(l, m): 260

t′k(l, m) =

{
t′k(l, m− 1) + 1

dk(l)
, m > 1,

0, m = 1,
(1)

261

tk(l, m) =

{
max(t′k(l, m), t̄k(l, m− 1)), m > 1,
t′k(l, m), m = 1,

(2)

t̄k(l, m) = tk(l, m) +
1

rk(l)
, m ≥ 1. (3)

Since we will be limiting the analysis for user k in slot l, we will drop the subscript 262

k and the argument l from tk(l, m), t′k(l, m), and t̄k(l, m) for brevity. Let T denote the time 263

elapsed in time slot l, and let Ts(l, T, k) denote the stall time in slot l till elapsed time T 264

for user k. Clearly, when the video downloading speed is equal to or higher than the 265

video bitrate (dk(l) ≥ rk(l)), the user only has to wait for the first chunk to arrive, then 266

experience a stall-free video playback. Otherwise, for dk(l) < rk(l), three conditions need 267

to be considered for T. If T is smaller than or equal to t(1), no video chunk has been played 268

and the stall time is exactly the time elapsed T in the time slot. Otherwise, if T lands in an 269

interval in which a video chunk m is being played, the stall time of T equals to the stall time 270

of t(m), and if T lands in an interval where the user is waiting for the chunk m + 1 to be 271

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


downloaded, the stall time needs an additional wait after the m-th chunk is played. Hence, 272

stall time till end of the slot l, Ts(l, T, k), can be defined as a recursive conditional function, 273

Ts(l, T, k) =


Ts(l, t(m), k), t(m) < T ≤ t̄(m),

dk(l) < rk(l), m ≥ 1,
T − t̄(m)+ t̄(m) < T ≤ t(m + 1),
Ts(l, t(m), k), dk(l) < rk(l), m ≥ 1,
min(T, t(1)), otherwise.

(4)

In the condition of dk(l) < rk(l), the stall time before the m-th chunk is downloaded is the
key to obtain the stall time of T. The stall time of t(m) fits the second condition of Equation
(4). So we have:

Ts(l, t(m), k) = Ts(l, t(m− 1), k) + t(m)− t̄(m− 1), m > 1. (5)

According to Equations (1), (3), and (2), the difference between t(m) and t̄(m− 1) can be 274

calculated. Thus, Equation (5) can be written in a recursive form: 275

Ts(l, t(m), k) =

{
Ts(l, t(m− 1), k) + 1

dk(l)
− 1

rk(l)
, m > 1,

1
dk(l)

, m = 1,
(6)

and further solved as:

Ts(l, t(m), k) =
m

dk(l)
− m− 1

rk(l)
, m ≥ 1. (7)

Finally, substitute Ts(tk(l, m)) into Equation (4), the stall time of time slot length T is: 276

Ts(l, T, k) =



m
dk(l)
− m−1

rk(l)
, t(m) < T ≤ t̄(m),

dk(l) < rk(l), m ≥ 1,
T − m

rk(l)
, t̄(m) < T ≤ t(m + 1),

dk(l) < rk(l), m ≥ 1,
min(T, t(1)), otherwise.

(8)

Note that if some other user k′ 6= k requests a new video triggering increment in time 277

slot from l to l + 1, the stall duration analysis will fall to the second class of users. We 278

discuss the stall duration for the second class of users in the next section. 279

3.2. Class 2: Users Continuing with the Old Video 280

We now discuss the stall time model for users who continue the video from time slot 281

l − 1 to time slot l (Figure 3). 282

Assume that in the previous time slot l − 1, the total slot duration is T′. At the 283

moment of T′, a chunk – denoted by 0 – is being downloaded. Because of the chunks were 284

continuously downloaded, by evaluating T′ and the download speed dk(l − 1), we can 285

calculate the length or ratio of chunk 0 which hasn’t been downloaded by 286

l0 = 1− dk(l − 1) ·
(

T′ mod
1

dk(l − 1)

)
. (9)

Note that since the length of chunks are normalized, we have: lm = 1, ∀m 6= 0. 287

Downloaded with speed dk(l), the leftover chunk 0 with length l0 needs time l0/dk(l)
to be ready for the user to play it. Following the continuous downloading rule, in time

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


Download Playback

Downloading rate 𝑑𝑘 Stream bitrate 𝑟𝑘

−2

−1

0

1

−2

−1

0

1

T
im

e slo
t 𝑙

−
1

T
im

e slo
t 𝑙

𝑡𝑘
′ (𝑙, −2)

𝑡𝑘(𝑙, −1)

𝑡𝑘(𝑙, −2)

𝑡𝑘(𝑙, 0)

𝑡𝑘(𝑙, 1)

ҧ𝑡𝑘(𝑙, −2)

𝑡𝑘
′ (𝑙, −1)

𝑡𝑘
′ (𝑙, 0)

𝑡𝑘
′ (𝑙, 1)

ҧ𝑡𝑘(𝑙, −1)

ҧ𝑡𝑘(𝑙, 0)

ҧ𝑡𝑘(𝑙, 1)

Figure 3. The stall time calculation for users who continue with the video from previous time slot.

slot l, we have t′(1) = l0/dk(l). Then similar with Equation (1), the rest of the t′(m) can be
recursively obtained.

t′(m) =


t′(m− 1) + 1

dk(l)
, m > 1,

l0
dk(l)

, m = 1,
0, m = 0.

(10)

We denote the last chunk being played in time slot l − 1 as chunk −n, which is the 288

video chunk ahead of chunk 0 by n, and we denote its finish time calculated in the previous 289

time slot by t̄′(−n). If n = 1, and t̄′(−1) ≤ T′, we know that all chunks before chunk 0 are 290

finished playing in slot l− 1. Otherwise, chunk −n is being played half-way at the moment 291

of the time slot transition. For the latter case, user k will continue the play of video chunk 292

−n at the beginning of time slot l. Then in the new time slot l, because the video bitrate is 293

not changed, chunk −n will be finished at t̄(−n) = t̄′(−n)− T′. Since at the beginning of 294

slot l, chunk 0 is being downloaded, we know that chunks in interval {−n, · · · ,−1} in t 295

are all ready to be played. So we can derive the play finish time of chunks {−n, · · · ,−1} 296

in slot l as: 297

t̄(m) =

{
t̄(m− 1) + 1

rk(l−1) , −n < m ≤ −1,
t̄′(m)− T′, m = −n.

(11)

As the download finish time t′(1) and play finish time t̄(−1) are defined, the leftover 298

video chunk 0 is played at time t(0) = max(t′(1), t̄(−1)), and finished at t̄(0) = t(0) + 299

1/rk(l). 300

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


With all the leftover chunk issues tackled, we finally obtain the chunk time equations 301

for time slot l: 302

t′(m) =

{
t′(m− 1) + 1

dk(l)
, m > 1,

l0
dk(l)

, m = 1,
(12)

t(m) = max(t′(m + 1), t̄(m− 1)), m ≥ 0, (13)
303

t̄(m) =


t(m) + 1

rk(l)
, m > 0,

t(m) + 1
rk(l−1) , 0 ≥ m > −n,

t̄′(m)− T′, m = −n.
(14)

With all the time equations obtained, we now can calculate for the stall time using 304

the similar procedure shown in the previous sub-section. Since for m < 0, all the chunks 305

are being played stall-free. So if the slot ends at time T < t̄(−1), the stall time will be 306

zero. From chunk m > 0, it’s possible that the stall appears between the gap where chunk 307

m− 1 is finished, while chunk m is not downloaded yet (t̄(m− 1) < t(m) = t′(m + 1)). 308

If T happens to be in this gap, the stall time Ts(T) will be the accumulated waiting time 309

of chunks [0, m − 1] (denoted as Ts(t(m− 1))) plus the additional time between T and 310

t̄(m− 1). Otherwise, if T happens to be during a chunk m being played, then the stall time 311

Ts(T) should be the accumulated stall time for chunks {0, · · · , m}, which can be denoted 312

as Ts(l, t(m), k). 313

Ts(l, T, k) =


Ts(l, t(m), k), t(m) < T < t̄(m),

m ≥ 0,
Ts(l, t(m), k)+ t̄(m) ≤ T ≤ t(m + 1),
T − t̄(m), m ≥ −1,
0, otherwise.

(15)

3.3. Quality of Experience 314

The goal of this work is to maximize the inter-agent QoE utility for all users. In this
paper, we consider the fairness utility functions in [13] and optimize the inter-agent fairness
with two existing evaluations – the sigmoid-like QoE function and the logarithmic fairness
function. By analyzing real-world user rating statistics, a sigmoid-like relationship between
the web page loading time and the user QoE was reported in [14]. Inspired by that, we
draw a similar nonlinear, sigmoid-like QoE curve to map the streaming stall time ratio, and
fulfill that (i) Reducing the stall time for users who already have very low stall time or (ii)
Increasing the stall time for users who already suffer from high stall time do not impact the
QoE values, while (iii) Users with mediocre QoE are more sensitive to stall time changes:

f (x) =
1

1 + e10(x−0.35)
. (16)

We also consider a logarithmic utility function that achieves the well-known proportional 315

fairness [13] among the users: 316

f (x) = log2(−x + 2). (17)

It is easy to see that, with unit stall time decrease, this utility function provides (i) Larger 317

QoE increment for users experiencing higher stall time, and (ii) Smaller increment for users 318

already enjoying good performance with low stall time. 319

In both Equations (16) and (17), x represents the stall time ratio for playing a video. It 320

is defined by: 321

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


x(Lv, k) = ∑
l∈Lv

Ts(l, Tl , k)
Tl

, (18)

where Lv denotes the time slots that video v has been played in, and Ts(l, Tl , k) denotes the 322

stall time for user k in time slot l with slot length Tl . 323

We note that (16) is only one representative QoE function, while other functions may
be used. Suppose that in L time slots, Vk(L) be the set of videos played by user k. Then the
total QoE of the L time slots obtained by user k are given as:

Qk = ∑
v∈Vk(L)

f (x(Lv, k)), (19)

and for all users, the total QoE is:

Q(L) = ∑
k∈K

Qk. (20)

Substituting (19) and (18) in (20), we have

Q(L) = ∑
k∈[K]

∑
v∈Vk(L)

f

(
∑

l∈Lv

Ts(l, Tl , k)
Tl

)
. (21)

Note that the QoE function defined in Equation (19) assigns higher Quality of Experi- 324

ence to lower stall time. The QoE metric remains constant for small stall times. If the stall 325

times are lower than a certain value and are not noticeable, QoE does not vary as obtained 326

in sigmoid-like function of Equation (19). Also, the QoE decreases rapidly with increasing 327

stall times and remains zero if the stall times exceed a certain value therefore ruining the 328

viewing experience. 329

4. Problem Formulation 330

In this section, we propose a slice assignment system to distribute the download 331

link bandwidth to users. Let π̄(l) = (π1(l), · · · , πK(l)) be a vector in [0, 1]K such that 332

∑k∈K πk(l) = 1. Each element πk(l) denotes the portion of total bandwidth that user k is 333

assigned to. By this definition, user k’s downloading bandwidth dk(l) under policy π̄(l) 334

can be calculated as πk(l)B. 335

The Multi-Agent Video Streaming (MA-Stream) optimization problem is defined as 336

the following: 337

Problem MA-Stream :

max ∑
k∈[K]

∑
v∈Vk(L)

f

(
∑

l∈Lv

Ts(l, Tl , k)
Tl

)
, (22)

s.t. ∑
k∈[K]

dk(l) = B ∀l ∈ {1, · · · , L}, (23)

var. π̄. (24)

We now discuss the MA-Stream optimization problem described in Equation (22)-(24). 338

The Equation (22) denotes the sum of the Quality of Experience for each user k ∈ [K] across 339

each video played in L time slots. The control variable is the policy π (in Equation (24)) 340

which directly controls the bandwidth allocation. This gives the constraint in Equation 341

(23) where the sum of allocated bandwidths, dk(l), to each user k ∈ [K] can be at most the 342

total bandwidth of the system for all slots l ∈ [L]. Moreover, the QoE for any video is a 343

non-linear function of the cumulative stall-durations over each chunk in the video played. 344

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


We utilize the deep Reinforcement Learning technique to optimize the bandwidth 345

distribution π̄(l). In the following sub-sections, we define the state, action, and objective 346

for the decision making. 347

4.1. State 348

At time slot l, the observed state is defined by a 4K dimensional vector s(l) = 349

(v1(l), · · · , vK(l), d1(l), · · · , dK(l), z1(l), · · · , zK(l), c1(l), · · · , cK(l)), where vk(l) denotes 350

the video bitrates, dk(l) represents the currently assigned download speeds, zk(l) tracks 351

the accumulated stall time for the current playing video until slot l, and ck(l) counts the 352

number of chunks which are downloaded but not yet played for user k ∈ [K]. For brevity, 353

we use the notation s(l) = (v̄(l), d̄(l), z̄(l), c̄(l)) where v̄(l) = (v1(l), · · · , vK(l)), d̄(l) = 354

(d1(l), · · · , dK(l)), z̄(l) = (z1(l), · · · , zK(l)), c̄(l) = (c1(l), · · · , cK(l)). We will expand the 355

corresponding vector when necessary. By considering the variables vk(l) and dk(l), the 356

learning model should be able to estimate the downloaded and played video chunk infor- 357

mation in the current time slot l, while zk(l) and ck(l) provide the objective-related history 358

information. 359

4.2. Action and State Transition 360

At the beginning of time slot l, in order to find the optimal download speed distribu- 361

tion, multiple decisions are needed to adjust the observed speed distribution. We utilize 362

two decision processes to get the optimal distribution π̄(l) while maintaining the constraint 363

shown in Equation (23). One of the process is a decreasing process that decides for which 364

user the download speed will be decreased by 1 unit of rate, and the other process is an 365

increasing process that decides the user which will obtain the released 1 unit of download 366

speed. 367

The download speed distribution is iteratively adjusted to a final distribution by
recursively running the decreasing and increasing decision processes. A distribution will
not be assigned to the system until the final decision is concluded, and the system will
not transit into the next time slot. Assuming at time slot l, with the observed state s(l) =
(v̄(l), d̄(l), z̄(l), c̄(l)), actions a−, a+, a− 6= a+ are made by the decreasing and increasing
processes, the intermediate state s(τ′) can be derived by

s(τ′) = (v̄(l), d1(l), · · · , da−(l)− 1, · · · ,

da+(l) + 1, · · · , dK(l), z̄(l), c̄(l)). (25)

Now, this intermediate state s(τ′) is used in the decision making for both processes. New 368

actions will be made to push the distribution towards the final state. Finally, at state s(τ), 369

when both the increasing and decreasing processes give the same action a+ = a−, the 370

distribution π̄ is obtained as π̄(l) = (d1(τ), d2(τ), ..., dK(τ))/B. 371

According to π̄(l), the system distributes the bandwidth to each user for the time slot 372

l. The next time slot l + 1 will be triggered when a user switches its playing video. We 373

assume that the new content request for all users follow Poisson arrival processes with 374

arrival rate λk for user k, so the mean value of slot duration Tl can be derived by 1/ ∑k∈K λk, 375

and the probability that user k triggers the state transition is λk/ ∑κ∈K λκ . For time slot 376

l + 1, the initial system state s(l + 1) = (v̄(t + 1), d̄(t + 1), z̄(t + 1), c̄(t + 1)) should have 377

video bitrates vκ(l + 1) = vκ(l), (∀κ ∈ K, κ 6= k) if CBR is activated as the bitrate policy, 378

and downloading speeds d(l + 1) = π̄(l)B calculated in the previous time slot. 379

The accumulated stalls z̄(l) can be calculated using Equations (4) and (15). Let vk(l)
be the video played by the user k in time slot l, and let lvk(l),0 be the time slot where user k
starts playing video vk(l). Let Tl′ denote the length of time slot l′, we have

zk(l) =
l−1

∑
l′=lvk(l),0

Ts(l′, Tl′ , k). (26)

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


The number of remaining chunks c̄(l) can easily be tracked during the downloading/playing 380

procedures, and observed whenever the information is needed. Both the downloading and 381

playing processes can be monitored. For the downloading process, let cd(l) = hd(l) + ρd(l), 382

where hd(l) ∈ N denotes the chunk being downloaded of the video being played at 383

the beginning of time slot l, and ρd(l) ∈ [0, 1) denotes the ratio or percentage of chunk 384

hd(l) that has been completed. The similar mechanism holds for the playing process, 385

cp(l) = hp(l) + ρp(l). Using both the processes, the remaining chunks c(l) can be calcu- 386

lated by c(l) = cd(l)− cp(l) in any time slot l. 387

4.3. Feedback 388

As pointed in Equation (22), the goal of the controller is to maximize the average 389

QoE. For our RL algorithm to learn an optimal policy to maximize the objective every slot 390

provides a feedback of the value of the objective calculated from the average stall times for 391

all users. 392

In Section 4.2, we mention that when the decreasing and increasing processes take 393

decisions a−(τ′) 6= a+(τ′), the state transition only happens in a logic domain instead of 394

the realistic time domain. During this intermediate state transition, no real stall time calcu- 395

lations exist and we assign zero rewards for actions a−(τ′) 6= a+(τ′) in the intermediate 396

state before converging to π̄(l)B. When the final distribution is achieved (a+ = a−), the 397

slot duration Tl can be obtained and hence stall times Ts(l, Tl , k) can be calculated for all 398

users. We can also obtain rewards from the calculated stall times using Equation (21). 399

The complete schema is presented in Algorithm 1 400

Algorithm 1 Proposed MA-Stream Algorithm

1: Input: Set of users [K], maximum bandwidth B
2: for slot l ≥ 0 do
3: Observe state s(l) as described in Section 4.1
4: Compute bandwidth allocations dk(l) for all k ∈ [K] using RL engine
5: while No user switches video do
6: Continue streaming with dk(l) for all k ∈ [K]
7: Store Stall duration, Ts(l, Tl , k) for slot l for all k ∈ [K]
8: end while
9: end for

5. Policy Gradient for MA-Stream 401

In the previous section, we define the network streaming problem MA-Stream for 402

multiple users. Note that the objective defined in Section 4.3 is a nonlinear function 403

(Equation (19)) of total stall duration till the current time instant. At any time slot l, the 404

reward not only depends on the stall times observed by the users in the slot l, but also on the 405

stall times observed by users in the previous time slots. Hence, the decision making module 406

needs to track not only the current state but also the history of the decision and the rewards 407

obtained to select current action. Hence, we are not able to utilize standard RL algorithms 408

that require modeling the problems into MDP. To this end, we leverage Multi-agent Policy 409

Gradient for Finite Time Horizon (MAPG-finite) [15], a novel multi-agent policy gradient 410

RL algorithm, which aims to solve optimization problems without the requirements of 411

MDP modeling. In the following Section 5.2, we give a short description of this algorithm. 412

5.1. Standard RL Algorithms 413

Standard RL problems consider an agent that interacts with a Markov Decision Process
M. The agent, at time t, observes the state st of the environment and plays action at to
obtain a reward rt and causes the environment to transition to state st+1 [52]. Let the next
state transition probability be P a

ss′ = P(st+1 = s′|st = s, at = a) and the expected reward
of playing action a in state s beRa

s = E[rt|st = s, at = a]. The goal of the agent is to find a

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


policy π(s, a; θ) = P(at = a|st = s, θ) parameterized on θ that maximizes the discounted
cumulative reward

Vπ(s0) = Eπ

[
∞

∑
t=0

γtrt|s0

]
, (27)

where s0 is the initial state, and γ < 1 is a discounted factor. Using linearity of cumulative
rewards in Equation (27), state action value function Qπ(s, a) for policy π is defined as

Qπ(s, a) = Ra
s + γ ∑

s′
∑
a
P a

ss′π(s, a; θ)Vπ(s′). (28)

Based on Equation (28) many algorithm have been proposed, e.g., SARSA [53–55], 414

Q-learning [23], Policy Gradient [24], etc. Based on these fundamental algorithms, many 415

deep learning based implementations are also proposed [52]. 416

In many network optimization problems, the reward metrics are nonlinear when 417

multiple subjects are jointly optimized. One typical example is resource fairness among 418

agents/users in one network [56,57]. With a nonlinear reward function, the decision making 419

engine must be aware of the historical decisions and states in the past. To demonstrate the 420

requirement of policies that require history, we take the following example. Suppose that 421

there are K = 2 users who share the network resource and we want to allocate this network 422

resource fairly between the two users. If we use proportional fairness, the fairness for the 423

two users can be calculated as the sum of logarithms of the QoE indicators of the two users. 424

We call the users 1 and 2, and we assume that both users 1 and 2 start with the same video. 425

In slot 1 the bandwidth allocated to user 1 is higher than user 2 (d1(1) > d2(1)). This results 426

in higher stall times for user 2 compared to user 1. 427

Now, in the next time slot 2, user 2 switches the video with video bitrate same as the 428

previous video, and user 1 continues with the old video. Then, since the video bitrates 429

remain the same, allocating a higher download rate to user 2 (d2(2) > d1(1)) will result 430

in lower stall times for user 2 and hence the fairness can be maximized. This requires 431

the controller to ensure that the decisions at time slot 2 are made keeping account of the 432

decision made in time slot 1. However, the state defined in Section 4.1 does not store the 433

cumulative stall duration of the previous video for the user triggering the current time slot. 434

The algorithm used in this paper to deal with such nonlinear problem is explained in the 435

next subsection. 436

We further note that one possible way to tackle the Non-Markovian nature is to 437

introduce a high-order Markov model by including the objective value till time slot l − 1 438

in the state. This approach, however, potentially increases the state space dramatically to 439

(SA)L, where S is the number of states and A is the number of actions the controller can 440

take. Hence, we consider a multi-agent learning algorithm in the next session, which does 441

not require the use of high-order Markov models and allows individual agent to improve 442

its policy. 443

5.2. Model-Free Multi-Agent Policy Gradient Algorithm 444

In [15], a novel model-free algorithm is proposed in order to solve the nonlinear (in 445

time) optimization problems in a finite time horizon scenario. Like the traditional deep 446

policy gradient RL algorithm, the MAPG-finite algorithm utilizes the observed system 447

state s(t) as the input of a neural network which is parameterized by θ, then takes the 448

output of the neural network to be the decision policy πθ , which indicates the action 449

probabilities. Finally, according to the policy π, an action is randomly chosen to interact 450

with the environment. 451

With proper training process, the neural network is improved by the reward feedback.
Expectedly, the neural network parameter θ should evolve to stage θ∗ which maximizes
the objective function f :

θ∗ = arg max
θ

f
(
(1− γ)J1

πθ
, ..., (1− γ)JK

πθ

)
, (29)

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


where Jπθ
k denotes the long term reward obtained by agent k running policy πθ : 452

Jk
π = Es0,a0,s1,a1,...

[
lim

L→∞

L

∑
l=0

γl f (Ts(l, Tl , k))

]
, (30)

s0 ∼ ρ0(s0), al ∼ π(al |sl), sl+1 ∼ P(sl+1|sl , al). (31)

Since the objective function f is differentiable (refer to Equation (16)), the gradient estima-
tion for Equation (29) can be obtained by:

Oθ f = ∑
k∈[K]

∂ f
∂(1− γ)Jπ

k
Oθ Jπ

k

= (1− γ)(O(1−γ) J̄π f )T(Oθ J̄π),

where J̄π = (Jπ
1 , ..., Jπ

K )
T in which J̄π

k denotes the expected cumulative reward, and further
estimated as

Ĵπ
k =

1
N

N

∑
n=1

L

∑
l=0

Ts(l, Tl , k). (32)

In each episode n, time slots l runs from 0 to L. Finally, with learning rate β, the step
parameter update can be shown as:

θi+1 = θi + β(1− γ)
(
O(1−γ) J̄π f ( ˆ̄J)

)T
(Ôθ J̄π), (33)

and further utilized for gradient ascent in the neural network. 453

We now state a formal result of convergence to a stationary point from the gradient 454

ascent steps. 455

Lemma 1. For a policy function parameterized with a neural network with softmax activations, 456

and function f with continuous gradients, Equation (33) converges to a stationary point. 457

Proof. Since we use softmax activations, gradient of policy π, ∇θπ is also continuous 458

in θ and obtaining continuity of ∇π Jπ
k from [24, Theorem 2] with respect to parameter 459

θ we have continuity of ∇θ Jπ
k . Using the continuity of gradient ∂ f

∂Jπ
k

from definition of f , 460

the continuity of ∇θ Jπ
k and [58, Proposition 3.4] we have the convergence of policy to a 461

stationary point. 462

6. Evaluation 463

We conduct a hybrid simulation on a network containing five users over a shared 464

downloading link, and evaluate the performance of the proposed learning algorithm. In 465

particular, three users prefer to watch HD videos (with desired bitrates at 8Mbps and 466

5Mbps), while the other two users watch videos at lower resolution (with desired bitrates 467

at 2.5Mbps and 1Mbps). The video durations of all users follow an exponential distribution 468

with an identical 120 second average. We run the simulation on both channels with 469

different bandwidth, i.e., 1500KB/s and 2000KB/s channels. In both settings, our proposed 470

algorithm is shown to substantially outperform the baseline policies (relying on heuristics 471

and single-agent learning) in terms of QoE reward and fairness. 472

6.1. Evaluation Setup 473

6.1.1. Evaluated Policies 474

We evaluate our model-free MAPG-finite algorithm along with three baselines, which 475

are denoted by “Even”, “Adaptive”, and SARSA policies, as follows. 476

Policy MAPG-finite: Our proposed algorithm leverages model-free, multi-agent 477

policy gradient to optimize the download bandwidth distribution among agents. Recall 478

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


that in the algorithm, multiple decisions/actions are made to either increase or decrease the 479

download speed of specific users by 1 unit. During the training process, the two decision 480

making processes (to increase and decrease download speeds) need to perform random 481

exploration in a non-cognitive fashion, which often leads to long exploration time and thus 482

slow convergence in the optimal policy. Suppose that the bandwidth distribution at time 483

t is πt. To mitigate this problem during training, we suspend the exploration process if 484

the same bandwidth distribution is observed again in the future, i.e., πt+x = πt for some 485

x ∈ N+. 486

Policy “Even”: The downloading bandwidth is evenly distributed to all users in the 487

system. For instance, when the total bandwidth is 1500KB/s, each of the five users will 488

receive 300KB/s for its downloading speed, regardless of its demand and preference. This 489

one-size-fits-all policy equally distributes bandwidth among the users. 490

Policy “Adaptive”: The download bandwidth is split between the users in proportion 491

to their desired video bitrates. This policy guarantees that users with high data rate demand 492

(i.e., those watching the high-resolution video) receive a higher downloading speed, while 493

users with low data rate demand receive a lower speed. Specifically, user k will be assigned 494

a bandwidth of dk = vkB/∑κ∈K vκ , where vκ is the desired video bit rate of user κ. 495

Policy SARSA: This policy leverages single-agent learning, SARSA [53–55], to dis- 496

tribute download bandwidth to the users. It uses a standard Policy Gradient strategy 497

with the same state/action definition of our proposed MAPG-finite. Without considering 498

the nonlinear reward function feature, this policy simply utilizes the sum of step reward 499

as its immediate reward for learning. Note that we make the same state variables in- 500

cluding reward-related history information z̄(l) known to the SARSA policy to boost the 501

performance of this baseline. 502

6.1.2. Reward Functions 503

Our proposed MAPG-finite algorithm allows the maximize of any nonlinear reward 504

in a finite time period. We consider two reward functions in the evaluation, namely QoE 505

and fairness, to compare the performances achieved by different policies. 506

For the QoE reward, we use a sigmoid-like function to measure the reward with 507

respect to the stall time. In particular, we choose parameters in Equation (16) to match 508

a stall-to-QoE curve reported by [14]. We plot our fitted reward function in Figure 4a, 509

which well matches the reported stall-to-QoE curve in [14]. While for the fairness objective, 510

we choose a logarithmic utility function shown in Equation (17) and Figure 4b of users’ 511

received stall time. By maximizing the logarithmic function, the proportional-fair QoE 512

assignment between the users [13] is obtained. 513

Naturally, our proposed multi-agent learning algorithm is able to learn and optimize 514

any reward functions, linear or nonlinear. We note that even when the exact function is 515

unknown, the model-free algorithm can still be trained and evaluated using the real-world 516

user traces. 517

6.1.3. Users and Videos 518

We implement a network with five users and both high- and low-resolution videos. In 519

particular, three users prefer to watch high-resolution videos with bitrates of 8Mbps (1080p) 520

and 5Mbps (720p) (similar to Youtube videos [59]), while the other two users consume 521

2.5Mbps (480p) and 1Mbps (360p) videos randomly. 522

The video durations for all users follow an independent, identical exponential dis- 523

tribution with an average of 2 minutes. Thus, the combined video switching rate for all 524

five users is once every 24 seconds. When a user elects to switch video, a random video 525

is selected and starts streaming. Note that the new video may have the same or different 526

bitrate with the previous video. For example, when User 1 finished watching a video, the 527

new video will have a bitrate of 8Mbps or 5Mbps with the same 50% probabilities. The 528

user preferences and their corresponding probabilities are shown in Table 2. 529

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Stall ratio

Q
o
E

re
w
a
rd

(a) A sigmoid QoE function.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Stall ratio

F
ai
rn
es
s
re
w
a
rd

(b) A logarithmic fairness function.

Figure 4. The reward functions to evaluate the performances of different bandwidth assignment
algorithms. The QoE function is defined by Equation (16), and the fairness function is defined by
Equation (17).

Table 2. Simulated User Preferences.

User Resolutions Bitrates Probabilities

1 1080p
720p

8Mbps
5Mbps

0.5
0.5

2 1080p
720p

8Mbps
5Mbps

0.5
0.5

3 1080p
720p

8Mbps
5Mbps

0.5
0.5

4 480p
360p

2.5Mbps
1Mbps

0.5
0.5

5 480p
360p

2.5Mbps
1Mbps

0.5
0.5

6.1.4. Implementation 530

We implement a testbed using Python 3.5. The workflow of the testbed is depicted 531

in Figure 5. First, at the beginning of a new cycle, according to the video switching rates 532

(which are resulted from the known video duration distributions), the Video Switch module 533

randomly schedules a user who will be the next candidate to change his video. The users 534

then start downloading video chunks continuously, and their Download Timers record the 535

timestamp when each chunk is successfully downloaded (i.e., t′m+1 in Figure 3). Next, 536

based on the download timestamps and the bitrate of the current video, the Playback Timer 537

schedules the playback and further obtains tm and ¯tm. With all timestamps confirmed, 538

the Stall Calculator is able to calculate the stall time for the user/videos. Such stall time is 539

transferred to the distribution module for training and evaluation. Finally, the chosen user 540

randomly picks a new video from its Video Library at the end of the current cycle. 541

Recall from Section 4, the state variables utilized for MAPG-finite decision making 542

include video bitrates, downloading speeds, accumulated stall time, and residue video chunks, 543

which can be reported through output paths 2©, 4©, 3©, and 1© respectively, in Figure 5. 544

The state variables are then collected by the State Listener through input path 6©. Further, 545

utilizing the Neural Network, a bandwidth distribution – as the action – is decided and sent 546

by the Action Sender to all the users via 7©. For training and evaluation purpose, a copy 547

of the stall ratio is also sent from 3© to 8©. It is processed by the Reward Function f (·) to 548

calculate either the QoE (Equation 16) or the fairness (Equation 17) reward. Finally, the 549

reward is delivered to the Neural Network for policy backpropagation, and also logged for 550

experiment evaluation. By input path 5© of each user, the users adjust their Download Rates 551

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


Users

1 2 3 4 5

Video Switch

Bandwidth Assigner

Action 

Execution

MAPG-finiteUser 1

Video 

Library

Current 

Video

Playback 

Timer

Download 

Timer

Download 

Rate

Stall Calculator

𝑓(∙)

Action Sender

Neural Network

State Listener

Stall 

Listener

①

②

③

④

⑤

⑥

⑦

⑧

Figure 5. The implementation of our testbed, where the blocks on the left and right show the internal
architectures of an individual user module and the MAPG-finite engine respectively. The four state
variables (v(t), d(t), z(t), c(t)) are collected/calculated by each user, and delivered to the Action
Execution module (via 2©, 4©, 3©, 1©→ 6©). The action is then sent back to each user via 7©→ 5©.

Table 3. Reward breakdown for QoE function on 1500KB/s download link.

Policy Total Reward User Average
User Stall Ratio Reward

“Even” 3877.05 1, 2, 3 (HD)
4, 5 (LD)

0.64
0.13

0.07
0.86

“Adaptive” 1773.30 1, 2, 3 (HD)
4, 5 (LD)

0.51
0.59

0.20
0.14

MAPG-finite 4781.88

1
2
3
4
5

0.34
0.50
0.39
0.07
0.08

0.52
0.27
0.44
0.91
0.91

according to the bandwidth decision from 7©. At this point, the testbed completes one 552

workflow cycle and prepares to initiate the next cycle starting with the Video Switch. 553

Using the modularized testbed implemented in this project, we are able to evaluate 554

different policies under various environment configurations, including with different 555

reward functions, network conditions, and user behavior settings. We note that with some 556

minor logic adjustments, we can even test the streaming performance in a discrete time 557

domain, while this paper focuses on continuous time evaluations. 558

. 559

6.2. Evaluation Results 560

The numerical results for the QoE reward function (Equation 16) is depicted in Figure 561

6. It is shown that our proposed MAPG-finite algorithm outperforms the static “Even” and 562

dynamic “Adaptive” strategies by 23.34% and 169.66% (in terms of achieved QoE) with the 563

shared download link of 1500KB/s. With the 2000KB/s download link, MAPG-finite still 564

obtains 15.30% and 32.58% higher QoE reward than the “Even” and “Adaptive” policies, 565

while the improvement becomes smaller because of smaller marginal QoE improvement 566

when stall time is already small under higher bandwidth. As for the SARSA policy, it is 567

unable to cope with the nonlinear utility function and fails to achieve much improvement 568

over its initial decision policy – “Even”. Since the QoE reward function is nonlinear to the 569

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


Even Adaptive SARSA MAPG-finite

0

2

4

6

·103

3,877.05

1,773.3

3,799.9

4,781.884,935.52
4,292.47

4,936.76
5,690.77

Policies

Q
o
E

1500 KB/s 2000 KB/s

Figure 6. The QoE reward comparison. With the 1500KB/s download link, MAPG-finite outperforms
“Even” by 23.34%, “Adaptive” by 169.66%, and SARSA by 25.84%. With the 2000KB/s download
link, MAPG-finite outperforms “Even” by 15.30%, “Adaptive” by 32.58%, and SARSA by 15.27%.

Table 4. Reward breakdown for fairness function on 2500KB/s download link.

Policy Total Reward User Average
Users Stall Ratio Reward

“Even” 7796.12 1, 2, 3 (HD)
4, 5 (LD)

0.39
0.08

0.67
0.93

“Adaptive” 8251.66 1, 2, 3 (HD)
4, 5 (LD)

0.18
0.28

0.86
0.77

MAPG-finite 8441.75 1, 2, 3 (HD)
4, 5 (LD)

0.24
0.11

0.80
0.91

“Low Dev” 8263.49 1, 2, 3 (HD)
4, 5 (LD)

0.22
0.20

0.82
0.84

assigned bandwidth, we also observe that the “Adaptive” policy (allocating bandwidth 570

proportional to desired video bitrate) performs worse than “Even” in both cases. 571

These can be further seen from Table 3, which shows the stall time and reward 572

breakdown of different policies. Apparently, the “Adaptive” policy achieves similar stall 573

time for both HD and LD users, while the “Even” policy sacrifices the performance of 574

HD users, and in return, significantly reduces the stall time of LD users, leading to higher 575

overall QoE. More precisely, according to the QoE reward curve shown in Figure 4a, the 576

reward boost for the LD users is much greater than the loss suffered by the HD users, which 577

finally results in the overall QoE improvement in the “Even” policy. As a learning-based 578

algorithm, MAPG-finite can achieve substantially better performance since it is aware of 579

the current network conditions and system states, in order to optimize the bandwidth 580

distribution between the users. For example, when a user has enough cached chunks for 581

future playback, its bandwidth can be temporarily turned over to the other users, who 582

recently started playing a new video or is suffering from a stall. Thus, all users are able 583

to obtain increased QoE rewards under the MAPG-finite strategy, compared with the 584

baselines. 585

Results for the fairness reward function is shown in Figure 7. We note that due to 586

the use of logarithmic fairness function, the improvement appears to be smaller when 587

measured by fairness reward than by QoE reward, while the gains should be interpreted 588

in the “multiplicative” sense. Our proposed MAPG-finite still outperforms the “Even” 589

and “Adaptive” strategies (in terms of the logarithmic fairness reward) by 4.83% and 590

6.75% for 2000KB/s downloading link, 8.28% and 2.30% for 2500KB/s link. With the 591

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


Even Adaptive SARSA MAPG-finite

0

2

4

6

8

10
·103

7,053.77 6,927.24
6,037.97

7,394.767,796.12 8,251.66

6,486.17

8,441.75

Policies

F
a
ir
n
es
s

2000 KB/s 2500 KB/s

Figure 7. The fairness reward comparison. With the 2000KB/s download link, MAPG-finite outper-
forms “Even” by 4.83%, “Adaptive” by 6.75%, and SARSA by 22.47%. With the 2500KB/s download
link, MAPG-finite outperforms “Even” by 8.28%, “Adaptive” by 2.30%, and SARSA by 30.15%.

2500KB/s downlink, Table 4 shows that the dynamic “Adaptive” strategy achieves similar 592

performances for all users, leading to better fairness reward than the “Even” policy, who 593

creates more difference between the HD and LD users that have significantly different 594

bitrate requirements. On the other hand, our MAPG-finite strategy reduces the average stall 595

ratio of HD users by 38.46%, with a cost of 37.50% higher stall ratio for LD users, compared 596

to the “Even” policy. This way, it is able to reduce the stall ratio deviation of all users from 597

0.1698 to 0.0712, and improves the fairness reward. Comparing with the “Adaptive” policy, 598

MAPG-finite has about 30% higher stall ratio deviation. However, the optimization object, 599

known as the proportional fairness utility [13], is not solely about “equalizing” different 600

users’ performance. (To illustrate this, we construct a “Low Dev” policy in Table 4 that has 601

close-to-zero stall ratio deviation but low fairness reward). The use of proportional fairness 602

reward function indeed balances two important objectives – efficiency (i.e., assigning more 603

bandwidth to users that can achieve higher reward per unit bandwidth) and fairness (i.e., 604

balancing different users’ performance). MAPG-finite is able to attain the highest reward 605

under the choice of proportional fairness utilities, demonstrating its ability to achieve 606

complex optimization objectives. 607

The evaluation results show that the “Even”, “Adaptive”, and SARSA policies fail to 608

perform consistently under different application scenarios and network conditions, while 609

our learning-based MAPG-finite policy is able to achieve the highest reward. Figure 8 610

depicts the average download rate distribution decided by the MAPG-finite policy. The 611

gray bars represent the average video bitrates requested by the users. The white bars 612

represent the average download rate achieved by our MAPG-finite policy (for presentation 613

purpose, the unit of download rates is converted from KB/s to Mbps). It is can be seen that 614

to maximize the fairness reward, MAPG-finite ensures that (i) for users with the same HD 615

preference (e.g., users 1, 2, and 3), the same average downloading bandwidth is assigned 616

to obtain similar stall time for these users, and (ii) for users watching videos with lower 617

desired bitrates, less bandwidth is assigned to balance the stall time since video chunks 618

are consumed at a slower pace. According to Figure 7, the “Adaptive” policy gets a lower 619

fairness reward than “Even” under the total download link of 2000KB/s, which indicates 620

that proportionally adjusting the download bandwidth does not always achieve a better 621

result when fairness is concerned. Through exploration and training of RL, MAPG-finite is 622

able to self-teach, improve, and finally converge to an optimal policy, making the model- 623

free suitable to bandwidth allocation with complex networks and objectives that often do 624

not have a straightforward mathematical formulation. 625

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


1 2 3 4 5
0

2

4

6

User

D
a
ta

R
at
e
(M

b
p
s)

Video Bitrate

Download Rate

Figure 8. Average download bandwidth for all tested users based on the MAPG-finite strategy with
the fairness reward function on 2500KB/s download link. MAPG-finite assures the same average
bandwidths for users having HD preferences, and lower bandwidths for users who desire lower
bitrates.

Even Adaptive SARSA MAPG-finite

0

2

4

6

·103

3,877.05

1,773.3

3,799.9

4,781.884,507.8
3,891.63 4,009.14

5,496.82

Policies

Q
o
E

without ABR with ABR

Figure 9. QoE reward comparisons with ABR feature activated/deactivated. The total download
bandwidth is 1500KB/s. MAPG-finite achieves 21.94%, 41.25%, and 37.11% than the “Even”, “Adap-
tive”, and SARSA policies.

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


To further illustrate the agility of our proposed MAPG-finite algorithm, we perform 626

another evaluation on a 1500KB/s downlink, with an ABR streaming algorithm imple- 627

mented. Figure 9 depicts the QoE performances for this evaluation. We utilize a basic 628

Buffer-Based ABR algorithm proposed in [37]. Each time a video chunk is requested, if 629

the last chunk downloaded is already being played, the bitrate is adjusted to 80% of the 630

max bitrate of the video to avoid high stall time. When the number of residue cached 631

chunks is more than three, the agent starts to request for the max bitrate, and thus better 632

display quality is obtained. Comparing Figure 9 with Figure 6, all policies receive higher 633

rewards under ABR due to the benefits of bitrate adaptation. We note that MAPG-finite 634

still outperforms the “Even” policy by 21.94%, the “Adaptive” policy by 41.25%, and the 635

SARSA policy by 37.11% . In this evaluation, we choose the Buffer-Based strategy for ABR 636

due to its efficiency for implementation. According to the numerical results, our proposed 637

MAPG-finite is able to adapt well to a dynamic bitrate environment. We are aware that 638

new ABR policies – some are engined by RL algorithms themselves – have been proposed 639

and evaluated [36,38–41] to improve the streaming quality. The key aim of the evaluation 640

was to show that the proposed framework can work on ARB streaming strategies, while 641

not to compare the different streaming strategies. Thus, any streaming algorithm can be 642

used in our evaluations and our results show that efficient bandwidth distribution among 643

multiple agents can be achieved with the proposed algorithms where each agent uses any 644

of the ABR/CBR streaming algorithm. 645

7. Conclusion 646

In this paper, we model the MA-Stream problem which apportions bandwidth to 647

multiple users in a video streaming network, to maximize nonlinear, non-convex objectives 648

such as QoE and fairness objectives. We propose a novel multi-agent reinforcement learning 649

algorithm MAPG-finite that is able to work with nonlinear objective functions to solve 650

this optimization problem. Using our testbed implemented in Python, we verify that our 651

proposed solution outperforms existing baseline policies (including “Even”, “Adaptive”, 652

and single-agent SARSA) measured by both QoE and fairness. Our algorithm improves 653

QoE by 15.27% and fairness by 22.47% for 2000 KB/s link data link. Further, it is able to 654

adapt well in collaboration with existing Adaptive Bitrate (ABR) streaming algorithm by 655

improving QoE more than 30% over the Adaptive algorithm. The interaction between 656

bandwidth distribution and ABR policies could be considered in future work to further 657

improve the performance of video streaming. Another interesting future work is to perform 658

large scale experiments with network scale users. 659

660

1. Cisco, V. Cisco visual networking index: Forecast and methodology, 2015-2020. CISCO White 661

paper 2016. 662

2. Avcibas, I.; Sankur, B.; Sayood, K. Statistical evaluation of image quality measures. Journal of 663

Electronic imaging 2002, 11, 206–223. 664

3. Wang, Z.; Lu, L.; Bovik, A.C. Video quality assessment based on structural distortion measure- 665

ment. Signal processing: Image communication 2004, 19, 121–132. 666

4. Kaul, S.; Gruteser, M.; Rai, V.; Kenney, J. Minimizing age of information in vehicular networks. 667

In Proceedings of the 2011 8th Annual IEEE Communications Society Conference on Sensor, 668

Mesh and Ad Hoc Communications and Networks. IEEE, 2011, pp. 350–358. 669

5. Ruan, J.; Xie, D. A survey on QoE-oriented VR video streaming: Some research issues and 670

challenges. Electronics 2021, 10, 2155. 671

6. Al-Abbasi, A.O.; Aggarwal, V.; Lan, T.; Xiang, Y.; Ra, M.R.; Chen, Y.F. Fasttrack: Minimizing 672

stalls for cdn-based over-the-top video streaming systems. IEEE Transactions on Cloud Computing 673

2019, 9, 1453–1466. 674

7. Wang, Y.; Li, Y.; Lan, T.; Aggarwal, V. Deepchunk: Deep q-learning for chunk-based caching in 675

wireless data processing networks. IEEE Transactions on Cognitive Communications and Networking 676

2019, 5, 1034–1045. 677

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


8. Georgopoulos, P.; Elkhatib, Y.; Broadbent, M.; Mu, M.; Race, N. Towards network-wide QoE 678

fairness using openflow-assisted adaptive video streaming. In Proceedings of the 2013 ACM 679

SIGCOMM workshop on Future human-centric multimedia networking, 2013, pp. 15–20. 680

9. Cherif, W.; Ksentini, A.; Négru, D.; Sidibé, M. A_PSQA: Efficient real-time video streaming 681

QoE tool in a future media internet context. In Proceedings of the 2011 IEEE International 682

Conference on Multimedia and Expo. IEEE, 2011, pp. 1–6. 683

10. Ye, D.; Zhang, M.; Yang, Y. A multi-agent framework for packet routing in wireless sensor 684

networks. sensors 2015, 15, 10026–10047. 685

11. Liang, L.; Ye, H.; Li, G.Y. Spectrum sharing in vehicular networks based on multi-agent 686

reinforcement learning. IEEE Journal on Selected Areas in Communications 2019, 37, 2282–2292. 687

12. Wang, Y.; Li, Y.; Lan, T.; Choi, N. A reinforcement learning approach for online service tree 688

placement in edge computing. In Proceedings of the 2019 IEEE 27th International Conference 689

on Network Protocols (ICNP). IEEE, 2019, pp. 1–6. 690

13. Lan, T.; Kao, D.T.H.; Chiang, M.; Sabharwal, A. An Axiomatic Theory of Fairness. CoRR 2009, 691

abs/0906.0557, [0906.0557]. 692

14. Zhang, X.; Sen, S.; Kurniawan, D.; Gunawi, H.; Jiang, J. E2E: embracing user heterogeneity to 693

improve quality of experience on the web. In Proceedings of the ACM Special Interest Group 694

on Data Communication. ACM, 2019, pp. 289–302. 695

15. Agarwal, M.; Aggarwal, V.; Lan, T. Multi-Objective Reinforcement Learning with Non-Linear 696

Scalarization. In Proceedings of the 21st International Conference on Autonomous Agents and 697

Multiagent Systems, 2022, pp. 9–17. 698

16. Margolies, R.; Sridharan, A.; Aggarwal, V.; Jana, R.; Shankaranarayanan, N.; Vaishampayan, 699

V.A.; Zussman, G. Exploiting mobility in proportional fair cellular scheduling: Measurements 700

and algorithms. IEEE/ACM Transactions on Networking 2014, 24, 355–367. 701

17. Bu, L.; Babu, R.; De Schutter, B.; et al. A comprehensive survey of multiagent reinforcement 702

learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 703

2008, 38, 156–172. 704

18. Guestrin, C.; Lagoudakis, M.; Parr, R. Coordinated reinforcement learning. In Proceedings of 705

the ICML. Citeseer, 2002, Vol. 2, pp. 227–234. 706

19. Kok, J.R.; Vlassis, N. Sparse cooperative Q-learning. In Proceedings of the twenty-first 707

international conference on Machine learning, 2004, p. 61. 708

20. Kok, J.R.; Vlassis, N. Using the max-plus algorithm for multiagent decision making in coordina- 709

tion graphs. In Proceedings of the Robot Soccer World Cup. Springer, 2005, pp. 1–12. 710

21. Fitch, R.; Hengst, B.; Šuc, D.; Calbert, G.; Scholz, J. Structural abstraction experiments in 711

reinforcement learning. In Proceedings of the Australasian Joint Conference on Artificial 712

Intelligence. Springer, 2005, pp. 164–175. 713

22. Busoniu, L.; De Schutter, B.; Babuska, R. Multiagent Reinforcement Learning with Adaptive 714

State Focus. In Proceedings of the BNAIC, 2005, pp. 35–42. 715

23. Watkins, C.J.; Dayan, P. Q-learning. Machine learning 1992, 8, 279–292. 716

24. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement 717

learning with function approximation. In Proceedings of the Advances in neural information 718

processing systems, 2000, pp. 1057–1063. 719

25. Iima, H.; Kuroe, Y.; Matsuda, S. Swarm reinforcement learning method based on ant colony 720

optimization. In Proceedings of the 2010 IEEE international conference on systems, man and 721

cybernetics. IEEE, 2010, pp. 1726–1733. 722

26. Sehgal, A.; La, H.; Louis, S.; Nguyen, H. Deep reinforcement learning using genetic algorithm 723

for parameter optimization. In Proceedings of the 2019 Third IEEE International Conference on 724

Robotic Computing (IRC). IEEE, 2019, pp. 596–601. 725

27. Liu, Y.; Cao, B.; Li, H. Improving ant colony optimization algorithm with epsilon greedy and 726

Levy flight. Complex & Intelligent Systems 2021, 7, 1711–1722. 727

28. D’andreagiovanni, F.; Krolikowski, J.; Pulaj, J. A fast hybrid primal heuristic for multiband 728

robust capacitated network design with multiple time periods. Applied Soft Computing 2015, 729

26, 497–507. 730

29. Foerster, J.; Assael, I.A.; De Freitas, N.; Whiteson, S. Learning to communicate with deep 731

multi-agent reinforcement learning. In Proceedings of the Advances in neural information 732

processing systems, 2016, pp. 2137–2145. 733

30. Castellini, J.; Oliehoek, F.A.; Savani, R.; Whiteson, S. The representational capacity of action- 734

value networks for multi-agent reinforcement learning. arXiv preprint arXiv:1902.07497 2019. 735

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

http://xxx.lanl.gov/abs/0906.0557
https://www.mdpi.com/journal/notspecified


31. Fu, H.; Tang, H.; Hao, J.; Lei, Z.; Chen, Y.; Fan, C. Deep multi-agent reinforcement learning with 736

discrete-continuous hybrid action spaces. arXiv preprint arXiv:1903.04959 2019. 737

32. Wang, Y.; Zhang, Z. Experience Selection in Multi-agent Deep Reinforcement Learning. In 738

Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence 739

(ICTAI). IEEE, 2019, pp. 864–870. 740

33. Al-Abbasi, A.O.; Ghosh, A.; Aggarwal, V. Deeppool: Distributed model-free algorithm for 741

ride-sharing using deep reinforcement learning. IEEE Transactions on Intelligent Transportation 742

Systems 2019, 20, 4714–4727. 743

34. Haliem, M.; Mani, G.; Aggarwal, V.; Bhargava, B. A distributed model-free ride-sharing 744

approach for joint matching, pricing, and dispatching using deep reinforcement learning. IEEE 745

Transactions on Intelligent Transportation Systems 2021, 22, 7931–7942. 746

35. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; 747

Powell, R.; Ewalds, T.; Georgiev, P.; et al. Grandmaster level in StarCraft II using multi-agent 748

reinforcement learning. Nature 2019, 575, 350–354. 749

36. Elgabli, A.; Aggarwal, V. FastScan: Robust Low-Complexity Rate Adaptation Algorithm for 750

Video Streaming Over HTTP. IEEE Transactions on Circuits and Systems for Video Technology 2020, 751

30, 2240–2249. 752

37. Huang, T.Y.; Johari, R.; McKeown, N.; Trunnell, M.; Watson, M. A buffer-based approach to rate 753

adaptation: Evidence from a large video streaming service. In Proceedings of the 2014 ACM 754

conference on SIGCOMM, 2014, pp. 187–198. 755

38. Spiteri, K.; Urgaonkar, R.; Sitaraman, R.K. BOLA: Near-optimal bitrate adaptation for online 756

videos. IEEE/ACM Transactions on Networking 2020. 757

39. Yin, X.; Jindal, A.; Sekar, V.; Sinopoli, B. A control-theoretic approach for dynamic adaptive 758

video streaming over HTTP. In Proceedings of the 2015 ACM Conference on Special Interest 759

Group on Data Communication, 2015, pp. 325–338. 760

40. Elgabli, A.; Aggarwal, V.; Hao, S.; Qian, F.; Sen, S. LBP: Robust rate adaptation algorithm for 761

SVC video streaming. IEEE/ACM Transactions on Networking 2018, 26, 1633–1645. 762

41. Mao, H.; Netravali, R.; Alizadeh, M. Neural adaptive video streaming with pensieve. In 763

Proceedings of the Conference of the ACM Special Interest Group on Data Communication, 764

2017, pp. 197–210. 765

42. Friedlander, E.; Aggarwal, V. Generalization of LRU cache replacement policy with applications 766

to video streaming. ACM Transactions on Modeling and Performance Evaluation of Computing 767

Systems (TOMPECS) 2019, 4, 1–22. 768

43. Kimura, T.; Yokota, M.; Matsumoto, A.; Takeshita, K.; Kawano, T.; Sato, K.; Yamamoto, H.; 769

Hayashi, T.; Shiomoto, K.; Miyazaki, K. QUVE: QoE maximizing framework for video-streaming. 770

IEEE Journal of Selected Topics in Signal Processing 2016, 11, 138–153. 771

44. Li, C.; Toni, L.; Zou, J.; Xiong, H.; Frossard, P. QoE-driven mobile edge caching placement for 772

adaptive video streaming. IEEE Transactions on Multimedia 2017, 20, 965–984. 773

45. Bentaleb, A.; Begen, A.C.; Zimmermann, R. SDNDASH: Improving QoE of HTTP adaptive 774

streaming using software defined networking. In Proceedings of the 24th ACM international 775

conference on Multimedia, 2016, pp. 1296–1305. 776

46. Qian, L.; Cheng, Z.; Fang, Z.; Ding, L.; Yang, F.; Huang, W. A QoE-driven encoder adaptation 777

scheme for multi-user video streaming in wireless networks. IEEE Transactions on Broadcasting 778

2016, 63, 20–31. 779

47. Miller, K.; Al-Tamimi, A.K.; Wolisz, A. QoE-based low-delay live streaming using throughput 780

predictions. ACM Transactions on Multimedia Computing, Communications, and Applications 781

(TOMM) 2016, 13, 1–24. 782

48. Bhattacharyya, R.; Bura, A.; Rengarajan, D.; Rumuly, M.; Shakkottai, S.; Kalathil, D.; Mok, R.K.; 783

Dhamdhere, A. QFlow: A reinforcement learning approach to high QoE video streaming over 784

wireless networks. In Proceedings of the twentieth ACM international symposium on mobile 785

ad hoc networking and computing, 2019, pp. 251–260. 786

49. Zinner, T.; Hohlfeld, O.; Abboud, O.; Hoßfeld, T. Impact of frame rate and resolution on 787

objective QoE metrics. In Proceedings of the 2010 second international workshop on quality of 788

multimedia experience (QoMEX). IEEE, 2010, pp. 29–34. 789

50. Balachandran, A.; Aggarwal, V.; Halepovic, E.; Pang, J.; Seshan, S.; Venkataraman, S.; Yan, H. 790

Modeling web quality-of-experience on cellular networks. In Proceedings of the 20th annual 791

international conference on Mobile computing and networking, 2014, pp. 213–224. 792

51. Alreshoodi, M.; Woods, J. Survey on QoE\QoS correlation models for multimedia services. 793

arXiv preprint arXiv:1306.0221 2013. 794

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://www.mdpi.com/journal/notspecified


52. Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction; MIT press, 2018. 795

53. Rummery, G.A.; Niranjan, M. On-line Q-learning using connectionist systems; Vol. 37, University 796

of Cambridge, Department of Engineering Cambridge, UK, 1994. 797

54. Sutton, R.S. Generalization in reinforcement learning: Successful examples using sparse coarse 798

coding. In Proceedings of the Advances in neural information processing systems, 1996, pp. 799

1038–1044. 800

55. Van Seijen, H.; Van Hasselt, H.; Whiteson, S.; Wiering, M. A theoretical and empirical analysis of 801

Expected Sarsa. In Proceedings of the 2009 ieee symposium on adaptive dynamic programming 802

and reinforcement learning. IEEE, 2009, pp. 177–184. 803

56. Lan, T.; Kao, D.; Chiang, M.; Sabharwal, A. An Axiomatic Theory of Fairness in Network 804

Resource Allocation. In 2010 Proceedings IEEE INFOCOM. 805

57. Wang, W.; Li, B.; Liang, B. Dominant resource fairness in cloud computing systems with 806

heterogeneous servers. In Proceedings of the IEEE INFOCOM 2014-IEEE Conference on 807

Computer Communications. IEEE, 2014, pp. 583–591. 808

58. Bertsekas, D.P.; Tsitsiklis, J.N. Neuro-dynamic programming; Athena Scientific, 1996. 809

59. YouTube help – Recommended upload encoding settings. https://support.google.com/ 810

youtube/answer/1722171. 811

Version June 22, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://support.google.com/youtube/answer/1722171
https://support.google.com/youtube/answer/1722171
https://support.google.com/youtube/answer/1722171
https://www.mdpi.com/journal/notspecified

	Introduction
	Related Work
	System Model
	Class 1: User Requests a New Video
	Class 2: Users Continuing with the Old Video
	Quality of Experience

	Problem Formulation
	State
	Action and State Transition
	Feedback

	Policy Gradient for MA-Stream
	Standard RL Algorithms
	Model-Free Multi-Agent Policy Gradient Algorithm

	Evaluation
	Evaluation Setup
	Evaluated Policies
	Reward Functions
	Users and Videos
	Implementation

	Evaluation Results

	Conclusion
	References

