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TTLoC: Taming Tail Latency for Erasure-coded
Cloud Storage Systems

Abubakr O. Al-Abbasi, Vaneet Aggarwal and Tian Lan

Abstract—Distributed storage systems are known to be sus-
ceptible to long tails in response time. In modern online storage
systems such as Bing, Facebook, and Amazon, the long tails
of the service latency are of particular concern, with 99.9th
percentile response times being orders of magnitude worse than
the mean. As erasure codes emerge as a popular technique to
achieve high data reliability in distributed storage while attaining
space efficiency, taming tail latency still remains an open problem
due to the lack of mathematical models for analyzing such
systems. To this end, we propose a framework for quantifying
and optimizing tail latency in erasure-coded storage systems. In
particular, we derive upper bounds on tail latency in closed-form
for arbitrary service time distribution and heterogeneous files.
Based on the model, we formulate an optimization problem to
jointly minimize weighted latency tail probability of all files over
the placement of files on the servers, and the choice of servers
to access the requested files. The non-convex problem is solved
using an efficient, alternating optimization algorithm. Further, we
mathematically quantify, in closed form, the tail index, i.e, the
exponent at which latency tail probability diminishes to zero, of
the service latency for arbitrary erasure-coded storage, by char-
acterizing the asymptotic behavior of latency distribution tails.
We further show that probabilistic scheduling based algorithms
are (asymptotically) optimal since they are able to achieve the
exact tail index. Evaluation results show significant reduction
of tail latency for erasure-coded storage systems with realistic
workload. Based on the offline algorithm, an online version is
developed and its superiorty over the state of the art algorithms,
e.g., Join-Shortest-Queue (JSQ), Power-of-d (Pof(d)), Least-Load
(LL(d)), is shown . Finally, a cloud storage system is implemented
in a real cloud environment to show the superiority of our
approach as compared to the considered baselines.

Index Terms—Tail latency, Erasure coding, Distributed Storage
Systems, Bi-partite matching, Alternating optimization, Laplace
Stieltjes transform.

I. INTRODUCTION

Due to emerging applications such as big data analytics and
cloud computing, distributed storage systems today often store
multiple petabytes of data [2–4]. As a result, these systems are
transitioning from full data replication to the use of erasure
code for encoding and spreading data chunks across multiple
machines and racks, in order to achieve more efficient use
of storage space while maintaining high reliability despite
system failures. It is shown that using erasure codes can reduce
the cost of storage by more than 50% [3] (compared to the
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repetition coding) due to smaller storage space and datacenter
footprint.

A key tradeoff for using erasure codes is performance.
Distributed storage systems that employ erasure codes are
known to be susceptible to long latency tails. Under full data
replication, if a file is replicated n times, it can be recovered
from any of the n replica copies. However, for an erasure-
coded storage system using an (n, k) code, a file is encoded
into n equal-size data chunks, allowing reconstruction from
any subset of k < n ≤ m chunks, where m is the number
of servers. Thus, reconstructing the file requires fetching k
distinct chunks from different servers, which leads to signif-
icant increase of tail latency, since service latency in such
systems is determined by the hottest storage nodes with high-
est congestion and slowest speed, which effectively become
performance bottlenecks. It has been shown that in modern
Web applications such as Bing, Facebook, and Amazon’s retail
platform, the long tail of latency is of particular concern, with
99.9th percentile response times that are orders of magnitude
worse than the mean [5, 6]. Despite mechanisms such as
load-balancing and resource management, evaluations on large
scale storage systems indicate that there is a high degree of
randomness in delay performance [7]. The overall response
time in erasure coded data-storage systems is dominated by
the long tail distribution of the required parallel jobs, with
possibly multiple parallel tasks per a job [8, 9].

To the best of our knowledge, quantifying the impact
of erasure coding on tail latency is an open problem for
distributed storage systems. Although recent research progress
has been made on providing bounds of mean service latency
[10–14], much less is known on tail latency (i.e., xth-percentile
latency for arbitrary x ∈ [0, 1]) in erasure-coded storage
systems. Mean Service latency for replication-based systems
for identical servers with independent exponential service-
times has been characterized for homogeneous files in [15].
However, the problem for erasure-coded based systems is still
an open problem. To provide an upper bound on mean service
latency of homogeneous files, Fork-join queue analysis in [11,
16–20] provides upper bounds for mean service latency by
forking each file request to all storage nodes. In a separate
line of work, Queuing-theoretic analysis in [10, 12] proposes
a block-t-scheduling policy that only allows the first t requests
at the head of the buffer to move forward. However, both
approaches fall short of quantifying tail latency due to a
state explosion problem, because states of the corresponding
queuing model must encapsulate not only a snapshot of
the current system including chunk placement and queued
requests but also past history of how chunk requests have been
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processed by individual nodes. Later, mean latency bounds
for arbitrary service time distribution and heterogeneous files
are provided in [13, 14] using order statistic analysis and a
probabilistic request scheduling policy. The authors in [21]
used probabilistic scheduling with uniform probabilities and
exponential service times to show improved latency perfor-
mance of erasure coding as compared to replication in the limit
of large number of servers for replication-based systems. In
[22], authors analyze different queue-based dispatching poli-
cies assuming symmetric load across servers with randomized
chunk placement, while [9] focuses on asymptotic queuing
delay behaviors. While reducing mean latency is found to have
a positive impact on pushing down the latency envelop (e.g.,
reducing the 90th, and 99th percentiles) [7], quantifying and
optimizing tail latency for erasure-coded storage is still an
open problem.

In this paper, we propose an analytical framework to quan-
tify tail latency in distributed storage systems that employ
erasure codes to store files. This problem is challenging
because (i) tail latency is significantly skewed by performance
of the slowest storage nodes; (ii) a joint chunk scheduling
problem needs to be solved on the fly to decide n-choose-k
chunks/servers serving each file request; and (iii) the problem
is further complicated by the dependency and interference of
chunk access times of different files on shared storage servers.
Toward this end, we make use of probabilistic scheduling
proposed in [13, 14, 23–26]. Upon the arrival of each file
request, we randomly dispatch a batch of k chunk requests
to k-out-of-n storage nodes selected with some predetermined
probabilities. Then, each storage node manages its local queue
independently and continues processing requests in order.
A file request is completed if all its chunk requests exit
the system. This probabilistic scheduling policy allows us
to analyze the (marginal) queuing delay distribution of each
storage node and then combine the results (through Laplace
Stieltjes Transform and order statistic bounds) to obtain an
upper bound on tail latency in closed-form for general service
time distributions. The tightest bound is obtained via an
optimization over all probabilistic schedulers and all Markov
bounds on tail probability. Further, we note that replication
is a special case of erasure coding. Thus, the proposed work
using erasure-coded content on the servers can also be used
when the content is replicated on the servers.

The proposed framework provides a mathematical crys-
tallization of tail latency, illuminating key system design
tradeoffs in erasure-coded storage. Prior evaluation of practical
systems show that the latency spread is significant even when
data object sizes are in the order of megabytes [7]. To
tame tail latency in erasure coded storage, we propose an
optimization problem to jointly minimize the sum probability
that service latency of each file exceeds a given threshold.
This optimization is carried out over three dimensions: the
joint placement of all files, all probabilistic schedulers, and
the auxiliary variables in the tail latency bounds. We note that
the probabilistic scheduler helps decrease the differentiated tail
latency of the files as compared to accessing the lowest-queue
servers which is important for overall tail latency of files. Since
data chunk transfer time in practical systems follows a shifted

exponential distribution [14, 19, 27], we show that under this
assumption, the tail latency optimization can be formulated
in closed-form as a non-convex minimization. To solve the
problem, we prove that it is convex in two of the optimization
variables and propose an alternating optimization algorithm,
while the optimization with respect to file placement can be
solved optimally using bipartite matching.

In addition to quantifying the impact of erasure coding on
tail latency, this paper proposes an analytical framework to
quantify tail index of service latency for arbitrary erasure-
coded storage, by characterizing the asymptotic behavior of
latency distribution tails. Specifically, we consider tail index,
defined as the exponent at which latency tail probability
diminishes to zero, i.e., − log Pr(L ≥ x)/ log(x) as threshold
x grows large. In other words, tail index is the rate at which
tail probability decreases to zero. When file size follows a
Pareto distribution and unit service time follows an exponential
distribution, we employ Laplace-Stieltjes transform to solve in
closed form the latency tail probability for processing a chunk
request at any single server. Utilizing this result, we prove that
tail index of erasure-coded storage systems is upper bounded
by α−1, where α is the exponent of Pareto-distributed file size.
We further show that this upper bound is indeed achievable
via probabilistic scheduling policy. In order words, a family
of probabilistic scheduling algorithms achieves the best tail
index and are optimal with respect to asymptotic latency
tails. Extensive simulations show significant reduction of tail
latency for erasure-coded storage systems using the proposed
optimization over five different baseline strategies. Further,
a small-scale cloud storage system is implemented in a real
cloud environment to validate our results.

The main contributions of this paper are summarized as
follows:
• We propose an analytical framework for quantifying and

taming tail latency over cloud (TTLoC) storage, for arbitrary
erasure-coded storage systems and service time distribu-
tions.

• When chunk transfer time follows shifted-exponential dis-
tribution, we formulate a weighted latency tail probability
optimization that simultaneous minimizes tail latency of all
files by optimizing the system over three dimensions: chunk
placement, auxiliary variables, and the scheduling policy.

• We propose an analytical framework to quantify tail index of
service latency for arbitrary erasure-coded storage systems.

• For Pareto-distributed file size (with shape parameter α > 2)
and exponential service time, we prove that the optimal tail
index of erasure-coded storage systems is α − 1. Also, we
show that a family of probabilistic scheduling algorithms
are able to achieve the tail index and therefore are asymp-
totically optimal in terms of latency tails.

• We develop an alternating optimization algorithm which is
shown to converge to a local optima for the tail latency
optimization. Two of the subproblems are convex, while
bipartite matching is used to solve the third subproblem.
Significant tail latency reduction up to a few orders of mag-
nitude is validated through evaluation results. Further, based
on the offline algorithm, an online version is developed.
The superiorty of our approach over the state of the art
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algorithms, e.g., Join-Shortest-Queue (JSQ) [28], Power-of-
d (Pof(d)) [29], Least-Load (LL(d)) or batch samling [22,
30], is investigated.

• We implement a cloud storage system in a real cloud
environment to demonstrate the tightness of our algorithm
and to show the superiority of our approach as compared to
the considered baselines.
The rest of the paper is organized as follows. Sec tion II

gives the system model for the problem. Section III finds an
upper bound on tail latency through probabilistic scheduling
and Laplace Stieltjes transform of the waiting time from
each server. Section IV formulates and solves the tail latency
optimization. Section V presents our numerical results and
Section VI concludes the paper.

II. SYSTEM MODEL

We consider a data center consisting of m heterogeneous
servers, denoted by M = 1, 2, ...,m, also called storage nodes.
To distributively store a set of r files, indexed by i = 1, 2, ...r,
we partition each file i into ki fixed-size chunks and then
encode it using an (ni, ki) MDS erasure code to generate
ni distinct chunks of the same size for file i. The encoded
chunks are assigned to and stored on ni distinct storage nodes,
represented by a set Si of storage nodes, satisfying Si ⊆ M
and ni = |Si|. The use of (ni, ki) MDS erasure code allows
the file to be reconstructed from any subset of ki-out-of-ni
chunks, whereas it also introduces a redundancy factor of
ni/ki. Thus, upon the arrival of each file request, ki distinct
chunks are selected by a scheduler and retrieved to reconstruct
the desired file. Figure 1 illustrates a distributed storage system
with 7 nodes. Three files are stored in the system using (6, 4),
(5, 3), and (3, 2) erasure codes, respectively. File requests
arriving at the system are jointly scheduled to access ki-
out-of-ni distinct chunks. Prior work analyzing erasure-coded
storage systems mainly focus on mean latency, including two
approaches using queuing-theoretic analysis in [10, 12] and
fork-join queue analysis in [11, 16–20].

However, both approaches fall short of quantifying tail la-
tency, because states of the corresponding queuing model must
encapsulate not only a snapshot of the current system including
chunk placement and queued requests, but also past history
of how chunk requests have been processed by individual
nodes. This is because Markov-chain representation of the
resulting queue is required to have each state encapsulating:
(i) the status of each batch in the queue and (ii) the exact
assignment of chunk requests to storage nodes, since nodes
are shared by multiple heterogeneous files and are no longer
homogeneous [10, 12]. This leads to a state explosion problem
as practical storage systems usually handle a large number of
files and nodes [14]. To the best of our knowledge, quantifying
tail latency for erasure-coded storage system is still an open
problem because of challenges in joint request scheduling (i.e.,
selecting n-choose-k chunks for each request on the fly with
the goal of minimizing tail latency) as well as the dependency
of straggling fragments on hot storage nodes. Consider the
erasure-coded storage system storing 3 files, as shown in
Figure 1. It is easy to see that a simple scheduling policy that

accesses available chunks with equal probability lead to high
tail latency, which is determined by hot storage nodes (i.e.,
nodes 1 and 5 in this case) with slowest performance. Yet, a
policy that load-balances the number of requests processed
by each server does not necessarily optimize tail latency
of all files, which employ different erasure codes resulting
in different impact on service latency. Assuming that chunk
transfer time from all storage nodes have the same distribution,
file 1 using (6, 4) code could still have much higher tail latency
than file 3 that uses (3, 2) code, since its service time of each
file request is determined by the slowest of the 4 selected
chunks (rather than 2 selected chunks).

In this paper, we use the “Probabilistic Scheduling” from
[13, 14], which is a probabilistic scheduling policy: 1) dis-
patches each batch of chunk requests (corresponding to the
same file request) to an appropriate a set of nodes (denoted
by set Ai of servers for file i) with predetermined probabilities
(P (Ai) for set Ai and file i); 2) each node buffers requests in
a local queue and processes in order. The authors of [13, 14]
have shown that a probabilistic scheduling policy with feasible
probabilities {P (Ai) : ∀i, Ai} exists if and only if there exists
conditional probabilities πi,j ∈ [0, 1],∀i, j satisfying

m∑
j=1

πi,j = ki ∀i and πi,j = 0 if j /∈ Si. (1)

Note that πij is the probability of retrieving chunk of file
i from node j. Since each set Ai contains exactly ki nodes,
we have

∑
j πi,j = ki∀i. See Appendix B for further details.

Consider the example shown in Figure 1. Under probabilistic
scheduling, upon the arrival of a file 1 request, we randomly
select k1 = 4 nodes (from {1, 2, 3, 5, 6, 7}) with available file
chunks with respect to known probabilities {π1,j , ∀j} and
dispatch a chunk request to each selected storage node. Then,
each storage node manages its local queue independently and
continues processing requests in order. The file request is
completed if all its chunk requests are processed by individual
nodes. While this probabilistic scheduling is used to provide
an upper bound on mean service time in [13, 14], we extend
the policy and provide an analytical model for tail latency,
enabling a novel tail latency optimization. We note that, so
far, only k servers are selected to retrieve the file i. However,
a possible scenario would be to select uniformly at random
u servers such that k ≤ u ≤ n and then only k servers are
contacted to restore the file i. We stick in this paper to the
(n, k) system and a similar analysis can be applied to the
(n, u, k) system.

We will now describe a queueing model of the distributed
storage system. We assume that the arrival of client requests
for each file i form an independent Poisson process with a
known rate λi. We consider chunk service time Xj of node
j with arbitrary distributions, whose statistics can be obtained
from existing work on network delay [31, 32] and file-size
distribution [33, 34]1. Under MDS codes, each file i can be

1The chunk is assumed to have a fixed-size. However, files may have
different number of chunks, i.e., ni for file i. However, since the servers
are heterogeneous, the service time of a chunk at server j is distributed as
Xj , and is independent across chunks.
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Fig. 1. An illustration of a distributed storage system equipped with 7 nodes and storing 3 files using different erasure codes.

TABLE I
MAIN NOTATIONS USED IN THIS PAPER

Symbol Meaning
r Number of files in system by i = 1, 2, ..., r
m Number of storage nodes

(ni, ki) Erasure code parameters for file i
λi Arrival rate of file i
πij Probability of retrieving chunk of file i from node j
Li Latency of retrieving file i
x Parameter indexing latency tail probability
Qj Sojourn Time of node j
Xj Chunk Service Time of node j
Mj(t) Moment Generating Function for the service time of node j
µj Mean service time of node j
Λj Arrival rate on node j
ρj Request intensity at node j
Si Set of storage nodes having chunks from file i
Ai Set of nodes used to provide chunks from file i

(αj , βj) Parameters of Shifted Exponential distributed
service time at node j

ωi weight of file i

retrieved from any ki distinct nodes that store the file chunks.
We model this by treating each file request as a batch of ki
chunk requests, so that a file request is served when all ki
chunk requests in the batch are processed by distinct storage
nodes. Even though the choice of codes for different files can
be different, we assume that the chunk size is the same for all
files. All requests are buffered in a common queue of infinite
capacity.

III. TAIL LATENCY BOUNDS

We first quantify tail latency for erasure-coded storage
systems with arbitrary service time distribution (i.e., arbitrary
known distribution of Xj). Let Qj be the (random) time
the chunk request spends in node j (sojourn time). Under
probabilistic scheduling, the response time (denoted by Li) of
a file-i request is determined by the maximum chunk response
time at a randomly selected set Ai of storage nodes.

Under probabilistic scheduling, the arrival of chunk requests
at node j form a Poisson Process with rate Λj =

∑
i λiπij .

Let Mj(t) = E[etXj ] be the moment generating function of
service time of processing a single chunk at server j. Then, the
Laplace Stieltjes Transform of Qj is given, using Pollaczek-
Khinchine formula, as

E[e−sQj ] =
(1− ρj)sMj(−s)

s− Λj(1−Mj(−s))
, (2)

where ρj = ΛjE[Xj ] is the request intensity at node j [35].
Further, let the latency of the file i be denoted as Li using
probabilistic scheduling. The latency tail probability of file i is
defined as the probability that Li is greater than or equal to x,
for a given x. For given weight wi for file i, this paper wishes
to minimize

∑
i ωi Pr(Li ≥ x). Since finding Pr(Li ≥ x) in

closed form is hard for general service time distribution, we
further use an upper bound on this and use that instead of
Pr(Li ≥ x) in the objective.

The following theorem gives an upper bound on the latency
tail probability of a file.

Theorem 1. The latency tail probability for file i, Pr(Li ≥ x)
using probabilistic scheduling is bounded by

Pr(Li ≥ x) ≤
∑
j

πij
etjx

(1− ρj)tjMj(tj)

tj − Λj(Mj(tj)− 1)
, (3)

for any tj > 0, ρj = ΛjE[Xj ], satisfying Mj(tj) < ∞ and
Λj(Mj(tj)− 1) < tj .

Proof. We consider an upper bound on latency tail probability
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using probabilistic scheduling as follows.

Pr(Li ≥ x)
(a)
= Pr

Ai,Qj

(max
j∈Ai

Qj ≥ x) (4)

= Pr
Ai,Qj

(Qj ≥ x for some j ∈ Ai) (5)

= EAi,Qj [max
j∈Ai

1(Qj≥x)] (6)

≤ EAi,Qj

∑
j∈Ai

[1(Qj≥x)] (7)

= EAi

∑
j∈Ai

[Pr (Qj ≥ x)] (8)

=
∑
j

πij [Pr (Qj ≥ x)], (9)

where (a) follows since for probabilistic scheduling, the time
to retrieve the file is the maximum of the time of retrieving
all the chunks from Ai.

Using Markov Lemma, we have Pr (Qj ≥ x) ≤ E[etjQj ]

etjx
. In

order to obtain E[etjQj ], we use Pollaczek-Khinchine formula
for Laplace Stieltjes Transform of Qj in (2) and use s =
−tj . However, the expression is finite only when Λj(Mj(tj)−
1) < tj . This proves the result as in the statement of the
Theorem.

In some cases, the moment generating function may not
exist, which means that the condition Λj(Mj(tj) − 1) < tj
may not be satisfied for any tj > 0. In such cases, we will use
the Laplace Stieltjes Transform directly to give another upper
bound in the next theorem.

Theorem 2. The latency tail probability for file i, Pr(Li ≥ x)
is bounded by

Pr(Li ≥ x) ≤
∑
j

πij(1− E[e−sjQj ])

1− e−sjx
, (10)

for any sj > 0, where ρj = ΛjE[Xj ], E[e−sQj ] =
(1−ρj)sLj(s)
s−Λj(1−Lj(s)) , and Lj(s) = E[e−sXj ].

Proof. This result is a variant of Theorem 1, where Markov
Lemma is used using Laplace Stieljes Transform of the Queue
Waiting Time rather than the moment generating function.

We next consider the case when the service time distribution
is a shifted exponential distribution. This choice is motivated
by the Tahoe experiments [14] and Amazon S3 experiments
[19]. Let the service time distribution from server j has
probability density function fXj

(x), given as

fXj (x) =

{
αje
−αj(x−βj), for x ≥ βj

0, for x < βj
. (11)

Exponential distribution is a special case with βj = 0. The
Moment Generating Function is given as

Mj(t) =
αj

αj − t
eβjt for t < αj . (12)

Using these expressions, we have the following result.

Corollary 1. When the service time distributions of servers
are given by shifted exponential distribution, the latency tail

probability for file i, Pr(Li ≥ x), is bounded by

Pr(Li ≥ x) ≤
∑
j

πij
etjx

(1− ρj)tjMj(tj)

tj − Λj(Mj(tj)− 1)
, (13)

for any tj > 0, ρj =
Λj

αj
+ Λjβj , ρj < 1, and tj(tj − αj +

Λj) + Λjαj(e
βjtj − 1) < 0.

Proof. We note that the condition Λj(Mj(tj)−1) < tj reduces
to tj(tj − αj + Λj) + Λjαj(e

βjtj − 1) < 0. Since tj ≥ αj
will not satisfy tj(tj − αj + Λj) + Λjαj(e

βjtj − 1) < 0, the
conditions in the statement of the Corollary implies tj < αj
where the above moment generating function expression is
used.

Since exponential distribution is a special case of the shifted
exponential distribution, we have the following corollary.

Corollary 2. When the service time distributions of servers are
given by exponential distribution, the latency tail probability
for file i, Pr(Li ≥ x), is bounded by

Pr(Li ≥ x) ≤
∑
j

πij
etjx

(1− ρj)tjMj(tj)

tj − Λj(Mj(tj)− 1)
, (14)

for any tj > 0, ρj =
Λj

αj
, ρj < 1, tj < αj(1− ρj)

In Appendix A, we further quantify the tail index of service
latency for arbitrary erasure-coded storage systems for Pareto-
distributed file size and exponential service time. We show that
the probabilistic scheduling based algorithms achieve optimal
tail index of α − 1, where α > 2 is the shape parameter of
the Pareto distributed chunk sizes.

IV. OPTIMIZING WEIGHTED LATENCY TAIL PROBABILITY

Now we formulate a joint latency tail probability optimiza-
tion for multiple, heterogeneous files. Since the latency tail
probability is given by Pr(Li ≥ x) for x > maxj βj , we
consider an optimization that minimizes weighted latency tail
probability of all files, defined by∑

i

ωi Pr(Li ≥ x), (15)

where ωi is a positive weight assigned to file i. We set ωi =
λi∑
i λi

, so that the files with larger arrival rates are weighted
higher, and latency tail probability of file-i service time is
Pr(Li ≥ x). We consider the proposed bound on the latency
tail probability to have the objective function as

∑
i

λi

∑
j

πij
etjx

(1− ρj)tjMj(tj)

tj − Λj(Mj(tj)− 1)

 . (16)

Let π = {πi,j∀i, j}, t = {tj∀j}, and S = {Si∀i}. We con-
sider the following Weighted Latency Tail Probability (WLTP)
optimization problem over the scheduling probabilities π, the
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placement of files S, and auxiliary parameters t, i.e.,

min
∑
j

Λje
−tjx (1− ρj)tjMj(tj)

tj − Λj(Mj(tj)− 1)
(17)

s.t. Λj =
∑
i

λiπij (18)

Mj(t) =
αj

αj − t
eβjt (19)

ρj =
Λj
αj

+ Λjβj (20)∑
j

πi,j = ki (21)

πi,j = 0, j /∈ Si (22)
πi,j ∈ [0, 1] (23)
|Si| = ni , |Ai| = ki ∀i (24)
tj ≥ 0 (25)

tj(tj − αj + Λj) + Λjαj(e
βjtj − 1) < 0 (26)

var. π, t,S (27)

Here, Constraint (18) gives the aggregate arrival rate Λj for
each node under give scheduling probabilities πi,j and arrival
rates λi, Constraint (19) defines moment generating function
with respect to parameter tj , Constraint (20) defines the traffic
intensity of the servers, Constraints (21-23) guarantee that the
scheduling probabilities are feasible, and finally, the moment
generating function exists due to the technical constraint in
(26). If (26) is satisfied, ρj < 1 holds too thus ensuring the
stability of the storage system (i.e., queue length does not
blow up to infinity under given arrival rates and scheduling
probabilities). We note that tj > 0 can be equivalently
converted to tj ≥ 0 (and thus done in (25)) since tj = 0
do not satisfy tj(tj−αj +Λj)+Λjαj(e

βjtj −1) < 0 and has
already been accounted for. We note that the the optimization
over π helps decrease the weighted tail latency probability
and gives significant flexibility over choosing the lowest-queue
servers for accessing the files. This is because queue-based
scheduling (e.g., JSQ, LL(d) and Pof(d)) does not differentiate
betwen files based on their weights. Unlike these approaches,
our policy prioritizes files according to their weights so as
files with larger arrival rates are prioritized more to further
reduce the tail latency of the files and thus improves the overall
system. The placement of the files S helps separate the highly
accessed files on different servers thus reducing the objective.
Finally, the optimization over the auxiliary variables t gives a
tighter bound on the weighted latency tail probability.

Remark 1. The proposed WLTP optimization is non-convex,
since Constraint (26) is non-convex in (π, t). Further, the
content placement S has integer constraints.

To develop an algorithmic solution, we prove that the
problem is convex individually with respect to the optimization
variables t and π, when the other variables are fixed. This
result allows us to propose an alternating optimization algo-
rithm for the problem. The next result shows the the problem
is convex in t = (t1, t2, · · · , tm).

Theorem 3. The objective function,
∑
j

Λj

etjx
(1−ρj)tjMj(tj)
tj−Λj(Mj(tj)−1)

is convex in t = (t1, t2, · · · , tm) in the region where the
constraints in (18)-(26) are satisfied.

Proof. We note that inside the summation, the term only
depends on a single value of tj . Thus, it is enough to show
that tje

−tjxMj(tj)
tj−Λj(Mj(tj)−1) is convex with respect to tj . Since there

is only a single index j here, we ignore this subscipt for the
rest of this proof.

We denote

F (t) =
te−txM(t)

t− Λ(M(t)− 1)
(28)

=
αte(β−x)t

−t2 + (α− Λ)t+ Λα− Λαeβt
(29)

=
αte(β−x)t

−t2 + (α− Λ)t− Λα(eβt − 1)
(30)

=
αte(β−x)t

−t2 + (α− Λ)t− Λα
∑∞
u=1

(βt)u

u!

(31)

=
αe(β−x)t

−t+ (α− Λ)− Λα
∑∞
u=1

(β)utu−1

u!

(32)

Thus, F (t) can be written as product of f(t) = αe(β−x)t

and g(t) = 1
h(t) , where h(t) = −t + (α − Λ) −

Λα
∑∞
u=1

(β)utu−1

u! . Since the constraints in (18)-(26) are
satisfied, h(t) > 0. Further, all positive deriavatives of h(t)
are non-positive. Let w(t) = −h′(t). Then, w(t) ≥ 0, and
w′(t) ≥ 0.

Further, we have

g(t) =
1

h(t)

g′(t) =
w(t)

h2(t)

g′′(t) =
h(t)w′(t) + 2w2(t)

h3(t)
. (33)

Using these, F ′′(t) is given as

F ′′(t)

= f ′′(t)g(t) + f(t)g′′(t) + 2f ′(t)g′(t)

= αe(β−x)t
(
((β − x)2g(t) + g′′(t) + 2(β − x)g′(t))

)
=

αe(β−x)t

h3(t)

(
(β − x)2h2(t) + h(t)w′(t) + 2w2(t)

+2(β − x)w(t)h(t))

=
αe(β−x)t

h3(t)

(
2

(
(β − x)h(t)

2
+ w(t)

)2

+ h(t)w′(t)

+
(β − x)2h2(t)

4

)
≥ 0, (34)

where the last step follows since h(t) ≥ 0, and w′(t) ≥ 0.
Thus, the objective function is convex in t = (t1, t2, · · · , tm).

The next result shows that the proposed problem is convex
in π = (πij∀i = 1, · · · , r, j = 1, · · · ,m).
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Theorem 4. The objective function,
∑
j

Λj

etjx
(1−ρj)tjMj(tj)
tj−Λj(Mj(tj)−1)

is convex in π = (πij∀(i, j)).

Proof. Since the sum of convex functions is convex, it is
enough to show that Λj

(1−ρj)
tj−Λj(Mj(tj)−1) is convex. Since

Λj is a linear function of π, it is enough to prove
that Λj

(1−ρj)
tj−Λj(Mj(tj)−1) is convex in Λj . Let Hj =

1−ρj
1−Λj(Mj(tj)−1)/tj

. We need to show that ΛjHj is convex in
Λj .

We will first show that Hj is increasing and convex in Λj .
We note that Hj can be written as

Hj =
1− ΛjC1

1− ΛjC2
, (35)

where C1 = 1
αj

+ βj and C2 =
Mj(tj)−1

tj
. Further C2 ≥ C1

since Mj(tj) − 1 = E[etjXj ] − 1 ≥ E[1 + tjXj ] − 1 =

tjE[Xj ] = tj

(
1
αj

+ βj

)
. Differentiating Hj w.r.t. Λj , we

have
δ

δΛj
Hj =

C2 − C1

(1− ΛjC2)2
≥ 0 (36)

δ2

δΛ2
j

Hj = 2C2
C2 − C1

(1− ΛjC2)3
≥ 0. (37)

Thus, Hj is an increasing convex function of Λj . Since Λj
is also an increasing convex function of Λj and the product of
two increasing convex functions is convex, the result follows.

V. ALGORITHM FOR WLTP OPTIMIZATION

We note that the WLTP optimization problem is convex
with respect to individual t and π. We note that the strict <
constraint can be modified as ≤ −ε for an ε small enough.
The constraints are also convex in each of the variables
individually. We will now develop an alternating minimization
algorithm to solve the problem.

A. Algorithm structure

In order to describe the Algorithm, we first define the three
sub-problems:

t-Optimization: Input π,S

min
∑
i

ωi

∑
j

πij
etjx

(1− ρj)tjMj(tj)

tj − Λj(Mj(tj)− 1)


s.t. (18), (19), (20), (25), (26)
var. t

π-Optimization: Input t,S

min
∑
i

ωi

∑
j

πij
etjx

(1− ρj)tjMj(tj)

tj − Λj(Mj(tj)− 1)


s.t. (18), (19), (20), (21), (22), (23), (26)
var. π

S-Optimization: Input t,π

min
∑
i

ωi

∑
j

πij
etjx

(1− ρj)tjMj(tj)

tj − Λj(Mj(tj)− 1)


s.t. (18), (19), (20), (21), (22), (23), (24)
var. S

The first two sub-problems (t-Optimization and π-
Optimization) are convex, and thus can be solved by Projected
Gradient Descent Algorithm, with guaranteed (linear) conver-
gence [36]. The third problem is solved via the Hungarian
algorithm, which has also a linear time complexity [37].

For the placement sub-problem (S-Optimization), we con-
sider optimizing over S for each file request separately with
fixed π and t. We first rewrite the latency tail probability for
file i, P(Li ≥ x) as follows

P(Li ≥ x) ≤
∑
j

πij
etjx

(1− ρj)tjMj(tj)

tj − Λj(Mj(tj)− 1)
(38)

=
∑
j

πij
etjx

F (Λj) , (39)

where F (Λj) =
(1−Λj(1/αj+βj))tjMj(tj)

tj−Λj(Mj(tj)−1) . To show that the
placement sub-problem can be cast into a bipartite matching,
we consider the problem of placing file i chunks on m
available servers. Note that placing the chunks is equivalent to
permuting the existing access probabilities {πij , ∀i} on all m
servers, because πij > 0 only if a chunk of file i is placed on
server j. Let β be a permutation of m elements. Under new
placement defined by β, the new probability of accessing file
i chunk on server j becomes πi,β(j). Thus, our objective in
this sub-problem is to find such a placement (or permutation)
β(j) ∀j that minimizes the average tail probability, which can
be solved via a matching problem between the set of existing
scheduling probabilities {πij , ∀i} and the set of m available
servers, with respect to their load excluding the contribution
of file i itself. Let Λ−ij = Λj − λiπij when request for file i,
be the total request rate at server j, excluding the contribution
of file i. We define a complete bipartite graph Gr = (U ,V, E)
with disjoint vertex sets U ,V of equal size m and edge weights
given by

Du,v =
∑
i

λiπiu
etux

F
(
Λ−iv + λiπiu

)
, ∀u, v , (40)

which quantifies the contribution to overall latency tail prob-
ability by assigning existing πiu to server v that has an
existing load Λ−ij . By matching the set of existing scheduling
probabilities {πij , ∀i} and the set of m available servers,
with respect to their load excluding the contribution of file
i itself, we can find the optimal β that minimizes Du,β(u).
Thus, a minimum-weight matching on Gr finds an optimal β
to minimize

m∑
u=1

Du,β(u) =

m∑
u=1

r∑
i=1

λi πiu
etjx

F
(

Λ−iβ(u) + λiπiu

)
, (41)

The proposed algorithm for solving latency tail probability
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Algorithm 1 Proposed algorithm for solving latency tail
probability problem
Initialize k = 0, ε > 0,
Initialize feasible {ti(0), πi,j(0), }
while |obj (k − 1)− obj (k)| ≥ ε

//Solve scheduling, auxiliary variables and placement with given
{ti(k), πi,j(k), Si(k)}

Step 1: t(k + 1) = argmin
t

(17) s.t. (18), (19), (20), (25),

(26)
Step 2: π(k + 1) = argmin

π
(17) s.t. (18), (19), (20), (21),

(22), (23), (26)
//Solve placement with given {t(k + 1), π(k + 1)}
Step 3:
κ = random permuation for files (1, . . . , r)
for y = 1, · · · , r
i = κ(y)

Calculate Λ(−i)
j using πij(k + 1)

Calculate Du,v from (39).
(β(u) ∀j) = HungarianAlgorithm(Du,v)
Update πi,β(u) (k + 1) = πi,u(k + 1) ∀i, j.
Si (k + 1) = {β(u)∀u ∈ Si (k)}

end for
end while
output: {π, S, t}

problem is shown in Algorithm 1, where the order of files
whose placements are optimized one after the other are chosen
at random. Note that the order of the files whose decisions
are changed make a difference. In the proposed algorithm, we
take a single pass over the files since there is an outer loop of
alternating minimization.

Since the objective is non-negative and the objective is non-
increasing in each iteration, the algorithm converges and the
following theorem holds.

Theorem 5. The proposed algorithm converges to a local
optimal solution.

B. Online Algorithm for WLTP

Our proposed scheduling policy gives the optimized param-
eters for an offline scenario. However, an online algorithm can
be derived according to the stationary scheduling probabilities.
The arrival rates λi can be estimated based on a window based
method. In this method, a window size W is chosen, and the
decisions in a window are based on the estimated arrival rates
from the previous window. Using the estimated arrival rates,
the solution for the optimization problem in (17) gives the
optimal offline scheduling probabilities, i.e., π∗. According to
these stationary scheduling probabilities, optimal randomized
online policy can be obtained.

C. Time Complexity of the Proposed Algorithm

In this section, we explain the time complexity of our
proposed algorithm. To solve the optimization problem pro-
posed in (17), we used alternating minimization. Both t-
Optimization and π-Optimization sub-problems are convex

while S-Optimization is solved via the Hungarian algorithm.
Each sub problem has a linear time complexity [36, 37]. In
addition, the objective function is separable with respect to the
index j (i.e., storage server index) and thus the optimization
problem for each server can be run in parallel with other
servers. Hence, solving the objective function can be paralleled
over j which significantly results in reducing the overall
complexity. Since objective function is separable for every
server j, running time remains small even for large number
of video files, thanks for separability of our objective function
and parallelization. Thus, our algorithm is scalable.
We note that an overhead is incurred every time we solve
the offline problem at the central controller. However, this
optimization can be performed in the off-peak hours. The time
and optimization overhead depend on the service provider ca-
pabilities and how much overhead the system can handle. Note
that after optimizing the parameters offline, an online version
can be developed since stationary optimized parameters can
be used to optimize the system performance. For this online
algorithm, the complexity is only O(1), given the solution of
the offline problem. Numerical results are provided in Section
VI.

VI. EVALUATION

To validate the proposed tail latency bound and tail latency
optimization, we employ a hybrid simulation method, which
generates chunk service times based on real system measure-
ments on Tahoe and Amazon S3 servers in [14, 19, 27].

A. Comparisions

We compare the performance of our proposed latency
optimization, denoted as WLTP Policy, with five baseline
strategies and four online policies. The proposed strategy and
the other baseline strategies are described below.

1) Offline Policies:
• Proposed Approach-Optimized Placement, i.e., WLTP

(Weighted Latency Tail Probability) Policy: The joint sched-
uler is determined by the proposed solution that minimizes
the weighted latency tail probabilities, with respect to the
three sets of variables: chunk placement on the servers S,
auxiliary variables t, and the scheduling policy π.

• Proposed Approach-Random Placement, i.e., WLTP-RP
(WLTP - Random Placement) Policy: The chunks are
placed uniformly at random. With this fixed placement,
the weighted latency tail probability is optimized over the
remaining two sets of variables: auxiliary variables t, and
the scheduling policy π.

• WLTP-RP-Fixed t Policy: The chunks are placed uniformly
at random, and all the auxiliary variables tj are set as 0.01.
The weighted latency tail probability is optimized over the
scheduling access probabilities π.

• PEAP (Projected, Equal Access-Probability) Policy: For
each file request, the joint request scheduler selects available
nodes with equal probability. This choice of πi,j = ki/ni
may not be feasible and thus the access probabilities are
projected toward feasible region in (17) for all tj = .01
for a uniformly randomly placed files to ensure stability of
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the storage system. With these fixed access probabilities,
the weighted latency tail probability is optimized over the
remaining two sets of variables: chunk placement on the
servers S, and the auxiliary variables t.

• PEAP-RP Policy: As compared to the PEAP Policy, the
chunks are placed uniformly at random. The weighted
latency tail probability is optimized over the choice of
auxiliary variables t.

• PSPP (Projected Service-Rate Proportional Allocation) Pol-
icy: The joint request scheduler chooses the access proba-
bilities to be proportional to the service rates of the storage
nodes, i.e., πij = ki

µj∑
j µj

. This policy assigns servers
proportional to their service rates. These access probabilities
are projected toward feasible region in (17) for a uniformly
random placed files to ensure stability of the storage system.
With these fixed access probabilities, the weighted latency
tail probability is optimized over the remaining two sets
of variables: chunk placement on the servers S, and the
auxiliary variables t.

• PSPP-RP (PSPP - Random Placement) Policy: As compared
to the PSPP Policy, the chunks are placed uniformly at
random. The weighted latency tail probability is optimized
over the choice of auxiliary variables t.

2) Online Policies: Regarding the online mode, we com-
pare our algorithm with four algorithms described as below:

• Join Shortest Queue (JSQ) Policy [28]: In this policy, the
requests are assigned to the server that has the lowest queue.
For detailed treatment of this policy, interested reader can
refer to [28].
• Least Load-d LL(d) Policy [30]: This policy works akin
to a water-filling approach, where a set of d servers are cho-
sen uniformly at random and then requests are assigned to
the server that has the lowest (remaining) load (or processing
time) among those selected servers. Interested reader can
refer to [30] for further details.
• Power-of-d Pow(d) Policy [29]: In this policy, a set of
d servers are chosen uniformly at random and then updates
are assigned to the server that has the lowest queue among
those selected servers. In-detail description for this strategy
can be found in [29].
• Proportional-Service-rate Proportional Online Alloca-
tion Assignments (PSPA) Policy: This policy assigns servers
according to their service rate.

Remark: For the online policies, we assume optimal place-
ment and the scheduling of requests is the only decision that
needs to be taken when running these policies in an online
manner.

In the simulations, we consider r = 1000 files, all of size
200 MB and using (7, 4) erasure code in a distributed storage
system consisting of m = 12 distributed nodes. Based on
[14, 19, 27], we consider chunk service time that follows a
shifted-exponential distribution with rate αj and shift βj . As
shown in Table II, we have 12 heterogeneous storage nodes
with different service rates αj and shifts βj . The base arrival
rates for the first 250 files is 2/150 s−1, for the next 250 files
are 4/150 s−1, for the next 250 files are 6/150 s−1, and for
the last 250 files is 3/150 s−1. This paper also considers the
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Fig. 2. Weighted Latency Tail Probability vs x (in seconds).

weights of the files proportional to the arrival rates.
In order to initialize the algorithm, we choose πij = k/n on

the placed servers, all tj = .01. However, since these choices
of π and t may not be feasible, we modify the initialization π
to be the closest norm feasible solution to the above choice.

B. Numerical Results

Weighted Latency Tail Probabilities: In Figure 2, we plot
the decay of weighted latency tail probability

∑
i ωi Pr(Li ≥

x) with x (in seconds) for Policies WLTP, WLTP-RP, PSPP,
PEAP, and WLTP-RP-Fixed t. Notice that WLTP Policy solves
the optimal weighted latency tail probability via proposed
alternative optimization algorithm over π, t, and S. With
optimized t and placement, Policy PEAP uses equal server
access probabilities, projected toward the feasible region,
while Policy PSPP assigns chunk requests across different
servers proportional to their service rates. The values of t are
then found optimally for the above given values of πi,j . Note
that this figure also represents the complementary cumulative
distribution function (ccdf) of the WLTP, WLTP-RP, WLTP-
RP-Fixed t, PSPP, and PEAP. For instance, We observe that
Pr (x ≥ 20) ≈ 0.01 for our proposed policy WLTP which is
significantly lower as compared to the other strategies.

We note that our proposed algorithm for jointly optimizing
π, t and S provides significant improvement over simple
heuristics such as Policies WLTP-RP-Fixed t, PSPP, and
PEAP, as weighted latency tail probability reduces by or-
ders of magnitude. For example, our proposed Policy WLTP

TABLE II
SUMMARY OF PARAMETERS FOR THE 12 STORAGE NODES IN OUR

SIMULATION (SHIFT β IN MS AND RATE α IN 1/S).

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
αj 20.0015 26.1252 14.9850 17.0526 27.1422 22.8919
βj 10.5368 15.6018 8.2756 10.0120 12.8544 13.6722

Node 7 Node 8 Node 9 Node 10 Node 11 Node 12
αj 30.0000 21.3812 11.9106 25.1599 28.8188 23.8067
βj 12.6616 9.9156 10.7872 8.6166 13.8721 10.8964
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Fig. 3. Convergence of Weighted Latency Tail Probability.

decreases 99-percentile weighted latency (i.e., x such that∑
i ωi Pr(Li ≥ x) ≤ 0.01) from above 160 seconds in

the baseline policies to about 20 seconds using WLTP. We
also notice that chunk placement optimization reduces the
latency tail probability for all x, as can be seen from Figure 2
among the policies WLTP and WLTP-RP. Uniformly accessing
servers and simple service-rate-based scheduling are unable to
optimize the request scheduler based on factors like chunk
placement, request arrival rates, different latency weights,
thus leading to much higher tail latency. Since the policy
WLTP-RP-Fixed t performs significantly worse than the other
considered policies, we do not include this policy in the rest
of the paper.
Convergence of the Proposed Algorithm: We have shown
that the proposed algorithm converges within about 350 iter-
ations to the optimal objective value, validating the efficiency
of the proposed optimization algorithm. To illustrate its con-
vergence speed, Figure 3 shows the convergence of objective
value vs. the number of iterations for different values of x
ranging from 20 to 70 seconds in increments of 10 seconds.
In the rest of the results, 350 iterations will be used to get the
required results.
Effect of Arrival Rates: We next see the effect of varying
request arrival rates on the weighted latency tail probability.
We choose x = 50 seconds. For λ as the base arrival rates,
we increase arrival rate of all files from .2λ to 1.4 × λ and
plot the weighted latency tail probability in Figure 4. While
latency tail probability increases as arrival rate increases, our
algorithm assigns differentiated latency for different files to
maintain low weighted latency tail probability. We compare
our proposed algorithm with the different baseline policies and
notice that the proposed algorithm outperforms all baseline
strategies.

Since the weighted latency tail probability is more signifi-
cant at high arrival rates, we observe significant improvement
in latency tail by about a multiple of 9 ( approximately
0.025 to about 0.22) at the highest arrival rate in Figure 4
between PEAP and WLTP policies. Our proposed policy al-
ways receives the minimum latency. Thus, efficiently reducing
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Fig. 4. Weighted Latency Tail Probability for different file arrival rates. We
vary the arrival rate of file i from 0.2 × λ to 1.4 × λ, where λ is the base
arrival rate.
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Fig. 5. Weighted Latency Tail Probability for different number of files.

the latency of the high arrival rate files reduces the overall
weighted latency tail probability.
Effect of Number of files: Figure 5 demonstrates the
impact of varying the number of files from 200 to 1200 on
the weighted latency tail probability. Weighted latency tail
probabilities increases with the number of files, which brings
in more workload (i.e., higher arrival rates). Our optimization
algorithm optimizes new files along with existing ones to keep
overall weighted latency tail probability at a low level. We
note that the proposed optimization strategy effectively reduces
the tail probability and outperforms the considered baseline
strategies. Thus, joint optimization over all three variables S,
π, and t helps reduce the tail probability significantly.
Effect of File Sizes: We vary the file size in our simulation
from 200MB to 700MB, and plot the optimal weighted latency
tail probability with varying file size in Figure 6. In order to
capture the effect of increased file size as compared to a default
size of 200 MB, we increase the value of parameters α and
β proportionally to the chunk size in the shifted-exponential
service time distribution. While increasing file size results in
higher weighted tail latency probability for files, we compare
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Fig. 6. Weighted Latency Tail Probability for different file sizes.
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Fig. 7. Weighted Latency Tail Probability for different file arrival rates.

our proposed algorithm with the baseline policies and verified
that the proposed optimization algorithm offers significant
reduction in tail latency.
Effect of the Tail Latency Weights: We next show the
effect of varying the weights (i.e., wi’s) on the weighted
tail latency probability for the proposed WLTP policy. We
choose x = 40 seconds. Recall that the arrival rate of files
was divided into four groups, each with different arrival rates.
We vary the arrival rate of all files from .4λ to λ with a
step of 0.2λ and plot the weighted latency tail probability
for each group of 250 files as well as the overall value in
Figure 7. While weighted latency tail probability increases
as arrival rate increases, our algorithm assigns differentiated
latency for different file groups. Group 3 that has highest
weight ω3 (i.e., most tail latency sensitive) always receive the
minimum latency tail probability even though these files have
the highest arrival rate. Thus, efficiently reducing the latency of
the high arrival rate files reduces the overall weighted latency
tail probability. We note that efficient access probabilities π
help in differentiating file latencies as compared to the strategy
where minimum queue-length servers are selected to access
the content obtaining lower weighted tail latency probability.

Figure 8 shows the effect of the file weights on the
weighted latency tail probability for varying number of files. In
particular, we modify the number of files in each group from
250 in the base case to values such as 250, 300, and 350, as
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Fig. 9. Weighted latency tail probability for different coding with different
number of files.

shown in Figure 8. We choose x = 40 seconds. Apparently,
the weighted tail latency probability increases with the number
of files, since that increases the workload in terms of the arrival
rates. Our optimization algorithm optimizes the placement and
access of the files to keep weighted tail latency probability
lower. As noted earlier, the higher arrival rate group has lower
tail latency probability thus reducing the overall objective.
Effect of encoding parameters: Figure 9 depicts the
weighted latency tail probability for varying the number of
files, and for different choices of code parameters, assuming
x = 40 seconds. We first observe that the weighted latency tail
probability is higher for larger number of files. In addition, we
see that the code with larger n for the same value of k performs
better. This is because larger value of n gives more choice for
the selection of servers. Thus, (11, 6) performs better than
(10, 6) and (8, 4) performs better than (7, 4). Among (10, 6)
and (8, 4), the additional redundancy is 4. With the same
number of parity symbols, it is better to have larger value of k
since smaller chunks are obtained from each server resulting
in a reduced stall duration. Since the replication has k = 1,
this analysis thus shows that an erasure code with the same
redundancy can achieve better stall durations.

Time Complexity Results: In Figure 10, we study the per-
formance of the time complexity for our algorithm, while
varying the number of video files. We run the experiments on
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Fig. 10. Running time of our algorithm with respect to the number of files,
for different policies.

TABLE III
TESTBED CONFIGURATION.

Cluster Information

Control Plane OpenStack Kilo

VM Flavor 1 VCPU, 2GB RAM, 20G storage (HDD)

Software Configuration

Operating System Ubuntu Server 16.04 LTS

Storage Server Apache Server

Client Apache JMeter with HLS Sampler

a computer with Intel(R) Core i7-6500U CPU@2.50GHz and
16GB RAM. The algorithm stops when the error (absolute
difference between two consecutive iterations) is 0.0001. It
can be seen that the running time increases linearly with the
number of files. Note that also our optimization problem is
separable with respect to each server j and thus its complexity
does not grow fast as number of files increases. Also, as the
number of serves increases, the running time should decrease
since files are distributed over more number of servers. Recall
that the online algorithms is of O(1), as long as the offline
problem is solved in advance.

C. Testbed Configuration and Implementation Results

An experimental environment in a virtualized cloud envi-
ronment is constructed. This virtualized cloud is managed by
open source software for creating private and public cloud, i.e.,
so-called Openstack. We allocated 6 virtual machines (VMs)
as storage server nodes intended to store the chunks. The
schematic of our testbed is illustrated in Figure 11. Table III
summarizes a detailed configuration used for the experiments.
For client workload, we exploit a popular FTP-trafic generator,
Apache JMeter, with a plug-in that can generate traffic using
FTP protocol. We assume the amount of available bandwidth
between storage servers and edge router is 100 Mbps. In these
experiments, to allocate bandwidth to the clients, we throttle

Fig. 11. Testbed in the cloud.
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Fig. 12. Comparison of implementation results of our algorithm to analytical
WLTP, PSP-based, and PEAP algorithms for different values of x.

the client (i.e., JMeter) traffic according to the plan generated
by our algorithm.

We consider 500 threads (i.e., users) and set n = 5 and
k = 3. Based on one week trace from our production system,
we estimate the aggregate arrival rate at the edge router to be
Λ1 = 0.02455s−1. Then, FTP request sampler (i.e., request) is
sent every 3 seconds. We chose the (5, 3) code as an example
for our exprement. However, any other coding setting still
works giving that the required resources are available. The
files are of size 180 MB and each chunk is of size 60 MB
[38], which results from the coding setting. For each chunk,
we used JMeter built-in reports to estimate the download time
of each segment and then plug these times into our model to
get the required metrics.

Figure 12 shows four different policies where we compare
the actual file WLTP, analytical WLTP (given by the solution
of the optimization problem defined in (17)), PSPP-based
WLTP, and PEAP-based WLTP algorithms. We observe that
the analytical WLTP is very close to the actual measurements
of the weighted tail latency obtained from our testbed, i.e.,
approaches zero for reasonable large values of x, i.e., 100 s.
To the best of our knowledge, this is the first work to jointly
consider all key design degrees of freedom, including request
(server) scheduling and the modeling variables associated with
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the bound. Further, we can see that the gap between the
analytical bound and the actual latency is very small and
approaches zero for reasonable large values of x, i.e., 120
s.
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Figure 13 shows five different policies where we compare
our proposed policy WLTP, JSQ, LL(d), Pof(d) and PSPP-
based algorithms. We first note that WLTP achieves the lowest
tail probability by efficiently exploiting all design control
parameters including the scheduling probabilities and file
placement. Further, queue-based policies, JSQ, Pof(d), and
LL(d) do not differentiate among different files and thus do
not intelligently incorporate the file weights when taking the
dispatching decisions and/or file placement. Moreover, while
our WLTP algorithm optimizes the system parameters offline,
this figure shows that an online version of our algorithm can
be developed to keep track of the systems dynamics and thus
achieve an improved performance.

Figure 14 shows the performance of both online and offline
WLTP polices as compared to JSQ, LL(d) and Pof(d) policies.
We can see that the gap between offline and online policies of
WLTP is negligibly small. Further, WLTP performs the best
since it provides differentiated services by weighting more the
files with larger weights in the objective functions and thus
improves the system performance.

VII. CONCLUSIONS

This paper provides bounds on latency tail probabilities
for distributed storage systems using erasure coding. These
bounds are used to formulate an optimization to jointly mini-
mize weighted latency tail probability of all files over request
scheduling and data placement. The non-convex optimization
problem is solved using an efficient alternating optimization
algorithm. Furthermore, we prove that the tail index of arbi-
trary erasure-coded storage systems is α−1, where the file size
follows a Pareto distribution with exponent α and the service
time follows an exponential distribution. We also show that
a family of probabilistic scheduling algorithms are optimal
for tail latency in the sense that they are able to achieve the
exact tail index. Evaluation results show significant reduction
of tail latency for erasure-coded storage systems with realistic
workload as compared to the considered to the state-of-the-art
algorithms and some competitive baselines.
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APPENDIX A
TAIL INDEX ANALYSIS

In this section, we quantify the tail index of service la-
tency for arbitrary erasure-coded storage systems for Pareto-
distributed file size and exponential service time. First, we
derive the distribution of the waiting time from a server.
Next, we show that this time is a heavy-tailed with tail-index
α− 1. Then, we prove that the probabilistic scheduling based
algorithms achieve optimal tail index.

A. Assumptions and Chunk Size Distribution

We assume that the arrival of client requests for each
file i of size kLi Mb is assumed to form an independent
Poisson process with a known rate λi. Further, the chunk
size C̃i Mb is assumed to have a heavy tail and follows
a Pareto distribution with parameters (xm, α) with shape
parameter α > 2 (implying finite mean and variance). Thus,
the complementary cumulative distribution function (c.c.d.f.)
of the chunk size is given as

Pr(C̃i > x) =

{
(xm/x)α x ≥ xm
0 x < xm

(42)

For α > 1, the mean is E[C̃i] = αxm/(α − 1). The service
time per Mb at server j, Xj is distributed as an exponential
distribution the mean service time 1/µj . Service time for a
chunk of size C Mb is XjC.

We will focus on the tail index of the waiting time to access
each file. In order to understand the tail index, let the waiting
time for the files TW has Pr(TW > x) of the order of x−d for
large x, then the tail index is d. More formally, the tail index
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d is defined as limx→∞
− log Pr(TW>x)

log x . This index gives the
slope of the tail in the log-log scale of the complementary
CDF.

B. Waiting Time Distribution for a Chunk from a Server

In this Section, we will characterize the Laplace Stieltjes
transform of the waiting time distribution from a server,
assuming that the arrival of requests at a server is Poisson
distributed with mean arrival rate Λj . We first note that the
service time per chunk on server j is given as Bj = XjC̃i,
where C̃i is distributed as Pareto Distribution given above, and
Xj is exponential with parameter µj . Using this definition, we
find that

Pr(Bj < y)

= Pr(XjC̃i < y)

=

∫ ∞
x=xm

Pr(Xj < y/x)αxαm
1

xα+1
dx

=

∫ ∞
x=xm

(1− exp(−µjy/x))αxαm
1

xα+1
dx

= 1−
∫ ∞
x=xm

exp(−µjy/x)αxαm
1

xα+1
dx (43)

Substitute t = µjy/x, and then dt = −µjy/x2dx. Thus,

Pr(Bj > y)

=

∫ ∞
x=xm

exp(−µjy/x)αxαm
1

xα+1
dx

=

∫ µjy/xm

t=0

exp(−t)αxαm
tα−1

(µjy)α
dt

= α(xm/µj)
α 1

yα

∫ µjy/xm

t=0

exp(−t)tα−1dt

= α(xm/µj)
αγ(α, µjy/xm)/yα, (44)

where γ denote lower incomplete gamma function, given as
γ(a, x) =

∫ x
0
ua−1 exp(−u)du.

Since Pr(Bj > y) = V (y)/yα, where V (y) =
α(xm/µj)

αγ(α, µjy/xm) is a slowly varying function, the
asymptotic of the waiting time in heavy-tailed limit can be
calculated using the results in [39] as

Pr(W > x) ≈ Λ

1− ρ
x1−α

α− 1
V (x). (45)

Thus, we note that the waiting time from a server is heavy-
tailed with tail-index α−1. Thus, we get the following result.

Theorem 6. Assume that the arrival rate for requests is
Poisson distributed, service time distribution is exponential
and the chunk size distribution is Pareto with shape parameter
α. Then, the tail index for the waiting time of chunk in the
queue of a server is α− 1.

C. Probabilistic Scheduling Achieves Optimal Tail Index

Having characterized the tail index of a single server with
Poisson arrival process and Pareto distributed file size, we will
now give the tail index for a general distributed storage system.
The first result is that any distributed storage system has a tail

index of at most α − 1. For Poisson arrivals, Pareto chunk
sizes, and exponential chunk service times, the tail index is at
most α− 1.

Theorem 7. The tail index for distributed storage system is
at most α− 1.

Proof. In order to show this result, consider a genie server
which is combination of all the n servers together. The service
rate of this server is

∑n
j=1 µi per Mb. As a genie, we also

assume that only one chunk is enough to be served. In this
case, the problem reduces to the single server problem with
Poisson arrival process and the result in Section VI shows that
the tail index is α− 1. Since even in the genie-aided case, the
tail index is α− 1, we cannot get any higher tail index.

The next result shows that the probabilistic scheduling
achieves the optimal tail index.

Theorem 8. The optimal tail index of α − 1 is achieved by
probabilistic scheduling.

Proof. In order to show that probabilistic scheduling achieves
this tail index, we consider the simple case where all the n-
choose-k sets are chosen equally likely for each file. Using
this, we note that each server is accessed with equal probability
of πij = k/n. Thus, the arrival rate at the server is Poisson
and the tail index of the waiting time at the server is α− 1.

The overall latency of a file chunk is the sum of the
queue waiting time and the service time. Since the service
time has tail index of α, the overall latency for a chunk is
α− 1. Probability that latency is greater than x is determined
by the kth chunk to be received. The probability is upper
bounded by the sum of probability over all servers that
waiting time at a server is greater than x. This is because
Pr(maxj(Aj) ≥ x) ≤

∑
j Pr(Aj ≥ x) even when the random

variables Aj are correlated. Finite sum of terms, each with
tail index α− 1 will still give the term with tail index α− 1
thus proving that the tail index with probabilistic scheduling
is α− 1.

We note that even though we assumed a total of n servers,
and the erasure code being the same, the above can be
extended to the case when there are more than n servers
with uniform placement of files and each file using different
erasure code. The upper bound argument does not change as
long as number of servers are finite. For the achievability with
probabilistic scheduling, we require that the chunks that are
serviced follow a Pareto distribution with shape parameter α.
Thus, as long as placed files on each server are placed with
the same distribution and the access pattern does not change
the nature of distribution of accessed chunks from a server,
the result holds in general.
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APPENDIX B
PROOF OF EQUATION (1)

We have [14]
m∑
j=1

πi,j
(a)
=

m∑
j=1

∑
Ai⊆Si

1{j∈Ai}P (Ai)

(b)
=

∑
Ai⊆Si

∑
j∈Ai

P (Ai)

(c)
=

∑
Ai⊆Si

kiP (Ai)

= ki ×
∑
Ai⊆Si

P (Ai)︸ ︷︷ ︸
=1

= ki (46)

where (a) follows from (1), (b) follows
since 1{j∈Ai} = 1 only if j ∈ Ai, and (c) follows
since each set Ai contains exactly ki nodes.
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