
1

Twin-Finder: Integrated Reasoning Engine for
Pointer-related Code Clone Detection

Hongfa Xue, Guru Venkataramani, Tian Lan

Abstract—Detecting code clones is crucial in various software
engineering tasks. In particular, code clone detection can have
significant uses in the context of analyzing and fixing bugs in
large scale applications. However, prior works, such as machine
learning based clone detection, may cause a considerable amount
of false positives. In this paper, we propose Twin-Finder, a novel,
closed-loop approach for pointer-related code clone detection that
integrates machine learning and symbolic execution techniques
to achieve precision. Twin-Finder introduces a clone verification
mechanism to formally verify if two clone samples are indeed
clones and a feedback loop to automatically generated formal
rules to tune machine learning algorithm and further reduce
the false positives. Our experimental results show Twin-Finder
that can swiftly identify up 9× more code clones comparing
to conventional code clone detection approaches. We conduct
security analysis for memory safety using real-world applications
Links version 2.14 and libreOffice-6.0.0.1. Twin-Finder is able to
find 6 unreported bugs in Links version 2.14 and one public
patched bug in libreOffice-6.0.0.1.

Index Terms—Code Clone Detection, Machine Learning, Mem-
ory Safety

I. INTRODUCTION

With rapid rise in software sizes and complexity, analyz-
ing and fixing bugs in large scale applications is becoming
increasingly critical. Debugging and patching security flaws
at scale are practically required in software development and
engineering. Fortunately, similar code fragments are common
in large code bases [18], [24], [28], [44]. Detecting such
code fragments, usually referred as code clones, is crucial
in various software engineering tasks, such as vulnerability
discovery, refactoring and plagiarism detection. Prior work that
use token subsequence matching, tree or control flow based
graph analysis [6], [23], [22] have shown good performance
in detecting text-based similar code clones (e.g. copy and
paste code fragments). They have limited scalability since
the pairwise string or tree comparison is expensive in large
code bases. Code clone detection using machine learning
approaches, such clustering algorithms, improves the previous
string-matching based clone detections by introducing a code
similarity measurement and transferring the code into inter-
mediate representations (e.g. feature vectors) to detect more
code clones [9], [8], [13], [14]. However, this may cause
a considerable amount of false positives due to a smaller
code similarity threshold. Therefore, more effective code clone
detection approaches are necessary to better aid software
development process.

In this paper, we introduce a novel clone detection ap-
proach,Twin-Finder, that is designed for better security anal-
ysis in large scale systems. Our approach uses domain-specific
knowledge for code clone analysis, which can be used to detect
code clone samples spanning non-contiguous and intertwined
code base in software applications. As an example, since

pointers and pointer-related operations widely exist in real-
world applications and often cause security bugs [11], [35],
[15], detecting such pointer-specific code clones are of great
significance. We note that a similar approach could be adopted
to identify domains relating to any data-flow or control-flow
specific code.

In this work, we design and demonstrate our framework for
pointer-related code clone detection. We first perform pointer
dependency analysis using lightweight tainting to traverse the
program control flow graph and find pointer-related operations
that can affect change buffer bounds. Then, we leverage both
backward and forward program slicing to remove pointer
irrelevant codes and isolate pointers in order to find non-
contiguous and possibly intertwined pointer-related code clone
samples. By doing so, we are able to improve the number of
code clones detected, as well as the coverage of code base
with respect to finding relevant code clones that ultimately
helps with rapid security analysis. To facilitate higher code
coverage, we also explore a wide range of code similarity
threshold for the detection process.

To verify the robustness of detection, we design a clone
verification mechanism using symbolic execution (SE) that
formally verifies if the two clone samples are indeed true code
clones. We use a recursive sampling approach to randomly
divide each grouped cluster into smaller ones. We sample
each such smaller cluster of code clones and make all the
pointer related variables as symbolic variables. We then apply
symbolic execution to verify if they are true code clones, as
SE is able to symbolic execute and explore all the possible
paths to collect memory bound checking conditions. Two code
clone samples are determined as true code clone pair if they
both share the same memory safety constraints. Moreover, it
is highly likely that code clone detection algorithm can still
cause false positives. Existing works have reported that the
false positives from code clone detection are inevitable [34],
[3]. Even though deep learning-based approaches are able to
reduce a modest amount of false positives comparing to prior
works, human efforts are still needed for further verification
and tuning detection algorithms. To automate this verification
process, we introduce a feedback loop using formal analysis.
We compare the Abstract Syntax Trees (AST) representing
two code clone samples if we observe they have different
constraints. We add numerical weight to the feature vectors
corresponding to the two code clone samples, based on the
outputs from the tree comparison. Finally, we exponentially
recalculate the distances among feature vectors to reduce the
false positives admitted from code clone detection.

We have implemented a prototype of Twin-Finder with
two major modules: Domain Specific Slicing and Closed-
loop Code Clone Detection. It utilizes several open-source
tools and presents a new closed-loop operation with the

assistance of formal analysis. In particular, we use a static
code analysis tool, Joern [47] and develop a program slicing
framework. We instrument a tree-based code clone detection
tool, DECKARD [22], to detect code clones after slicing. We
employ a source code symbolic execution tool, KLEE [12],
for our clone verification and feedback to vector embedding
in previous code clone detection module.

We evaluate the effectiveness of Twin-Finder in real-world
applications, such as Links [36], thttpd [2]. For code clone
detection, we apply Twin-Finder to evaluate the number of
code clones detected against conventional code clone detection
approaches. We further construct security case studies for
vulnerability discovery. The results show Twin-Finder finds 6
unreported bugs in Links version 2.14 and one public reported
bug in libreOffice-6.0.0.1, including 3 memory leaks and 3
Null Dereference vulnerabilities. And 1 of the memory leaks
bug is silently patched in the newer version of Links. We
further compare the overhead of our clone verification module
using symbolic execution and the execution time with pure
symbolic execution over entire binary programs to find the
bugs.

The contributions of this paper are summarized as follows:

• We propose Twin-Finder a pointer-related code clone
detection framework. Twin-Finder can automatically
identify related codes from large code bases and perform
code clone detection to enable a rapid security analysis.

• Twin-Finder leverages program slicing to remove ir-
relevant codes and isolate analysis targets to find non-
contiguous and intertwined code clones so that the de-
tection can pin down just-enough information to adapt to
a specific domain.

• Twin-Finder deploys formal analysis to perform a
closed-loop operation. In particular, NAME introduces a
clone verification mechanism to formally verify if tow
clone samples are indeed clones and a feedback loop to
tune code clone detection algorithm and further reduce
the false positives.

• We implement a prototype of Twin-Finder using sev-
eral open-source tools, including Joern, DECKARD, and
KLEE. Our evaluation demonstrates that Twin-Finder,
with the optimal configuration, can detect up to 9×
more code clones comparing to conventional code clone
detection approaches.

• We conduct case studies of pointer analysis for memory
safety using real-world applications We show that using
Twin-Finder we find 6 unreported bugs in Links version
2.14 and one public patched bug in libreOffice-6.0.0.1.

The rest of this paper is structured as follows: We first list
the limitations of existing code clone detection approaches
and the key solutions of our approach. We give the overview
of Twin-Finder in Section III and introduce the designs
of Twin-Finder along with technical details in Section IV.
We evaluate its effectiveness to detect code clones in real-
world applications and conduct a case study about security
analysis in Section VI. Finally, we discuss the related work
and concludes the paper in Section VII and Section VIII
respectively.

Similarity #True Positives #False Positives %False Positives
= 1.00 1,495 0 0.00%

≥ 0.95 2,016 203 9.15%

≥ 0.90 2,637 394 13.00%

≥ 0.85 3,017 585 16.24%

≥ 0.80 3,526 903 20.75%

TABLE I: Clone statistics of true positives and false positives
detected from sphinx3 benchmark using DECKARD

II. PROBLEM STATEMENT AND MOTIVATION

A. Code Clone Detection and Challenges
Many software engineering tasks, such as refactoring, un-

derstanding code quality, or detecting bugs, require the extrac-
tion of syntactically or semantically similar code fragments
(usually referred to as “code clones”). Generally, there are
three code clone types.Type 1: Identical code fragments except
for variations in identifier names and literal values; Type 2:
Syntactically similar fragments that differ at the statement
level. The fragments have statements added, modified, or
removed with respect to each other. Type 3: Syntactically dis-
similar code fragments that implement the same functionality.

Code clone detection approaches comprise two phases in
general: (i) Transfer code into an intermediate representation,
such as tree-based clone detection declaring feature vectors
to represent code fragments [31]; (ii) Deploy suitable similar-
ity detection algorithms to detect code clones. For instance,
clustering algorithms from machine learning are widely used
in code clone detection problems [22]. Some existing code
clone detection techniques apply simple pattern matching (e.g.,
token-based code clone detection approach [4], [23], [28]) and
leverage a code similarity metric to measure the amount of
similarity between two code samples.

Assuming we want to detect code clones in for pointer-
related code clones, existing code clone detection approaches
are inefficient for this purpose, due to the considerable amount
of pointer-irrelevant codes coupled with the target pointers.
Even most advanced deep learning approaches currently fail
to extract clone samples where pointer-related codes are inter-
twined with other codes. Therefore, we need better alternatives
to the current state of the art solutions.

Another issue from current clone detection approaches is
that they cannot guarantee zero false positives. To eliminate
false positives, it always requires human efforts for further
verification. Here, we analyzed the true positives and the false
positives detected using conventional tree-based code clone
detection approach with different code similarity thresholds.
We select sphinx3 as representative applications and the results
are shown in Table I. As we can see, relaxing code similarity
threshold can benefit detection with more code clone samples.
However, the ratio of false positives also increases at the time.
If we can eliminate the false positives as many as possible,
We still can enable a better analysis with more clone samples.

B. Motivating Example
We use real-world false positive and true positive samples

in sphinx3 from SPEC2006 benchmark reported from a tree-
based code clone detector DECKARD [22] as motiving ex-
amples. First, we give the formal definition of false positive
which is defined in Definition 1.

2

1 vo id dict2pid dump (. . .) {
2 . . .
3 f o r (i = 0 ; i < mdef−>n sseq ; i ++) {
4 f p r i n t f (fp , ”%5d ” , i) ;
5 f o r (j = 0 ; j < mdef n emit s ta te (mdef) ; j ++)
6 f p r i n t f (fp , ”%5d ” , mdef−>s s eq [i] [j]) ;
7 . .
8 }
9 . .

10 }

Code fragment of function sphinx3::dict2pid dump as
pointer {mdef− > sseq} are intertwined inside of the
function

1 i n t 3 2 gc compute c loses t cw (. . .) {
2 . . .
3 f o r (code id =0; codeid< gs−>n code ; code id +=2){
4 f o r (c i d =0; cid<gs−>n f e a t l e n ; c i d ++)
5 f p r i n t f (fp , ”%5d ” , gs−>codeword [code id] [c i d]) ;
6 }
7 . . .
8 }
9 . . .

10 }

Code fragment of function sphinx3::gc compute closest cw as
pointer {gs− > codeword} are intertwined inside of the
function

Fig. 1: A true positive example

Assignment

For

BinaryOp UnaryOp Compound

FuncCall For

ID ExprList Assignment BinaryOp UnaryOp FuncCall

fprintf

ID Constant ID StructRef

int, 0i i

mdef

ID ID
n_sseq

ID
i

…… … ……

(a) AST of function sphinx3::dict2pid dump

Assignment

For

BinaryOp UnaryOp Compound

For

Assignment BinaryOp UnaryOp FuncCall

ID Constant ID StructRef

int, 0codeid codeid

gs

ID ID

n_code

ID
codeid

…… … …

(b) AST of function sphinx3::gc compute closest cw

Fig. 2: ASTs generated from the true positive example in Figure 1, where the shady nodes represent the different nodes between
two trees

1 i n t 3 2 mgau eval (. . . , i n t 3 2 ∗ a c t i v e)
2 {
3 . . .
4 f o r (j = 0 ; a c t i v e [j] >= 0 ; j ++) {
5 c = a c t i v e [j] ;
6 . . .
7 }
8 . . .
9 }

1 vo id l ex tree hmm his tb in (l e x t r e e t ∗ l e x t r e e , . . .)
2 {
3 . . .
4 f o r (i = 0 ; i < l e x t r e e−>n a c t i v e ; i ++) {
5 ln = l i s t [i] ;
6 . .
7 }
8 . . .
9 }

Code clone samples of function sphinx3::mgau eval and
sphinx3::lextree hmm histbin as pointer {active} and {list}
are intertwined inside of the functions

1 vo id fe spec magni tude (do ub l e ∗data , i n t 3 2
data len , d ou b l e ∗ spec , i n t 3 2 f f t s i z e)

2 {
3 . . .
4 IN = (complex ∗) c a l l o c (f f t s i z e , s i z e o f (complex)) ;
5 . . .
6 f o r (wrap =0; j<d a t a l e n ; wrap++ , j ++) {
7 IN [wrap] . r += data [j] ;
8 IN [wrap] . i += 0 . 0 ;
9 }

10 . . .
11 }
12 . . .
13 . . .
14 f o r (j =0; j<f f t s i z e ; j ++) {
15 IN [j] . r = data [j] ;
16 IN [j] . i = 0 . 0 ;
17 }
18 . . .
19 }

Code clone samples of function
sphinx3::fe spec magnitude as pointer {IN} are
intertwined inside of two different for loops of the
function

Fig. 3: False positive examples from sphinx3

Definition 1. False Positives. In this paper, we define as false
positives occur if a code clone pair is identified as code clones
by code clone detection, but two clone samples share different
bound safety constraints in terms of pointer analysis.

Conventional clone detections, such as combining tree-
based approach with machine learning techniques, introduce
a code similarity measurement S and transferring the code
into intermediate representations (e.g. Abstract Syntax Trees
(ASTs)) to detect more code clones. This can help to detect
clones that are not identical but still sharing a similar code
structure. Consider the true positive example in Figure 1, in
tree-based clone detection, two source files are first parsed

and converted into Abstract Syntax Trees (ASTs), where all
identifier names and literal values are replaced by AST nodes.
For example, the initialization and exit conditions in for loops
are replaced as Assignment, BinaryOp, UnaryOp and so
on. Then a tree pattern is generated from post-order tree
traversal. After, a pairwise tree pattern comparison can be
used to detect such clones. In Figure 2 we plot the ASTs
for these two clone samples correspondingly. Both ASTs
share a common tree pattern with only three different nodes
appeared in the first code sample. However, more advanced
clone detection approaches have been proposed, which can
be summarized into two methods: graph matching-based and

3

Assignment

For

BinaryOp UnaryOp Compound

ID Constant ArrayRef Constant ID

j int, 0 int, 0

ID ID

jactive

j

Assignment

ID ArrayRef

ID ID

active j

c

(a) AST of function sphinx3::mgau eval

Assignment

For

BinaryOp UnaryOp Compound

ID Constant ID StructRef ID Assignment

ID ArrayRef

ID ID

int, 0i i

lextree

i

ln

list i

ID ID
n_active

(b) AST of function sphinx3::lextree hmm histbin

Fig. 4: ASTs generated from the firste false positive example in Figure 3, where the shady nodes represent the different nodes
between two trees

deep neural network (DNN)-based approach. Unfortunately,
they still have inevitable drawbacks. First, given two pieces of
code which differ in only a few statements but with the similar
control flow, in the graph matching-based clone detection,
they may be considered as similar, since the majority of the
code is identical. On the other hand, current DNN-based clone
detection is only used to detect identical code clone (e.g., with
code similarity S = 1.0). Thus, if the similarity threshold is
set as S < 1.0, the outputs will be similar to traditional tree-
based/token-based approach. It is clear to see that the first
code sample has an extra function call fprintf comparing to the
second code sample. If we relax the code similarity threshold,
these two code samples are identified code clones.

To proceed with a dependency anal-
ysis process, variables{i, j,mdef− >
n sseq,mdef n emit state(mdef)} are identified as
pointer-related variables (that can potentially affect the value
of pointers) for target pointer {mdef− > sseq} in the first
example (second code example is applied with the same
procedure). However, fprintf cannot affect any values of those
variables. Thus, the bound safety conditions can be simply
derived as these two equations.

{i < length(mdef− > sseq)} ∧ {j < length(∗mdef− > sseq)} (1)

{codeid < length(gs− > codeword)} ∧ {cid < length(∗gs− > codeword)} (2)

respectively. As we can see, they are identical because the
conditions differ only in variable names. Thus, they are true
positives as they share the same pointer safety conditions.

Even though a relaxed code similarity is able to detect
such clones, it can also introduce a considerable amount of
false positives. Figure 3 illustrates two false-positive examples
detected in sphinx3 from SPEC2006 benchmark. For the first
example (showing on the left-hand side of the figure), two for
loops are identified as code clones (line4-5 and line 15-16)
under a certain code similarity threshold. Figure 4 shows the
ASTs generated from those two code samples respectively. As
we can see, they indeed share a common tree pattern but with 2
different nodes in shady color. Even though they are not iden-
tical, they still can be identified as similar looking code clones
if we relax the code similarity threshold. Similarly, the second
example (showing on the right-hand side) are sharing a similar
code structure but differs only in identifier names. Thus, they
can also be identified as code clones. Assuming the target
pointers for analysis are active and list in the first example,
we first to obtain pointer related variables through dependency
analysis. It is easy to see that a solely variable j is related to
pointer active but two variables {i, lextree− > n active}
are related to list. Thus, the bound safety conditions are

deemed different. As mentioned in Definition 1, these two
code clones will be defined as false positives since they do
not share the same safety conditions. In the second example,
the same dependency analysis procedure is deployed. Variables
{wrap, j, data len} are identified as pointer related variables
in the first for loop (line6-9) and {j, fftsize} are related
to second for loop (line14-17), they are also false positives
which are similar to the first example. One of the reasons to
cause false positives in both cases are relaxed code similarity
threshold to seek non-identical code clones.

To formally verify if two code clones are true positives or
false positives, symbolic execution can be applied to obtain
memory safety conditions for further condition comparison.
First, all pointer related variables of target pointers are made
as symbolic variables. Symbolic execution can execute for
each pointer dereference and generate array bounds safety
conditions. To further eliminate false positives, in this paper,
we propose a feedback loop to clone detection module through
formal analysis. Once a false positive occur, we compare the
ASTs representing two clone samples to find the different
nodes and add numerical weight to those nodes so that we can
recalculate the code similarity between two trees to reduce the
false positives admitted from code clone detection. For exam-
ple, we note that the different nodes are {ID, StrucRef} and
{ArrayRef, Constant} for the example showing in Figure 4
respectively. Then we can simply add weight to each of those
nodes. With a fixed code similarity, those two code samples
will be eliminated in the future.

III. APPROACH OVERVIEW

In this section, we give an overview of our framework.
Two main components of Twin-Finder are shown in Figure 5,
namely Domain Specific Slicing and Closed-loop Code Clone
Detection.

Domain Specific Program Slicing: We use tainting as
a flexible mechanism to identify user-defined domains for
further analysis. For a demonstration in this paper, we will use
pointer analysis as the domain of interest. For a given program
source code, Twin-Finder first generates dependency graph
based on data and control information and uses a lightweight
tainting approach to traverse the graph and find pointer related
variables (such as array index). We then utilize program slicing
to isolate pointers and the corresponding related statements.

Closed-loop Code Clone Detection: After we generate
pointer isolated code (containing pointers and their related
code by including all of the variables and statements that affect
them), code clone detection algorithm is applied to identify
code clone samples. Toward this, we first generate Abstract
Syntax Trees (AST) for each code fragment and transform

4

Isolated
Code

Program
Slicing

Code Clone
Detection

Clone Verification using
Symbolic Execution

Feedback to Vector Embedding

Cluster

Clone2
Clone1

CloneN

Closed-loop Code Clone DetectionDomain Specific Slicing

Recursive
SamplingSource Code

Fig. 5: Approach Overview

such ASTs into feature vectors, embed them into vector
space and use clustering algorithm from machine learning
to find code clones. Note that we also use various code
similarity thresholds to further increase the number of detected
code clones(Section IV-B). A key distinguishing feature of
our approach compared to prior work lies in improving the
robustness of code clones detected through formal methods for
verification. In particular, we use symbolic execution to verify
whether the code clones grouped in the same clusters are in-
deed clones with respect to memory safety (that is, the pointer
access is within legal array bounds). We define two clones are
true clones only if they have the same array bound constraints
(formed using pointer-affecting variables in the program code).
We propose a recursive sampling mechanism for the clone
verification and the process is performed as follows: In order to
improve the analysis coverage among all the code clone pairs,
we first randomly divide each cluster into smaller clusters. We
then sample each such smaller cluster of code clones and apply
symbolic execution to verify whether two clone samples share
the same memory safety constraints derived using symbolic
executors. We note that code clones within the same cluster
may potentially have different constraints stemming from
variables that affect their values. We consider such clones as
false positives introduced by code clone detection algorithm.
If the selected clone samples are falsified by formal analysis,
we enable a formal feedback mechanism to tune the feature
vector weights accordingly to eliminate such false positives
from occurring again. Section IV-C describes our design of
this module.

IV. SYSTEM DESIGN

In this section, we present details of our Twin-finder and
show how our system is designed.

A. Domain Specific Slicing
For pointer analysis, we aim to analyze each pointer in the

program to ensure there is no issue like memory violation.
Thus, only some certain types of variables are related to
the target pointer for further consideration, which can affect
the base, offset or bound information of this pointer (such
as array index, pointer increment and other similar types of
variables). Here, we name such variables as pointer-related
variables. In this paper, we use dependency analysis to find
such pointer-related variables for each pointer on a function-
level granularity. Then, we deploy both forward and backward
program slicing to select related statements containing pointer
and pointer-related variables.

Analyzing only pointers in the programs requires unrelated
codes to be discarded automatically. However, this selection
of relevant codes requires the knowledge of control flow and
dependency of data between pointer-related variables to be
taken into account. To address this problem, Twin-Finder first
performs dependency analysis of the code and deploy program
slicing to isolate pointer related code in four steps:

1) Pointer Selection. Given a source code of a program, we
utilize the static code analysis to select all the pointers and
collect related information from the code, including vari-
able name, pointer declaration type (e.g. global variables,
local variables or structures) and the location in the code
(defined and used in which function). In particular, we use
a program parser ANTLR[32] and a static code analysis
tool Joren [47] to analyze program syntax. The types of
selected pointers consist of the pointers/arrays defined
as local/global variables, the elements of structures and
function parameters. We generate a pointer list for each
program through such pointer selection process, denoted
as PtrList = {p1, p2, . . . , pm}, where pi represents a
target pointer for further analysis (for i = 1, . . . ,m).

2) Dependency Analysis and Lightweight Tainting A
directed dependency graph DG = (N , E) is created for
each pointer pi within the function where it is originally
declared. The nodes of the graph N represent the identi-
fiers in the function and edges E represent the dependency
between nodes, which reflects array indexing, assign-
ments between identifiers and parameters of functions.
As soon as the dependency graph is constructed, we
start with the target pointer pi and traverse the depen-
dency graph to discover all pointer-related variables in
both top-down and bottom-up directions. This tainting
propagation process stops at function boundaries. In the
end, we generate the pointer-related variable list pi =
{v1, v2, . . . , vn}, where vi represents a pointer-related
variable for pointer pi.

3) Isolating Code through Slicing. After we obtain all
the target pointers and their corresponding pointer-related
variables, we use both forward and backward program
slicing to isolate code into pointer-isolated code. Given
a pointer-related variable list V = {v1, v2, . . . , vn} for a
target pointer pi, we first make use of backward slicing:
we construct a backward slice on each variable vi ∈ V
at the end of the function and slice backwards to only
add the statements into slice iff there is data dependency
as vi is on left-hand side of assignments or parameter of
functions, which can potentially affect the value of vi,
in the slice. For example, a line of statement vi = x

5

will be kept, but y = vi will be removed since it cannot
change the value of vi. Whenever vi is in a loop (e.g.
while/for loop) or if − else/switch branches, forward
slicing is then used to add those control dependency
statements to the slice. After performing program slicing,
we are able to isolate one single function into several
pointer separated functions. For instance, if there are
10 pointers in one function, then there should be 10
pointer isolated functions derived from this function. Note
that it is possible that one statement involves multiple
pointers, this type of statements will be selected in all the
involved pointers. In additions, we also need to preserve
the locations (e.g. line of code) of any selected statements
in the original source code for further analysis.

B. Code Clone Detection

Twin-Finder leverages a tree-based code clone detection
approach, which is originally proposed by Jiang et al. [22]. It
produces the Abstract Syntax Tree (AST) representation of the
source program to detect code clones by comparing subtrees in
ASTs with a specific similarity metric. AST is commonly used
tree representation by compilers to abstract syntactic structure
of the code and to analyze the dependencies between variables
and statements. The source code can be parsed by using the
static code analysis mentioned in Section IV-A and generate
AST correspondingly. Here, we adopt the notions of code
similarity, feature vectors and other related definitions from
previous works [10], [22]. We deploy such method on the
top of our domain specific slicing module to only detect code
clones among pointer isolated codes.

1) Definitions: We first formally give the several definitions
used in our code clone detection module.

Definition 2. Code Similarity.
Given two Abstract Syntax Trees (AST) T1 and T2, which are

representing two code fragments, the weighted code similarity
S between them is defined as:

S(T1, T2) =
2S

2S + L+R
(3)

S is the number of shared nodes in T1 and T2; {L :
[t1, t2, .., tn], R : [t1, t2, .., tm]} are the different nodes be-
tween two trees, where ti represents a single AST node.

Definition 3. Feature Vectors. A feature vector V =
(v1, v2, ..., vn) in the Euclidean space is generated from a
sub-AST, corresponding to a code fragment, where each vi
represents a specific type of AST nodes and is calculated by
counting the occurrences of corresponding AST node types in
the sub-AST. More details related to AST nodes types can be
found in [8].

Given an AST tree T , we perform a post-order traversal of
T to generate vectors for its subtrees. Vectors for a subtree are
summed up from its constituent subtrees. Example. The feature
vector for the code fragment of function sphinx3::mgau eval,
mentioned in Section II-B, is < 7, 2, 2, 2, 0, 1, 1, 1, 1 > where
the ordered dimensions of vectors are occurrence counts of
the relevant nodes: ID, Constant, ArrayRef, Assignment,
StrucRef, BinaryOp, UnaryOp, Compound, and For.

2) Clone Detection: Given a group of feature vectors,
we utilize Locality Sensitive Hashing (LSH) [16] and near-
neighbor querying algorithm based on the euclidean distance
between two vectors to cluster a vector group, where LSH
can hash two similar vectors to the same hash value and helps
near-neighbor querying algorithm to form clusters [22], [20].
Suppose two feature vectors Vi and Vj representing two code
fragments Ci and Cj respectively. The code size (the total
number of AST nodes) are denoted as S(Ci) and S(Cj).
The euclidean distance E([Vi;Vj]) and hamming distance
H([Vi;Vj]) between Vi and Vj are calculated as following:

E([Vi;Vj]) = ||Vi − Vj ||22 (4)

H([Vi;Vj]) = ||Vi − Vj ||1 (5)

The threshold used for clustering can be approximated using
the euclidean distance and hamming distance between two
feature vectors for two ASTs T1 and T2 as following:

E([Vi;Vj]) ≥
√
H([Vi;Vj]) ≈

√
L+R (6)

Based on the definition from Equation 2, we can derive that√
L+R =

√
2(1− S)× (|T1|+ |T2|), where (|T1|+ |T2|) ≥

2×min(S(Ci), S(Cj)). Then, the threshold for the clustering
procedure is defined as:

T =
√
2(1− S)×min(S(Ci), S(Cj)) (7)

Then, given a feature vector group V , the threshold can be
simplified as 2(1−S)×minv∈V ∈ S(v), where we use vector
sizes to approximate tree sizes. The S is the code similarity
metric defined from Equation 2. Thus, code fragments Ci and
Cj will be clustered together as code clones under a given
code similarity S if E([Vi;Vj]) ≤ T .

C. Clone Verification

To formally check if the code clones detected by Twin-
Finder are indeed code clones in terms of pointer memory
safety, we propose a clone verification mechanism and utilize
symbolic execution as our verification tool.

There are three phases of clone verification: (1) Recur-
sive sampling code clones in clusters;(2) Deploy symbolic
execution and constraints solving for clone verification; (3)
A feedback mechanism to vector embedding in previous
code clone detection module to improve the correctness of
clustering algorithm and eliminate false positives.

1) Recursive Sampling: To improve the coverage of code
clone samples in the clusters, we propose a recursive sampling
procedure to select clone samples for clone verification.

First, we randomly divide one cluster into several smaller
clusters. Then we pick random code clone samples from
each smaller cluster center and cluster boundary. After, we
employ symbolic execution in selected samples for further
clone verification. Note that the code clone samples are pointer
isolated code generated from program slicing. Since symbolic
execution requires the code completeness, we map the code
clone samples to the original source code locations to perform
partial symbolic execution.

6

2) Clone Verification: Clustering algorithm cannot offer
any guarantees in terms of ensuring safe pointer access from
all detected code clones. It is possible that two code fragments
are clustered together, but have different bound safety condi-
tions, especially if we use a smaller code similarity. To further
improve the clone detection accuracy of Twin-finder we design
a clone verification method to check whether the code clone
samples are true clones.

Let X = {p1, p2, ..., pn} be a finite set of pointer-related
variables as symbolic variables, while symbolic executing
a program all possible paths, each path maintains a set
of constraints called the path conditions which must hold
on the execution of that path. First, we define an atomic
condition, AC(), over X is in the form of f(p1, p2, ..., pn),
where f is a function that performs the integer operations on
O ∈ {>,<,≥,≤,=}. Similarly, a condition over X can be a
Boolean combination of path conditions over X .

Definition 4. Constraints. An execution path can be repre-
sented as a sequence of basic blocks. Thus, path conditions
can be computed as AC(b0)∧AC(b1)...∧AC(bn) where each
AC(bi) in AC() represents a sequence of atomic condition
in the basic block bn. For the case of involving multiple
execution paths, the final constraints will be the union of all
path conditions.

Example. Back to the example mentioned in Figure 1. The
code fragment of function sphinx3::dict2pid dump includes
two for loops, representing two basic blocks (b1, b2). Thus,
there are two paths in this code fragment. For the first
for loop, we can derive an atomic condition AC(b1) =
{i < length(mdef− > sseq)}. Similary, we can get the
second condition of the second for loop as AC(b2) = {j <
length(∗mdef− > sseq)}. Finally, the path conditions for
this code can be computed as AC(b1) ∧AC(b2).

Give a clone pair sampled from the previous step, we
perform symbolic execution from beginning to the end of
clone samples in original source code based on the locations
information (line numbers of code). The symbolic executor is
used to explore all the possible paths existing in the code
fragment. To deal with possibly incomplete program state
while performing partial symbolic execution, we only make
the pointer-related variables in such code fragment as symbolic
variables. We collect all the possible constraints(defined in
Definition 4) for each clone sample after symbolic execution
is terminated.

Then the verification process is straightforward. A constraint
solver can be used to check the satisfiability and syntactic
equivalence of logical formulas over one or more theories.
In specific, the current state-of-art symbolic execution ap-
proaches, such as KLEE [12], use SMT-Lib string constraints
format with BitVector theory [7], [19]. The operations in
BitVector theory are modeling array and variables on bit-
vectors instead of integer values. For example, (declare −
fun a() (Array(BitV ec32)(BitV ec8))) stands for an
array with symbolic variable name a, total length as 32 bits
and return value as 8 bit long. Thus, this array has 32/8 = 4
elements (Here, we omit the details of BitVector theory as this
is not the focus of this verification process.)

The steps of this verification process are summarized as
follows:

• Variables Matching: To verify if two sets of constraints
are equal, we omit the difference of variable names.
However, we need to match the variables between two
constraints based on their dependency of target pointers.
For instance, two pointer dereference a[i] =′ A′ and
b[j] =′ B′, the indexing variables are i and j respectively.
During symbolic execution, they both will be replaced
as symbolic variables, and we do not care much about
the variables names. Thus, we can derive a precondition
that i is equivalent to j for further analysis. This prior
knowledge can be easily obtained through dependency
analysis mentioned in Section 4.

• Simplification: Given a memory safety condition S, it
can contain multiple linear inequalities. For simplicity,
the first step is to find possibly simpler expression S′,
which is equivalent to S. For example, a linear inequality
(x − n < 0) ∧ (x − z > 0), after simplification, we can
get (z < x < n).

• Equivalence Checking:To prove two sets of constraints
S1 == S2 ,we only need to prove the negation of S1 ==
S2 is unsatisfiable.

Example. Assuming we have two sets of constraints, S1 =
(x1 ≥ 4) ∧ (x2 ≥ 5) and S2 = (x3 ≥ 4) ∧ (x4 ≥ 5), where
x1 is equivalent to x3 and x2 is equivalent to x4. We then can
solve that Not(S1 == S2) is unsatisfiable. Thus, S1 == S2.

D. Formal Feedback to Vector Embedding

Algorithm 1 Algorithm for Feedback to Vector Embedding

1: Input:: Code Clone Samples Ci, Cj

2: Corresponding AST sub-trees: Si, Sj

3: Corresponding Feature Vectors: Vi, Vj
4: Current Code similarity threshold: S
5: Longest Common Subsequence function: LCS ()
6: Output:: Optimized Feature vectors: Oi, Oj

7: Initialization:
8: Oi, Oj = Vi, Vj
9: D = LCS(Si, Sj)

10: if Ci and Cj share same constraints then
11: Si = RemoveSubtrees(Si −D)
12: Sj = RemoveSubtrees(Sj −D)
13: On∈{i;j} = V ectornize(Sn∈{i;j});
14: else
15: T=[]
16: Uncommon Subtrees = (Si −D) + (Sj −D)
17: T.append(Uncommon Subtrees)
18: for t in T do
19: if EuclideanDistance(Oi, Oj) < S then
20: break;

21: t = d.index
22: On∈{i;j}[t] = On∈{i;j}[t] ∗ δ; where δ > 1.0

While using the formal method to verify if the two clone
samples are true clones, we provide a feedback process to
the vector embedding in code clone detection to reduce
false positives. Since the code clone detection is based on
the euclidean distance between data pointson over a code
similarity threshold, the feedback is a mechanism to tune the
feature vectors weights. Based on the constraints we obtained

7

from symbolic execution, we are able to determine which
type of variables or statements causing different constraints
between two clone samples. We use such information to guide
feedback to vector embedding in clone detection module. Now
we describe a feedback mechanism to vector embedding in
code clone detection if we observe false positives verified
through the execution in Section IV-C2.

The general idea of our feedback is that we analyze the
difference between two ASTs by comparing two trees and find
the differences in between. Then we add numerical weights
to the feature vectors of two code clones to either increase
or decrease the distance between them based on the outputs
from the clone verification step. Once the weight is added,
we re-execute the clustering algorithm in code clone detection
module over the same code similarity threshold configuration.
Note that this procedure can be executed in many iterations
as long as we observe false positives from clone verification
step. Furthermore, we can expect that such false positives are
eliminated due to unsatisfied vector distance and out of cluster
boundary.

To tune and adjust the weights in the feature vectors, we
design an algorithm for our feedback. Algorithm 1 shows the
steps of feedback in details. Given a code similarity threshold
S, It takes two clone samples (Ci, Cj), corresponding AST
sub-trees (Si, Sj) and feature vectors (Vi, Vj) representing
two code clones as inputs (line 1-4 in Algorithm 1), and we
utilize a helper function LCS() to find the Longest Common
Subsequence between two lists of sub-trees.

When the code clone samples are symbolically executed, we
start by checking if the constraints, obtained from previous
formal verification step, are equivalent. Then the feedback
procedure after is conducted as two folds:

(1) If they indeed share the same constraints, we remove
the uncommon subtrees (where can be treated as numerical
weight as 0) as we now know they will not affect the output
of constraints (line 10-13). This process is to make sure the
remaining trees are identical so that they will be detected as
code clone in the future.

(2) If they have different constraints, we obtain the uncom-
mon subtrees from (Si, Sj)(line 15-17) and add numerical
weight, δ > 1.0, one by one. In terms of the evolution of
the weight adjustment,each dimension in the feature vectors
represents a specific type of AST nodes and is the occurrences
of this node type. Thus, we iterate the list and we trace back to
the vector using the vector index to adjust by multiplying the
weight weight δ for that specific location correspondingly (line
18-22). We initialize the weight δ as a random number which
is greater than 1.0 and re-calculate the eucildean distance
between two feature vectors. We repeat this process until the
distance is out of current code similarity threshold S (line 19-
20). This is designed to guarantee that these two code samples
will not be considered as code clone in the future. Finally, the
feedback can run in a loop fashion to eliminate false positives.
The termination condition for our feedback loop is that no
more false positives can be further eliminated or observed.

Example: Here, we give an example to illustrate how our
formal feedback works. We use the false positive example
showing in Figure 4. As we have described in Section II-B,
these two trees share a common tree pattern but with 2
different nodes (showing in shady color) out of 17 total nodes.
Assuming the feature vectors are < 7, 2, 2, 2, 0, 1, 1, 1, 1 >

and < 8, 1, 1, 2, 1, 1, 1, 1, 1 > respectively, where the ordered
dimensions of vectors are occurrence counts of the relevant
nodes: ID, Constant, ArrayRef, Assignment, StrucRef,
BinaryOp, UnaryOp, Compound, and For. Based on the
threshold defined in equation 6, these two code fragments
will be clustered as clones when S = 0.75. During the
feedback loop, we first identify these 2 different nodes in
each tree by finding the LCS. Assuming we initial the weight
δ = 2 and add it to the corresponding dimension in the
feature vectors, we can obtain the updated feature vectors
as < 7, 1 + 1 × δ, 1 + 1 × δ, 1 + 1 × δ, 0, 1, 1, 1, 1 > and
< 7 + 1 × δ, 1, 1, 2, 1 × δ, 1, 1, 1, 1 >. We then re-calculate
the eucildean distance of these two updated feature vectors,
and they will be no longer satisfied within the threshold√
2(1− S)×min(S(Ci), S(Cj)). Thus, we can eliminate

such false positives in the future.
It is also worth mentioning that our feedback algorithm

has enabled a closed-loop learning-based operation to improve
the scalability of our pointer-related code clone detection
framework. Because this method adds benefits from formal
analysis and can significantly reduce the false positives without
human efforts involved. Here, we use pointer analysis as an
example to explain our framework. In addition, our feedback
algorithm can be adjusted to different domains with user-
defined policies.

V. IMPLEMENTATION

This section discusses our implementation of Twin-Finder
and how we integrate the tools we used.

Program Slicing: We instrument a static code analysis tool,
Joern [47], for our program slicing module. Joern is able
to store code property graphs (like ASTs) in a Neo4J graph
database [38], here we call it AST database, for user to write
their own scripts to do static code analysis. We develop a
python script to build ASTs for each function and construct
dependency graphs. After, we store them into Neo4J graph
database for further analysis. As Joern cannot store the source
code location information, such as which lines these statements
is from in the source code. We instrument Joern to include
additional information for a certain statement using a C++
script, including file path along with code line number, so
that we can trace back to source code after we perform static
program slicing to isolate original source code into pointer
isolated functions.

Code Clone Detection: DECKARD [22], a static Code
Clone Detection tool, is used for code clone detection in Twin-
Finder. DECKARD is a tree-based code clones detection tool
that computes certain characteristic vectors within code parse
trees and then clustering these vectors depending on their
Euclidean distances. We instrumented DECKARD interfaced
with our program slicing module to automate the clone detec-
tion process.

Clone Verification: We instrument a source code symbolic
execution tool, KLEE [12] and SMT solver Z3 [51] for our
clone verification module. We first develop a python script
to automatically add codes into the pointer isolated code
fragments and make pointer-related variables symbolic using
KLEE provide library function. We then deploy the symbolic
executor in KLEE for a target location to start performing
symbolic execution in the source code, beginning with the

8

starting line of code and execute till the ending line of code
in the code fragment. Finally, we implemented our feedback in
also python based on the algorithm proposed in Section IV-D.

VI. EVALUATION

This section presents a detailed evaluation results of
Twin-Finder against a tree-based code clone detection tool
DECKARD [22] in terms of code clone detection, and conduct
several case studies for applications security analysis.

A. Experiment Setup

We performed empirical experiments on Twin-FinderẆe
selected 7 different benchmarks from real-world applica-
tions: bzip2, hmmer and sphinx3 from SPEC2006 bench-
mark suite [1]; man and gzip from Bugbench [30];
thttpd-2.23beat1 [2], a well-known lightweight sever and a
lightweight browser links-2.14 [36]. All experiments are per-
formed on a 2.54 GHz Intel Xeon(R) CPU E5540 8-core server
with 12 GByte of main memory. The operating system is
ubuntu 14.04 LTS.

To configure DECKARD, we used the parameter settings
proposed by Jiang et al. [22], setting minimum token number
(minT) as 20, stride to infinite, and code similarity is set
between 0.70 and 1.0.

B. Code Clones Detection

Benchmark Program Size #Code clones #Code clones % Code clones
(LoC) without slicing and feedback Our approach

bzip2 5,904 432 1,084 150.92%

sphinx3 13,207 1,047 3,546 238.68%

hmmer 20,721 1,238 4,391 254.68%

thttpd 7,956 611 1,398 128.80%

gzip 5,225 36 365 913.89%

man 3,028 47 443 842.55%

links 178,441 3,007 9,809 226.21%

TABLE II: Comparison of number of code clones detected
before and after using our approach

Benchmark
Pointer related Code

LoC
Clone Detection w/ DECKARD Clone Detection w/ Our Approach

Cloned LoC % Cloned LoC # D.S LoC % D.S LoC

bzip2 3,279 1,066 32.51% 2,038 62.15%

sphinx3 9,519 3,073 32.28% 7,224 75.89%

hmmer 11,635 3,163 27.19% 6,929 59.55%

thttpd 4,390 1,279 29.13% 2,267 51.64%

gzip 2,289 219 9.57% 919 40.15%

man 1,683 248 14.74% 826 49.08%

links 28,334 6,429 22.69% 18,334 64.71%

TABLE III: Comparison of code clone coverage between
DECKARD and our approach

We measure code clone quantity by the number of code
clones that are detected before and after we use Twin-Finder
for pointer analysis purpose. We conduct two experiments in
terms of the following: code clones quantity, the flexibility of
code similarity configuration and false positives analysis.

1.00 0.95 0.90 0.85 0.80 0.75 0.70
0

500

1000

1500

2000

T
ru

e
C

od
e

C
lo

ne
s

0

5

10

15

20

25

30

35

40

45

Fe
ed

ba
ck

It
er

at
io

ns

(a) thttpd

1.00 0.95 0.90 0.85 0.80 0.75 0.70
0

2000

4000

6000

8000

10000

12000

T
ru

e
C

od
e

C
lo

ne
s

0

5

10

15

20

25

30

35

40

45

50

55

Fe
ed

ba
ck

It
er

at
io

ns

(b) links

Fig. 6: The amount of code clones detected in thttpd and links
from Twin-Finder with the number of iterations for feedback
until converge after relaxing the code similarity from 0.70 to
1.00

Benchmark
True Code Clones # Feedback Iterations

S = 1.0 S = 0.90 S = 0.80 S = 1.0 S = 0.90 S = 0.80

bzip2 683 858 1,084 1 5 10

sphinx3 1,495 2,645 3,546 3 10 16

hmmer 2,725 3,760 4,391 4 12 21

man 102 265 443 1 5 12

gzip 66 183 365 1 4 11

TABLE IV: Statistics of code clones detected from Twin-
Finder with the number of iterations for feedback until
converge where S is the code similarity

We evaluated the effectiveness of Twin-Finder to show the
optimal results Twin-Finder are able to achieve. The code
similarity is set as 0.80 with feedback enabled to eliminate
false positives until converge (no more false positives can be
observed or eliminated) in the first experiment. Table II shows
the size of the corresponding percentage of more code clones
detected using our approach. As we can see, the results show
that Twin-Finder is able to detect 393.68% more code clones
in average compared to the clone detection without slicing and
feedback, with the lowest as 128.80% in thttpd and highest up
to 913.89% in gzip. Note that our approach achieves the best
performance in two smaller benchmark gzip and man. That is
because the number of identical code clones is relatively small
in both applications (36 in gzip and 47 in man respectively).
While using our approach, we harness the power of program
slicing and feedback using formal analysis, which allows us
to detect more true code clones.

Furthermore, we add an additional experiment to address
the clone coverage. The goal for clone coverage is, with
our optimal configuration, what fraction of a program is
detected as cloned code. In this case, we only evaluated the
coverage of code clones detected in terms of pointer-related
code. We measured the total number of pointer-related code
lines cross the entire program and the detected clone lines
using DECKARD and our approach as shown in Table III. It
presents the total detected pointer related cloned lines, named
as Domain Specific LoC (D.S LoC), using our approach. The
percentage of D.S LoC ranges from 40.15% to 75.89%, while
for DECKARD the number ranges from 9.57% to 32.51%. The
results show It is difficult to directly compare the coverage
for different applications, because such results are usually
sensitive to: (1) the type of application, such as sphinx3 has
intensive pointer access, thus it has the highest clone coverage
using our approach; (2) the different configurations may lead

9

to different results, since here we set up code similarity as
0.80. However, this experiment is to show that there is a
considerable amount of code clones in large code bases in
general and our approach can effectively detect such clones
and outperforms previous approaches.

In the second experiment, we relaxed the code similarity
threshold from 0.70 to 1.00 to show our approach is capable
to detect many more code clones within a flexible user-defined
configuration. However, it is reasonable to expect more false
positives to occur while we are using smaller code similarity.
Moreover, we implemented our code clone detection based on
DECKARD, which is a syntax tree-based tool and may report
semantically different but syntactically similar code as clones
causing more false positives. Note that false negatives occur if
tow clone samples have different constraints but are actually
the same expression after being solved by the constraint solver.
However, false negatives only result in actually true clones
being missed by Twin-Finder and are not critical in security
perspective. Thus, we do not evaluate Twin-Finder for false
negatives in our study.

To tackle such false positives issue, we enabled a closed-
loop feedback to vector embedding as mentioned in the previ-
ous section. Thus, we analyzed the effectiveness of our feed-
back mechanism in terms of eliminating the false positives.
In this experiment, we applied our feedback as soon as we
observed two code clone samples having different constraints
obtained from symbolic execution through our clone verifica-
tion process. We executed several iterations of our feedback
until the percentage of false positives converged (no more false
positives can be eliminated or observed). Figure 6 presents the
number of true code clones detected in thttpd and links from
our approach (drawn as red line in each figure) and the number
of iterations for feedback needed to converge (shown as the
bar plot in each figure) correspondingly. We also repeated the
same experiments with three different code similarities setups
in other smaller benchmarks. Table IV shows the results. As
expected, it takes more iterations for the feedback to converge
with smaller code similarity among all benchmarks, and we
are still able to detect more true code clones while we reduce
the code similarity. However, the results show there is no
significant improvement in terms of the number of true code
clones increased after code similarity is set as smaller than
0.80. As mentioned in previous section, the code similarity is
defined as S(T1, T2) = 2S

2S+L+R , where S is the number of
shared AST nodes in T1 and T2, L and R are the different
nodes in two code clone samples. At least 20% of the AST
nodes are different while the code similarity equal to 0.80.

C. Feedback for False Positives Elimination

We analyzed the number of false positives that could be
eliminated by our approach. Here, we chose bzip, thttpd
and Links as representative applications to show the results.
Figure 7 presents the accumulated percentage of false posi-
tives eliminated by Twin-Finder in each iteration with Code
Similarity set to 0.7. Here, we are able to eliminate 99.32%,
89.0%, and 86.74% of false positives in bzip2, thttpd and Links
respectively.

The results show our feedback mechanism can effectively
remove the majority of false positives admitted from code
clone detection. The performance of our feedback is sensitive

0%

20%

40%

60%

80%

100%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Interations

bzip2 thttpd links

Fig. 7: Accumulated percentage of false positives eliminated
by Twin-Finder with code similarity set to 0.70

to different programs due to different program behaviors and
program size. As the results show, more feedback iterations
are needed for larger program in general (e.g. 26 iterations
for bzip2 to converge while 48 iterations for Links, as Links
is much larger than bzip2). On the other hand, the number
of iterations can also be affected by our clone verification
module since we use random sampling approach. Based on the
experiment results, we cannot normalize a common removal
ratio pattern cross different programs. For instance, 29.83% of
false positives can be eliminated at the first iteration for bzip2,
the number is only 13.35% for thttpd instead. Finally, our
feedback may not be able to remove 100% of false positives,
that is because there are several special cases that we cannot
remove them using current implementation, such as multiple
branches or indirect memory access with the value of array
index derived from another pointer.

D. Bug findings

One benefit of our approach is to use a clone-based approach
to enable a rapid security analysis. In this experiment, we
use Twin-Finder to detect potential vulnerabilities existing in
the applications. We use Links version 2.14 and LibreOffice
version 6.0.0.1 as representative benchmarks. In particular, we
discovered 6 unique and unreported bugs in Links, including 3
memory leaks and 3 null dereference vulnerabilities. five out
of six of the bugs have not been found before, and one of
the memory leaks bug has been silently patched in the newer
version of Links.

Table V shows the details of these bugs found by our
method. Here we show three types of bug examples, null
dereference bugs, memory leak and buffer overflow.

1) Links Case Study: In the first case study, we employ
Twin-Finder to uncover vulnerabilities in Links, a lightweight
browser. The results show Twin-Finder finds 6 unreported
bugs in Links version 2.14, including 3 memory leaks and 3
Null dereference vulnerabilities. And 1 of the memory leaks
bug is silently patched in the newer version of Links.

As an example, let us consider the function
get language from lang shown in Figure 8. This function
is implemented as setting language from local serves.
This function provides an illustrative example because the
programmer confirms that the stracpy requires validation
in the comment on line 5 The stracpy function in line 4 is

10

Bug Type Source File Function Name Pointer Name Bug Report Exploitation

Null Dereference Links-1.4/language.c get language from lang lang Not Reported All three cases use memory allocation functions, which can be return

NULL to indicate an error status. When this error condition is not checked, a NULL pointer dereference can occur.Null Dereference Links-1.4/language.c get language from lang p Not Reported

Null Dereference Links-1.4/connect.c make connection host Not Reported
This function is being called in a for loop to construct network connection, which

can potentially be frequently called and overflow the memory space.

Memory Leak Links-1.4/ftp.c ftp logged rb Not Reported
All those three functions use dynamic allocations, however

never free after.
Memory Leak Links-1.4/bfu.c do tab compl items->text Silently patched

Memory Leak Links-1.4/terminal.c add empty window ewd Not Reported

Buffer Overflow
libreoffice-6.0.0.1/sw/source/filter

/ww8/ww8toolbar.cxx
SwCTBWrapper::Read rCustomizations Publicly patched This is a heap buffer overflow, which has been reported by CVE-2018-10120

TABLE V: Using our approach to test Links-1.4 and libreoffice-6.0.0.1

1 i n t get language from lang (u n s i g n e d c h a r ∗ lang)
{

2 u n s i g n e d c h a r ∗p ;
3 i n t i ;
4 lang = s t r a c p y (lang) ;
5 / / Uncheck t h e memory a l l o c a t i o n
6 lang [s t r c s p n (c a s t c o n s t c h a r lang , ” .@”)] = 0 ;
7 i f (! casestrcmp (lang , cas t uchar ”nn NO”))
8 s t r c p y (c a s t c h a r lang , ” no ”) ;
9 . . .

10 search aga in ;
11 f o r (i = 0 ; i < n languages () ; i ++) {
12 p = cas t uchar t r a n s l a t i o n s [i] . t [

T ACCEPT LANGUAGE] . name ;
13 i f (! p)
14 c o n t i n u e ;
15 p = s t r a c p y (p) ;
16 / / Uncheck t h e memory a l l o c a t i o n
17 p [s t r c s p n (c a s t c o n s t c h a r p , ” , ; ”)] = 0 ;
18 i f (! casestrcmp (lang , p)) {
19 mem free (p) ;
20 mem free (lang) ;
21 r e t u r n i ;
22 }
23 mem free (p) ;
24 }
25 . . .
26 mem free (lang) ;
27 r e t u r n −1;
28 }

Fig. 8: Null Dereference bugs in function
get language from lang of the lightweight browser
Links

implemented as dynamic memory allocation for a pointer. The
bug arises when the code fails to allocate memory to pointer
lang using stracpy function and return NULL to pointer
lang. Thus, there is a potential null pointer dereference in
line 6.

After we deploy program slicing and code clone detection,
we are also able to identify the same bug with the assistance
of symbolic execution rapidly for pointer p in line 15, as two
code snippets are identified code clones (line 4-6 and line 15-
17). Similarly, pointer p is unchecked after memory allocation,
which results in the same vulnerability existing in the codes.
This example shows the advantage of our approach combining
program slicing and code clone detection for vulnerability
discovery.

2) LibreOffice Case Study: In the second case study, Li-
breOffice is an open source office tool, which is written in
multiple programming languages including C/C++ and Java.
Currently, our approach is working to C/C++ code only.
Thus, we only deployed our approach on the C/C++ files in
LibreOffice. Our approach was able to identify a heap-based

1 bool SwCTBWrapper : : Read (SvStream& rS)
2 {
3 . . .
4 i f (cCust)
5 {
6 . . .
7 f o r (s a l u I n t 1 6 index = 0 ; index < cCust ; ++

index)
8 {
9 Customizat ion aCust (t h i s) ;

10 i f (! aCust . Read (rS))
11 r e t u r n f a l s e ;
12 rCustomiza t ions . push back (aCust) ;
13 }
14 }
15 . . .
16 s t d : : vector< s a l I n t 1 6 > : : i t e r a t o r i t e n d =

dropDownMenuIndices . end () ;
17 f o r (s t d : : vector< s a l I n t 1 6 > : : i t e r a t o r i t =
18 dropDownMenuIndices . begin () ; i t != i t e n d ; ++ i t

)
19 {
20 rCustomiza t ions [∗ i t] . bIsDroppedMenuTB =

t rue ;
21 }
22 r e t u r n rS . good () ;
23 }

Fig. 9: Source Code from function
Links::SwCTBWrapper::Read where a buffer overflow
bug via pointer rCustomizations

buffer overflow bug in function Links::SwCTBWrapper::Read.
Figure 9 shows the original source code. Twin-Finder identi-
fied a group of code clones of code snippets from line 17-21
in the same cluster. Our feedback mechanism eliminated the
other code clones as false positives after 16 iterations.

This function is used to read a crafted document contain-
ing a Microsoft Word record (named as a structural array
rCustomizations in the source code) from beginning to the
end. The size of structural array rCustomizations is defined
as static cast < sal Int16 > (rCustomizations.size()).
However, the for loop in line 17, it does not do a propel bound
check of a customizations array index. The value of ∗it could
be negative or larger than the size of rCustomizations. When
our approach deploys partial symbolic execution for this for
loop, it will yield potential buffer overflow error 1.

VII. RELATED WORK

Related works including code clone detection and program
slicing have been discussed closely throughout the paper. In

1However, after we started our research, this bug has been found earlier of
2018 and public patched in the newer version of LibreOffice. More details
about this bug can be found in the report CVE-2018-10120 [29]

11

this section, we summarize some additional related work. We
focus on existing static code analysis and code clone detection
approaches. Other approaches for vulnerability discovery will
be also discussed in this section.

Code clone detection. Different approaches for code clone
detection have been proposed. Recall that detection techniques
generally can be classified into several categories. First, text-
based or simple string matching based techniques [17], [5],
[6] apply slight program transformations and apply a single
code similarity measurement by comparing sequences of text.
Such text-based techniques are limited in the scalability in
large code bases and only finding exact match code clone
pairs. Second, tree or token-based clone detections [26], [37],
[9], [50] are proposed by parsing program into tokens or
generate abstract syntax trees representation of the source
program. However, above approaches are still not sufficient
to detect semantics-similar code clones. Thus, learning-based
approaches have been developed over the past three years.
White et al. [39] first proposes deep neural network (DNN)
based code clone detection in source code. Similarly, Gem-
ini [40] uses DNN to detect cross-platform code clones in
binaries. But still, they are not able to detect non-contiguous
and intertwined code clones. Komondoor et al. [25] also make
the use of program slicing and dependence analysis to find
non-contiguous and intertwined code clones. But they are
trying to find isomorphic subgraphs from program dependency
graph in order to identify code clones, which the computing of
graph comparison is more expensive. And they do not apply
a variant code similarity metric and formal analysis.

Learning-based approach for vulnerability discovery.
Prior work have studied bug/vulnerabilities using learning
based approaches [21], [33], [46], [45], [42], [41]. Stat-
Sym [49] and SARRE [27] propose frameworks combining
statistical and formal analysis for vulnerable path discovery.
SIMBER [43] proposes a statistical inference framework to
eliminate redundant bound checks and improve the perfor-
mance of applications without sacrificing security. Another
line of work use Natural Language Processing and machine
learning to bug detection. For example, Chucky [48] uses
context-based Natural Language Processing to detect missing
check vulnerability. These techniques, often transfer code
into intermediate representation and then rely on static code
analysis to find bugs. In this paper, we develop an integrated
framework that harness the effectiveness of code clone de-
tection and formal analysis techniques for a rapid security
analysis on source code at scale. In contrast to pure formal
analysis, such as symbolic execution, we are able to achieve
a significant speedup to find vulnerabilities.

VIII. CONCLUSION

In this paper, we presented a novel framework, Twin-
Finder, a pointer-related code clone detector for source code,
that can automatically identify related codes from large code
bases and perform code clone detection to enable a rapid
security analysis. We evaluated our approach using real-world
applications, such as SPEC 2006 benchmark suite. Our results
show Twin-Finder is able to detect up to 9× more code clones
comparing to conventional code clone detection approaches.
We conduct security case studies for memory safety. In par-
ticular, we show that using Twin-Finder we find 6 unreported

bugs in Links version 2.14 and one public patched bug in
libreOffice-6.0.0.1.

REFERENCES

[1] “SPEC CPU 2006,” https://www.spec.org/cpu2006/, 2006.
[2] ACME Lab, “Thttpd,” http://www.acme.com/software/thttpd/.
[3] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey

of machine learning for big code and naturalness,” arXiv preprint
arXiv:1709.06182, 2017.

[4] B. S. Baker, “A program for identifying duplicated code,” Computing
Science and Statistics, pp. 49–49, 1993.

[5] ——, “On finding duplication and near-duplication in large software
systems,” in Reverse Engineering, 1995., Proceedings of 2nd Working
Conference on. IEEE, 1995, pp. 86–95.

[6] ——, “Parameterized duplication in strings: Algorithms and an appli-
cation to software maintenance,” SIAM Journal on Computing, vol. 26,
no. 5, pp. 1343–1362, 1997.

[7] C. Barrett, A. Stump, C. Tinelli et al., “The smt-lib standard: Version
2.0,” in Proceedings of the 8th International Workshop on Satisfiability
Modulo Theories (Edinburgh, England), vol. 13, 2010, p. 14.

[8] H. A. Basit and S. Jarzabek, “Detecting higher-level similarity patterns
in programs,” in ACM Sigsoft Software engineering notes, vol. 30, no. 5.
ACM, 2005, pp. 156–165.

[9] I. D. Baxter, C. Pidgeon, and M. Mehlich, “Dms/spl reg: program
transformations for practical scalable software evolution,” in Software
Engineering, 2004. ICSE 2004. Proceedings. 26th International Confer-
ence on. IEEE, 2004, pp. 625–634.

[10] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Software Maintenance, 1998.
Proceedings., International Conference on. IEEE, 1998, pp. 368–377.

[11] J. Caballero, G. Grieco, M. Marron, and A. Nappa, “Undangle: early
detection of dangling pointers in use-after-free and double-free vul-
nerabilities,” in Proceedings of the 2012 International Symposium on
Software Testing and Analysis. ACM, 2012, pp. 133–143.

[12] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs.”
in OSDI, vol. 8, 2008, pp. 209–224.

[13] Y. Chen, T. Lan, and G. Venkataramani, “Damgate: dynamic adaptive
multi-feature gating in program binaries,” in Proceedings of the 2017
Workshop on Forming an Ecosystem Around Software Transformation.
ACM, 2017, pp. 23–29.

[14] Y. Chen, S. Sun, T. Lan, and G. Venkataramani, “Toss: Tailoring online
server systems through binary feature customization,” in Proceedings
of the 2018 Workshop on Forming an Ecosystem Around Software
Transformation. ACM, 2018, pp. 1–7.

[15] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen,
M. Qunaibit, and A.-R. Sadeghi, “Losing control: On the effectiveness
of control-flow integrity under stack attacks,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 952–963.

[16] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
twentieth annual symposium on Computational geometry. ACM, 2004,
pp. 253–262.

[17] S. Ducasse, M. Rieger, and S. Demeyer, “A language indepen-
dent approach for detecting duplicated code,” in Software Mainte-
nance, 1999.(ICSM’99) Proceedings. IEEE International Conference on.
IEEE, 1999, pp. 109–118.

[18] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, 2010, pp. 147–156.

[19] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in International Conference on Computer Aided Verification.
Springer, 2007, pp. 519–531.

[20] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Vldb, vol. 99, no. 6, 1999, pp. 518–529.

[21] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection across
architectures and compiling configurations,” in Program Comprehension
(ICPC), 2017 IEEE/ACM 25th International Conference on. IEEE,
2017, pp. 88–98.

[22] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
international conference on Software Engineering. IEEE Computer
Society, 2007, pp. 96–105.

[23] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–670,
2002.

12

[24] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study
of code clone genealogies,” in ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 5. ACM, 2005, pp. 187–196.

[25] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in International Static Analysis Symposium. Springer,
2001, pp. 40–56.

[26] K. A. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M. Bernstein,
“Pattern matching for clone and concept detection,” Automated Software
Engineering, vol. 3, no. 1-2, pp. 77–108, 1996.

[27] Y. Li, F. Yao, T. Lan, and G. Venkataramani, “Sarre: semantics-aware
rule recommendation and enforcement for event paths on android,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 12, pp.
2748–2762, 2016.

[28] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on
software Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[29] LibreOffice, “Cve-2018-10120,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2018-10120, 2018.

[30] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “Bugbench:
Benchmarks for evaluating bug detection tools,” in Workshop on the
evaluation of software defect detection tools, vol. 5, 2005.

[31] N. A. Milea, L. Jiang, and S.-C. Khoo, “Vector abstraction and con-
cretization for scalable detection of refactorings,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 86–97.

[32] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser generator,”
Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[33] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in Security and Privacy
(SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 709–724.

[34] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on.
IEEE, 2016, pp. 1157–1168.

[35] F. J. Serna, “The info leak era on software exploitation,” Black Hat USA,
2012.

[36] Twibright Labs, “Links,” http://links.twibright.com.
[37] V. Wahler, D. Seipel, J. Wolff, and G. Fischer, “Clone detection in source

code by frequent itemset techniques,” in Source Code Analysis and
Manipulation, 2004. Fourth IEEE International Workshop on. IEEE,
2004, pp. 128–135.

[38] J. Webber, “A programmatic introduction to neo4j,” in Proceedings of
the 3rd annual conference on Systems, programming, and applications:
software for humanity. ACM, 2012, pp. 217–218.

[39] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2016, pp. 87–98.

[40] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 363–376.

[41] H. Xue, Y. Chen, G. Venkataramani, and T. Lan, “Hecate: Automated
customization of program and communication features to reduce attack
surfaces,” in International Conference on Security and Privacy in
Communication Systems. Springer, 2019.

[42] H. Xue, Y. Chen, G. Venkataramani, T. Lan, G. Jin, and J. Li,
“Morph: Enhancing system security through interactive customization
of application and communication protocol features,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 2315–2317.

[43] H. Xue, Y. Chen, F. Yao, Y. Li, T. Lan, and G. Venkataramani, “Simber:
Eliminating redundant memory bound checks via statistical inference,”
in IFIP International Conference on ICT Systems Security and Privacy
Protection. Springer, 2017, pp. 413–426.

[44] H. Xue, S. Sun, G. Venkataramani, and T. Lan, “Machine learning-based
analysis of program binaries: A comprehensive study,” IEEE Access,
vol. 7, pp. 65 889–65 912, 2019.

[45] H. Xue, G. Venkataramani, and T. Lan, “Clone-hunter: accelerated
bound checks elimination via binary code clone detection,” in Proceed-
ings of the 2nd ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages. ACM, 2018, pp. 11–19.

[46] ——, “Clone-slicer: Detecting domain specific binary code clones
through program slicing,” in Proceedings of the 2018 Workshop on
Forming an Ecosystem Around Software Transformation. ACM, 2018,
pp. 27–33.

[47] F. Yamaguchi, “Joern: A Robust Code Analysis Platform for C/C++,”
http://www.mlsec.org/joern/, 2016.

[48] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
Exposing missing checks in source code for vulnerability discovery,”

in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 499–510.

[49] F. Yao, Y. Li, Y. Chen, H. Xue, T. Lan, and G. Venkataramani,
“Statsym: vulnerable path discovery through statistics-guided symbolic
execution,” in Dependable Systems and Networks (DSN), 2017 47th
Annual IEEE/IFIP International Conference on. IEEE, 2017, pp. 109–
120.

[50] K. Zhang, M. Wang, X. Cong, F. Huang, H. Xue, L. Li, and Z. Gao,
“Personal attributes extraction based on the combination of trigger
words, dictionary and rules,” in Proceedings of The Third CIPS-SIGHAN
Joint Conference on Chinese Language Processing, 2014, pp. 114–119.

[51] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A z3-based string solver for
web application analysis,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 114–124.

Hongfa Xue is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer En-
gineering, The George Washington University. His
research interests are System security and Machine
Learning optimization.

Guru Venkataramani (SM ’15) received the Ph.D.
degree from the Georgia Institute of Technology,
Atlanta, in 2009. He has been an Associate Pro-
fessor of Electrical and Computer Engineering with
The George Washington University since 2009. His
research area is computer architecture, and his cur-
rent interests are hardware support for energy/power
optimization, debugging, and security. He was a
general chair for HPCA’19 and a recipient of the
NSF Faculty Early Career Award in 2012.

Tian Lan received the Ph.D. degree from the De-
partment of Electrical Engineering, Princeton Uni-
versity, in 2010. He joined the Department of Elec-
trical and Computer Engineering, The George Wash-
ington University, in 2010, where he is currently
an Associate Professor. His interests include mo-
bile energy accounting, cloud computing, and cyber
security. He received the best paper award from
the IEEE Signal Processing Society 2008, the IEEE
GLOBECOM 2009, and the IEEE INFOCOM 2012.

13

