
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 1

Mobile Ad Prefetching and Energy Optimization
via Tail Energy Accounting

Yongbo Li, Student Member, IEEE, Yimeng Wang, Student Member, IEEE, and Tian Lan, Member, IEEE,

Abstract—Accurately determining the network energy consumption of each software principal when multiple ones are active is the key
to mobile energy optimization. Tail energy accounting, which attributes tail energy to individual software principals, remains an open
problem. Besides, tail energy has also become a major energy drain, especially in mobile ad modules that generate frequent,
intermittent network traffics by on-demand ad downloading. In this paper, we propose a systematic framework for mobile ad prefetching
and energy optimization, based on a novel tail energy accounting policy using cooperative game theory. In particular, we maximize the
sum of deadline- and energy-aware ad utility, by jointly determining apps’ aggressiveness in ad prefetching. The proposed tail energy
accounting not only characterizes the energy profile of each app’s ad module, a crucial input in energy optimization, but also enables
an efficient solution by decoupling decision making of individual apps. The proposed framework is implemented on Android with
negligible performance/network overhead. Using real-world apps and usage traces, we demonstrate a significant reduction in mobile
network energy consumption by up to 45% compared with existing approaches. To the best of our knowledge, it is the first fully
implemented ad management system transparent to apps and ad ecosystem.

Index Terms—Tail energy, Mobile systems, Energy accounting, Ad Prefetching

F

1 INTRODUCTION

Current app marketplaces are increasingly dominated by
free apps relying on advertising for revenue. Ad modules
have become one of the major energy drainers on mobile
devices, taking up 65% of apps’ total network energy, or
23% of an app’s overall energy [1]. This inefficiency mainly
comes from the fact that mobile apps typically refresh their
ads every 12 to 120 seconds [2], resulting in frequent, small
transmissions. Since network interfaces often remain in full
power state and intermediate state for a certain length of time
after data transmission and before transitioning to idle state -
e.g., 5 to 6 seconds in full power state, and 11.5 to 12 seconds
in intermediate state in 3G [3] and LTE networks [4] - for
the purpose of improving network responsiveness, such ad
traffic causes network interfaces to constantly stay in full
power or intermediate states, leading to considerable energy
drain, commonly known as the tail energy. Also, when the
size of data transfer is small like the ad traffic, the percentage
of tail energy is larger [5]. It is shown that tail energy can
contribute up to 48.2% of network energy consumption [4]
on mobile devices. Recent study [6] even shows 89.2% out
of the total cellular energy of 3G/LTE network is tail energy.

A natural approach to mitigating the tail energy (and
reducing network bandwidth consumption) is to prefetch
or cache a batch of ads locally. Since different ad libraries
with different ad fetching patterns [7] may be imported
by app developers, a centralized ad management proxy or
middleware [8] seems promising to govern the system’s ad
fetching. However, prior works are often limited to mea-
surement study of the energy saving [9] or simple heuristics-

• Yongbo Li, Yimeng Wang, and Tian Lan are with the Department of
Electrical and Computer Engineering at George Washington University
(email: {lib, wangyimeng, tlan}@gwu.edu).

based solution for tuning a single app’s prefetching strat-
egy [1]. Developing a quantitative framework for jointly
optimizing multiple apps’ ad prefetching strategies is an
open problem. The first key to tackling the problem is that
the timeliness of mobile ads must be modeled, as ads are
often sold via real-time auctions freshly, hence, traditional
techniques to cache and reuse content do not apply. For the
same consideration, prefetching too aggressively, which is
prefetching too many ads at a time, may result in missing
display deadline, Service-Level-Agreement (SLA) violations
and revenue loss [1]. Furthermore, despite energy account-
ing being an active research topic, there exists no theoretical
framework to attribute tail energy - the main cause of mobile
ad energy consumption - to individual apps and ad modules
that are active during the same period of time.

In this paper, we propose a novel systematic frame-
work for Mobile Ad Prefetching and Energy Optimization
(MAPEO). Our solution consists of the following novel
components.

To begin with, we formulate the MAPEO problem to
jointly optimize all apps’ prefetch strategies, in order to
maximize their overall “energy-aware ad utility”, defined as
the sum of an app’s ad utility normalized by its network en-
ergy consumption. The ad utility is time-dependent. Giving
special consideration to SLA and without loss of generality,
we model prefetched ads that are displayed after desired
deadlines receive only partial or zero utility. This formula-
tion allows us to leverage a tradeoff between energy saving
and maintaining ad utility - because while on-demand ad
downloads are not (tail) energy efficient, more aggressive
prefetch strategies would lead to more residue ads with
only reduced ad utilities. Our MAPEO problem captures
this tradeoff and models the relevant system dynamics
for a holistic optimization. Solving this MAPEO problem
requires quantifying the energy consumption of each app’s

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 2

ad module, which gives rise to the tail energy accounting
problem.

Further, to tackle the challenge, we propose a new tail
energy accounting framework relying on Shapley value [10]
in cooperative game theory. We model the tail energy ac-
counting problem as a cooperative game, where players are
different software principals 1 that are active during the
same period of time, and tail energy is the grand surplus.
Existing energy accounting policies e.g., [11], [12], [13], [14],
[15], [16], [17], [18], either (i) assume the synchronization
between system activities and energy consumption, and
thus cannot be applied to attribute asynchronous tail energy,
or (ii) employ simple design heuristics without theoretical
justification [19], [9]. Different from previous accounting
policies that require measurement of an exponential number
of system states [17], we develop a computation-efficient
solution for attributing tail energy to individual software
principals that are active concurrently.

We implement a prototype of our MAPEO framework
for the proposed ad prefetching and energy optimization.
A key feature is that the framework is completely trans-
parent to mobile apps and compatible with contemporary
ad ecosystem, supporting various ad libraries used in prac-
tice. This is achieved by our implementation of two key
components: a Traffic Filter that selects and redirects ad-
related traffic to our framework, and a central Ad Proxy that
performs ad prefetching/caching and handles ad requests
from apps. Our entire MAPEO framework is evaluated on
Android devices including Galaxy Nexus, Samsung Galaxy
Edge 6 and Galaxy Note 5, with real-world usage traces
from Rice LiveLab [20].

The main contributions of our paper are as summarized
below:

1) We propose a novel systematic approach to optimize
mobile ad energy via SLA-aware prefetching. To the best
of our knowledge, this is the first work to consider an
optimization of both energy saving and ad utility, by jointly
determining all apps’ prefetch strategies.

2) We make it possible to decouple all apps’ individual
decision making and efficiently solve the joint system en-
ergy optimization problem by proposing a new tail energy
accounting framework based on Shapley value [10]. It is
shown to be the first tail energy accounting policy that
satisfies two critical properties, Positive Reward and Fairness,
making it suitable for identifying various software prin-
cipals’ energy profiles [21] and guiding energy optimiza-
tion [9], [1].

3) We evaluate the implemented MAPEO system using
top-free apps from Google Play, real-world usage traces [20],
contemporary ad networks and ISPs. Results show that our
proposed optimization framework using Shapley value tail
energy accounting can outperform optimizations based on
existing heuristics-based accounting policies by up to 45%.
Further, the large variation of optimal prefetching strategies
for 13 different apps suggests that jointly optimizing all
apps’ prefetch strategies is necessary to unlock the potential
of mobile ad prefetching and energy optimization. Our

1. For ad prefetching in this paper, we consider each app’s ad module
as a software principal whose energy contribution is to be determined,
while background traffic generated by apps and system threads are
treated as separate software principals.

Dm−2 Dm−1 Dm

Predict distribution of Ai,m, ∀ i

Optimize Ri,m

Prefetching Ri,m

ads for app i, ∀ i
On-demand
ads download

Fig. 1: An illustration of our system model.

solution only introduces an average of 1.72% performance
overhead (since the computation of the optimal prefetching
strategies can be cached and reused). The network RTT
overhead is only 4.54% in terms of on-demand ad traffic
while most ad requests are handled by prefetched content
requiring no network connectivity.

2 SYSTEM MODEL AND OBJECTIVE

Mobile ads are typically downloaded on-demand. Once
triggered (e.g., when first launching the app), a request is
sent to an ad server. Then, ad content downloaded (often
via HTTP or HTTPS) is displayed to the end user. While
such ad traffic has short durations, mobile apps typically
refresh ads every 12 to 120 seconds [2], resulting in heavy
energy tails that have become a major energy drain and can
take up almost 65% of an app’s total network energy [1].
Traditional content caching and prefetching techniques [22],
[23], [24] seem promising in improving energy inefficiency.
However, a unique challenge lies in ad prefetching problem
that ads are normally delivered via real-time auctions and
with deadlines required. Ignorant ad prefetching without
considering the deadlines not only triggers SLA violations,
it also consumes an excessive amount of energy.

In this paper, we consider a mobile system with K active
apps, which periodically prefetch a bulk of ads every T
minutes 2, and we consider a sequence of length-T intervals,
D = {D1, D2, . . . , Dm, . . .}.

As shown in Figure 1, at the beginning of each interval
Dm, Ri,m ads are prefetched for app i 3. Let Ai,m be the
number of ads actually displayed by app i during interval
Dm. If Ai,m exceeds Ri,m, additional ads (denoted by Oi,m)
must be downloaded on-demand. Otherwise, surplus ads
(denoted by Si,m+1) will be rolled over to the next period
Dm+1.

Taking into consideration of the SLA requirements in
real-time ad auction, without loss of generality, we assume
that SLA of the prefetched ads is preserved within T , each
ad displayed in Dm receives a unit utility. Residual ads dis-
played in the next period Dm+1 only receive a diminished

2. Our system model and optimization algorithm in this paper can be
easily extended to time-varying T that changes according to network
state or end-users’ activity level.

3. The optimal value of Ri,m may also be affected by background
traffic. But it is shown in [2] that 68% to 81% of ad-related traffic is iso-
lated from app traffic, unlikely to significantly change the optimization.
Thus, we leave this to future work.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 3

utility vi < 1 per ad, and all residual ads are discarded after
Dm+1 ends due to severe SLA violation. vi can be inferred
from ad networks’ SLA requirements, and is considered
given in the problem. Therefore, the utility achieved by app
i in interval Dm (denoted by Ui,m) depends on the number
of residual ads from previous period Si,m, the number of
displayed ads Ai,m, and the prefetching decision Ri,m. Note
that our model can be extended to accommodate other time-
varying utility functions.

The goal of our mobile ad prefetching and energy opti-
mization problem is to maximize the overall utility achieved
by the ad display while minimizing the total energy con-
sumed by ad fetching, i.e. maximize the overall “energy-
aware ad utility” for each interval Dm.

max
{Ri,m}

(
Um

Em
), s.t. Ri,m ≥ 0, ∀i. (1)

However, the main difficulty in directly optimizing the
above objective is that the energy cost Em is collectively
determined by all apps’ ad prefetching decisions. The num-
ber of feasible solutions is of the order of Mn for a mobile
system with n ad-embedded apps where M is the max
possible number of ads can be displayed by an app during
the interval Dm.

In this paper, to tackle the above challenge, we make
novel use of Shapley value based accounting to allocate
the energy cost to individual software principals, thus de-
coupling the whole system optimization to each software
principal’s individual ad prefetching optimization. Our goal
thus becomes the maximization of the sum of per-app
“energy-aware ad utility”, and we define our Mobile Ad
Prefetching and Energy Optimization (MAPEO) problem
for each interval Dm as follows:

MAPEO : max
{Ri,m}

∑
i

[
E(Ui,m

Ei,m
)

]
, s.t. Ri,m ≥ 0, ∀i. (2)

Here, Ei,m is the network energy consumed by app i during
interval Dm. Note that both energy and ad utility Ui,m are
dependent on the ad prefetch decisionRi,m. The expectation
is taken over the distribution of Ai,m.

Problem MAPEO allows us to explore the tradeoff be-
tween energy saving and ad utility, and it will be solved
repeatedly for each interval to update prefetch strategy.

3 PROBLEM FORMULATION AND ALGORITHMIC
SOLUTION

We start this section by formulating MAPEO problem. Then,
we propose our tail energy accounting policy and finally
develop a distributed solution to the MAPEO problem.

3.1 MAPEO Problem Formulation
We first analyze the ad utility Ui,m of app i, along with the
evolution of Ai,m, Si,m, and Ri,m.

As shown in Figure 2, there exists 3 different cases. For
case 1, Ai,m > Si,m + Ri,m, more ads are displayed than
what are available from rollover and prefetching. Thus, an
additionalOi,m = Ai,m−Si,m−Ri,m number of ads must be
downloaded on-demand. The total utility achieved Ui,m =
1 · (Ai,m−Si,m) + vi ·Si,m. Similarly, the Oi,m, Si,m+1, and

Si,m Ri,m

Ai,m > Si,m +Ri,m

Si,m < Ai,m ≤ Si,m +Ri,m

Ai,m ≤ Si,m

case 1:

case 2:

case 3:

number of ads

Fig. 2: Three cases of the comparisons between numbers of
ads prefetched Ri,m, residue ads from previous period Si,m,
and ads displayed Ai,m in interval Dm.

Ui,m can be inferred for case 2 and case 3. Combining the
three cases with truncate function [x]+, i.e., max(0, x), we
derive the following equations:

During Dm, the utility achieved by app i is given by

Ui,m = 1 · [Ai,m − Si,m]+ + vi ·min(Ai,m, Si,m). (3)

Further, the number of residual ads rolled over to next
interval Dm+1 is

Si,m+1 = [Si,m +Ri,m −Ai,m]+ − [Si,m −Ai,m]+. (4)

Next, we construct an estimate for each app’s energy
consumption Ei,m for varying prefetch decision Ri,m. We
consider each app with network traffic as three (logical)
software principals: (i) one involving all transmissions for
ad prefetch, (ii) one for ad on-demand download, and (iii)
one for all other network activities such as system events.
For given prefetch decision Ri,m, we estimate Ei,m using a
hierarchical model:

Êi,m = E1,i,m ·Ri,m + E2,i,m ·Oi,m + E0,i,m, (5)

where E1,i,m is the average energy per ad-prefetch, E2,i,m

is the average energy per ad on-demand download, and
E0,i,m is the energy for other network activities. Based on
equations (3) and (4), we have

Oi,m = [Ai,m − Si,m −Ri,m]+. (6)

Combining all these steps, for given distribution Pi,m(x)
of displayed ads Ai,m, we rewrite MAPEO problem as

max
∑
i

∑
Ai,m

Pi,m(Ai,m) · Ui,m

Êi,m

(7)

s.t. Ui,m = 1 · [Ai,m − Si,m]+ + vi ·min(Ai,m, Si,m)

Êi,m = E1,i,m ·Ri,m + E2,i,m ·Oi,m + E0,i,m

Oi,m = [Ai,m − Si,m −Ri,m]+

Ri,m ≥ 0

var. {Ri,m, ∀i}.
The MAPEO problem explores the tradeoff between energy
cost and ad utility, and the optimal prefetch decision Ri,m

maximizes the energy-aware ad utility.
However, the difficulty for solving the MAPEO problem

is that E1,i,m, E2,i,m, and E0,i,m are unknown for the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 4

current interval Dm during the time of optimization. To es-
timate the values from history intervals, the challenge lies in
the fact that all apps’ activities interweave and that multiple
apps may all have ad fetching behaviors. All the apps’ ad
fetching behaviors and other non-ad network activities can
jointly determine the amount of network energy and are
simultaneously responsible for the tail energy consumed. In
the next subsection, we are going to address this challenge.

3.2 Tail Energy Accounting
Now we consider the fundamental problem needs to be
answered for estimation of E1,i,m, E2,i,m, and E0,i,m used
in MAPEO problem: Given a set N of active software
principals in a system, let TG be the time interval for tail
energy accounting, i.e., from the start of data transmission
to the end of energy tail. How to determine the energy
contribution φ(i, TG) of each software principal i (that have
network activities during the period of TG) in total energy
consumption E(N, TG)?

3.2.1 Summarizing Existing Policies
We summarize four tail energy accounting policies reported
in the literature.
Policy I: Last Trigger. This policy used by Eprof [19] states
that the entire tail energy should be assigned to the last
software principal that made data transmission before the
tail.
Policy II: First Trigger. Opposite to Policy I, it assigns all
tail energy to the software principal, which first started
data transmission that generated the tail. This policy is
considered but deemed to be less intuitive than Policy I
in [19].
Policy III: App First. The policy used in [9], [1] computes
the energy consumption of an ad module by measuring the
marginal energy increase when enabling an ad module.
Policy IV: Tail Unaware. It ignores the existence of tail energy
and proportionally assigns network energy to each app
based on the length of its active transmission. This policy
is used on Android [11] and most existing works on energy
accounting [13], [17], [12], [15] do not consider tail energy.

Remark: App First policy can only attribute energy con-
sumption to a single app and its ad module. It fails to
determine energy accounting when there exist multiple
active apps and ad modules, because the marginal energy
increase depends on the order that different ad modules are
enabled.

3.2.2 Analyzing Desirable Key Properties
Now we introduce two properties that are desirable for all
energy accounting policies: Positive Reward and Faireness.
Definition 1. Positive Reward: If an app adopts a more tail-

energy-friendly transmission strategy, it should receive
a positive reward, i.e., a smaller share of energy con-
sumption. This means φ(i′, TG′) ≤ φ(i, TG) if there exists
E(S∪{i′}, TG′) ≤ E(S∪{i}, TG), while all other energy
consumptions remain the same in TG and TG′ .

The Positive Reward property implies that a tail energy
accounting policy should be able to quantify energy effi-
ciency in accordance with software principals’ transmission

P

t

Ph

Pt

1 2 1 2 1 2 1 2

ta ta tb

1 2

td

(a) 1 and 2 have periodic transmissions

P

t

Ph

Pt

1 2 2 2 2

4ta ta tb td

(b) 1 bundles its transmissions

P

t

Ph

Pt

1 2 1 1 1

ta 4ta tb td

(c) 2 bundles its transmissions

Fig. 3: Illustrative example for Positive Reward property with
two software principals 1 and 2.

strategy, providing faithful input to energy optimization.
Consider an illustrative example depicted in Figure 3. In
Figure 3(a), both app 1 and 2 have periodic transmissions
(each transmission session lasts for ta, tb is the idle time
length between transmissions, and td is the length of the tail
state), while app 1 bundles its transmissions in Figure 3(b)
to allow tail energy saving, which would have materialized
if app 2 is absent. Thus, app 1 now should be assigned a
smaller energy consumption.

Remark: None of Policies I, II, III, IV fulfills the Positive Re-
ward property. Under Last Trigger policy, software principal
2 receives all tail energy in both Figures 3(a) and 3(b).
Thus, energy consumption attributed to app 1 is always
φ1 = 4Phta. Ph denotes power consumption at the high
power state during transmission, and Pt denotes that at the
intermediate state causing energy tail after transmissions.
Similarly, under First Trigger policy, although app 2 bundles
its transmissions in Figure 3(c), the energy attributed to it
remains φ2 = 4Phta as in Figure 3(a). App First policy
always assigns φ1 = 4Phta, because energy consumption
increment due to activating software principal 1 (assuming
software principal 2 is already running) is the same in
both cases. Finally, energy consumption is unchanged under
Tail Unaware policy as transmission time of apps 1 and 2
remains constant.
Definition 2. Fairness: If replacing one software principal

by another does not impact system energy consumption
in any circumstances, the two software principals are
symmetric and should receive equal energy share, i.e.,
φ(i′, TG′) = φ(i, TG) if E(S∪{i′}, TG′) = E(S∪{i}, TG)
∀S ∈ N.

Consider software principals 1 and 2 shown in Figure 4

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 5

P

t

Ph

Pt

1 2 1 1

ta tb-ta ta ta tb ta td

(a) 1 and 2 transmit data in the system

P

t

Ph

Pt

1 1 2′ 1

ta tb ta ta tb-ta ta td

(b) Replacing 2 by 2’ won’t change system energy consumption

Fig. 4: Illustrative example for Fairness property involving
two software principals 1 and 2.

(a). By replacing software principal 2 in Figure 4(a) with 2′

in Figure 4(b), the system energy consumption including tail
energy is unchanged. The software principals 2 and 2′ are
symmetric in terms of energy efficiency, and should receive
the same energy allocation.

Remark: None of Policies I, II fulfills the Fairness property.
Using Last Trigger policy, software principal 2 receives
no tail energy in Figure 4(a), i.e., φ2 = Phta, whereas
software principal 2′ is assigned φ2′ = Phta +Pt(tb − ta) in
Figure 4(b). Similarly, First Trigger policy allocates different
amount of tail energy in the two scenarios.

3.2.3 Our Tail Energy Accounting Policy
Showing all the existing accounting policies violate the
desirable properties, we now propose our tail energy ac-
counting policy based on cooperative game, which is widely
used to study cost allocation problems in economics and en-
gineering [25]. In a tail energy accounting game G, we define
the active software principals as players N = {1, 2, . . . , n},
and total energy consumption E(N, TG) as the grand sur-
plus to allocate in the game. The word “cooperative” here
refers to the fact that the players (i.e., software principals)
are not playing in isolation, rather, they can be active simul-
taneously. The grand surplus (i.e., total energy consump-
tion) is determined jointly by the activities of all players
that are active.

We use Shapley value to calculate tail energy allocation
φ(i, TG) for each software principal i in the tail energy
accounting game:

φ(i, TG) =
∑

S⊆N\{i}

E(S ∪ {i}, TG)− E(S, TG)
(|N| − |S|)

(|N|
|S|
) , (8)

where S ⊆ N \ {i} is a subset of the players not including
player i, |S| and |N| are the number of players in S and N re-
spectively.

(|N|
|S|
)

is the number of different ways choosing |S|
from |N|. E(S, TG) denotes the energy consumption if only
players in S are active during TG. Basically, Shapley value
as calculated by Equation (8) measures the contribution of

P

t

Ph

Pt

1 2 1 2 1

ta ta ta ta ta tb ta tb ta td

E({1, 2}, TG)

P

t

Ph

Pt

1 1 1

ta 3ta ta td ta td

E({1}, TG)

P

t

Ph

Pt

2 2

ta 2ta+tb ta td

E({2}, TG)

E(∅, TG) = 0

Fig. 5: Example for Shapley value calculation using Equa-
tion (8) for two active software principals 1 and 2.

one player averaged over all the possible permutations in
which the coalition N of the game can be formed starting
with empty coalition [10].

Efficient computation of the proposed policy: Using Shap-
ley value for energy accounting seems to require knowledge
of energy consumption E(S, TG) for all S ⊆ N, which has
exponential complexity 2|N|. However, existing work [4],
[3] shows that for cellular networks, the network interface
working states are determined by the data transmission
size and rate, and can be modeled as state machines. For
given network types and carriers, the interface’s power
consumption can be estimated by constant values for each
working state, and the values can be profiled [13] for differ-
ent phone models. Inspired by these facts, for tail energy ac-
counting, given E(N, TG), E(S, TG) can be easily estimated
by eliminating N \ S players’ transmission activities and
inferring new energy tails. This method does not require
additional measurements and can be efficiently calculated
during runtime based on network activities and network
interface working states.

An illustrative example involving two software princi-
pals is shown in Figure 5 for 2tb+ ta > td and 2ta+ tb < td.
The total energy is E({1, 2}, TG) = 5Phta+2Ptta+2Pttb+
Pttd. To find E({1}, TG), we conceptually remove software
principal 2’s activities, generate new energy tails based on
the state transfers for the active network interfaces using
the models discussed in the existing work [4], [3], [13]
mentioned above and obtain E({1}, TG) = 3Phta+3Ptta+
2Pttd. Similarly, we get E({2}, TG) and E(∅, TG). Then,
from Equation (8), we can calculate the individual energy
allocations: φ(1, TG) = 3Phta+1.5Ptta+0.5Pttb+Pttd and

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 6

φ(2, TG) = 2Phta + 0.5Ptta + 1.5Pttb.

Remark: Plugging the conditions into (8), we can show the
proposed Shapley value based tail energy accounting policy
satisfy both Positive Reward and Fairness properties.

For the illustrative example in Figure 3, both software
principals receive in Scenario (a) φ(1, TG) = φ(2, TG) =
4Phta+1.5Pttb+0.5Pttd. When software principal 1 bundles
data transmission in Scenario (b), its accounted energy share
reduces to φ(1, TG) = 4Phta + 0.5Pttd. For the example in
Figure 4, both software principal 2 and the symmetric 2′

receive Phta−0.5Ptta+0.5Pttd, and this satisfies the Fairness
property.

The capability to properly attribute tail energy con-
sumption to different software principals is the key to
addressing a wide range of problems, including evaluating
apps’ energy profile [1], identifying energy-friendly coding
behaviors [21], energy optimization through prefetching [9],
[1], proxy-assisted browsing [26], content pre-staging [27],
and coalesced offloading [28], [29].

3.3 Proposed Algorithmic Solution for MAPEO

Solving MAPEO problem to jointly optimize all apps’
prefetching strategies is not trivial. While the number of
prefetched ads (Ri,m) should not exceed maximum number
of ads that can be displayed during an interval (denoted
by ni = sup{x : Pi,m(x) > 0}), the joint optimization
of all K apps’ prefetching strategy still has an exponential
complexity of

∏K
i=1 ni. Inspired by our tail energy account-

ing policy, we propose an algorithmic solution that makes
each app i independently maximize its energy-aware utility
Ui,m/Ei,m, over its own prefetching decision Ri,m. This
decouples MAPEO problem into K problems, which are
easier to solve (over a space of size ni only) and can be
computed in parallel.

In practice, the actual number of displayed ads Ai,m in
intervalDm are unknown beforehand, however, its distribu-
tion can be estimated from history app trace, as evidenced
in [1], [30].

Our proposed algorithm works as follows. At the be-
ginning of each interval Dm, we estimate the distribution
Pi,m(x) of Ai,m for each app for Dm. In specific, we first
check what time during a day (e.g. 9 : 30AM to 10AM)
does the Dm correspond to. Then we query the user’s
history traces to find the intervals representing the same
time of the day and summarize the distributions of Ai,m

for all i. In parallel, we apply our Shapley value-based tail
energy accounting policy to estimate per-ad energy E1,i,m

and E2,i,m, as well as E0,i,m from previous intervals with
the available energy measurement using our software-based
Energy Meter module. This allows us to estimate energy
consumption Êi,m for varying Ri,m in interval Dm. Next,
we optimize each app’s prefetch decision Ri,m to maximize
its energy-aware utility Ui,m/Ei,m. This is an optimization
involving only a single variable Ri,m and can be solved
efficiently and recursively using exhaustive search for all
Ri,m ≤ ni until the solution converges. Finally, we prefetch
Ri,m ads for each app i.

The algorithm is summarized in Figure 6. It finds optimal
prefetch decision Ri,m in real-time. Because distribution

// (a) Account network energy of Dm−1
Apply Equation (8)

// (b) Optimize Ri,m for interval Dm

for all i ∈ K :
(b.0) Initialize: Ri,m = 0, Max = 0
(b.1) Predict Pi,m(x) from i’ history app usage

Assign ni = sup{x : Pi,m(x) > 0}
Get the probability of Ai,m = x, ∀x < ni

(b.2) Estimate E1,i,m, E2,i,m and E0,i,m from (a)
(b.3) Optimize Ri,m

for all r < ni − Si,m:
Calculate E [Ui,m/Ei,m] by Pi,m(x), Ui,m, Ei,m:

Calculate Ui,m using Equation (3);
Calculate Ei,m using Equation (5);

if E [Ui,m/Ei,m] > Max:
Max = E [Ui,m/Ei,m], Ri,m = r

end if
end for

end for
// (c) Record relevant information during period Dm

for all active app i ∈ Dm

Record Ai,m

Record app i’s ad fetching sessions
end for

Calculate Si,m+1 using Equation (4)
m = m+1
Go to (a)

Fig. 6: Proposed algorithm for MAPEO problem.

Pi,m(x) and energy consumption Êi,m are updated dynam-
ically for each interval, the proposed online algorithm has
the ability to adapt to changes in user behavior and network
states.

4 IMPLEMENTATION

We fully implement the ad prefetching and management
system, with key modules and workflow shown in Figure 7.
In specific, the implementation includes four key modules:
Traffic Filter, Ad Proxy, Ad Counter, and Optimization En-
gine.

4.1 Traffic Filter

Traffic Filter selects ad-related traffic and redirects to Ad
Proxy. The difficulty to directly apply iptables for this goal
is that possible IP addresses for all the ad libraries are
prohibitively many. We tackle this problem by jointly lever-
aging iptables and governing DNS service by DNSmasq [31].
Our governed DNS assures that all requests targeting a
specific ad server will be sent to one single IP, so they can
be captured by a single entry in iptables. The hostname-
IP pairs maintained for DNS service are automatically and
periodically updated to guarantee the validity of the IPs.
In this way, we guarantee that the ad traffic is directed to
Ad Proxy by minimal number of iptables rules, so that the
overhead is minimized.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 7

Ad
Counter

Applications

Traffic
Filter

Network
Interfaces

Ad
Proxy

Energy
Meter

Ad
Networks

Optimization
Engine

1

2

3

4 5

6

7

8

9
10

11

ad
ad
ad

ad
ad

……

2

cached
requests

prefetched
ads

ad
requests

local
response

6
Prefetch

4 5

time

optimized
decisions

11
ad

requests
on-demand

response

ads used up

Fig. 7: Overview of our ad management system

4.2 Ad Proxy
The workflow of Ad Proxy is depicted in the right part of
Figure 7. The indexes on arrows correspond to those in the
left part of the figure. At the beginning of an optimization
interval, optimized decisions from the Optimization Engine
govern Ad Proxy to prefetch certain numbers of ads and
store them in the ad cache for corresponding apps. Later,
when an app requests an ad, if unused ads are available,
the ad request is firstly parsed by Ad Proxy, which will
select a best-match of ad response to process the request
without triggering any network activities. The matching of
ad responses to requests is a non-trivial task since poor
matching will make the ad fail to display. We leverage the re-
quests’ destination address and detailed header information
to conduct best matching. For HTTPS traffic, the certificates
are specially cached. To prevent the same ad being reused,
the proxy will mark any used ad as unavailable for future.
Before next interval of prefetching, if an ad request arrives
after all prefetched ads are used up, Ad Proxy fetches an ad
from the external ad networks in an on-demand manner.

4.3 Ad Counter
The numbers of ads (Ai,m, Ri,m, and Oi,m) are key pa-
rameters in our MAPEO formulation (7). Difficulties exist
for recording the number of ads, because the number of
request/response pairs can be random for a single ad. Ex-
isting ad counting method [32] requires hardware/system
modification and cannot easily apply to existing mobile
platforms.

We use machine learning approach [33] to extract the
indicating features for identifying the starting requests of
ads. We build a Python script to crawl the top ad-embedded
free apps from Google Play, and use Apktool [34] to decom-
pile the packages of apps to check whether ad libraries are
imported into the package. Afterward, we use MonkeyRun-
ner [35] to run those apps for an extensive length of time on
experiment phones to obtain an ad dataset for the training
of the feature extraction algorithm. We intentionally prolong
the period length between two consecutive launches of a
tested app to separate groups of request/response pairs
belonging to different ads, in order to facilitate marking of

starting requests for ads in the collected dataset. Then the
starting requests in the collected dataset are automatically
tagged by utilizing the synchronized timestamps between
Ad Proxy and MonkeyRunner. After the training phases, we
utilize the extracted features and mark the ad requests with
matched features as the starting requests. In this lightweight
way of ad counting, we guarantee the overhead introduced
is minimal.

4.4 Optimization Engine
The governing module is Optimization Engine, which coor-
dinates with Ad Counter and Energy Meter, and provides
optimized decisions for Ad Proxy. The data provided by Ad
Counter to Optimization Module includes statistics about
numbers of ads. The Energy Meter provides timestamped
power traces consumed by network activities to Optimiza-
tion Engine. Optimization Engine takes care of both Shapley
value-based tail energy accounting and energy optimization
for ad prefetching.

4.4.1 Energy Accounting
To account network energy and enable real-time energy op-
timization, we need to first estimate the overall network en-
ergy. We infer the state transfer delays of different networks
(3G, 4G, and LTE) and service providers based on results
revealed in prior network characterization work [3], [4], [36].
For different phone models and carriers, we calibrate the
network interfaces’ average power consumption Pt and Ph

in different working states by regression-based method [36],
[13]. The regression uses training data obtained from real
measurements by external Power Monitor [37], which is
popularly used in existing work [13]. The state machine
based approach is implemented in our Energy Meter mod-
ule to record the total network power consumption.

The power measurement obtained from Energy Meter
module in Figure 7 consists of timestamp and power con-
sumption value tuples. With the timestamps information,
we are able to divide the whole measurement into separate
energy accounting games, each of which starts with the first
data transmission that drives the network interface to leave
the idle state, and ends when both the data transmission

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 8

and a whole tail is finished. Finally, combining the power
measurement with numbers of each app’s prefetched ads
and on-demand fetched ads from Ad Counter, we are able
to apply the efficient method for computing Shapley value
discussed in Section 3.2.3 and account the total network
energy to individual apps.

4.4.2 Energy Optimization
We implement the algorithmic solution (Figure 6) to the
deadline-aware MAPEO problem in Optimization Engine,
which also maintains the statistics and accounted energy
of history optimization intervals in the database for each
app. At the beginning of each optimization session, the
Optimization Engine will query the history database, and
apply the implemented algorithm to predict the optimal
number of ads to prefetch for each app for next interval.
The optimized decisions are fed into the Ad Proxy. At the
end of each optimization interval, the Optimization Engine
will summarize the statistics during the interval and store
the data in the database for later use in following intervals.

5 EVALUATION

In this section, we evaluate the performance of our ad
prefetching system, comparing our proposed energy ac-
counting policy against different accounting policies from
existing work and the Tail Unaware policy, which is also the
default on-demand ad fetching mechanism adopted by most
contemporary mobile ad libraries. We first evaluate these
policies in the context of energy management, i.e. governing
ad prefetch optimization. Further, using our proposed Shap-
ley value-based accounting policy, we also illustrate varied
optimal prefetching strategies for different apps. Finally, we
evaluate the runtime system overhead.

5.1 Experiment Setup

5.1.1 Hardware Setup
Our implementation and evaluation are based on Android
and we tune the parameters used in our Energy Meter
module for three different phone models: Samsung Galaxy
Nexus, Galaxy Edge 6, and Galaxy Note 5. We use the
Monsoon Power Monitor [37] to measure the system power
consumption. To infer the network interface power/energy
consumption from network activities, we adopt a similar
regression model used in existing work [36], [13]. All ex-
periments are performed with contemporary AT&T LTE
network.

5.1.2 Test User Traces and Apps Preparation
We collect 7 user traces out of Rice LiveLab traces [20],
most of which are more than 150 days. The traces record
the timestamps a user launches each app and the lengths
of usage durations after app launches. We collect the top-
ranking apps from Google Play as the testing apps.

Monkey Training: To minimize environment variation
among experiments, we use the automated testing tool
Monkey [35] to replay user traces. Although apps normally
make the first ad request during launch time [38], for
some apps, ad requests can only be triggered by certain

0

1

2

3

4

5

User 1 User 2 User 3 User 4 User 5 User 6 User 7

E
n

tr
o

p
y

Fig. 8: Entropy of the actual number of ads used for different
users (each point denotes a separate app)

user actions. Also, the frequency of ads depends on user
behaviors. For example, in a game app, a new ad may
be shown only when users restart a game or enter the
next level. For such cases, we tune the combination and
density of Monkey events for each app to best emulate a real
user’s behaviors. With a separate Monkey trace constructed
for each app, we write a script to extract the list of apps
and timing information from user traces, then utilize the
separate Monkey traces to construct a combined trace for
each user.

Predictability Study: We conduct a study on the pre-
dictability of the number of ads used by apps. Existing
work [1] studied on raw user traces (with only theoret-
ical number of ad slots) and showed the average en-
tropy 4 for 60-minute periods is around 3.5. With system
implementation, we are able to replay real user traces
on real devices and get the actual numbers of ads dis-
played, rather than simply trace-driven simulations as in
existing works [9], [1], [24]. Since MAPEO formulation
and our energy accounting policy enables a distributed
manner (Section 3.3) to optimize the decisions separately
for individual apps. We get the probability mass function
Pi,m(x) of the number of ads displayed via each app i
for consecutive intervals D = {D1, D2, . . . , Dm, . . .}. The
length of each interval is our optimization period length
30 minutes. Afterward, we calculate the entropy for each
app by H = −∑x Pi,m(x)log2[Pi,m(x)]. Assuming 60-
second [2] ad refreshing period, the theoretical upper bound
for entropy within a 30-minute period is log2(31) = 4.9542.
The entropies for individual apps are marked separately
for each user in Figure 8. The entropies vary for different
apps and users, but are generally closer to 0 than the upper
bound, implying the predictability.

5.1.3 Ad Offline Display Verification
To fully verify that our system can enable offline ad func-
tionality, we disconnect the phone from any network con-
nections. We notice that some ad libraries only send ad
requests when networks are available. To solve this is-
sue, we implement a hook to Android’s WifiManager us-
ing Xposed [39] to emulate a fake Wi-Fi status 5. When
prefetched ads are available for an app Compass [40], we
start the app and verify ad is successfully shown when
network is unavailable, as seen in the left of Figure 9. Such

4. Smaller entropy implies smaller uncertainty within the variable
and hence, higher predictability.

5. The hook to WifiManager is only for demonstrating the effective-
ness of the prefetching scheme when no network is available, our whole
system doesn’t rely on such hook.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 9

0
0.2
0.4
0.6
0.8
1
·103

P
ow

er
(m

W
)

0 200 400 600 800 1,000
0

2

4
·103

Time(s)

Ad Prefetching

Hardware measured
system consumption

Software measured
network consumption

Fig. 9: Screenshot of shown ad when no network is available
(left), and network interface power (top right) measured by
software-based Energy Meter along with total system power
(bottom right) measured by Monsoon Power Monitor.

feature is desirable for ad libraries, which enables offline ad
impressions when network is unavailable but users tend to
check their devices.

5.1.4 Energy Measurement
To test the correctness of energy measurement, and prelimi-
narily study the effect of ad prefetching on energy, we pick
a segment of trace when a user performs consistent actions
in an app so that ads are also requested every minute. We
enable our design in the middle of the trace.

The network power measured by the software-based En-
ergy Meter is depicted at the top right of Figure 9, along with
the hardware measured system power, which is depicted at
the bottom right of Figure 9. As seen in the figure, in the
first 500 seconds without prefetching, the hardware power
measurement shows that each time an ad is requested,
relatively consistent amount of energy is generated, and the
software measured power shows a tail is triggered. At the
beginning of the second half (at 501 seconds) of the trace, a
relatively large amount of energy is generated in a short
time (marked by arrow), and this is when optimization
takes effect and prefetching happens. Afterward, when an
ad is requested, the system power consumption is much
smaller than that in the first half, and ads are successfully
shown in the app without triggering any network energy
tail. Summing up separately the energy consumption of the
first and second periods, we found that during the second
period (i.e. 501 - 1000 seconds), system overall energy and
network energy are respectively 225.66J and 147.85J less
than the first period.

5.2 Evaluating MAPEO Energy Management under Dif-
ferent Accounting Policies

The preliminary experiment in Figure 9 (right) shows ad
prefetching is effective to save network and system energy.
However, in real world scenarios, usage of different apps
overlaps. To evaluate the efficiency of different policies in
per-process energy management, we plug in our proposed
Shapley value-based energy accounting and three account-
ing policies discussed in Section 3.2.1 into our system to
consist of four experiment setups: (a) Tail Unaware, (b) First
Trigger, (c) Last Trigger, and (d) Shapley. App First policy is
left out because it doesn’t apply when multiple apps are
active.

TABLE 1: Breakdown of network energy and achieved util-
ity (normalized by Shapley) for two users

Policy User 1 User 2
Energy (J) Utility Energy (J) Utility

Tail Unaware 2558.515 116% 2706.076 111%
First Trigger 2056.923 83% 2136.691 97%
Last Trigger 2188.082 79% 2268.402 102%
Shapley 2057.826 100% 2150.725 100%

We replay the 7 user traces for each group and set ad
deadline as 30 minutes 6. The evaluation metric is the ratio
of network energy to the utility achieved by displayed ads.

As shown in Figure 10, Shapley value-based accounting
policy consistently outperform the other three. For example,
for user 1, First Trigger and Last Trigger policies are even
worse than Tail Unaware policy, and respectively consume
20% and 34% more energy to achieve the same amount
of utility as Shapley value-based policy. For the sake of
space, we show the breakdown details for the first two
representative users in Table 1 (for user 1, Shapley largely
outperforms First Trigger and Last Trigger, for user 2, these
three policies are close, but all outperform Tail Unaware
policy). As seen in the table, First Trigger, Last Trigger, and
Shapley all consume much less energy than Tail Unaware
policy, but also get penalized utility because of ad deadline
violations. This is because, under Tail Unaware policy, the
cost to prefetch one ad is equivalent to fetch one on-demand,
apps never prefetch ads to avoid deadline violations. For
user 1, First Trigger and Last Trigger respectively achieve
17% and 21% less utility than Shapley. Careful investigations
of the user 1’s evaluation data traces in the database reveal
that under Last Trigger and First Trigger policies, when apps
have overlapped network activities, tail energy is always
accounted to a single app. This leads to an unfair situation
that one app tends to under-prefetch and the others over-
prefetch ads for next interval. The under-prefetched apps
later need to fetch more ads on-demand, and the over-
prefetched apps fail to display prefetched ads before the
deadlines, thus get penalized for utility. This confirms that
the Fairness property discussed in Section 3.2.2 should hold
for proper accounting policies. Investigation of user 2’s
usage traces shows that this user has much less overlaps
among different apps’ usage, in which case, apps have less
shared network tail energy. As a result, First Trigger, Last
Trigger, and Shapley are close in terms of utility achieved,
while all save a certain amount of energy than Tail Unaware
policy. Among all the traces evaluated, unlike user 2, most
users have a large amount of overlapped usage of different
apps.

Note that the only difference between the four exper-
iment groups is the energy accounting policy. The pro-
posed MAPEO algorithm and ad prefetching are performed
in each group. Such controlled experimental comparison
demonstrates that the smaller Energy/Utility ratio achieved
by Shapley group is due to the Shapley value-based energy
accounting policy used to guide energy optimization.

6. It is observed in prior work [1] that more than 99.5% of ads keep
the dynamic price unchanged in 30 minutes.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 10

100%
107%

101%
101%

100%

133%
124%

131%

100%

123%
122%

123%

100%
111%

127%
136%

100%

145%

104%
104%

100%

104%
102%

114%

100%

134%
120%

107%

Policy

N
o
rm

a
li
ze
d
E
n
er
gy
/
U
ti
li
ty

Tail Unaware First Trigger Last Trigger Shapley

User 1 User 2 User 3 User 4 User 5 User 6 User 7

T F L S T F L S T F L S T F L S T F L S T F L S T F L S
0

0.5

1

1.5

Fig. 10: Energy/Utility ratios archived by different accounting policies, normalized by these achieved by Shapley(S)

0 0 0 0

0.7

0.2

0.47
0.33

0.4

1 1 1 1

0

0.2

0.4

0.6

0.8

1

1.2

A
gg

re
ss

iv
en

es
s

Audio Comm Info.Photo Tool GameVideo

Fig. 11: Prefetching aggressiveness measured for different
apps under Shapley value-based accounting

5.3 Illustrating Optimal Strategies for Different Apps

We investigate the optimal ad prefetching strategies of dif-
ferent apps under Shapley value-based accounting policy.
We preselect 13 top free apps with ads from Google Play and
play the same set of 7 user traces in Section 5.1.2. For each
app i and intervals Dm, we study the number of residue
ads from previous interval Si,m, number of ads prefetched
Ri,m, and maximum number of ads used in history sessions
from 1 to m − 1, as denoted by sup{x : Pi,m(x) > 0} in
Section 3.3. Calculating the “aggressiveness” of app i for
Dm by Si,m+Ri,m

sup{x:Pi,m(x)>0} , we summarize the average for each
app from all user traces in Figure 11.

As seen from the figure, the optimal prefetching aggres-
siveness varies significantly for different apps. The interest-
ing pattern is that the aggressiveness level is large for those
Tool and Game apps whose network activities purely origi-
nate from ad modules. For the apps that generate consistent
network activities such as Audio, Video and online chatting
app (Anonymous chat), the aggressiveness level is 0, which
imply ad prefetching is unnecessary for these apps. The
other apps all have diverse optimal aggressiveness levels.
Hence, this verifies a single percentile chosen for the whole
system [1] fails to meet the requirements from all apps for

exploring optimal utility-energy tradeoff. With our formally
formulated systematic framework, the implemented Opti-
mization Engine makes such optimal decisions for every
single app distributively and effectively, without the need
for knowing the details of the apps.

5.4 Measuring Overhead on Real Devices
5.4.1 Overall System Overhead
To measure our design’s overhead on real devices, we use a
popular benchmark softweg [41]. We run softweg for 20 times
on Android, with and without our design. The performance
differences are listed in Table 2. ‘RSD’ refers to scores’
relative standard deviation. It is seen that with our imple-
mentation, only 0.74% and 6.87% overhead are introduced
to CPU and file system. The average of all performance
overhead scores is 1.72%. The negative memory overhead
observed results from score dispersion and is insignificant
compared with the ‘RSD’, which is 6.3%.

5.4.2 Network Latency Overhead
To measure the effects of our design on network latency, we
measure the delay between SYN and SYN-ACK packets as
in [4], i.e. RTT for TCP connections. We again replay the
user traces with and without our system design enabled,
on Samsung Galaxy Note 5 with LTE network. We inten-
tionally increase time intervals between Monkey events to
facilitate pairing of SYN and SYN-ACK packets for the same
connection. The measured mean RTT for LTE with origi-
nal Android is 68.911 ms, and it becomes 72.042 ms with
our system design, resulting only 4.54% network latency
overhead. Note that such overhead is only introduced when
network connection is necessary, however, when prefetched
ads are available, both the whole RTT and the energy tail
are avoided.

6 RELATED WORK

Energy accounting policies studied (explicitly or implicitly)
in prior work [14], [13], [16], [15], [12] often ignore tail
energy consumption, while [19], [9], [1] are notable excep-
tions, but they rely on simple heuristics and fail to satisfy
certain key properties as identified in this paper. Tail energy
accounting remains an open problem, and there is no known
ground truth against which a policy could be evaluated.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 11

TABLE 2: Overall system performance overhead

mean RSD mean RSD

graphics score 19.59 1.88% 19.77 1.91% 0.91%

cpu score 3398.74 2.53% 3424.10 1.76% 0.74%

memory score 531.34 10.48% 522.70 6.30% -1.65%

file system score 222.89 8.80% 239.34 7.17% 6.87%

with our design original Android
Overhead

Our work is also different from [17], which rely on external
measurements and is not applicable to asynchronous tail
energy consumption.

Various techniques are proposed to optimize mobile
energy consumption in different problem domains, such
as proxy-assisted browsing [26], content pre-staging [27],
transmission protocol improvement [42], energy manage-
ment [43], [17], coalesced offloading [29], [28], prefetch-
ing [22], [44], [23], caching [24], background workload man-
agement [45], [46], [22], [47], [48], study of app and user
behaviors [49], [21], [30], [50], [51]. Work in [52] decreases
latency by prefetching, but consumes more energy. Existing
work on mobile ad prefetching [9], [1] often use simple
heuristics, yet make strong assumptions such as single ac-
tive app, fixed ad refreshing rate, and same ad type. There is
no formal systematic framework for mobile ad prefetching
and energy optimization before.

Another line of work on ad detection [33], [32], rec-
ommendation [38], [53] and pricing mechanisms [8] are
complementary with our work, and can be easily plugged
into our system, potentially opening up interesting avenues
for researches. Existing work on network measurement [3],
[36], [4], [54], [22], [55], [56], [57] can also provide useful
input to our optimization.

7 CONCLUSION

In this paper, we propose a novel framework for mobile
ad prefetching and energy optimization, which maximizes
the sum “energy-aware ad utility” of all apps. The utility
takes into account of the timeliness of mobile ads, since any
prefetched ads that are displayed after desired deadlines
only receive diminished utility. Our solution consists of a
Shapley value-based policy for tail energy accounting in
multiprocessing mobile systems, and an efficient distributed
algorithm jointly optimizing all apps’ prefetching strate-
gies. The proposed policy is proven to satisfy two crucial
properties - Positive Reward and Fairness, which are violated
by existing policies in prior work. We fully implement
the framework on Android and show that the system and
network overhead is almost negligible. Our work achieves
up to 45% energy savings than existing policies using real-
world user traces and it is transparent to mobile apps and
contemporary ad ecosystem.

REFERENCES

[1] Prashanth Mohan, Suman Nath, and Oriana Riva. Prefetching
mobile ads: Can advertising systems afford it? In EuroSys. ACM,
2013.

[2] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore, Yan
Grunenberger, Konstantina Papagiannaki, Hamed Haddadi, and
Jon Crowcroft. Breaking for commercials: Characterizing mobile
advertising. In IMC. ACM, 2012.

[3] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Z. Morley Mao,
Subhabrata Sen, and Oliver Spatscheck. Characterizing radio
resource allocation for 3G networks. In IMC. ACM, 2010.

[4] Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao,
Subhabrata Sen, and Oliver Spatscheck. A close examination of
performance and power characteristics of 4G LTE networks. In
MobiSys. ACM, 2012.

[5] Ana Nika, Yibo Zhu, Ning Ding, Abhilash Jindal, Y Charlie Hu,
Xia Zhou, Ben Y Zhao, and Haitao Zheng. Energy and perfor-
mance of smartphone radio bundling in outdoor environments.
In Proceedings of the 24th International Conference on World Wide
Web, pages 809–819. International World Wide Web Conferences
Steering Committee, 2015.

[6] Xiaomeng Chen, Ning Ding, Abhilash Jindal, Y Charlie Hu, Maruti
Gupta, and Rath Vannithamby. Smartphone energy drain in the
wild: Analysis and implications. ACM SIGMETRICS Performance
Evaluation Review, 43(1):151–164, 2015.

[7] Alok Tongaonkar, Shuaifu Dai, Antonio Nucci, and Dawn Song.
Understanding mobile app usage patterns using in-app advertise-
ments. In Passive and Active Measurement, pages 63–72. Springer,
2013.

[8] Azeem J Khan, Kasthuri Jayarajah, Dongsu Han, Archan Misra,
Rajesh Balan, and Srinivasan Seshan. CAMEO: A middleware for
mobile advertisement delivery. In MobiSys. ACM, 2013.

[9] Xiaomeng Chen, Abhilash Jindal, and Y. Charlie Hu. How much
energy can we save from prefetching ads?: Energy drain analysis
of top 100 apps. In HotPower. ACM, 2013.

[10] Lloyd S Shapley. A value for n-person games. Technical report,
DTIC Document, 1952.

[11] Mobile Radio Power Calculator in Android . http://goo.gl/
UnmaBG.

[12] Jason Flinn and Mahadev Satyanarayanan. Powerscope: A tool for
profiling the energy usage of mobile applications. In Second IEEE
Workshop on Mobile Computing Systems and Applications. IEEE, 1999.

[13] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang,
Robert P. Dick, Z. Morley Mao, and Lei Yang. Accurate online
power estimation and automatic battery behavior based power
model generation for smartphones. In CODES/ISSS. ACM, 2010.

[14] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and
Yi-Min Wang. Fine-grained power modeling for smartphones
using system call tracing. In EuroSys. ACM, 2011.

[15] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang,
and Hojung Cha. AppScope: Application energy metering frame-
work for android smartphones using kernel activity monitoring.
In ATC. USENIX, 2012.

[16] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empower-
ing developers to estimate app energy consumption. In MobiCom.
ACM, 2012.

[17] Mian Dong, Tian Lan, and Lin Zhong. Rethink energy accounting
with cooperative game theory. In MobiCom. ACM, 2014.

[18] Yongbo Li and Tian Lan. Multichoice games for optimizing task
assignment in edge computing. In 2018 IEEE Global Communica-
tions Conference. IEEE, 2018.

[19] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the
energy spent inside my app?: Fine grained energy accounting on
smartphones with Eprof. In EuroSys. ACM, 2012.

[20] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong,
and Phillip Kortum. LiveLab: measuring wireless networks and
smartphone users in the field. In ACM SIGMETRICS Performance
Evaluation Review, 2011.

[21] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and
Abhik Roychoudhury. Detecting energy bugs and hotspots in
mobile apps. In SIGSOFT FSE. ACM, 2014.

[22] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun
Venkataramani. Energy consumption in mobile phones: A mea-
surement study and implications for network applications. In
IMC. ACM, 2009.

[23] Chao Wu, Xu Chen, Yuezhi Zhou, Ningyuan Li, Xiaoming Fu,
and Yaoxue Zhang. Spice: Socially-driven learning-based mobile
media prefetching. In INFOCOM. IEEE, 2016.

[24] Maria Carpen Amarie, Ioannis Pefkianakis, and Henrik Lundgren.
Mobile video ad caching on smartphones. In UbiComp. ACM, 2014.

[25] Martin Shubik. Incentives, decentralized control, the assignment
of joint costs and internal pricing. Management science, 8(3):325–
343, 1962.

[26] Ashiwan Sivakumar, Shankaranarayanan
Puzhavakath Narayanan, Vijay Gopalakrishnan, Seungjoon

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXXXX 20XX 12

Lee, Sanjay Rao, and Subhabrata Sen. PARCEL: Proxy assisted
browsing in cellular networks for energy and latency reduction.
In CoNEXT. ACM, 2014.

[27] Alessandro Finamore, Marco Mellia, Zafar Gilani, Konstantina
Papagiannaki, Vijay Erramilli, and Yan Grunenberger. Is there
a case for mobile phone content pre-staging? In CoNEXT. ACM,
2013.

[28] Ali Sehati and Majid Ghaderi. Energy-delay tradeoff for request
bundling on smartphones. In INFOCOM. IEEE, 2017.

[29] Liyao Xiang, Shiwen Ye, Yuan Feng, Baochun Li, and Bo Li. Ready,
set, go: Coalesced offloading from mobile devices to the cloud. In
INFOCOM. IEEE, 2014.

[30] Abouzar Rahmati and Lin Zhong. Studying smartphone usage:
Lessons from a four-month field study. TMC, 12(7):1417–1427,
2013.

[31] Dnsmasq. http://www.thekelleys.org.uk/dnsmasq/doc.html.
[32] Wenhao Li, Haibo Li, Haibo Chen, and Yubin Xia. Adattester:

Secure online mobile advertisement attestation using trustzone.
In MobiSys. ACM, 2015.

[33] Jonathan Crussell, Ryan Stevens, and Hao Chen. MAdFraud:
Investigating ad fraud in android applications. In MobiSys. ACM,
2014.

[34] Reverse engineering tool Apktool. http://ibotpeaches.github.io/
Apktool/.

[35] UI/Application exerciser monkey. https://goo.gl/yi99ig.
[36] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang

Xu, Z. Morley Mao, Subhabrata Sen, and Oliver Spatscheck. An
in-depth study of LTE: Effect of network protocol and application
behavior on performance. In SIGCOMM. ACM, 2013.

[37] Monsoon Powermeter. https://goo.gl/bB96ta.
[38] Suman Nath. Madscope: Characterizing mobile in-app targeted

ads. In MobiSys. ACM, 2015.
[39] Xposed framework. https://goo.gl/NgfpCJ.
[40] App Compass from google Play Store. https://play.google.com/

store/apps/details?id=com.gn.android.compass.
[41] Mobile benchmark suite softweg. https://goo.gl/8G3lDm.
[42] Wei Wang, Yingjie Chen, Lu Wang, and Qian Zhang. From

rateless to sampleless: Wi-fi connectivity made energy efficient.
In INFOCOM. IEEE, 2016.

[43] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat.
ECOSystem: Managing energy as a first class operating system
resource. In ASPLOS X. ACM, 2002.

[44] Brett D Higgins, Jason Flinn, Thomas J Giuli, Brian Noble, Christo-
pher Peplin, and David Watson. Informed mobile prefetching. In
MobiSys. ACM, 2012.

[45] Abhijnan Chakraborty, Vishnu Navda, Venkata N Padmanabhan,
and Ramachandran Ramjee. Coordinating cellular background
transfers using loadsense. In MobiCom. ACM, 2013.

[46] Xiaomeng Chen, Abhilash Jindal, Ning Ding, Yu Charlie Hu,
Maruti Gupta, and Rath Vannithamby. Smartphone background
activities in the wild: Origin, energy drain, and optimization. In
MobiCom. ACM, 2015.

[47] Fengyuan Xu, Yunxin Liu, Thomas Moscibroda, Ranveer Chandra,
Long Jin, Yongguang Zhang, and Qun Li. Optimizing background
email sync on smartphones. In MobiSys. ACM, 2013.

[48] Shravan Aras and Chris Gniady. Greentouch: Transparent energy
management for cellular data radios. In UbiComp. ACM, 2016.

[49] Lenin Ravindranath, Sharad Agarwal, Jitendra Padhye, and Chris
Riederer. Procrastinator: pacing mobile apps’ usage of the net-
work. In MobiSys. ACM, 2014.

[50] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lym-
beropoulos, Ramesh Govindan, and Deborah Estrin. Diversity in
smartphone usage. In MobiSys. ACM, 2010.

[51] Wenjie Hu and Guohong Cao. Energy-aware video streaming on
smartphones. In INFOCOM. IEEE, 2015.

[52] Yichuan Wang, Xin Liu, David Chu, and Yunxin Liu. Earlybird:
Mobile prefetching of social network feeds via content preference
mining and usage pattern analysis. In MobiHoc. ACM, 2015.

[53] Suman Nath, Felix Xiaozhu Lin, Lenin Ravindranath, and Jitendra
Padhye. SmartAds: bringing contextual ads to mobile apps. In
MobiSys. ACM, 2013.

[54] Ashkan Nikravesh, Hongyi Yao, Shichang Xu, David Choffnes,
and Z. Morley Mao. Mobilyzer: An open platform for controllable
mobile network measurements. In MobiSys. ACM, 2015.

[55] Andrius Aucinas, Narseo Vallina-Rodriguez, Yan Grunenberger,
Vijay Erramilli, Konstantina Papagiannaki, Jon Crowcroft, and

David Wetherall. Staying online while mobile: The hidden costs.
In CoNEXT. ACM, 2013.

[56] Duc Hoang Bui, Yunxin Liu, Hyosu Kim, Insik Shin, and Feng
Zhao. Rethinking energy-performance trade-off in mobile web
page loading. In MobiCom. ACM, 2015.

[57] Shuai Wang, Song Min Kim, Yunhuai Liu, Guang Tan, and Tian
He. Corlayer: A transparent link correlation layer for energy
efficient broadcast. In MobiCom. ACM, 2013.

Yongbo Li received his Ph.D. degree from the
Department of Electrical and Computer Engi-
neering at the George Washington University in
2018. His research interests include mobile en-
ergy optimization, edge computing, and system
security. He will join Facebook as a research
scientist in 2018.

Yimeng Wang received the BS degree in com-
munication engineering from Beijing Jiaotong
University, in 2012. He received the MS degree
from the George Washington University in 2015.
He is pursuing the PhD degree in GWU, focusing
on mobile energy optimization and mobile edge
computing.

Tian Lan received the BS degree in Electrical
Engineering from Tsinghua University in 2003,
MS degree from the Department of Electrical
and Computer Engineering at the University of
Toronto in 2005. He received the PhD degree
from the Department of Electrical Engineering
at the Princeton University in 2010. He is an
Associate Professor in the Department of Elec-
trical and Computer Engineering at the George
Washington University, which he joined in 2010.
He received the best paper award from IEEE

INFOCOM 2012, IEEE GLOBECOM 2009 and IEEE Signal Processing
Society 2008. His research interests include mobile energy accounting,
cloud computing, and cyber security.

