
Sprout: A functional caching approach to minimize service latency in erasure-coded storage

Vaneet Aggarwal1, Yih-Farn R Chen2, Tian Lan3, and Yu Xiang2

1 School of IE, Purdue University, West Lafayette, IN 47907, USA
2 AT&T Labs-Research, Bedminster, NJ 07921, USA

3 Department of ECE, George Washington University, DC 20052, USA

vaneet@purdue.edu, chen@research.att.com, tlan@gwu.edu, yxiang@research.att.com

The rapid growth of data traffic in storage systems has

put a significant burden on the underlying networks of cloud

storage systems. Historically, a key solution to relieve this

traffic burden is caching [1]. Many companies have adopted

erasure-coded storage systems. However, caching for data

centers when the files are encoded with an erasure code has

not been studied to the best of our knowledge. This paper

proposes a new functional caching approach called Sprout that

can efficiently capitalize on existing file coding in erasure-

coded storage systems. In contrast to exact caching that stores

d chunks identical to original copies, our functional caching

approach forms d new data chunks, which together with the

existing n chunks satisfy the property of being an (n+ d, k)
MDS code. Thus, the file can now be recovered from any

k out of n + d chunks (rather than k out of n under exact

caching), effectively extending coding redundancy, as well

as system diversity for scheduling file access requests. The

proposed functional caching approach saves latency due to

more flexibility to obtain k−d chunks from the storage system

at a very minimal additional computational cost of creating

the coded cached chunks. While quantifying service latency

in erasure-coded storage systems is an open problem, we

generalize previous results on probabilistic scheduling policy

[2, 3] that distributes file requests to cache and storage nodes

with optimized probabilities, and derive a closed-form upper

bound on mean service latency for the proposed functional

caching approach.

This analytical latency model for functional caching enables

us to formulate a cache-content optimization problem. This

problem is an integer optimization problem, which is very

difficult to solve. Towards this end, for given data chunk

placement and file request arrival rates, we propose a heuristic

algorithm that iteratively identifies files whose service latency

benefits most from caching and constructs new functional data

chunks until the cache is filled up. The algorithm can be

efficiently computed to allow online cache optimization and

management with time-varying arrival rates.

System Model: We consider a distributed storage system

consisting of m heterogeneous storage nodes, denoted by

M = {1, 2, . . . ,m}. To distributively store a set of r files,

indexed by i = 1, . . . , r, we partition each file i into ki fixed-

size chunks and then encode it using an (ni, ki) MDS erasure

code to generate ni distinct chunks of the same size for file

i. The encoded chunks are stored on the disks of ni distinct

storage nodes. A set Si of storage nodes, satisfying Si ⊆M
and ni = |Si| is used to store file i. Therefore, each chunk

is placed on a different node to provide high reliability in

the event of node or network failures. The use of (ni, ki)

MDS erasure code allows the file to be reconstructed from

any subset of ki-out-of-ni chunks, whereas it also introduces

a redundancy factor of ni/ki.
The files are accessed by cloud servers located in the same

datacenter. A networked cache of size C is available at each

compute server to store a limited number of chunks of the r
files in its cache memory. File access requests are modeled by

a non-homogenous Poisson process. We make the assumption

of time-scale separation, such that system service time is

divided into multiple bins, each with different request arrival

rates, while the arrival rates within each bin remain stationary.

Let λi,j,t be the arrival rate of file-i requests at compute server

j in time bin t. Since each cache serves a single compute

server, we consider a separate optimization for each cache and

suppress server index j in the notations. Let di ≤ ki (chunks)

be the size of cache memory allocated to storing file i chunks.

These chunks in cache memory can be both prefetched in an

offline fashion during a placement phase [1] (during hours of

low workload) and updated on the fly when a file i request is

processed by the system.

Under functional caching, di new coded data chunks of file

i are constructed and cached, so that along with the existing

ni chunks satisfy the property of being an (ni + di, ki) MDS

code. Therefore, for given erasure coding and chunk placement

on storage nodes and cache, a request to access file i can be

processed using di cached chunks in conjunction with ki− di
chunks on distinct storage nodes. After each file request arrives

at the storage system, we model this by treating the file request

as a batch of ki − di chunk requests that are forwarded to

appropriate storage nodes, as well as di chunk requests that are

processed by the cache. Each storage node buffers requests in a

common queue of infinite capacity and process them in a FIFO

manner. The file request is served when all ki chunk requests

are processed. Further, we consider chunk service time Xj

of node j with arbitrary distributions, whose statistics can be

inferred.

Optimization Formulation: At time t, we consider the

cache optimization problem, which decides the optimal num-

ber di,t of file-i chunks to store in the cache memory,

satisfying cache capacity constraint
∑

i di,t ≤ C, in order to

minimize mean service latency of all files. Under functional

caching, each file-i request is served by accessing di,t chunks

in the cache, along with ki − di,t distinct chunks that are

selected from ni storage nodes. Thus, the latency to access

file i under functional caching is determined by the maximum

processing (queuing) delay of the selected ki − di,t storage

nodes. Quantifying service latency in such erasure-coded sys-

tem is an open problem. In this paper, we use probabilistic

2016 IEEE 36th International Conference on Distributed Computing Systems

1063-6927/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDCS.2016.100

753

scheduling proposed in [2] to derive an upper bound on the

average file latency.

We denote Xj as the chunk service time at node j,

which has an arbitrary distribution satisfying finite mean

E[Xj] = 1/μj , variance E[X2

j] − E[Xj]
2 = σ2

j , second

moment E[X2

j] = Γ2

j , and third moment E[X3

j] = Γ̂3

j .

Following [2], the expected latency T̄i,t of file i in time-bin t
under probabilistic scheduling is upper bounded by Ūi,t, given

by

Ūi,t = min
zi,t∈R

⎧⎨
⎩zi,t +

∑
j∈Si,t

πi,j,t

2
(E[Qj,t]− zi,t)

+
∑

j∈Si,t

πi,j,t

2

[√
(E[Qj,t]− zi,t)2 + V ar[Qj,t]

]⎫⎬
⎭ ,

where
E[Qj,t] =

1

μj

+
Λj,tΓ

2

j

2(1− ρj,t)
,

V ar[Qj,t] = σ2

j +
Λj,tΓ̂

3

j

3(1− ρj,t)
+

Λ2

j,tΓ
4

j

4(1− ρj,t)2
,

where ρj,t = Λj,t/μj is the request intensity at node j, and

Λj,t =
∑

i λi,tπi,j,t is the mean arrival rate at node j. The

bound is tight in the sense that there exists a distribution of

Qj,t such that (1) is satisfied with exact equality.

We now formulate the cache optimization in a single time-

bin. The optimization is over cache content placement di,t,
scheduling probabilities πi,j,t, and auxiliary variable zi,t in

the upper bound. Let λ̂t =
∑

i λi,t be the total arrival rate,

so λi,t/λ̂ is the fraction of file i requests, and average latency

of all files is given by
∑

i(λi,t/λ̂t)T̄i,t. Our objective is to

minimize an average latency objective, i.e.,

min

r∑
i=1

λi,t

λ̂t

Ūit

s.t. (1), (1), (1),

m∑
j=1

πi,j,t = ki − di,t, πi,j,t, di,t ≥ 0,

∑
i

di,t ≤ C, πi,j,t = 0 for j /∈ Si, πi,j,t ≤ 1,

zi,t ≥ 0, di,t ∈ Z.

var. {πi,j,t, di,t, zi,t}, ∀i, j, t.

Here the constraints
∑m

j=1
πi,j,t = ki − di,t and πi,j,t ≤

1 ensure that ki − di,t distinct storage nodes (along with

di,t chunks in the cache) are selected to process each file

request, following probabilistic scheduling in [2]. Clearly,

storage nodes without desired chunks cannot be selected, i.e.,

πi,j,t = 0 for j /∈ Si. Finally, the cache has a capacity

constraint
∑

i di,t ≤ C.

Algorithm: Solving the cache optimization gives us the

optimal cache content placement and scheduling policy to

minimize file access latency. We first note that the variable

di,t can be absorbed into scheduling decision πi,j,t because

of the equality constraint di,t = ki −
∑m

j=1
πi,j,t. In order to

solve the problem, we use an alternating minimization over

two dimensions - the first decides on zi,t given πi,j,t, and the

second decides on πi,j,t given zi,t. The first problem is convex,

and can be easily solved by gradient descent. However, the

second problem has integer constraint. In order to deal with

this, we first remove integer constraint to solve the problem.

Then, a certain percentage of files whose fractional part of

content accessed from the disk is highest are added a part in

the disk to make the part in disk as integers. The optimization

over πi,j,t keeps running until
∑m

j=1
πi,j,t for all files is an

integer.

Numerical Results: We simulated our algorithm in a

cluster of m = 12 storage servers holding r = 1000 files

of size 100 MB each using a (7,4) erasure code. Unless stated

otherwise, cache size remains as 500 times of the chunk size

(i.e., 500 times of 25 MB). The arrival rate for each file is

set at a default value of λi = 0.000156/sec, 0.000156/sec,

0.000125/sec, 0.000167/sec, 0.000104/sec for every five out of

the 1000 files of each size. It gives an aggregate arrival rate of

all files to be 0.1416/sec. The inverse of mean service times for

the 12 servers are set based on measurements of real service

time in the distributed storage system, and they are {0.1, 0.1,

0.1, 0.0909, 0.0909, 0.0667, 0.0667, 0.0769, 0.0769, 0.0588,

0.0588} for the 12 storage servers respectively. The placement

of files on the servers is chosen at random.

Figure 1 demonstrates the convergence of our algorithm in

one time-bin for cache size C×25 MB. A random initialization

is chosen for C = 100, while the converged solution for

C = 100 is taken as initialization for C = 200 and so on. We

note that the algorithm converges within a few iterations, and

converges in less than 20 iterations with a threshold of 0.01

on latency for all cache size values in Figure 1. Fig 2 shows

that the average latency decreases as cache size increases,

where average latency is 23 sec when no file has any content

in cache, and is 0 sec when cache size is 4000 chunk-size

since 4 chunks of each file can be in the cache. We note that

the latency is convex decreasing function of the cache size,

depicting that our algorithm is effectively updating content in

cache and showing diminishing returns in decrease of latency

after reaching certain cache size.

REFERENCES

[1] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,”
in IEEE International Conference on Communications, ICC 2014, Sydney,

Australia, June 10-14, 2014, 2014, pp. 1878–1883.
[2] Y. Xiang, T. Lan, V. Aggarwal, and Y.-F. Chen, “Joint latency and

cost optimization for erasure-coded data center storage,” Networking,

IEEE/ACM Transactions on, vol. PP, no. 99, pp. 1–1, 2015.
[3] Y. Xiang, T. Lan, V. Aggarwal, and Y. F. R. Chen, “Joint latency and

cost optimization for erasurecoded data center storage,” SIGMETRICS

Perform. Eval. Rev., vol. 42, no. 2, pp. 3–14, Sep. 2014.

754

