
Optimizing Speculative Execution of Deadline-Sensitive
Jobs in Cloud

Maotong Xu, Sultan Alamro, Tian Lan, and Suresh Subramaniam
Department of Electrical and Computer Engineering

�e George Washington University
{htfy8927, alamro, tlan, suresh}@gwu.edu

ABSTRACT
In this paper, we bring various speculative scheduling strategies
together under a unifying optimization framework, which de�nes
a new metric, Probability of Completion before Deadlines (PoCD),
to measure the probability that MapReduce jobs meet their desired
deadlines. We propose an optimization problem to jointly optimize
PoCD and execution cost in di�erent strategies. �ree strategies
are prototyped on Hadoop MapReduce and evaluated against two
baseline strategies using experiments. A 78% net utility increase
with up to 94% PoCD and 12% cost improvement is achieved.

KEYWORDS
MapReduce; Straggler; Speculative Strategy; PoCD

1 INTRODUCTION
Hadoop, built on the MapReduce programming model, has been
widely employed by giant companies such as Facebook, Google,
and Yahoo! for processing big data. It splits large amount of data
into blocks and distributes them across machines to process the
data in parallel. However, such parallel data processing framework
is susceptible to heavy tails in response time, and job execution
times could be adversely impacted by a few slow tasks, called strag-
glers. �ese stragglers are inevitable in the cloud environment due
to resource contentions and hardware/so�ware errors, and they
could result in high latency and impact the overall performance of
deadline-sensitive cloud applications.

Both proactive and reactive techniques are proposed to mitigate
stragglers. Dolly [1] is a proactive cloning approach. It launches
multiple a�empts for each task, and the task completes when the
earliest a�empt �nishes. LATE [2] presents a scheduling algorithm
to check if the task is a straggler, and launch speculative a�empts for
each straggler. However, no existing work provides any guarantee
to meet application deadlines.

Meeting desired deadlines is crucial since cloud applications
are becoming increasingly deadline-sensitive. In this paper, we
present an optimization framework for three straggler mitigation
strategies– Clone, Speculative-Restart, and Speculative-Resume.
For each MapReduce job, the optimization �nds the optimal number
r of speculative/clone a�empts for each strategy to exploit the PoCD
and cost tradeo�. �e optimization framework uni�es all three

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS ’17, June 05-09, 2017, Urbana- Champaign, IL, USA
© 2017 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-5032-7/17/06.
DOI: h�p://dx.doi.org/10.1145/3078505.3078541

strategies and maximizes a net utility that is de�ned as a utility
function of r . �e utility function (U (r )) consists of PoCD (R(r )),
i.e., the probability of meeting job deadlines, and total execution
cost, which is measured by the total expected (virtual) machine
time (E(T )). More speci�cally,

U (r ) = log(R(r ) − Rmin) − θ ·C ·E(T ), (1)

where Rmin is a minimum required PoCD, and T is the execution
time of a job. θ is the tradeo� between the PoCD and cost, and
C is the usage-based VM price per unit time. To the best of our
knowledge, this is the �rst work to provide a systematic study of
various scheduling strategies and to o�er an analytical framework
for joint optimization of the probability of meeting deadlines and
the associated execution cost.

We evaluate Clone, Speculative-Restart, and Speculative-Resume
strategies and compare them against two baseline strategies includ-
ing default Hadoop without speculation (Hadoop-NS), and default
Hadoop with speculation (Hadoop-S), in our cloud testbed consist-
ing of 80 nodes. Using two classic benchmarks, WordCount and
Sort, we show that Speculative-Resume outperforms the baseline
algorithms by an average of 78% in net utility improvement, which
results from a signi�cant PoCD increase (up to 94%) and/or cost
reduction (up to 12%), while the improvement is even higher for
more stringent application deadlines.

2 BACKGROUND AND SYSTEM MODEL
SupposeM jobs are submi�ed to a datacenter, where job i is associ-
ated with a deadline Di and consists of Ni tasks for i = 1, 2, . . . ,M .
Job i meets the deadline if all Ni tasks are processed before Di . A
task whose execution time exceeds Di is considered as a straggler.
To mitigate stragglers, we launch ri extra a�empts of each task
along with an original a�empt, and a task is completed as long
as one of the a�empts is successfully executed. We denote the
(random) execution time of a�empt k of job i’s task j asTi, j,k . �us,
we de�ne job i’s completion time Ti and task completion time Ti, j
by:

Ti = max
j=1, ...,Ni

Ti, j , where Ti, j = min
k=1, ...,ri+1

Ti, j,k , ∀j . (2)

[3–5] model the execution times of tasks by using the Pareto
distribution. Following these papers, we assume the execution time
Ti, j,k of each a�empt follows a Pareto distribution with parameters
tmin, and β , where tmin is the minimum execution time and β is
the exponent, and the execution times of di�erent a�empts are
independent. We use progress score, i.e., the percentage of workload
processed at a given time t , to determine if extra a�empts are
needed. More speci�cally, the estimated execution time equals the
sum of the amount of time to launch the task and the amount of



original attempt

attempt 2

attempt r+1

start

fastest attempt

finishτkill

(a)

original attempt

attempt 2

attempt r+1

start

fastest attempt

finishτkillτest

(b)

original attempt

attempt 2

attempt r + 1

start

fastest attempt

finish

attempt 1
X

offset b

τkillτest

Resume
from offset b

(c)

Figure 1: (a) Clone Strategy, (b) Speculative-Restart Strategy, (c) Speculative-Resume Strategy.

time used for processing data divided by the progress score. In the
following, we describe the details of the three strategies.
Clone Strategy. Under this strategy, r + 1 a�empts of each task
are launched at the beginning, including one original a�empt and
r extra a�empts. At time τkill, the progress scores of all a�empts
are checked, and the a�empt with the best progress score is le�
running, while the other r a�empts are killed to save machine
running time. Figure 1(a) illustrates the Clone strategy for a task.
Speculative-Restart (S-Restart) Strategy. Under this strategy,
one a�empt (original) of each task is launched at the beginning. �e
a�empt completion time is estimated at time τest. If the estimated
a�empt completion time exceeds D, r extra a�empts are launched
to process data from the beginning. �e progress scores of all
a�empts are checked at time τkill, and the a�empt with the smallest
estimated completion time is le� running, while the other r a�empts
are killed. Figure 1(b) illustrates the Speculative-Restart strategy
for a task whose estimated execution time exceeds D.
Speculative-Resume (S-Resume) Strategy. �is strategy is sim-
ilar to the Speculative-Restart strategy in its straggler detection.
�e di�erence is that at time τest, the straggler is killed and r + 1
a�empts are launched for the straggling task. �ese a�empts, how-
ever, do not reprocess the data that has already been processed
by the original a�empt; they process the data starting from the
byte a�er the last byte processed by the original straggler task. �e
progress scores of all a�empts are checked at time τkill, and the
a�empt with the smallest estimated completion time is le� running
while the other r a�empts are killed. Figure 1(c) illustrates the
Speculative-Resume strategy for a task whose estimated execution
time exceeds D. �e b denotes the byte o�set from which extra
a�empts start processing.

3 EVALUATION
We compareHadoop-NS, Hadoop-S, Clone, S-Restart, and S-Resume
with respect to PoCD, cost, and net utility. In each of the three
strategies, the optimal number, ropt, of clone/speculative a�empts
is found by solving our proposed net utility optimization. We exe-
cute 100 MapReduce jobs, where each job consists of 10 tasks, on
our testbed consisting of 80 nodes, where each node has 8 vCPUs
and 2GB memory. �e physical servers are connected to a GigE
switch and the link bandwidth is 1Gbps. We evaluate the strategies
by using the Map phases of two classic benchmarks, WordCount
and Sort. WordCount is a CPU-bound application and Sort is an
I/O-bound application. We download 1.2GB workload for Word-
Count from Wikipedia, and generate 1.2GB workload for Sort by
using the RandomWriter application. We measure the PoCD by

Table 1: Comparison of di�erent strategies.

Metrics H-NS H-S Clone S-Restart S-Resume

Sort
PoCD 0.50 0.78 0.97 0.96 0.94

Cost(e-3, $) 2.15 2.39 3.63 3.15 2.75
Utility −∞ -0.65 -0.47 -0.46 -0.45

WC
PoCD 0.46 0.64 0.81 0.79 0.85

Cost(e-3, $) 3.56 4.10 5.67 4.64 3.60
Utility −∞ -0.90 -0.32 -0.29 -0.20

calculating the percentage of jobs that completed before their dead-
lines and the cost by the average job running time (i.e., VM time
required), assuming a �xed price per unit VM time that is obtained
from Amazon EC2 average spot price (C = 0.009$/hr ). In all exper-
iments, we set θ ·C = 0.0001 and solve the corresponding net utility
optimization. �e deadlines are set to 200 sec and 270 sec for Sort
and WordCount, respectively. For our three strategies, τest and τkill
equal 60 sec and 120 sec, respectively. For net utility, since we use
the PoCD of Hadoop-NS as Rmin, its utility is negative in�nity.

Table 1 summarizes the corresponding PoCD and cost in the op-
timal solutions, and compares the performance of the �ve strategies
in terms of the overall net utility. Results show that our three strate-
gies outperform Hadoop-NS and Hadoop-S by up to 78% on net
utility value. In particular, the three strategies can improve PoCD
by up to 94% and 33% over Hadoop-NS and Hadoop-S, respectively,
while S-Resume introduces li�le additional cost compared with
Hadoop-NS and Hadoop-S. �is signi�cant improvement comes
from not only launching multiple a�empts for stragglers, but also
maintaining only the fastest a�empt at τkill, thereby introducing
limited execution time overhead.

4 ACKNOWLEDGEMENT
�is work was supported in part by NSF grant 1320226.

REFERENCES
[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “E�ective straggler

mitigation: A�ack of the clones,” in Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13), 2013, pp. 185–198.

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, “Improving
mapreduce performance in heterogeneous environments.” in OSDI, vol. 8, no. 4,
2008, p. 7.

[3] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman, and M. Yu,
“Grass: trimming stragglers in approximation analytics,” in 11th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 14), 2014, pp.
289–302.

[4] D.Wang, G. Joshi, and G.Wornell, “Using straggler replication to reduce latency in
large-scale parallel computing,” ACM SIGMETRICS Performance Evaluation Review,
vol. 43, no. 3, pp. 7–11, 2015.

[5] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper: Decentral-
ized speculation-aware cluster scheduling at scale,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 379–392, 2015.


	Abstract
	1 INTRODUCTION
	2 Background and System Model
	3 Evaluation
	4 Acknowledgement
	References

