
1

On the Approximability of Related Machine
Scheduling under Arbitrary Precedence

Vaneet Aggarwal, Tian Lan, Suresh Subramaniam, and Maotong Xu

Abstract—Distributed computing systems often need to con-
sider the scheduling problem involving a collection of highly
dependent data-processing tasks that must work in concert
to achieve mission-critical objectives. This paper considers the
unrelated machine scheduling problem for minimizing weighted
sum completion time under arbitrary precedence constraints
and on heterogeneous machines with different processing speeds.
The problem is known to be strongly NP-hard even in the
single machine setting. By making use of Queyranne’s constraint
set and constructing a novel Linear Programming relaxation
for the scheduling problem under arbitrary precedence con-
straints, our results in this paper advance the state of the
art. We develop a 2(1 + (m − 1)/D)-approximation algorithm
(and 2(1 + (m − 1)/D) + 1-approximation) for the scheduling
problem with zero release time (and arbitrary release time),
where m is the number of servers and D is the task-skewness
product. The algorithm can be efficiently computed in polynomial
time using the Ellipsoid method and achieves nearly optimal
performance in practice as D > O(m) when the number of
tasks per job to schedule is sufficiently larger than the number
of machines available. Our implementation and evaluation using
a heterogeneous testbed and real-world benchmarks confirms
significant improvement in weighted sum completion time for
dependent computing tasks.

I. INTRODUCTION

Next-generation computing systems such as distributed
learning are becoming increasingly sophisticated and hetero-
geneous, often involving a collection of highly dependent data-
processing tasks that must work in concert to achieve mission-
critical objectives, going beyond traditional considerations like
throughput or congestion. For instance, data processing frame-
works like MapReduce execute tasks in multiple sequential
stages. Visual Question Answering (VQA) applications [1]
often perform multiple steps of reasoning and processing, each
time refining the representations with contextual and question
information. In general, such precedence constraints that exist
in distributed computing can be formulated as a partial order
among all tasks belonging to the same job, i.e., i � j if task i
must be completed before task j starts. The problem of task
scheduling with precedence constraints arises in multi-cloud
environments [2], [3], [4], where the precedence constraint is
important to consider for scheduling on related servers, and is
the subject of this paper.

V. Aggarwal is with the School of Industrial Engineering and the School of
Electrical and Computer Engineering, Purdue University, West Lafayette IN
47907, email: vaneet@purdue.edu. T. Lan, S. Subramaniam, and M. Xu are
with the Department of ECE, The George Washington University, DC 20052,
USA, email: {tlan, suresh, htfy8927}@gwu.edu. This work was supported
in part by ONR Grant N00014-20-1-2146, U.S. National Science Foundation
under Grant CNS-1618335, and CISCO research gift 1155109.

Fig. 1: Related machine scheduling under precedence constraints is
NP-hard even in special cases. Algorithms that either assume identical
machine speed or are oblivious of such dependence would result
in substantially higher weighted completion time than the optimal
solution shown here.

In this paper, we consider the scheduling problem of min-
imizing weighted completion time of multiple learning jobs
under precedence constraints (that are modeled as an arbi-
trary Directed Acyclic Graph (DAG), or dependence graph)
and on heterogeneous machines (with different processing
speeds). Each vertex i in the dependence graph denotes a
job, while each arc (i, j) represents a precedence constraint
i � j between jobs i and j, i.e., all tasks of job i must
be completed before any task of job j starts. A job is
completed if all its constituent tasks are finished. An example
of scheduling problem is illustrated in Figure 1, with two
jobs {A1, A2, A3} and {B1, B2} under precedence constraints
between their constituent tasks. The weighted completion time
is wACA + wBCB , where CA and CB are the completion
times of the jobs A and B, respectively. In Fig. 1, we assume
wA = 4 and wB = 1. It is easy to see that an optimal solution
minimizing weighted completion time must take precedence
constraints into account, while algorithms that either assume
identical machine speed or are oblivious of such dependence
would result in substantially higher weighted completion time.
The machines are assumed to have different speeds, e.g., speed
of second machine is three times that of the first machine
in Fig. 1. This scheduling problem with different machine
speeds and under precedence constraints has been studied
dating back to the 1950s [5], but still remains an open problem
despite recent progress on approximation algorithms in a few
special cases [6], [7], [8], [9], [10], [11], [12]. When there is a
single job, thus giving no precedence constraints, the problem
of scheduling jobs on machines with different processing
speed has been studied as the Related Machine Scheduling
problem, which is known to be strongly NP-hard even in the
single machine setting, and APX-hard even when all jobs are
available to schedule at time 0 (referred to as zero release
time) [9]. The best known result is a 1.5-approximation algo-
rithm for zero release times [12], and 1.8786-approximation
algorithm for arbitrary arrival times [9]. Later, for the special

2

case of identical machines and multiple jobs, and when the
dependence graph reduces to a complete bipartite graph, 3-
approximation and 7-approximation algorithms are proposed
in [13], [14] for zero and general release times, respectively.

Our results in this paper advance the state of the art on
related machine scheduling under (i) arbitrary precedence
constraints (i.e., any dependence graph) and (ii) heterogeneous
machine speeds, when each job consists of multiple parallel
tasks. In particular, we consider the problem of minimizing
weighted sum completion time

∑
s wsCs, where Cs denotes

the completion time of job s, which is determined by the
completion of all its constituent tasks, and ws is a non-
negative weight for job s. We develop a 2(1 + (m − 1)/D)-
approximation algorithm for the scheduling problem with zero
release time, where m is the number of machines and D is a
metric quantifying the task-skewness product, which is defined
as the minimum (over all jobs in a set) ratio of the sum of
task sizes (in a job) to the largest task size (in that job). Since
the number of tasks to schedule is normally much larger than
the number of machines available, we have D > O(m), which
implies that our proposed algorithm achieves an approximation
ratio of 2+ε in practice. Further, we show that the competitive
ratio becomes 2(1 + (m− 1)/D) + 1 for general job release
times, or 3 + ε when D > O(m). The key idea of our
approach is to make use of the Queyranne’s constraint set [15]
and construct a novel Linear Programming (LP) relaxation for
the scheduling problem under arbitrary precedence constraints.
Then, we show that the proposed LP can be efficiently com-
puted in polynomial time using the Ellipsoid method [16]. It
yields a scheduling algorithm with provable competitive ratio
with respect to the optimal scheduling solution. Even when
restricted to complete bipartite dependence graphs, our results
significantly improve prior work, namely 37.86-approximation
algorithm proposed in [17] (though their result is for a
more general setting of unrelated machines, while only for
zero release times), and achieves nearly optimal performance
when the number of tasks to schedule is sufficiently larger
than the number of machines available. We also note that
54-approximation algorithm proposed in [18] is for the case
of disjoint processors in bi-partite graphs, where the Map
and Reduce jobs do not happen on the same servers, and
thus the setup is not directly comparable. In addition, we
do not consider preemption of jobs like in [19]. The setting
of related machine scheduling is studied in [20], [21], where
approximation guarantee in [21] is O(logm/ log logm). For
D > O(m log logm/ logm), we outperform the state of the
art results in [21]. The results are compared in Table I,
which includes a summary of different results for identical
and unrelated machines.

We implement the proposed scheduling algorithm and eval-
uate its performance in Hadoop, whose map and reduce tasks
satisfy a complete bipartite dependence graph. Modifications
to the Application Master and Resource Manager are made
to ensure that task/job execution follow the desired order, as
given by our optimization solution. Our extensive experiments,
using a combination of WordCount, Sort, and TeraSort bench-
marks on a heterogeneous cluster and on real-world datasets
(resulting in high level of execution time uncertainty), validate

that our proposed scheduler outperforms baseline strategies
including FIFO in default Hadoop, Identical-machine [13],
[14], and Map-only [9], in terms of sum weighted completion
time. Especially, the scheduler can achieve the smallest total
weighted completion time for scheduling benchmarks with
heavy workloads in reduce phase, e.g., TeraSort. We also per-
form simulations to evaluate our scheduler under dependence
graphs with multiple waves of execution. We note that for
equal-sized map and equal-sized reduce jobs, D will be the
number of map-reduce jobs and thus the algorithm would work
in D > O(m) regime.

The main contributions of the paper are as follows.
• We consider the related machine scheduling problem

for minimizing weighted sum completion time, under
arbitrary precedence constraints and on heterogeneous
machines.

• The proposed scheduling algorithm is based on the so-
lution of an approximated linear program, which recasts
the precedence constraints and is shown to be solvable in
polynomial time.

• We analyze the proposed scheduling algorithm and quan-
tify its approximation ratio with both zero and arbitrary
release times, which significantly improves prior art,
especially when the number of tasks per job is large.

• Our implementation and evaluation using Hadoop shows
that the scheduler outperforms other baselines by up to
82% in terms of total weighted completion time.

The rest of the paper is organized as follows. We present
the system model and formulate the problem in Section II.
The approximation algorithm and its analysis are provided
in Section III. The implementation details of the proposed
algorithm are provided in Section V, and evaluation results
are presented in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider scheduling N jobs, where the set of jobs is
denoted by J . Each job j ∈ J consists of tj tasks, where the
set of tasks of job j is denoted by Tj . Task t ∈ Tj of job j
has processing data size pj,t. Without loss of generality, we
assume that the tasks of a job are ordered in a non-increasing
order of the task sizes, or

pj,1 ≥ pj,2 ≥ · · · ≥ pj,tj .

The objective of the problem considered in this paper is
to schedule different tasks on m heterogeneous machines.
Further, the scheduling is assumed to be non-preemptive, i.e.,
once a task is started on a machine, it cannot be stopped
until it is complete. We assume that the speed of machine
i ∈ {1, · · · ,m} is vi. The time taken for processing task
t ∈ Tj on server i is pj,t/vi. Without loss of generality, we
assume that machines are ordered in non-increasing order of
their speeds, or

v1 ≥ v2 ≥ · · · ≥ vm.

We assume that the different tasks in a job have no con-
straints, and thus can be scheduled in parallel. The set of
jobs have precedence constraints which can be represented

3

Scheduling problems Performance bounds
Arbitrary machines; Single-vertex graphs; Arbitrary release time [9] 1.8786
Identical machines; Bipartite graphs; Zero release time [13] 3
Identical machines; Bipartite graphs; Arbitrary release time [14] 7
Identical machines; Arbitrary graphs; Zero release time [17] 4
Identical machines; Arbitrary graphs; Zero release time [21] 2 + 2 log 2 + ε
Unrelated machines, disjoint processors; Bipartite graphs; Zero release time [18] 54

Unrelated machines; k-partite graphs1; Zero release time [17] (k + 1 + k
ε
)
(2α2−1)(1+ε)

α−1
+ α+ α

ε

Related machines; Arbitrary graphs; Zero release time [20] O(logm)
Related machines; Arbitrary graphs; Zero release time [21] O(logm/ log logm)

Related machines; Arbitrary graphs; Zero release time [This paper] 2(1 + m−1
D

), or (2 + ε) as D > O(m)

Related machines; Arbitrary graphs; Arbitrary release time [This paper] 1 + 2(1 + m−1
D

), or (3 + ε) as D > O(m)

TABLE I: Comparing performance bounds of related machine scheduling under different conditions and precedence constraints
(i.e., dependence graphs), for minimizing weighted completion times

∑
i wiCi.

1 The bound holds for α > 1 and ε > 0, and reduces to 37.87 for k = 2, i.e., bipartite graphs.

by a directed acyclic graph G = (V,E), where every node
represents a job. Every directed edge (j1, j2) ∈ E is a
constraint that job j2 cannot start until the completion of job
j1. In other words, no task of j2 can start before all tasks in j1
are completed. The graph is assumed to be acyclic since there
is no possible ordering of jobs that satisfies the precedence
constraints if there is a cycle. Every job j has release time
rj , and has weight wj . Without loss of generality, we assume
that if (j1, j2) ∈ E, then rj2 ≥ rj1 . This is because the start
time of every task in j2 is after the completion time of all
tasks in j1 which is at least rj1 . The aim is to minimize the
weighted completion time of the jobs. Let COPTj represent
the completion time of job j based on the scheduling of
different tasks, such that

∑
j wjCj is minimized, where Cj

is the completion time of job j.
We introduce some notations that are employed in this paper

to simplify the analysis and discussions. Let µ denote the total
processing rates of m machines, i.e., µ =

∑m
l=1 vl. Further,

let qj denote the maximum number of concurrent tasks in a
job, i.e., qj = min{tj ,m}, which can be scheduled in parallel.
We define µj to be the sum processing speed of the fastest qj
machines, or µj =

∑qj
l=1 vl. It is easy to see that µj is the

maximum possible processing speed of job j, since its tasks
can only occupy qj distinct machines at any given time. We
denote the total processing data size of all tasks of job j as
pj , i.e., pj =

∑
t∈Tj pj,t.

We define the task-skewness product of a job as the ratio of
the total size of job j and the maximum task size in job j, i.e.,
Dj = pj/pj,1. This can also be seen as the number of tasks
in a job times the average-to-max ratio of the task sizes of the
job. Thus, if there are multiple tasks of equal size, D equals
the number of tasks in the job. The task-skewness product of
all jobs, denoted by D, is the minimum of Dj for all j ∈ J ,
i.e., D = minj pj/pj,1.

III. APPROXIMATION ALGORITHM

In this section, we develop an algorithm, S-PC (Scheduling
under Precedence Constraints), to solve the weighted comple-
tion time minimization problem on heterogeneous machines
and under precedence constraints. The algorithm is based on
first solving a linear optimization, referred to as the LP-
Schedule problem. The solution is then used to obtain a
feasible schedule for executing the tasks on the machines.

A. LP-Schedule

We formulate LP-Schedule as follows:

min

N∑
j=1

wjCj (1)

s.t.
∑
j∈S

pjCj ≥ f(S), ∀S ⊂ {1, · · · , N}; (2)

Cj ≥ pj/µj + rj ∀j ∈ {1, · · · , N}; (3)
Cj ≥ pj/µj + Cj′ ∀j ∈ {1, · · · , N}, (j′, j) ∈ E

(4)

where

f(S) =
∑
j∈S

1

2µj

(
pj
)2

+
1

2µ

(∑
j∈S

pj

)2
.

In this formulation, Cj represents the completion time of job
j. We note that constraint (2) is based on the Queyranne’s con-
straint set [15], which has been used to give 2-approximation
for concurrent open shop scheduling [22], [23] without prece-
dence constraints. The extension to machines with different
processing speeds is due to [11], which formulated different
versions of the polyhedral constraints based on Queyranne’s
constraint set. It was shown in [11] that this constraint is
necessary for deterministic processing times.

Constraint (3) means that the completion time of a job is
at least the sum of the release time and the processing time
of the job on the fastest qj machines. Constraint (4) replaces
the release time in (3) by the completion time of the jobs
which have to finish prior to job j based on the precedence
constraints. It is easy to see that these constraints are also
necessary for the proposed problem.

Because constraints (2)-(4) are necessary for any feasible
solution of the weighted completion time optimization, any
optimal solution of the LP-Schedule provides a lower bound
for the weighted completion time optimization. This lower
bound may not be tight, and the optimal solution may not be
feasible in the original formulation, since LP-Schedule does
not take into account all sufficient constraints. Nevertheless,
we show that a feasible schedule for executing different
tasks on different machines can be obtained from the optimal
solution of the LP-Schedule.

4

B. Complexity of Solving LP-Schedule

Note that (2) contains an exponential number of inequalities.
We are still able to solve the linear programs in polynomial
time with the Ellipsoid method by using a similar separation
oracle as in [11].

Definition 1 (Oracle LP-Schedule). Define the violation as

V (S) =
1

2

[(
∑
j∈S pj)

2

µ
+

∑
j∈S(pj)

2

µj

]
−
∑
j∈S

pjCj .

Let {Cj} ∈ RN be a potentially feasible solution to our LP-
Schedule (1)-(4). Let τ denote the ordering when jobs are
sorted in increasing order of Cj − pj/(2µj). Find the most
violated constraint in (2) by searching over V (S) for S of the
form {τ(1), · · · , τ(j)}. If maximal V (S∗) > 0, return S∗ as a
violated constraint for (2). Otherwise, check (3)-(4) in linear
time.

The difficulty of testing whether a set of job completion
times is a feasible solution to (1)-(4) is to find the most
violated constraint in (2) for any subset of jobs. The above
definition only provides us some set of jobs of the form
{τ(1), · · · , τ(j)} (where j ∈ {1, · · · , N}) instead of all
subsets of jobs. The following lemma shows that it is sufficient
to guarantee that any choice of jobs does not violate (2)
once every set of jobs in the form {τ(1), · · · , τ(j)} (where
j ∈ {1, · · · , N}) does not violate (2).

Lemma 1 (Special case of Lemma 5, [11]). For P (A) :=∑
j∈A pj , we have x ∈ S∗ ⇔ Cx − px/(2µx) ≤ P (S∗)/µ.

Based on this lemma, we can find S∗ in O(n log(n)) time
(sorting Cτ(j) − pτ(j)/2µτ(j) and compute each set), which
implies that Oracle LP-Schedule runs in O(n log(n)) time.
By the equivalence of separation and optimization, we have
the following result.

Theorem 1. LP-Schedule can be solved in polynomial time.

C. Proposed Algorithm

The proposed algorithm for scheduling with precedence
constraints on heterogeneous machines is denoted S-PC, and
is described in Algorithm 1. This algorithm is based on list
scheduling.

We first solve the LP-relaxation problem (1)-(4) using the
release times, job weights, machine speeds, directed acyclic
graph for job precedence, and the task processing times. We
assume that the solution of Cj from (1)-(4) is CLPj for all j ∈
{1, · · · , N}, and the jobs σ(1), · · · , σ(N) are sequenced in
non-decreasing order of CLPσ(j). Thus, the tasks of job σ(i) are
scheduled before that of σ(j) for i < j. In order to schedule
different tasks in a job, we use Algorithm 2.

Note that different tasks in a job are ordered in non-
increasing order of processing data sizes. We schedule the
tasks of a job in order. Each task is assigned to a machine
that produces the earliest completion time, with respect to all
tasks already assigned to the machine, the task t’s release time,
and the required processing speed of task t on the machine.
The detailed procedure can be seen in Algorithm 2.

Given the above procedure, we obtain a list of an ordering of
all tasks on each machine. The tasks on each machine are run
in the order decided. We will insert idle times on all machines
as necessary, if any job j’s tasks have an earlier starting time
than the completion of tasks of job i for (i, j) ∈ E (if there
is a precedence constraint), and if any jobs are “scheduled” to
begin processing ahead of their release times. This procedure
ensures that job precedence constraints and job release time
constraints are satisfied.

IV. PROOF OF S-PC APPROXIMATION RATIO

In this section, we will provide approximation guarantees
for the proposed algorithm. We first note that since LP-
Schedule has the original objective with necessary constraints,
we have ∑

j

wjC
LP
j ≤

∑
j

wjC
OPT
j , (5)

where COPTj is the completion time of job j with optimal
scheduling. Let Ĉj be the completion time of job j using
Algorithm 1, and Ĉlj be the completion time of all the tasks
of job j on machine l using Algorithm 1. We now present the
following key result.

Theorem 2. If all of the jobs are released at time 0, the
weighted completion time of jobs using S-PC algorithm is
upper bounded by 2

(
1 + m−1

D

)
times the weighted completion

time of jobs under optimal scheduling. Thus,∑
j

wjĈj ≤ 2

(
1 +

m− 1

D

)∑
j

wjC
OPT
j . (6)

For general release times, the weighted completion time
of jobs using S-PC algorithm is upper bounded by 1 +
2
(
1 + m−1

D

)
times the weighted completion time of jobs under

optimal scheduling. Thus,∑
j

wjĈj ≤
[
1 + 2

(
1 +

m− 1

D

)]∑
j

wjC
OPT
j . (7)

5

The rest of the section is focused on proving this result. We
first note that due to (5), it is enough to show that for zero
release times, the following holds for all k,

Ĉσ(k) ≤ 2

(
1 +

m− 1

D

)
CLPσ(k). (8)

This, jointly with (5), will prove the desired result. For
general release times, it is similarly enough to show for all
k that

Ĉσ(k) ≤
[
1 + 2

(
1 +

m− 1

D

)]
CLPσ(k). (9)

We will first show the result in (8), and then show the
extensions for (9). The result in (8) will be shown in three
steps. The first step evaluates Ĉlσ(k) in terms of Ĉσ(k−1). The
second step extends this further to write Ĉσ(k) in terms of
Ĉσ(k−1). The third step uses the result from the second step
and performs algebraic manipulations to obtain the result.

A. Step 1 for the Proof of Theorem 2 for Zero Release Times

In the first step, we find the time needed to process job
σ(k) on machine l once job σ(k − 1) is completed on every
machine. We let Ĉσ(0) = 0. In this subsection, we will show
the following result.

Lemma 2. The difference between the completion time of all
tasks of job σ(k) on machine l and the completion time of all
tasks of job σ(k − 1) is bounded by pσ(k)

µ (1 + m−1
D). More

precisely, we have

Ĉlσ(k) − Ĉσ(k−1) ≤
pσ(k)

µ

(
1 +

m− 1

D

)
. (10)

We note that pσ(k)
µ gives the processing time of job σ(k)

on all machines considered together as a single machine.
This result shows an additional factor loss as compared to
scheduling on a single machine.

Proof. Since the tasks of job σ(k) do not have precedence
constraints among each other, every task can be started as soon
as the previous ones scheduled on a machine are complete.
Suppose the task of job σ(k) that finishes the last is t∗. Let
the total size of all tasks in job σ(k) except t∗ that are assigned
on machine l be denoted by plσ(k). Then,

pσ(k) − pσ(k),t∗ =

m∑
l=1

plσ(k). (11)

The load for job σ(k) on machine l is at most plσ(k) +
pσ(k),t∗ . The completion time for job σ(k) on server l will be
highest if task t∗ is assigned to this machine. Since the task
t∗ is assigned to the machine that has the lowest completion
time, the load for any machine l under the proposed algorithm
is upper bounded by (plσ(k) + pσ(k),t∗)/vl. Thus we have

max
l∈{1,··· ,m}

(
Ĉlσ(k) − Ĉσ(k−1)

)
≤
plσ(k) + pσ(k),t∗

vl
, ∀l.

(12)

From (12), we have

vl

(
max

l∈{1,··· ,m}
Ĉlσ(k) − Ĉσ(k−1)

)
≤ plσ(k) + pσ(k),t∗ , ∀l.

(13)
Adding this over all l, we obtain

max
l∈{1,··· ,m}

(
Ĉlσ(k) − Ĉσ(k−1)

)
≤

pσ(k) + (m− 1)pσ(k),t∗

µ

≤
pσ(k) + (m− 1)pσ(k),1

µ

≤
pσ(k)

µ

(
1 +

m− 1

D

)
, (14)

where pσ(k),t∗ ≤ pσ(k),1, and D ≤ pσ(k)/pσ(k),1 ≤
pσ(k)/pσ(k),t∗ by definition.

B. Step 2 for the Proof of Theorem 2 for Zero Release Times

In the second step, we extend the result in Lemma 2 to get
a bound in terms of Ĉσ(k) rather than Ĉlσ(k), as given in the
following result.

Lemma 3. The difference between the completion times of
jobs σ(k) and σ(k − 1) using S-PC algorithm is bounded as
follows.

Ĉσ(k) − Ĉσ(k−1) ≤
(

1 +
m− 1

D

)
pσ(k)

µ
. (15)

Proof. Note that Ĉj = maxl Ĉ
l
j . Thus,

Ĉσ(k) − Ĉσ(k−1) = max
l∈{1,··· ,m}

[Ĉlσ(k) − Ĉσ(k−1)]

≤
(

1 +
m− 1

D

)
pσ(k)

µ
, (16)

where the inequality follows from (10) in Lemma 2.

C. Step 3 for the Proof of Theorem 2 for Zero Release Times

In this subsection, we will show the result in (8). We first
show a bound on the job completion times for the LP-Schedule
in the following lemma.

Lemma 4. Let σ(1), · · · , σ(N) be the schedule of the jobs in
S-PC algorithm. Then,

j∑
k=1

pσ(k) ≤ 2µ · CLPσ(j). (17)

Proof.

CLPσ(j)

j∑
k=1

pσ(k) ≥
j∑

k=1

pσ(k)C
LP
σ(k)

≥
(
∑j
k=1 pσ(k))

2

2µ
+

j∑
k=1

(pσ(k))
2

2µj

≥
(
∑j
k=1 pσ(k))

2

2µ
,

6

where the first inequality is from CLPσ(1) ≤ CLPσ(2) ≤ · · · ≤
CLPσ(N), and the second inequality is from (2). Since every
term is non-negative, we further have

CLPσ(j) ≥
∑j
k=1 pσ(k)

2µ
. (18)

We will now describe the steps to prove (8), which proves
Theorem 2 for zero release times.

Proof of (8). From Lemma 3, we have

Ĉσ(k) − Ĉσ(k−1) ≤
(

1 +
m− 1

D

)
pσ(k)

µ
. (19)

Summing this over k from 1 to j, we have

Ĉσ(j) ≤
(

1 +
m− 1

D

) ∑j
k=1 pσ(k)

µ
. (20)

Further, using Lemma 4, we have

Ĉσ(j) ≤ 2

(
1 +

m− 1

D

)
CLPσ(j). (21)

D. Extension to General Release Times

When release times are not zero, (3) indicates that for any
job j, CLPj ≥ rj . Therefore, if the job σ(k) starts after rσ(k)
in addition to the completion of previous jobs, then

Ĉσ(k) ≤ rσ(k) + 2

(
1 +

m− 1

D

)
CLPσ(k). (22)

Using CLPj ≥ rj , we have the result as in (9), which proves
Theorem 2 for general release times.

V. IMPLEMENTATION

We implement our proposed scheduler and evaluate it in
Hadoop, whose map and reduce tasks satisfy a complete
bipartite dependence graph. Our implementation consists of
three key modules: a job scheduler that implements Al-
gorithm 1 to determine the scheduling order of different
jobs, a task scheduler that is responsible for scheduling map
and reduce tasks on different machines, and an execution
database that stores statistics of previously executed jobs/tasks
for estimating task completion times. A key feature of our
implementation is its ability to adapt to system dynamics
and task interference at runtime, which introduce additional
sources of processing-time uncertainty. In particular, S-PC’s
task scheduler not only computes an optimal schedule of map
and reduce tasks according to Algorithm 1, but also has the
ability to re-optimize the schedule on the fly based on available
task progress and renewed completion time estimates, as it
continuously monitors progress of map/reduce tasks through
collaboration with Hadoop’s Application Master module and
updates estimates of the remaining completion time. Further,
to cope with potential desynchronization and disconnection
issues in Hadoop (which may cause task execution to deviate

from the optimal schedule), we also modify the Application
Master (AM) and Resource Manager (RM) in Hadoop, which
work collectively with task scheduler to ensure the execution
(and resumption) of tasks in the desired order.

Fig. 2: System diagram of our proposed scheduler implementation.

More precisely, our scheduler works as follows. First, the
job scheduler loads necessary job parameters and queries the
execution database for estimated machine speeds (speed of
machine l is vl), to formulate and solve the LP-Schedule prob-
lem. The optimal job schedule is input to the task scheduler to
find the schedule and placement of every map and reduce task
according to Algorithm 1. Next, based on the task schedule
and placement, the RM assigns a queue to each machine to
store all map and reduce tasks that are scheduled to run on it.
Tasks in each machine l’s queue are then processed in a FIFO
manner, guaranteeing the execution of jobs/tasks under our
proposed algorithm. In particular, each task is given a unique
ID. When resources become available on machine l, the RM
launches a container and associates it with the head-of-line
task. The container and task-ID pair are sent to the AM for
launching the desired task.

Next, before launching each (map or reduce) task t, the task
schedule estimates the completion time tl of all jobs/tasks
scheduled before t on each machine l = 1, 2, . . . ,m. The
time tl is obtained by combining known task completion times
(which are available from execution database) and estimating
the remaining times of active tasks (which are calculated
by each AM using the remaining data size divided by ma-
chine speed). In particular, we continuously monitor task/job
progress through AMs, refines the estimate of completion
time, and if necessary, re-optimizes task schedules on the
fly. By default, Hadoop reports progress scores for each task
and provides estimated task execution time, derived as the
time elapsed since task launching divided by the current
reported progress score. In Figure. 3, we run 1000 tasks on
Default Hadoop, and plot the progress score from Hadoop
Reporter every 3 seconds against the (normalized) actual task
completion times. It can be seen that the default progress
score and actual task completion times do not follow a linear
relationship, leading to high inaccurate time estimates. To
mitigate this issue, we recognize that task completion time
estimation error is mainly caused by Hadoop’s assumption that
a task starts running right after it is launched. However, due to

7

highly contended resource-sharing environments, JVM startup
time is significant, and we need to take into consideration
the time to launch a JVM when estimating task progress
and completion time. In particular, we calculate the time for
launching JVM by finding the difference between first progress
report time (tFP) and launching time (tlau). Therefore, the new
estimated completion time is given by

tect = tlau + (tFP − tlau) + (tnow − tFP)(CP − FP), (23)

where tnow−tFP

CP−FP is time for processing workload, and FP
and CP are first reported progress value and current reported
progress value, respectively. Figure. 3 shows that our proposed
estimator can eliminate the bias and provide more reliable
estimation of task progress and required completion time,
further boosting the performance of our scheduling algorithm.

Fig. 3: The proposed estimator significantly improves progress
estimates: (a) Default Hadoop’s progress score and (b) Proposed
estimator’s progress score vs. normalized actual execution time.

Then, the optimization in Algorithm 1 is repeated at runtime
to find the optimal machine l∗ for task t. A new optimization
of all remaining tasks by the task scheduler is triggered if
l∗ is different from the previous solution. This makes our S-
PC schedule robust to any possible execution uncertainty and
estimation errors. We also implement additional features in
both AM and RM to make them fault tolerant. The container
and task-ID pairs are duplicated at each AM in advance (after
an optimal schedule is computed by the job and task sched-
ulers). If RM accidentally sends an incorrect container that is
intended for application (e.g., due to lack of synchronization),
AM will detect such inconsistency and immediately release
the container back to RM. Further, a mechanism to handle
occasional disconnection is implemented in both AM and RM,
allowing them to buffer current containers/tasks and attempt
reconnection.

VI. EVALUATION

A. Evaluations of S-PC.

We evaluate our scheduler on a Hadoop cluster with three
benchmarks, viz., WordCount, Sort, and TeraSort. We compare
S-PC with FIFO, Identical-machine, and Map-only schedulers.
FIFO is provided by Hadoop, and FIFO schedules jobs based
on the jobs’ releasing order. Within a job, FIFO schedules
a task to the first available machine, and reduce tasks are
scheduled after the map tasks of the job are completed.
Identical-machine assumes all machines are identical, and

applies Algorithm 1 to schedule jobs and tasks. Map-only
considers the map phase is the most critical, and employs
Algorithm 1 to schedule jobs and tasks without considering
the reduce phase.
Experiment setup: We set up a heterogeneous cluster. The
cluster contains 12 (virtual) machines, and each machine
consists of a physical core and 8GB memory. Each machine
can process one task at a time. In the cluster, machines are
connected to a gigabit ethernet switch and the link bandwidth
is 1Gbps. The heterogeneous cluster contains two types of
machines, fast machines and slow machines. The processing
speed ratio between a fast machine and a slow machine is
8. We evaluate our scheduler by using three benchmarks
– WordCount, Sort, and TeraSort. WordCount is a CPU-
bound application, and Sort is an I/O-bound application.
TeraSort is CPU-bound for map phase, and I/O bound for
reduce phase. We download workload for WordCount from
Wikipedia, and generate workloads for Sort and TeraSort by
using RandomWriter and TeraGen applications provided by
Default Hadoop. The number of reduce tasks per job is set
based on workload of the reduce phase. We set the number of
reduce tasks per job in WordCount to be 1, and in Sort and
TeraSort to be 4. All jobs are associated with weights, which
are uniformly distributed between 1 and 5. Also, all jobs are
partitioned into two releasing groups, and each group contains
the same number of jobs. The releasing time interval between
the two groups is 60sec.
Experiment results: In the first set of experiments, each
experiment contains 20 jobs, and the workload of a job is
1GB. The task sizes of all jobs are the same, and equal
64MB. Figure 4(a) shows that our scheduler outperforms
FIFO, Identical-machine, and Map-only by up to 62%, 68%,
and 45%, respectively. Identical-machine has the largest total
weighted completion time (TWCT). The reason is that it
distributes the same number of tasks to each machine. A job’s
completion time is dominated by the tasks’ completion time
running on slow machines. Also, Identical-machine results in
a large amount of cluster resources being wasted, since fast
machines need to wait for slow machines to finish their tasks.
FIFO schedules jobs based on the jobs’ release order. Jobs with
high weights (time-sensitive jobs) cannot be scheduled first,
so time-sensitive jobs cannot be completed in time. For task
scheduling, FIFO does not consider the heterogeneous cluster
environment, and tasks are scheduled to the first available
container. Such a task scheduling scheme can increase the
completion time of tasks, since a container which becomes
available later might be launched on a fast machine and be
able to complete a task faster. Also, FIFO might schedule
reduce tasks soon after the job is scheduled, and before
the last map task is scheduled. Even though such scheme
leaves more time for reduce tasks to fetch data from map
tasks’ outputs, given the large available network bandwidth
nowadays, reduce tasks only need a little time for fetching
data from all map tasks’ outputs. Map-only schedules jobs
and tasks without considering the reduce phase. Under bench-
marks with light workloads in the reduce phase, e.g., under
WordCount benchmark, Map-only can achieve comparable
performance as our scheduler. However, if the workload of

8

0

10

20

30

40

50

60

70

80

WordCount Sort TeraSort

To
ta

l w
ei

gh
te

d
co

m
pl

et
io

n
ti

m
e

Benchmark

FIFO
Identical-machine
Map-only
S-PC

(a)

0

10

20

30

40

50

60

70

80

WordCount Sort TeraSort

To
ta

l w
ei

gh
te

d
co

m
pl

et
io

n
ti

m
e

Benchmark

FIFO
Identical-machine
Map-only
S-PC

(b)

0

10

20

30

40

50

60

70

80

WordCount Sort TeraSort

To
ta

l w
ei

gh
te

d
co

m
pl

et
io

n
ti

m
e

Benchmark

FIFO
Identical-machine
Map-only
S-PC

(c)

Fig. 4: (a) Total weighted completion time of jobs with identical task sizes and workloads. (b) Total weighted completion time of jobs with
different task sizes and workloads. (c) Total weighted completion time of jobs with different task sizes and workloads.

the reduce phase is comparable with the map phase’s, e.g.,
under Sort, scheduling jobs without considering the workload
of reduce phases and scheduling reduce tasks to random
machines result in performance degradation and increase in
TWCT. Furthermore, under a benchmark with heavy workload
in the reduce phase, e.g., TeraSort, TWCT is dominated by
the completion time of reduce tasks, and Map-only increases
TWCT by 85%, compared with our scheduler.

Figure 4(b) shows the results of employing jobs with
different task sizes and different amount of workloads. In the
set of experiments, whose results are shown in Figure 4(b),
each experiment contains 20 jobs. Of these 20 jobs, 12 jobs
need to process 1GB data each, and the task size is 64MB; 4
jobs need to process 0.5GB each, with a task size of 32MB;
and the remaining 4 jobs need to process 2GB, with a task
size of 128MB. Figure 4(b) shows that S-PC outperforms
FIFO, Identical-machine, and Map-only by up to 80%, 65%,
and 52%, respectively. Under WordCount and TeraSort, the
TWCT of FIFO is much larger than TWCT of other schedulers
in Figure 4(b) and TWCT of FIFO in Figure 4(a). This is
because several jobs schedule reduce tasks soon after the jobs
are scheduled; those reduce tasks occupy all fast machines,
and since they cannot start to process data until all map
tasks complete, all map tasks end up being scheduled on
slow machines. Even though jobs’ completion time of FIFO
has large variation, based on our results, our scheduler can
outperform FIFO by at least 36%. Also, introducing jobs with
large workloads (large jobs) increases the TWCT of FIFO,
since it does not consider jobs’ and tasks’ workloads in job
scheduling. Jobs with small workloads (small jobs) might be
scheduled after large jobs, and this makes small jobs suffer
from the starvation problem.

We further increase the number of large jobs and small jobs,
and set the number of jobs in each experiment to be 18 to make
the total workload of jobs in each experiment be roughly the
same as the first two sets of experiments’. Of the 18 jobs,
6 jobs need to process 1GB data each, with a task size of
64MB; another 6 jobs need to process 0.5GB each, with a
task size of 32MB; and the remaining 6 jobs need to process
2GB each, with a task size of 128MB. Figure 4(c) shows that
as the number of large jobs increases, our scheduler has low
TWCT, since small jobs with large weights do not suffer from

the starvation problem.
In the final experiment, we fix the number of TeraSort

jobs to be 18, and change the number of elephant jobs. We
set the task size to be 64MB. An elephant job needs to
process 2GB data, and a mice job needs to process 0.5GB
data. Figure 5 shows that our scheduler outperforms FIFO,
Identical-machine, and Map-only by up to 82%, 66%, and
61%, respectively. As the number of elephant jobs increases,
mice jobs with large weights might be scheduled after more
elephant jobs, and this results in long waiting times for mice
jobs, causing large increase in TWCT. Also, as the number of
elephant jobs increases, the total workload increases, and the
long time occupied on fast machines by reduce tasks before
all map tasks finish increases TWCT greatly, since more map
tasks have to process data on slow machines. By comparing
TWCT of Identical-machine, Map-only, and our scheduler,
we observe that as the number of elephant jobs increases,
the TWCT increases for Identical-machine and Map-only are
much larger than for our scheduler’s. For Identical-machine,
increasing the number of elephant jobs means the difference
of the amount of time used to complete all assigned tasks
on fast machines and on slow machines increases. Without
considering the scheduling of reduce tasks, as the number of
elephant jobs increases, more workloads of reduce tasks are
assigned to slow machines, and this results in a large increase
in TWCT.

B. Large-scale simulations

Evaluation of online re-optimization. We conduct a large-
scale, trace-driven simulation (using the Google trace [24]) to
evaluate S-PC’s ability to re-optimize job schedules on the
fly. More precisely, upon each job arrival or departure, S-
PC is employed to re-optimize and update the schedules of
all existing jobs in the system. For each job, we extract the
arrival time, the number of associated tasks, and the workload
of each task from Google trace [24]. Each job is assigned
a weight uniformly distributed between 1 and 10, and its
tasks are randomly partitioned into map and reduce phases
(with 60% and 40% probabilities, respectively). We simulate a
system with m = 50, 100, 150 machines, each with a different
speed-up ranging from 1 to 3. Figure 6(a) shows the total
weighted completion time of all jobs and compares S-PC

9

0

10

20

30

40

50

60

70

2/18 6/18 10/18 14/18

To
ta

l w
ei

gh
te

d
co

m
pl

et
io

n
tim

e

Ratio of the number of elephant jobs to total jobs

FIFO
Identical-machine
Map-only
S-PC

Fig. 5: Total weighted completion time
under different ratios of the number of
elephant jobs to total jobs..

0

5000

10000

15000

20000

25000

50 100 150

To
ta

l w
ei

gh
te

d
co

m
pl

et
io

n
tim

e

Number of nodes

MarS

S-PC

(a) Comparing weighted completion time

0

5000

10000

15000

20000

25000

To
ta

l w
ei

gh
te

d
co

m
pl

et
io

n
tim

e

S-PC 100 MarS 100

S-PC 50 MarS 50

(b) Accumulative completion time over t

Fig. 6: Comparing S-PC and MarS via Google-trace simulation and online
re-optimization.

1000:600 1000:800 1000:1000 1000:1200 1000:1400
0

50000

100000

150000

200000

250000

300000

350000

400000

450000
S-PC HUWF

Tetris FIFO

Data size ratio between map and reduce tasks

T
o

ta
l w

e
ig

h
te

d
 c

o
m

p
le

tio
n

 ti
m

e

1000:600 1000:800 1000:1000 1000:1200 1000:1400
S-PC 212997 224317 237050 251986 257677

HUWF 224689 239676 255599 267546 273419
Tetris 235362 249202 265137 277193 286683
FIFO 334947 356623 377699 400461 413924

Fig. 7: Comparisons of S-PC, HUWF, Tetris, and FIFO in terms
of total weighted job completion time with different data size ratios
between map and reduce tasks.

2 6 10 14 18
0

100000

200000

300000

400000

500000

600000

700000
S-PC HUWF

Tetris FIFO

Wmax

T
o

ta
l w

e
ig

h
te

d
 c

o
m

p
le

tio
n

 ti
m

e

2 6 10 14 18
S-PC 74446 152420 237050 328727 405319

HUWF 73295 159819 255599 350878 434418
Tetris 73333 162568 265137 366656 461547
FIFO 103014 228727 377699 511059 664199

Fig. 8: Comparisons of S-PC, HUWF, Tetris, and FIFO in terms of
total weighted job completion time with different Wmax.

with an existing online scheduler, MarS [25], which considers
joint map and reduce scheduling for the special case with
identical machine speeds. We observe that S-PC outperforms
MarS by up to 34%, when the system load is high (i.e., a
large number of tasks to be processed by each machine as
m = 50). This is because S-PC is able to jointly schedule
map and reduce tasks of heterogeneous jobs with respect
to the precedence constraints. Furthermore, the evolution of
accumulative weighted completion time (over time t) is shown
in Figure 6(b), for different numbers of machines. We note that
as the accumulative weighted completion time of MarS grows
rapidly with more jobs arriving over time, the benefit of S-PC
becomes more substantial with online re-optimization.
Evaluation of scalability. In each evaluation, we simulate 100
jobs, with multiple rounds of dependent tasks, whose numbers
are generated uniformly between 1 and 50. Weights of jobs
are generated uniformly between 1 and Wmax, and the default
value of Wmax is 10. Jobs are scheduled in a 100-machine
cluster. Data processing speed of machines follows Gaussian
distribution with mean=50 MB/sec and standard deviation=10.
A machine can process one task at a time. Each data point in
the following figures is the average value over 20 evaluations.
Since existing scheduling algorithms fail to optimize under
such dependence, we compare our scheduler with a few
heuristics: High Unit Weight First (HUWF), Tetris [26], and
FIFO algorithms. In HUWF, Unit Weight (UW) of a job equals
job’s weight divided by job execution time. Jobs are sorted
based on UW in descending order, and map and reduce tasks
are scheduled one by one. A task is assigned to a machine that
produces the earliest completion time. In Tetris, resource usage
score of a job equals the number of tasks (machines) multiplied
by job execution time. Jobs are sorted based on resource usage
scores, and map and reduce tasks are scheduled one by one.
A task is assigned to a machine that produces the earliest
completion time. Finally, FIFO sorts jobs and schedules tasks
one by one to the first available machine.

Figure 7 compares S-PC with HUWF, Tetris and FIFO, in
terms of total weighted completion time, by changing data
size ratio between map and reduce tasks. As data size of a
reduce task increases from 600 MB to 1400 MB, the total
weighted job completion time of S-PC, HUWF, Tetris and
FIFO increases by 44680, 48730, 51321, and 78977 (20.98%,
21.69%, 21.8%, and 23.58%), respectively. The results show
that by considering precedence constraints between map and

10

reduce tasks in job scheduling, S-PC has smaller increase in
total weighted completion time as data sizes of reduce tasks
increase.

Figure 8 compares our proposed scheduler with HUWF,
Tetris and FIFO, in terms of TWCT, by changing maximum
job weights. When job weights are small, TWCT of our sched-
uler, HUWF, and Tetris are almost the same. As maximum job
weight increases from 2 to 18, the weighted job completion
time of our scheduler, HUWF, Tetris and FIFO increases by
330873, 361123, 388214 and 561185, respectively. Because
Tetris and FIFO do not consider weight in job scheduling,
as job weight increases, Tetris and FIFO have larger increase
in TWCT than our scheduler and HUWF. Results also show
that scheduling jobs based on UW is not efficient. To achieve
smaller TWCT, we also need to consider precedence between
different phases and different machine processing speeds.

C. Stochastic Task Execution Times

We now evaluate the proposed S-PC algorithm under
stochastic task execution times. Although tasks are often
designated to process fixed and equal-size data splits, their
processing times can still vary significantly in practice, even
if machines are assumed to have deterministic speed. For
example, programs like WordCount and WordMean need to
iteratively store and process unique words from text files. The
number of such operations (and thus processing time) required
by each individual task depends heavily on the text content.
Similarly, the processing times of Sort and K-mean are highly
dependent on initial data distribution. Figure 9 shows the dis-
tribution of map-task processing times on real-world datasets
(including Facebook [27], Twitter [28], Linux source files [29],
News [30], Stack Overflow [31], and Wikipedia [32]) with
a fixed split size of 128MB. Not only do we observe high
processing-time uncertainty among different datasets (with a
mean of 28 seconds and a standard deviation of 7 seconds, or
25% of the mean, in the aggregate distribution), but there is
also substantial randomness when processing the same dataset.

We show that applying the S-PC algorithm with respect to
mean task size p̄j,t = E[pj,t], we can obtain a robust task
schedule significantly reducing the total weighted completion
time. The S-PC algorithm is evaluated against four baselines:
FIFO, Identical-machine, Map-only, LATE [33] and MarS [25]
schedulers, with respect to stochastic task execution times
and three benchmarks, viz., WordCount, WordMean, and Sort.
In particular, LATE is a popular scheduler for speculatively
scheduling jobs in heterogeneous environment.
Evaluation setup: We set up a heterogeneous cluster. The
cluster contains 12 (virtual) machines, and each machine
consists of a physical core and 8GB memory. Each machine
can process one task at a time. In the cluster, machines are
connected to a gigabit ethernet switch and the link bandwidth
is 1Gbps. The heterogeneous cluster contains two types of
machines, fast machines and slow machines. The processing
speed ratio between a fast machine and a slow machine is 8.
We evaluate S-PC by using three benchmarks – WordCount,
WordMean, and Sort. Both WordCount and WordMean are a
CPU-bound application, and Sort is an I/O-bound application.

Fig. 9: Empirical distribution of map task processing time for
real-world datasets (using WordMean and 128MB split size):
(top) box-and-whisker plot for each dataset, and (bottom)
aggregate cdf of task processing time.

Our input data is extracted from Facebook dataset. As shown
in Figure 9, the difference between maximum task execution
time and minimum task execution time is 8 sec, and it is 24%
of the mean. The number of reduce tasks per job is set based
on workload of the reduce phase. We set the number of reduce
tasks per job in WordCount and WordMean to be 1, and in
Sort to be 4. All jobs are associated with weights, and values
of weights are uniformly distributed between 1 to 5. Also, all
jobs are partitioned into two releasing groups, and each group
contains the same number of jobs. The releasing time interval
between two groups is 60sec. The completion time of a job is
measured by the hour.
Experiment results: In the first set of experiments, each
experiment contains 20 jobs, and the workload of a job is
2GB. The task sizes of all jobs are the same, and equal
64MB. Figure 10 shows that S-PC outperforms FIFO, LATE,
Identical-machine, and Map-only by up to 37%, 38%, 28%,
and 16% respectively. In particular, LATE launches extra
copies for tasks whose progress speed is much slower than
others. Even though introducing extra copies can reduce task
completion time, they also consume extra cloud resources,
which otherwise can be assigned to other tasks or other jobs.
Furthermore, LATE records machines’ processing speeds,
and tries to avoid scheduling tasks on slow machines, so
resources on slow machines are often under-utilized. LATE
might schedule reduce tasks soon after the job is scheduled,
and before the last map task is scheduled. Even though such
scheme leaves more time for reduce tasks to fetch data from
map tasks’ outputs, reduce tasks can start to process data
until all map tasks finish, and reduce tasks might occupy
containers on fast machines, which can be assigned to other
map tasks. Sort benchmark has heavy reduce workload, and
reduce tasks in LATE waste more cluster resources. Map-only

11

0

5

10

15

20

25

30

35

40

WordCount WordMean Sort

T
ot

al
 W

ei
gh

te
d

co
m

pl
et

io
n

ti
m

e

Benchmark

FIFO LATE
Identical-machine Map-only
S-PC

Fig. 10: Total weighted completion time
of jobs with identical task sizes and
workloads.

0

5

10

15

20

25

30

35

WordCount WordMean Sort

T
ot

al
 w

ei
gh

te
d

 c
om

p
le

ti
on

 t
im

e

Benchmark

FIFO LATE
Identical-machine Map-only
S-PC

Fig. 11: Total weighted completion time
with heterogeneous task sizes and work-
loads.

0
5

10
15
20
25
30
35
40
45
50

WordCount WordMean Sort

T
ot

al
 w

ei
gh

te
d

co
m

pl
et

io
n

ti
m

e

Benchmark

FIFO LATE
Identical-machine Map-only
S-PC

Fig. 12: Total weighted completion time
with increased task heterogeneous task
sizes.

schedules jobs and tasks without considering the reduce phase.
Under benchmarks with light workloads in the reduce phase,
e.g., under WordCount and WordMean benchmarks, Map-
only can achieve comparable performance as S-PC. However,
under benchmarks with heavy workloads in reduce phase,
e.g., under Sort, scheduling reduce tasks to random machines
result in performance degradation and increase total weighted
completion time. S-PC schedules jobs based on their weights,
average task completion time, and machine speeds to minimize
total weighted completion time. Also, S-PC assigns a task
to a machine, which can finish the task earliest, and such
task scheduling scheme can evenly distribute workloads to all
machines and fully utilize cluster resources.

Figure 11 shows the results of evaluating S-PC, in terms
of total weighted completion time, by employing jobs with
different task sizes and different amount of workloads. In the
set of experiments, each experiment contains 20 jobs. Of these
20 jobs, 12 jobs need to process 2GB data each, and the
task size is 64MB; 4 jobs need to process 1GB each, with a
task size of 32MB; and the remaining 4 jobs need to process
4GB, with a task size of 128MB. Figure 11 shows that S-PC
outperforms FIFO, LATE, Identical-machine, and Map-only
by up to 35%, 36%, 40%, and 18%, respectively. FIFO and
LATE schedule reduce tasks soon after jobs are scheduled,
and those reduce tasks occupy fast machines, which can be
assign to map tasks. So, S-PC outperforms FIFO and LATE
by up to 35% and 36%, respectively. Also, FIFO and LATE
do not try to minimize weighted completion time, jobs with
small workloads and large weights might be scheduled after
jobs with large workloads and small weights.

We further increase the number of large jobs and small jobs,
and set the number of jobs in each experiment to be 18 to make
the total workload of jobs in each experiment be roughly the
same as the first two sets of experiments’. Of the 18 jobs, 6
jobs need to process 2GB data each, with a task size of 64MB;
another 6 jobs need to process 1GB each, with a task size of
32MB; and the remaining 6 jobs need to process 4GB each,
with a task size of 128MB. Figure 12 shows that total weighted
completion time of S-PC does not grow much as the number
of large jobs increases, since large jobs with small weights
can be scheduled after jobs with small workloads and large
weights.

Next, we fix the number of WordCount jobs, i.e., 18 jobs,

0

10

20

30

40

50

60

2/18 6/18 10/18 14/18

To
ta

l w
ei

gh
te

d
co

m
pl

et
io

n
tim

e

Ratio of the number of elephant jobs to total jobs

FIFO LATE
Identical-machine Map-only
S-PC

Fig. 13: Weighted completion time with different ratios of
large/small jobs.

and change the number of large jobs. We set the task size to
be 128MB. An large job needs to process 4GB data, and a
small job needs to process 1GB data. Figure 13 shows that
S-PC outperforms FIFO, LATE, Identical-machine, and Map-
only by up to 60%, 50%, 37%, and 20% respectively. As the
number of large jobs increases, the total weighted completion
time increases. Under FIFO and LATE, as the number of
large jobs increases, small jobs with large weights might be
scheduled after more large jobs, and this results in long waiting
times for small jobs, causing large increase in total weighted
completion time. Also, as the number of large jobs increases,
the increments of Identical-machine and Map-only are much
larger than S-PC’s. For Identical-machine, the difference of
the amount of time used to complete all assigned tasks on
fast machines and on slow machines increases, as the number
of large jobs increases. For Map-only, as total workload in
reduce phase increases, the scheduling of reduces tasks is
more important for minimizing total weighted completion
time. We observe that in heterogeneous environment, S-PC
can significantly improve the total weighted completion time
by optimally placing and scheduling all tasks with respect
to their processing time and machine speeds, while simply
launching extra copies for slow-running tasks (similar to
LATE), or considering only map phase (similar to Map-only)
are inadequate.

12

VII. CONCLUSIONS AND FUTURE WORK

This paper considers the related machine scheduling prob-
lem for minimizing weighted sum completion time under ar-
bitrary precedence constraints and on heterogeneous machines
with different processing speeds. The precedence between any
pair of tasks is modeled through a DAG, and an efficient
algorithm is proposed to solve the optimization with an
approximation ratio of 2(1+(m−1)/D) for zero release time
and 2(1+(m−1)/D)+1 for general release times. Our results
significantly improve prior work - O(logm/ log logm) in [21]
(which is only for zero release times) - and achieves nearly
optimal performance when the number of tasks to schedule is
sufficiently larger than the number of machines available. We
implement the proposed scheduling algorithm and evaluate its
performance in Hadoop. The numerical results show up to 82%
improvement over several baselines in terms of total weighted
completion time.

We note that this paper did not account for the communi-
cation delay time when two jobs with precedence constraints
are run on different machines like in [34]; such an extension
is an important future direction. Further, the proposed analysis
does not lead to effiicient bound for small D, and having better
analytical result that achieves the bound in [21] for small D
and our bound of O(1) for large D is an open problem. Online
algorithms akin to that in [35] are another future direction.

REFERENCES

[1] R. Cadene, H. Ben-Younes, N. Thome, and M. Cord, “Murel:
Multimodal Relational Reasoning for Visual Question Answering,” in
IEEE Conference on Computer Vision and Pattern Recognition CVPR,
2019. [Online]. Available: http://remicadene.com/pdfs/paper cvpr2019.
pdf

[2] S. K. Panda and P. K. Jana, “Efficient task scheduling algorithms for het-
erogeneous multi-cloud environment,” The Journal of Supercomputing,
vol. 71, no. 4, pp. 1505–1533, 2015.

[3] ——, “Normalization-based task scheduling algorithms for heteroge-
neous multi-cloud environment,” Information Systems Frontiers, vol. 20,
no. 2, pp. 373–399, 2018.

[4] M. Masdari and M. Zangakani, “Efficient task and workflow scheduling
in inter-cloud environments: challenges and opportunities,” The Journal
of Supercomputing, vol. 76, no. 1, pp. 499–535, 2020.

[5] W. E. Smith, “Various optimizers for single-stage production,” Naval
Research Logistics (NRL), vol. 3, no. 1-2, pp. 59–66, 1956.

[6] H. Chang, M. S. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee,
and S. Mukherjee, “Scheduling in mapreduce-like systems for fast
completion time,” in IEEE INFOCOM, 2011, pp. 3074–3082.

[7] M. Skutella, “Convex quadratic and semidefinite programming relax-
ations in scheduling,” Journal of the ACM (JACM), vol. 48, no. 2, pp.
206–242, 2001.

[8] P. Schuurman and G. J. Woeginger, “Polynomial time approximation
algorithms for machine scheduling: Ten open problems,” Journal of
Scheduling, vol. 2, no. 5, pp. 203–213, 1999.

[9] S. Im and S. Li, “Better unrelated machine scheduling for weighted
completion time via random offsets from non-uniform distributions,” in
IEEE (FOCS). IEEE, 2016, pp. 138–147.

[10] M. Sviridenko and A. Wiese, “Approximating the configuration-lp for
minimizing weighted sum of completion times on unrelated machines,”
in International Conference on Integer Programming and Combinatorial
Optimization. Springer, 2013, pp. 387–398.

[11] R. Murray, S. Khuller, and M. Chao, “Scheduling distributed clusters of
parallel machines: Primal-dual and lp-based approximation algorithms
[full version],” arXiv preprint arXiv:1610.09058, 2016.

[12] N. Bansal, A. Srinivasan, and O. Svensson, “Lift-and-round to improve
weighted completion time on unrelated machines,” in Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing. ACM,
2016, pp. 156–167.

[13] F. Chen, M. S. Kodialam, and T. V. Lakshman, “Joint scheduling
of processing and shuffle phases in mapreduce systems,” in IEEE
INFOCOM, 2012, pp. 1143–1151.

[14] Y. Yuan, D. Wang, and J. Liu, “Joint scheduling of mapreduce jobs with
servers: Performance bounds and experiments,” in IEEE INFOCOM,
2014, pp. 2175–2183.

[15] M. Queyranne, “Structure of a simple scheduling polyhedron,” Mathe-
matical Programming, vol. 58, no. 1, pp. 263–285, 1993.

[16] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and
its consequences in combinatorial optimization,” Combinatorica, vol. 1,
no. 2, pp. 169–197, 1981.

[17] D. Fotakis, I. Milis, O. Papadigenopoulos, V. Vassalos, and G. Zois,
“Scheduling mapreduce jobs under multi-round precedences,” in Euro-
pean Conference on Parallel Processing. Springer, 2016, pp. 209–222.

[18] D. Fotakis, I. Milis, O. Papadigenopoulos, E. Zampetakis, and G. Zois,
“Scheduling mapreduce jobs and data shuffle on unrelated processors,”
in International Symposium on Experimental Algorithms. Springer,
2015, pp. 137–150.

[19] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlós, “On scheduling in
map-reduce and flow-shops,” in Proceedings of the twenty-third annual
ACM symposium on Parallelism in algorithms and architectures, 2011,
pp. 289–298.

[20] F. A. Chudak and D. B. Shmoys, “Approximation algorithms for
precedence-constrained scheduling problems on parallel machines that
run at different speeds,” in Proceedings of the Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, ser. SODA ’97. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 1997, pp.
581–590. [Online]. Available: http://dl.acm.org/citation.cfm?id=314161.
314393

[21] S. Li, “Scheduling to minimize total weighted completion time via time-
indexed linear programming relaxations,” 58th Annual IEEE Symposium
on Foundations of Computer Science, 2017.

[22] J. Y.-T. Leung, H. Li, and M. Pinedo, “Scheduling orders for multiple
product types to minimize total weighted completion time,” Discrete
Applied Mathematics, vol. 155, no. 8, pp. 945–970, 2007.

[23] M. Mastrolilli, M. Queyranne, A. S. Schulz, O. Svensson, and N. A.
Uhan, “Minimizing the sum of weighted completion times in a con-
current open shop,” Operations Research Letters, vol. 38, no. 5, pp.
390–395, 2010.

[24] “Google trace,” https://github.com/google/cluster-data, 2011.
[25] Y. Yuan, D. Wang, and J. Liu, “Joint scheduling of mapreduce jobs with

servers: Performance bounds and experiments,” in INFOCOM, 2014
Proceedings IEEE. IEEE, 2014, pp. 2175–2183.

[26] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” ACM SIGCOMM Com-
puter Communication Review, vol. 44, no. 4, pp. 455–466, 2015.

[27] Facebook, “http://facebook.com/,” 2018.
[28] Twitter, “www.twitter.com,” 2018.
[29] L. kernel source tree, “https://github.com/torvalds/linux,” 2018.
[30] CNN, “https://www.cnn.com/,” 2018.
[31] Stackoverflow, “https://stackoverflow.com/,” 2018.
[32] Wikipedia, “www.wikipedia.org,” 2018.
[33] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,

“Improving mapreduce performance in heterogeneous environments,”
ser. OSDI’08, 2008.

[34] S. Davies, J. Kulkarni, T. Rothvoss, J. Tarnawski, and Y. Zhang,
“Scheduling with communication delays via lp hierarchies and clustering
ii: Weighted completion times on related machines,” in Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM, 2021, pp. 2958–2977.

[35] V. Gupta, B. Moseley, M. Uetz, and Q. Xie, “Greed works—online
algorithms for unrelated machine stochastic scheduling,” Mathematics
of Operations Research, vol. 45, no. 2, pp. 497–516, 2020.

http://remicadene.com/pdfs/paper_cvpr2019.pdf
http://remicadene.com/pdfs/paper_cvpr2019.pdf
http://dl.acm.org/citation.cfm?id=314161.314393
http://dl.acm.org/citation.cfm?id=314161.314393

13

Vaneet Aggarwal (S’08 - M’11 - SM’15) received
the B.Tech. degree in 2005 from the Indian Institute
of Technology, Kanpur, India, and the M.A. and
Ph.D. degrees in 2007 and 2010, respectively from
Princeton University, Princeton, NJ, USA, all in
Electrical Engineering.

He is currently an Associate Professor at Pur-
due University, West Lafayette, IN, where he has
been since Jan 2015. He was a Senior Member of
Technical Staff Research at AT&T Labs-Research,
NJ (2010-2014), Adjunct Assistant Professor at

Columbia University, NY (2013-2014), and VAJRA Adjunct Professor at IISc
Bangalore (2018-2019). His current research interests are in communications
and networking, cloud computing, and machine learning.

Dr. Aggarwal received Princeton University’s Porter Ogden Jacobus Hon-
orific Fellowship in 2009, the AT&T Vice President Excellence Award
in 2012, the AT&T Key Contributor Award in 2013, the AT&T Senior
Vice President Excellence Award in 2014, and Purdue University’s Most
Impactful Faculty Innovator in 2020. He also received the 2017 Jack Neubauer
Memorial Award recognizing the Best Systems Paper published in the IEEE
TRANSACTIONS ON VEHICULAR TECHNOLOGY, and the 2018 Infocom
Workshop HotPOST Best Paper Award. He was on the Editorial Board
of the IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND
NETWORKING from 2017-2020. He is currently on the Editorial Board of
the IEEE TRANSACTIONS ON COMMUNICATIONS, and the IEEE/ACM
TRANSACTIONS ON NETWORKING.

Tian Lan received the B.A.Sc. degree from the
Tsinghua University, China in 2003, the M.A.Sc.
degree from the University of Toronto, Canada,
in 2005, and the Ph.D. degree from the Princeton
University in 2010. Dr. Lan is currently an Associate
Professor of Electrical and Computer Engineering at
the George Washington University. His research in-
terests include network optimization, machine learn-
ing, and network security. Dr. Lan received the
SecureComm Best Paper Award in 2019, the SEAS
Faculty Recognition Award at GWU in 2018, the

Hegarty Faculty Innovation Award at GWU in 2017, AT&T VURI Award
in 2014, the INFOCOM Best Paper Award in 2012, the IEEE GLOBECOM
Best Paper Award in 2009, and the IEEE Signal Processing Society Best Paper
Award in 2008.

Suresh Subramaniam (S’95-M’97-SM’07-F’15)
received the Ph.D. degree in electrical engineering
from the University of Washington, Seattle, in 1997.
He is Professor and Chair of Electrical and Com-
puter Engineering at the George Washington Univer-
sity, Washington DC, where he directs the Lab for
Intelligent Networking and Computing. His research
interests are in the architectural, algorithmic, and
performance aspects of communication networks,
with current emphasis on optical networks, cloud
computing, data center networks, and IoT. He has

published over 230 peer-reviewed papers in these areas.
Dr. Subramaniam is a co-editor of three books on optical networking.

He has served in leadership positions for several top conferences including
IEEE ComSoc’s flagship conferences of ICC, Globecom, and INFOCOM.
He serves/has served on the editorial boards of 7 journals including the
IEEE/ACM Transactions on Networking and the IEEE/OSA Journal of Optical
Communications and Networking. During 2012 and 2013, he served as the
elected Chair of the IEEE Communications Society Optical Networking
Technical Committee. He has received 5 Best Paper Awards, and received
the 2017 SEAS Distinguished Researcher Award from George Washington
University. He is an IEEE Distinguished Lecturer during 2018-2021. He is a
Fellow of the IEEE.

Maotong Xu received the B.S. degree from the
Northwestern Polytechnical University, China in
2012, and the M.S. and the Ph.D. degree from the
George Washington University in 2014 and in 2019,
respectively. Dr. Xu is currently a senior research
scientist in Facebook. His interests include real-time
processing system development and optimization,
and cloud computing.

	Introduction
	System Model and Problem Formulation
	Approximation Algorithm
	LP-Schedule
	Complexity of Solving LP-Schedule
	Proposed Algorithm

	Proof of S-PC Approximation Ratio
	Step 1 for the Proof of Theorem 2 for Zero Release Times
	Step 2 for the Proof of Theorem 2 for Zero Release Times
	Step 3 for the Proof of Theorem 2 for Zero Release Times
	Extension to General Release Times

	Implementation
	Evaluation
	Evaluations of S-PC.
	Large-scale simulations
	Stochastic Task Execution Times

	Conclusions and Future Work
	References
	Biographies
	Vaneet Aggarwal (S'08 - M'11 - SM'15)
	Tian Lan
	Suresh Subramaniam (S'95-M'97-SM'07-F'15)
	 Maotong Xu

