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Abstract—With the growing deadline-sensitivity of cloud appli-1

cations, adherence to specific deadlines is becoming increasingly2

crucial, particularly in shared clusters. A few slow tasks called3

stragglers can potentially adversely affect job execution times.4

Equally, inadequate slotting of data analytics applications could5

result in inappropriate resource deployment, ultimately damag-6

ing system performance. Against this backdrop, one effective way7

of tackling stragglers is by making extra attempts (or clones)1
8

for every single straggler after the submission of a job. This9

paper proposes Shed+++, which is an optimization framework uti-10

lizing dynamic speculation that aims to maximize the jobs’ PoCD11

(Probability of Completion before Deadline) by making full use of12

available resources. Notably, our work encompasses a new online13

scheduler that dynamically recomputes and reallocates resources14

during the course of a job’s execution. According to our findings,15

Shed+++ successfully leverages cloud resources and maximizes the16

percentage of jobs meeting their deadlines. In our experiments,17

we have seen this percentage for heavy load going up to 98% for18

Shed+++ as opposed to nearly 68%, 40%, 35% and 37% for Shed,19

Dolly, Hopper and Hadoop with speculation enabled, respectively.20

Index Terms—Cloud, mapreduce, stragglers, scheduling,21

cloning, speculation, deadlines.22

I. INTRODUCTION23

MODERN applications such as financial services, enter-24

prise IT, big data analytics and social networks are25

increasingly relying on distributed cloud computing frame-26

works, such as Dryad and MapReduce [1], [2], in order to27

attain mission-critical performance objectives. Massive quan-28

tities of data are divided into blocks and then stored within29

an underlying file system so as to support simultaneous pro-30

cessing of computation jobs across nodes and clusters on the31

cloud. As an example, the open-source software framework32
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Hadoop, which is used to process big data [3], makes use of 33

the MapReduce programming model. 34

The performance of such frameworks is often negatively 35

impacted by stragglers, which are slow running tasks that 36

result in long job execution time, thus rendering them infeasi- 37

ble for latency-sensitive applications requiring time guarantees 38

for job completion. According to previous research, stragglers 39

can be as much as 8 times slower than the median task [4]–[6]. 40

In other words, all it takes is a few stragglers to have a mas- 41

sive effect on the performance of job completion times and 42

breach the SLAs (Service Level Agreements). 43

In contemporary online applications including the retail 44

platforms of Amazon and Facebook, the long tail of latency 45

has shown to be of particular concern, given that 99.9th per- 46

centile response times are orders of magnitude worse than 47

the mean [7]. Several factors are known to cause stragglers 48

in the cloud. To begin with, nodes are mostly comprised 49

of commodity components and entail inconsistent degrees of 50

heterogeneity. As a result, nodes end up processing tasks 51

at varying speeds. Secondly, the large-scale nature of dat- 52

acenters has been shown to cause errors in both hardware 53

and software, thus resulting in interruptions of task execution 54

and snags in machines. Thirdly, virtualization and resource 55

sharing require co-scheduling of tasks, which can lead to 56

stragglers and resource interference when done on the same 57

machine [5], [8]. Previous research has also demonstrated that 58

congested links across datacenter networks can actually last 59

for extensive periods of time and are another contributor of 60

stragglers [9]. 61

Recently, researchers have suggested reactive as well as 62

proactive approaches to mitigate the impact of stragglers 63

[4]–[6], [10]–[14]. While reactive strategies are aimed at 64

tracking stragglers upon their occurrence and then launch- 65

ing speculative or extra copies of slow running tasks [4], [5], 66

proactive approaches trigger clones that are replicas of orig- 67

inal tasks upon job submission [6]. They unveil speculative 68

tasks proactively without waiting for the detection of strag- 69

glers. Another work proposes a statistical learning technique 70

called Wrangler. It forecasts stragglers before they occur on 71

the basis of past data [12]. 72

One of the key requirements for mission-critical and latency 73

sensitive applications is the ability to meet deadlines [15], [16]. 74

Currently, neither reactive nor proactive approach is capable of 75

providing formal performance guarantees with regard to meet- 76

ing application deadlines. In this paper, we propose Shed+, an 77

optimization framework that leverages dynamic speculation in 78
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order to increase the probability of meeting job deadlines. Our79

dynamic speculation approach differentiates itself from these80

works by taking into consideration individual job deadlines,81

and optimizing the number of speculative copies assigned82

for each task in order to collectively maximize the proba-83

bility of meeting job deadline and available cloud resources.84

Furthermore, since task executions are stochastic, while intro-85

ducing speculative copies can mitigate corresponding straggled86

tasks, other tasks (either already in the system or arriving in the87

future) may become stragglers later due to uncertainty in their88

executions. Thus, we periodically check for stragglers every θ89

seconds and re-balance the replication factor r among all active90

jobs to maximize the PoCD. We also develop and roll out91

a novel speculative launching approach which preserves the92

work performed by the original task/straggler prior to specula-93

tion, thus facilitating seamless execution of tasks and progress94

transfer to task speculation. Through the proposed framework,95

we jointly maximize the probability of all jobs meeting their96

deadlines by leveraging underutilized cloud resources.97

Shed+ leverages a metric called PoCD (Probability of98

Completion before Deadlines), which was introduced in [17],99

[18] to quantify the likelihood that a MapReduce job would100

meet the desired deadline. Through the analysis of PoCD101

premised on cloud processing models, we formulate an102

optimization problem so as to maximize the overall PoCD of103

all active jobs by identifying and outlining the optimal number104

of speculative (or extra) attempts for each straggler as regards105

cloud resource constraints and job progress. Unlike our work,106

Chronos [18] assumes unlimited resources, where VMs are107

provisioned as needed and subject to the overall cost. Thus,108

new arrivals always have VMs available and no resource con-109

straint is introduced. In addition, Chronos optimizes once and110

does not assume that task execution time is stochastic, which111

are subject to discrepancies as they progress during the life-112

time of a job. Shed+ is an enhanced version of Shed, which113

was published in our preliminary work in [17]. Shed+ dif-114

fers from Shed in the sense that it does more fine-grained115

allocation of resources to jobs. Unlike Shed which maximizes116

the PoCD at the job level (all tasks receive the same num-117

ber of extra copies), the PoCD in Shed+ is maximized at118

the task level. In particular, Shed assumes the same replica-119

tion factor for all tasks within the same job. That is, when a120

straggler is identified, Shed finds a common replication factor121

r for all its tasks to maximize the job’s PoCD. Clearly, this122

would lead to launching unnecessary replicas for some tasks123

that are not yet stragglers, while being inadequate for some124

other tasks. In contrast, Shed+ is to assign a different repli-125

cation factor ri to each individual task i. Thus, an optimal126

number of replicas are launched for each straggling task, in127

a way that is aligned with its execution conditions, impact128

on job deadlines, overall resource availability, etc. This fine-129

granularity control of individual tasks can efficiently reduce130

the required system resources needed in PoCD optimization,131

allowing significant speedup. Second, Shed only performs re-132

optimization upon new jobs arrivals. Thus, replicas are only133

optimized and launched until a new job arrives at the system.134

To overcome this shortcoming, Shed+ periodically checks for135

stragglers every θ seconds and re-optimizes resources (i.e.,136

replication factors ri for different tasks) accordingly. We note 137

that this is a continuous re-optimization during job execution, 138

offering fine-grained control over the temporal dimension. 139

Finally, to make sure we have accurate straggler information 140

for the optimization, we introduce another parameter ξ in 141

Shed+, so Shed+ waits for a job to progress ξ% (when a 142

more accurate estimate of completion time can be obtained) 143

before launching extra copies only for identified stragglers. 144

Shed+ is able to jointly make decisions in the coupled design 145

space. 146

Unlike Dolly [6] and default Hadoop which rely on a fixed 147

number of clones for each job upon submission and launch 148

one speculative/extra attempt for each straggler, respectively, 149

Shed+ is dynamically able to optimize the number of spec- 150

ulative copies/clones assigned for each straggler and enables 151

the optimization of total PoCD of all active jobs on the cloud. 152

After job arrivals, Shed+ waits for new jobs to progress ξ% 153

then optimizes all active jobs with respect to the number of 154

speculative/clones copies for each straggler, depending on cur- 155

rent system load and the collective job progress with respect to 156

deadlines. Moreover, Shed+ periodically checks for stragglers 157

every θ seconds and readjusts the number of extra attempts for 158

each straggler if it exists. Since this is a difficult integer pro- 159

graming problem, we tackle it effectively by using a simple, 160

greedy heuristic which directs more cloud resources towards 161

jobs that have a greater potential for utility improvement. Our 162

proposed solution entails the development of an online algo- 163

rithm that recomputes and re-allocates resources dynamically 164

during the course of the task’s execution to achieve PoCD 165

maximization. 166

The solution is prototyped on Hadoop and assessed by uti- 167

lizing a realistic workload in a local cluster and an Amazon 168

EC2 testbed that consists of as many as 139 and 121 nodes, 169

respectively. Shed+ is specifically implemented as a plug- 170

in scheduler in Hadoop, and is evaluated with I/O- as well 171

as CPU-bound benchmarks. Using extensive experiments, we 172

compare the efficacy of our solution with a few popular strag- 173

gler mitigation strategies – Shed [17], the default strategy 174

of Hadoop with speculation [3], Dolly [6] and Hopper [19]. 175

This work explicitly focuses on meeting application dead- 176

lines, while leaving other objectives such as energy for future 177

consideration. The findings substantiate our assertion that the 178

proposed dynamic speculation strategy leverages underutilized 179

cloud resources to maximize the probability of jobs meeting 180

their deadlines - marking a significant improvement. In our 181

experiments, we have seen this improvement for light load 182

going up to 100% for both Shed and Shed+ as opposed to 183

nearly 85%, 42% and 43% for Dolly, Hopper and Hadoop 184

with speculation enabled, respectively, while the percentage 185

for heavy load going up to 98% for Shed+ as opposed to 186

nearly 68%, 40%, 35% and 37% for Shed, Dolly, Hopper and 187

Hadoop with speculation enabled, respectively. 188

The rest of this paper is organized as follows. Section II 189

presents related work, and Section III presents the system 190

model. The optimization framework is presented in Section IV, 191

and the algorithm’s implementation is described in Section V. 192

Experimental results are presented in Section VI, and finally 193

the paper is concluded in Section VII. 194
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II. BACKGROUND AND SYSTEM MODEL195

In this work, we consider a parallel computation frame-196

work similar to MapReduce that splits analytical jobs into197

smaller tasks to be processed concurrently in multiple nodes.198

Each node is capable of executing one task at a time. The199

framework is comprised of map and reduce tasks; the map200

tasks’ outputs get passed as input to the reduce tasks. This201

work considers a system with limited resource capacity of m202

VMs (Virtual Machines); and a fraction λ of this capacity is203

available for job allocation. Similar to [20]–[22], we narrow204

our focus to map-only jobs/tasks implemented in one wave in205

homogeneous nodes.206

Let us consider a set of J jobs submitted to the MapReduce207

processing framework. Now each job j is associated with a208

deadline Dj that in turn is decided by application latency209

requirements. Each job j consists of a set of Nj tasks, and210

is deemed successful if all the Nj tasks are completed before211

the job deadline Dj . Let Tj denote job j’s completion time,212

and Tj ,i for i = 1, . . . , |Nj | denote the (random) completion213

times of tasks belonging to job j. Based on our system model,214

job j meets its deadline if Tj ≤ Dj , and its completion time215

is given by:216

Tj = max
i=1,...,|Nj |

Tj ,i , ∀j (1)217

Any task whose execution time is larger than the dead-218

line is considered as a straggler. Our dynamic speculation219

approach mitigates the impact of stragglers by launching ri220

extra attempts for each straggler. Therefore, each straggler221

includes ri extra attempts/copies that begin execution simulta-222

neously and process data independently of each other. A task223

gets completed when any one of the ri + 1 attempts finishes224

the execution, and then the other copies are killed. As a result225

of the various sources of uncertainty causing stragglers, we226

model the completion time of attempt k (for k = 1, . . . , ri+1)227

of task i and job j as a random variable Tj ,i ,k , using a known228

distribution. Hence, the completion time of task i, Tj ,i , is229

determined by the completion time of the fastest attempt, i.e.,230

Tj ,i = min
k=1,...,ri+1

Tj ,i ,k , ∀i , j . (2)231

Execution times Tj ,i ,k of different attempts are assumed to232

be independent because of resource virtulization, and Tj ,i ,k233

follows a Pareto distribution, parameterized by tmin and βj ,i ,k ,234

where tmin denotes the minimum execution time and βj ,i ,k235

refers to the shape parameter, in accordance with current work236

characterizing task execution time in MapReduce [10], [11],237

[19], [23]. Unlike default Hadoop scheduling and similar to238

Hopper, our new dynamic speculation mechanism launches239

extra ri copies for each straggler. After newly-arrived jobs240

progress ξ%, all jobs within the system are notified to detect241

the straggling tasks; then these are jointly optimized to deter-242

mine their optimal replication factors ri for each straggler,243

under system capacity constraints. Moreover, the optimization244

continuously detects and re-adjusts the straggler cloning every245

θ seconds. This particular strategy avoids overwhelming the246

cluster with unnecessary extra copies (as in Dolly and Shed),247

while also ensuring that every straggler receives at least one248

attempt prior to the otherwise under-utilized system resources 249

being apportioned among all active jobs/tasks. 250

III. RELATED WORK 251

Much research has gone into improving the execution 252

time of MapReduce-like systems to meet QoS (Quality of 253

Service) [15], [17], [18], [24]–[50]. Some of the focus is 254

directed on static resource provisioning, in order to meet 255

a specific deadline in MapReduce; others present propos- 256

als concerning scaling resources as a response to resource 257

demand, and cluster use to lower the total cost. Moreover, 258

frameworks are also proposed to improve the performance of 259

MapReduce jobs [15], [22], [51]–[53]. These are similar to our 260

proposed work, owing to the need for optimizing resources to 261

lower energy consumption as well as operating cost. However, 262

these works, unlike our proposed approach, do not consider 263

optimizing job execution time in the presence of stragglers. 264

Meanwhile some studies have shown interest in augmenting 265

the performance of MapReduce by postulating new scheduling 266

techniques. These works range from deadline-aware schedul- 267

ing [15], [16], [22], [54]–[59] to energy- and network-aware 268

scheduling [60]–[66]. The proposed schedulers intend to 269

improve both resource allocation and execution time whilst 270

meeting the QoS. Meanwhile, other works [41], [67] aim to 271

improve resource utilization whilst also adhering to completion 272

time objectives. Our proposed scheduler also attempts to mit- 273

igate stragglers whilst maximizing cluster utilization through 274

the use of a probabilistic approach. 275

The complexity of cloud computing is steadily on the rise, 276

even as it is utilized for a gamut of fields. As a result, other 277

researchers have shown interest in mitigating stragglers and 278

augmenting the mechanism of default Hadoop speculation. 279

They have proposed novel mechanisms to track stragglers, 280

launch speculative tasks reactively and proactively [4]–[6], 281

[10], [12], [13], [68]. Recent work [69] has derived expres- 282

sions for a proactive approach to decide when and how much 283

redundancy is given to jobs upon arrivals. Notably, reactive 284

approaches generally create new copies of all slow-running 285

tasks such as stragglers upon their detection, whereas proactive 286

approaches launch multiple copies of each task at the start of 287

task execution without waiting for the stragglers. These mech- 288

anisms are necessary to ensure a high reliability level in order 289

to satisfactorily meet the QoS. Different from these works, 290

we jointly maximize the probabilities of all jobs meeting their 291

deadlines; it does so by intelligently optimizing the number 292

of extra attempts given for each straggler on the basis of job 293

size and progress. 294

IV. JOINT POCD AND RESOURCE OPTIMIZATION 295

In this section, we use PoCD [17], [18], to quantify the 296

probability of jobs meeting deadlines. We analyze PoCD for 297

any given job j with rj ,i extra attempts for each straggling task 298

i and develop an online greedy algorithm to find the optimal 299

rj ,i for each straggler. 300

A. PoCD Analysis 301

We define PoCD as the probability that a job is completed 302

prior to its deadline when launching ri speculative copies for 303
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each straggling task i. For newly-arrived jobs (that are yet304

to start) and existing jobs (that may already have multiple305

attempts per straggler), their PoCDs are derived in Theorems 1306

and 2, respectively. Recall that Tj ,i ,k , tmin and β denote the307

completion time of attempt k of task i and job j, the minimum308

execution time and the shape parameter, respectively.309

Theorem 1: The PoCD of a newly-arrived job is given by310

Rsuj =

[
1−

(
tmin

Dj

)β
]Nj

. (3)311

Proof: First, we find the probability that an attempt belong-312

ing to a newly submitted job will miss its deadline as313

follows:314

Psuj,i,k = P
(
Tj ,i ,k > Dj

)
=

∫ ∞

Dj

βt
β
min

tβ+1
dt =

(
tmin

Dj

)β

(4)315

Note that for a newly submitted job there is only one attempt316

(k = 1) for every task i. Therefore, the probability that a job317

finishes before its deadline, PoCD, is given by318

Rsuj =

[
1−

(
tmin

Dj

)β
]Nj

(5)319

where Nj is the number of tasks.320

In our proposed dynamic speculation, during the process of321

speculating stragglers of a current job which may have already322

speculated and have multiple active attempts, we speculate323

the fastest attempt (i.e., the one which has made the greatest324

progress) in order to optimize our strategy’s efficiency. The325

fastest attempt is only speculated if it happens to be a strag-326

gler at the decision point where we launch r extra copies.327

Otherwise, all extra attempts are killed, and the fastest attempt328

is kept running.329

Let ϕj ,i ,k denote the progress of attempt k in task i belong-330

ing to job j, and let ϕj ,i denote the largest progress (the331

percentage of data processed) of all task i’s attempts belong-332

ing to job j. That is, ϕj ,i = maxk=1,...,r ij +1 ϕj ,i ,k , ∀j , i .333

Similarly, let βj ,i ,k denote the shape parameter of attempt k334

in task i belonging to job j, and let βj ,i be the shape parameter335

of the fastest attempt. Let τj refer to the elapsed time of job j.336

We quantify the PoCD of an existing task as follows.337

Theorem 2: The PoCD of an existing job338

Rruj =

|Nj |∏
i=1

⎡
⎢⎣1−

((
1− ϕj ,i

)
tmin

Dj − τj

)βj ,i ·
(
r ij +1

)⎤
⎥⎦. (6)339

Proof: Let ϕj ,i ,k be the progress of attempt k for task i340

belonging to job j. Recall that at the point of re-optimization,341

we keep the fastest attempt of each task for a running job, i.e.,342

ϕj ,i = maxk ϕj ,i ,k .343

Once the fastest attempt is determined, we launch r extra344

attempts for each straggling task; these extra attempts start345

executing from the last key-value pair processed by the fastest346

attempt. Therefore, the remaining execution time of each strag-347

gling task (denoted by T̂j ,i ,k ) is i.i.d, and modeled as a Pareto348

distribution parameterized by (1 − ϕj ,i )tmin and βj ,i , since349

1 − ϕj ,i ,k is the remaining fraction of data to be processed350

by attempt k belonging to task i of job j. Now, the probability 351

that a running attempt will fail to finish before the deadline, 352

can be computed as follows: 353

Pruj,i,k = P
(
T̂j ,i ,k > Dj − τj

)
354

=

((
1− ϕj ,i ,k

)
tmin

Dj − τj

)βj ,i,k

(7) 355

where Dj−τj is the remaining time before deadline, and T̂j ,i ,k 356

is the random remaining execution time of each attempt. 357

Therefore, the probability that a running job finishes before 358

its deadline (denoted by Rruj ) is determined by the probability 359

of all its tasks meeting the deadline, i.e., 360

Rruj =

|Nj |∏
i=1

Rj

(
r ij

)
(8) 361

where Rj (r
i
j ) is the probability of task j of job i meeting the 362

deadline and is given by 363

Rj

(
r ij

)
=

⎡
⎢⎣1−

((
1− ϕj ,i

)
tmin

Dj − τj

)βj ,i ·
(
r ij +1

)⎤
⎥⎦. (9) 364

This is because for task j of job i to meet the deadline, it only 365

requires one of its r ij + 1 attempts (i.e., r ij launched attempts 366

plus one original attempt) to finish within Dj − τj . For non- 367

straggler jobs that do not require speculative execution at the 368

time of re-optimization, it is easy to see that the PoCD remains 369

the same as (8) and (9) by plugging in r ij = 0. 370

B. Joint PoCD Optimization 371

We first formulate the problem of joint PoCD maximization 372

under system capacity constraints. Using dynamic speculation, 373

each straggling task of job j has r ij +1 attempts, which includes 374

an original attempt and r ij speculated attempts. Subsequently, 375

the total number of VMs of job j is denoted by
∑

i (r
i
j +1)+1, 376

where an extra VM is needed for running its job tracker/master. 377

Recall that m is the total number of available VMs in the 378

system, with λ being the fraction of these VMs permitted 379

for task speculation. Hence, a cloud provider can balance 380

the resource allocation and task execution by adjusting λ. A 381

system capacity constraint
∑

j

∑
i |Nj | ·(r ij +1)+ |J | ≤ λ ·m 382

needs to be satisfied at any given time. Let Rj (rj ) (i.e., Rsu 383

for a newly-arrived job or Rru for an existing job) denote the 384

PoCD function for r ij extra attempts for task i in job j. Thus, 385

we arrive at the following PoCD optimization: 386

maximize

|J |∑
j=1

U
(
pj
)

(10) 387

s.t.

|J |∑
j=1

|Nj |∑
i=1

(
r ij + 1

)
+ |J | ≤ λ ·m (11) 388

pj =

|Nj |∏
i=1

Ri
j

(
r ij

)
, ∀j (12) 389
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TABLE I
LIST OF SYMBOLS

r ij ≥ 0, ∀j , ∀i (13)390

where pj is the PoCD achieved by job j, and Rj (r
i
j ) is a PoCD391

function of a task i in job j that is monotonically increasing392

since larger r ij results in higher PoCD. The capacity constraint393

λ · m ensures that dynamic speculation can only utilize the394

fraction of cloud resources assigned for this purpose.395

Here, U (·) refers to a utility function that guarantees our396

strategy’s fairness. For instance, we can select a family of well-397

known α-fair utility functions that are parameterized by α [70].398

Then, the solution for this PoCD optimization achieves a peak399

total PoCD (for α = 0), proportional fairness (for α = 1), or400

max-min fairness (for α = ∞).401

C. Our Proposed Algorithm402

We present an online scheduling algorithm for solving the403

optimization problem in order to obtain the optimal r ij for404

each straggling task under cloud resource constraints. Upon405

job arrivals, the scheduler initially recalculates the remaining406

available resources for dynamic speculation and identifies all407

jobs along with their deadlines. The RM notifies all running408

jobs to check for stragglers, and for each running task, estimate409

βj ,i to determine the likelihood of the task missing its deadline410

and becoming a straggler, i.e.,411

βj ,i =
trem

trem − [(1− ϕj ,i
) ∗ tmin

] (14)412

where trem is the expected remaining time, tmin is the mini-413

mum possible value of Pareto-distributed execution time, and414

ϕj ,i is the current task progress. It is easy to see that βj ,i > 1415

and that a small value means the task will run longer [19]416

and is more likely to become a straggler. Then, our algorithm417

works in a greedy manner to assign VMs to stragglers with418

the highest utility improvement.419

More precisely, we start by assigning r ij = 0 to each strag- 420

gling task i in each job j with stragglers, and then calculate 421

its utility Rs
j as a function of its PoCD. Let ω denote the total 422

VMs assigned to all jobs and κ the available resources for all 423

tasks. Iteratively, we identify the job j that has the minimum 424

PoCD and then among all its stragglers N s
j , we find the strag- 425

gler which has the minimum PoCD. We then increase the r ij of 426

a straggler with minimum PoCD in job j by one. Steps 20-23 427

in the algorithm ensures that a straggling task i is removed 428

once its assigned ri reaches the maximum value, and a job j 429

with straggling tasks is removed once all its tasks are pro- 430

cessed by the algorithm. Then we update the utility function 431

of every job j with respect to the current assignment of r ij . This 432

process is repeated until the system capacity constraint (11) is 433

reached or every straggler receives the maximum number of 434

extra attempts. 435

D. Algorithm Complexity 436

To calculate the complexity of our algorithm, we need to 437

find how often the else statement (line 15-23) can run in 438

the worst case. In the worst case scenario, all tasks of all 439

running jobs are straggling, and unlimited resources are avail- 440

able. Using an ordered array to represent Js and N s
j , we 441

get run times of O(1), O(1), O(n) for minimum operation 442

(line 15 and 16), removing element (line 21 and 23), and 443

updating the array (line 19), respectively. Taking all together 444

with the while-loop gives a runtime of O(|Js |2 ∗ |N s
j |). 445

V. IMPLEMENTATION 446

We implement Shed+ as a pluggable scheduler in Hadoop 447

YARN, which includes an RM (Resource Manager), an AM 448

(Application Master) for each application (job) as well as an 449

NM (Node Manager within each node). The AM issues a 450

request to resource containers (VMs) to execute jobs/tasks and 451

constantly tracks the progress of each task in NMs. The RM is 452

responsible for monitoring as well as managing VMs within 453

a cluster and scheduling jobs. More specifically, the sched- 454

uler optimizes and allocates resources to the requesting jobs. 455

Figure 1 depicts our system architecture as well as the steps 456

taken to attain optimality. 457

After a job submission, our scheduler waits for the job to 458

progress ξ% before checking for stragglers. Then, the RM 459

notifies each AM to detect stragglers. Once stragglers are 460

found, the RM uses the job deadlines to calculate the optimal 461

r for each straggler to maximize the utility as described in 462

Algorithm 1. After r is obtained, it is sent by the RM to 463

the corresponding AM to create r extra attempts (for each 464

straggler). Subsequently, the AM negotiates the resources with 465

the RM and then works in tandem with NMs to launch the 466

attempts. The AM tracks the progress of all attempts and 467

maintains the byte offset of the last processed record even 468

as the submitted job continues to run. The checking process 469

is repeated periodically every θ seconds or whenever a new 470

job progresses ξ%. 471

Since the AM monitors all running attempts, it responds 472

to each probing from the RM by killing all the slow-running 473
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Algorithm 1 Proposed Online Algorithm

1: Once a newly submitted job progresses ξ%,
or θ seconds have passed since last check:

2: Kill all jobs that missed their deadlines
3: J = {j1, j2, j3, . . .}
4: for j ∈ J do
5: Notify job j to check and estimate βi

for each straggler
6: end for
7: r ij = 0 ∀j ∈ Js , ∀i ∈ N s

j
8: ω = 0
9: κ = λ ·m −∑|J |

j=1 |Nj | − |J | \\No. of available VMs
10: Calculate Rs

j ∀j ∈ Js

11: while Js �= {∅} do
12: if ω + 1 > κ then
13: break
14: else
15: j ′ = argminj {Rs

j }
16: i ′ = argmini{Ri

j ′}
17: r i

′
j ′ = r i

′
j ′ + 1

18: ω = ω + 1
19: Calculate Rs

j ∀j ∈ Js

20: if r i
′

j ′ == MAX then
21: N s

j ′ = N s
j ′ − {i ′}

22: if N s
j ′ == {∅} then

23: J s = J s − {j ′}
24: end if
25: end if
26: end if
27: end while

attempts belonging to each task detected previously as a strag-474

gler, whereas the fastest one (i.e., that has processed the475

highest amount of data) is kept alive and continues to run.476

Notably, upon the arrival of a new job (or after θ seconds477

have passed since last optimization), our scheduler then re-478

optimizes resources and derives a new r ij for each straggling479

task, regardless of whether it is current or newly submitted.480

Thus, the AMs speculate/create new r ij copies for every sin-481

gle running attempt kept alive as the fastest attempt. To that482

end, we develop a new speculation mechanism that enables the483

preservation and transfer of existing task progress to specula-484

tive attempts. Specifically, the last known data offset processed485

by the straggling task gets passed on by the AM to new spec-486

ulative attempts, which successfully continue the execution of487

tasks in a seamless manner. As a result, this approach signif-488

icantly enhances the efficacy of dynamic speculation and in489

effect, the PoCD performance.490

Figure 1 illustrates the manner in which our scheduler491

responds to new arrivals or after θ seconds have passed since492

the last optimization. Suppose that job 1 gets submitted to493

a cluster and is running. For the sake of simplicity, suppose494

that each job has only two tasks Aj ,1 and Aj ,2. Each task495

reports its progress to the AM including number of bytes496

processed. Thereafter, the AM reports the progress of the497

entire job to the RM. After ξ% of progress is achieved, the498

Fig. 1. System Architecture and steps taken upon new job arrival.

Fig. 2. Average job execution time versus number of clones.

RM notifies Job 1 to check for stragglers, in this case A1,2, 499

and report that to the RM. Then, the scheduler within the 500

RM optimizes the cluster resources and derives r21 for the 501

straggling task A1,2 on the basis of its PoCDs. After Job 1 502

obtains r21 , the AM speculates the straggling task, A1,2, with 503

r21 extra attempts. Importantly, the total number of attempts 504

for all the jobs is bounded by the available resources. That 505

is, when RM calculates r21 for the straggling task in Job 1, it 506

considers all the running tasks including those in Job 2. This 507

optimization process is repeated after Job 2 processes ξ% of 508

the job or θ seconds elapse. 509

One challenge confronting us is that AMs must consider the 510

time taken to launch new speculative attempts because in the 511

case of clusters with high contention, the startup time of JVM 512

(Java Virtual Machine) cannot be ignored [71]. Furthermore, 513

the on-demand requests submitted to the RM cannot be pre- 514

dicted as they can arrive at any time. Therefore, all AMs take 515

the JVM launching time into account when they pass the last 516

offset processed to the new attempts [72]. The AMs specifi- 517

cally estimate the number of bytes bextra to be processed by 518

the speediest attempts. Although the last offset, bproc, gets 519

recorded upon the creation of new attempts, the AM will 520

bypass the data processed during the time of launch, passing a 521

new offset, bnew, to these new attempts. In case the AM finds 522

that all the remaining bytes of data will be processed during 523

the time of launch, all new attempts will be killed. This esti- 524

mated number of bytes, bextra, is obtained in the following 525

manner: 526

bextra =
bproc

tnow − tFP
·(tFP − tlau) (15) 527
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Fig. 3. Illustration of the byte offset estimation during speculative attempts’
launching time. At tnow , the AM estimates the number of bytes (bextra)
to be processed during the speculative attempt’s launching time. bnew is the
start byte offset of the speculative attempt.

where tnow is the current time (i.e., time at which new attempts528

are about to be launched), tFP is the time at which the529

first progress is reported for the original attempt, and tlau is530

the amount of time to launch the original attempt (i.e., time531

elapsed from the instant the attempt is launched to the instant532

the attempt starts processing data). Here bproc is the number533

of bytes processed by the original attempt until tnow. Thus,534

the new byte offset received by the new attempts is calculated535

as follows:536

bnew = bstart + bproc + bextra (16)537

where bstart is the starting byte offset for the original attempt.538

Note that the straggling task keeps processing bytes until it539

reaches this new byte offset bnew. Figure 3 illustrates the byte540

offset estimation.541

VI. EVALUATION542

The performance of our scheduler and algorithm are eval-543

uated on a local cluster as well as Amazon EC2 cloud. In544

this section, we present the evaluation results. First, we give545

a description of the experimental setup, and then show our546

results comparing Shed+ with Shed, Hadoop with speculation547

enabled, Hopper, and Dolly.548

A. Experimental Setup549

We deploy our proposed scheduler on a local cluster and550

Amazon EC2 consisting of 139 nodes – one master and 138551

slaves. Because of the JVM launching time, we set the re-552

optimization interval to553

θ =
(
D − tavg

) · θ′ + tavg , (17)554

where tavg is the average launching time overhead in the555

cluster, and θ′ can be set from 0% to 100%. This is to556

ensure that the time between re-optimizations is never less557

than the launching time. tavg is a cluster-specific variable, and558

it is obtained from Hadoop experiments. We set λ = 100%,559

ξj = 10%, θ′ = 5% and tavg = 60 s. Each node is capable560

of running one task at a time. We evaluate our scheduler by561

using Map phases of three popular benchmarks, TermVector562

(TV), WordCount (WC), and WordMean (WM), as well as sev-563

eral Machine Learning benchmarks such as Classification (CL)564

and KMeans (KM) clustering benchmarks [73]. WordCount is565

an I/O and CPU-bound job while WordMean is CPU-bound. 566

The ML benchmarks classify and cluster movies based on 567

their ratings using anonymized movie ratings data. We assume 568

that tasks of a job are executed in one wave in homoge- 569

neous nodes. We create three classes of jobs consisting of 570

5, 10, and 20 tasks [6]. We run 100 jobs for each experiment 571

with varying job inter-arrival time. The baseline algorithms 572

for comparison in our experiment are Shed, Hopper, Dolly, 573

and Hadoop with speculation. Since Dolly does not consider 574

deadlines, to make it comparable to our work, we set its 575

straggler probability p equal to 1 − PoCD, i.e., one minus 576

the PoCD of default Hadoop, which is the probability of a 577

job not meeting the deadline in Hadoop. Thus, Dolly assigns 578

exactly r + 1 = log(1 − (1 − ε)
1
N )/ log p clones to each 579

task for ε = 5%, regardless of their sizes and deadlines. ε 580

is the acceptable risk of a job straggling. Unlike in Shed and 581

Hopper, β is recalculated in Shed+ every time AM checks for 582

stragglers and is task-dependent. We measure the PoCD of all 583

strategies by calculating the percentage of jobs that completed 584

before their deadlines. To emulate a realistic cloud cluster with 585

resource contentions, we introduce background noise/tasks in 586

each slave node, where noise shares resources with compu- 587

tation tasks. The task execution time measured in our cluster 588

follows a Pareto distribution with an exponent β ≤ 2 [10], 589

[11], and tmin = 120 sec. We choose deadlines relative to 590

the median, x̃ , of default Hadoop execution time, similar to 591

the evaluations in [74]. Our proposed algorithm sets r for 592

each straggling task equal to the MAX value. The value can 593

be an environment-specific variable where there is not much 594

improvement in execution time when r is large. To see what 595

the maximum value of r is in our cluster, we run 10-task 596

experiments with different values of r. Here, all attempts start 597

at the same time [17]. We find that there is little improvement 598

in execution time beyond r = 5, so we set the maximum num- 599

ber of attempts per straggling task to be 5. Figure 2 shows the 600

average execution time with different values of r. Each point 601

is the average of 100 runs. It can be seen that there is little 602

improvement in execution time beyond r = 5, so we set the 603

maximum number of attempts per task to be 5. 604

B. Results 605

Figure 4 compares the measured PoCD (percentage of jobs 606

meeting deadline) of our proposed algorithm with Shed, Dolly, 607

Hopper, and default Hadoop with speculation for various job 608

sizes. In this figure we set the average load (each task with 609

one copy) to 40%. We define the average load as the total 610

number of running tasks to the total number of VMs. We 611

tune the arrival rate to approximate the average load run- 612

ning. The figures show that Shed+ is able to achieve up to 613

100% PoCD, while Shed and Dolly are around 80% and 60%, 614

respectively, in most experiments. The figure also shows that 615

Shed+ can significantly outperform Shed due to the fact that 616

Shed+ only speculates stragglers. This fine-grained specula- 617

tion optimizes resources efficiently without the need to launch 618

multiple copies for each task as in Shed. Moreover, Shed+ 619

makes resources less contended which leads to faster process- 620

ing. The performance difference increases for large jobs, i.e., 621
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Fig. 4. Comparisons of Shed+, Shed, Hopper, Dolly and Hadoop in terms of PoCD with different benchmarks: (a) 5-task jobs (b) 10-task jobs (c) 20-task
jobs.

Fig. 5. Comparisons of Shed+, Shed, Hopper, Dolly and Hadoop in terms of PoCD with a mix of workloads and benchmark combined with different
deadlines: (a) WordMean (b) Classification (c) TermVector.

Fig. 6. Comparisons of Shed+, Shed, Hopper, Dolly and Hadoop in terms of PoCD with a mix of workloads and benchmark combined with different
average load : (a) KMeans (b) WordCount (c) TermVector.

when the cloud utilization is extremely high, so there is no622

enough cloud resource to assign the number of clones needed623

to each job, making Shed less appealing. This demonstrates624

Shed+’s superiority in dealing with large jobs.625

Figure 5 shows the PoCD of Shed+ compared with Shed,626

Hopper, Dolly, and Hadoop, for different deadlines. In this627

experiment, we run a mix of workloads and three bench-628

marks with various deadlines relative to the median. The figure629

presents each benchmark’s separately. The results show that,630

even with mixed, heterogeneous workloads and deadlines, our631

algorithm achieves a PoCD of more than 100% in all cases632

(which is consistent with the homogeneous workload results),633

and significantly outperforms Dolly, Hopper, and Hadoop.634

Moreover, the figures show that when job deadlines are635

relaxed, the PoCDs of all strategies increase, but Shed+ con-636

tinues to perform significantly better than Hopper, Dolly, and637

Hadoop, demonstrating its superiority in dealing with hard638

application deadlines. Note that our numerical results com-639

pare Shed+, Shed, Hopper, Dolly, and Hadoop for various640

deadlines up to Hadoop’s median job execution time, because 641

Shed+ already achieves 100% PoCD in most cases due to 642

more efficient utilization of system resources for running 643

speculative copies needed for each straggler. This massive 644

improvement over other strategies is also due to the fact that 645

Shed+ periodically checks for stragglers and jointly optimizes 646

available resources for speculative copies needed for all jobs 647

with stragglers. Moreover, the new dynamic speculation mech- 648

anism guarantees that no repeated data processing is needed 649

for any speculative attempts. 650

Figure 6 shows the PoCD of Shed+ compared with Shed, 651

Hopper, Dolly, and Hadoop for different benchmarks for vary- 652

ing loads. Here, we fix the deadline and increase the average 653

load (total running tasks) in the system. The figure shows that, 654

as we increase the average load in the system, Shed+ contin- 655

ues to perform significantly better than all strategies. Shed+ 656

is able to optimize resources and provide more VMs to the 657

straggling tasks. The figure also shows that when the average 658

load is low, both Shed and Shed+ perform relatively the same. 659
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Fig. 7. Cluster utilization as a function of the decision variables calculated
by the optimization model for Shed+ and Shed in addition to the average
number of jobs being optimized.

Fig. 8. Real time cluster utilization of Shed+, Shed, Dolly and Hadoop for
10-task jobs of WordCount benchmark.

Fig. 9. The cumulative distribution function (CDF) of Shed+, Shed, Dolly
and Hadoop for 10-task jobs of WordCount benchmark.

In Figure 7, we compare Shed and Shed+ in terms of the660

optimization model decision for 10-task WordCount jobs in a661

system with 40% average load. The figure depicts the system662

utilization as a function of total number of attempts/copies663

(including original ones) for all tasks, where each copy664

requires one VM. The figure shows that Shed always tries to665

fully utilize the cluster. However, this does not guarantee that666

all jobs receive the number of copies needed for each task. On667

the other hand, Shed+ is able to fully utilize the cluster when668

needed. This means that non-straggling tasks only run with669

one copy leaving remaining resources for straggling tasks. In670

other words, any extra attempt is given only to stragglers.671

In addition, Figure 7 shows the average number of active672

jobs in the system being optimized. It can be clearly seen673

that Shed+ is able to improve job execution times and reduce674

resource competition for new arrivals to the system compared675

with Shed.676

From the same experiment in Figure 7, Figure 8 depicts the677

cluster utilization under Shed+, Shed, Dolly and Hadoop in678

real time. It can be clearly seen that while Shed can only679

achieve about 75% utilization, Shed+ is able to optimize680

Fig. 10. Comparisons of Shed+, Shed, Hopper, Dolly and Hadoop in terms
of PoCD with 20-job workload using WordMean benchmark and running
in EC2.

the underutilized resources for stragglers and achieve much 681

higher levels of utilization and fairness, where only stragglers 682

receive more resources. The figure also shows how Shed+ 683

exploits idle slots in order to mitigate the effect of strag- 684

glers and achieve better performance in meeting job deadlines. 685

Similar results are evident for different workloads. On the 686

other hand, Hadoop, Dolly and Hopper (not shown) are only 687

able to achieve around 55% utilization. Hopper shows similar 688

utilization to Hadoop. 689

Figure 9 shows the cumulative distribution function (CDF) 690

of job execution times for the same experiment above. Notice 691

that almost all jobs complete within 350 s under Shed+ 692

whereas only 60%, 40%, and 40% of the jobs complete by 693

350 s under Shed, Dolly, and Hadoop, respectively, and it 694

takes as much as 600 s and 550 s for some jobs to complete 695

under Dolly and Hadoop, respectively. The average job exe- 696

cution time (not shown in the figure) for Shed+, Shed, Dolly, 697

and Hadoop are 330 s, 345 s, 402 s, and 378 s, respectively. 698

Figure 10 and Figure 11 depict results from experiments on 699

EC2. The figures show the PoCD of Shed+ compared with 700

Shed, Hopper, Dolly and Hadoop with different deadlines. In 701

these experiments, we increase the job size and arrival rate 702

for WordMean and WordCount benchmarks. The figures show 703

that Shed+ notably outperforms all baselines and is able to 704

achieve nearly 100% PoCD. The figures also show that even 705

Shed falls behind in meeting job deadlines. That is, with high 706

arrival rate, Shed is not able to provide enough resources for 707

the jobs in need, which makes its performance similar to Dolly, 708

Hopper, and Hadoop. On the other hand, Shed+’s outstanding 709

performance is due to the fact that only stragglers receive more 710

resources according to their PoCDs. 711

Finally, in order to explore the potential tradeoffs between 712

overhead due to frequent reoptimization and PoCD, we study 713

the effects of algorithm parameter ξj and the re-optimization 714

interval θ. Recall from equation (17) that θ was defined such 715

that it is never less than the JVM launching time. In order 716

to explore the tradeoff for the full range of re-optimization 717

interval θ, we redefine θ for this experiment as θ = θ′·D . Thus, 718

for instance, θ′ = 5% means that θ is 5% of job deadline. 719

Table II shows the PoCD of Shed+ for 10-task WordMean jobs 720

with different values of ξj and θ. The results show that Shed+ 721

is able to achieve large PoCDs for a wide range of parameters. 722
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Fig. 11. Comparisons of Shed+, Shed, Hopper, Dolly and Hadoop in terms
of PoCD with 20-job workload using WordCount benchmark and running in
EC2.

TABLE II
POCDS FOR DIFFERENT ξ AND θ VALUES

For instance, we can wait up to ξj = 30% of progress and723

optimize less often, and still achieve large PoCD. However,724

the results show a clear penalty of too frequent re-optimization725

when θ is 5–10% of the deadline. It can be seen that both very726

small and very large θ values lead to degraded PoCD. More727

frequent re-optimization (i.e., small θ) leads to killing replica728

attempts before getting the chance to start processing due to729

launching time overhead. This makes the PoCD results similar730

to Hadoop. On the other hand, very large θ values lead to too731

infrequent re-optimizations that may not respond to system732

dynamics quickly and lead to lower PoCD performance. This733

experiment provides valuable insights on how to exploit the734

tradeoff in practical systems. Note that our approach of setting735

θ according to equation (17) does not lead to the problem of736

re-optimizing too frequently.737

VII. CONCLUSION738

In this paper, we propose Shed+, a fine-grained739

optimization framework that leverages dynamic speculation to740

jointly maximize PoCD and cluster utilization. We also present741

an online scheduler that dynamically optimizes resources peri-742

odically. Our solution includes an online greedy algorithm743

to find the optimal number of speculative copies needed for744

each straggler. Our results show that Shed+ can achieve up to745

100% PoCD compared to Shed, Dolly, Hopper, and Hadoop746

with speculation. The proposed algorithm is able to achieve747

more than 90% utilization of available cloud resources when748

needed, whereas Shed achieves 80%, but it is less efficient.749

Dolly, Hopper, and Hadoop achieve only about 55%.750

In our future work, we will extend our work to con-751

sider energy utilization and energy efficiency in the joint752

optimization problem. Another extension would be to consider753

other architectures such as CPUs vs GPUs, and shared VMs 754

vs dedicated VMs with different price units. In addition, we 755

plan to investigate deadline-aware scheduling algorithms for 756

multi-phase cloud systems, e.g., MapReduce, which involve 757

communication and dependency among tasks. Moreover, we 758

will expand our work to consider multi-cluster and geo- 759

distributed environments. We plan to include heterogeneity in 760

the network performance (including latency and bandwidth) 761

into our model. Furthermore, modeling replication and related 762

overhead will be considered for an online setting with dynamic 763

job arrivals and departures. 764
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