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Abstract. ACCORD addresses the need for robust, rapidly adaptive resource allocation 
mechanisms in cloud computing. It employs a distributed, game-theoretic approach to apportion 
computational loads in an efficient, prioritized, Pareto-optimal fashion among geographically 
dispersed cloud computing infrastructure. This paper describes ACCORD algorithms, software 
implementation, and initial experimental results. Our results illustrate how a distributed, 
ACCORD-enabled cloud architecture autonomously adapts to the loss of computing resources 
(e.g., due to failures, poor network connectivity, or cyber attack) while ensuring that users 
receive maximal, prioritized utility from available cloud resources. 
 
I. Introduction and Background 

Traditional approaches to cloud computing [1] typically assume (1) a cloud implementation 
with one or a small number of large datacenters maintaining substantial computing or storage 
capacities; (2) centralized control of computing resources within or across datacenters; and (3) 
highly reliable network connectivity to datacenters. Although many commercial cloud 
computing scenarios adhere well to these assumptions, several critical emerging applications do 
not. Cloud computing in tactical military environments represents the best counter-example: 
deployment of monolithic datacenters in hostile forward areas is impractical and unreliable, 
because a single focused attack targeting the datacenter could disable all computing capacity. 
The same consideration argues against centralized control, because the controlling entity 
constitutes a single point of failure. In addition, tactical wireless networks are notoriously 
unreliable and bandwidth-constrained, and robust network access to any one physical location 
cannot be guaranteed. The potential for attacks against these networks, including jamming (both 
inadvertent and malicious), distributed denial of service, or cyber attack against routing 
infrastructure, will exacerbate these problems. Further heightening these concerns are recent 
studies indicating that the network can easily become the main cloud performance bottleneck 
even when it is not under attack [1]. Various subsets of these design challenges exist in other, 
non-military cloud usage scenarios such as emergency disaster response units, and research 
missions in remote areas. 

ACCORD addresses these unique challenges in several ways. We support an architecture in 
which computing resources (both computing and storage capacity) reside in geographically 
dispersed microclusters, each of which contains only a fraction of overall cloud capacity. 
Microclusters might comprise a small rack of servers in the back of a HUMVEE, command post, 



2 
 

aircraft, or other structure of opportunity, as shown in Fig. 1. The ability to support physically 
dispersed cloud resources has two critical advantages in tactical military and other similarly 
challenged environments. First, the distributed nature of the infrastructure makes it more difficult 
for adversaries to target large portions of those resources (e.g., via the types of attacks outlined 
above). Second, the physical distribution makes it more likely that a given client of the cloud will 
have at least some cloud resources in relatively close proximity, thereby improving the quality of 
network connectivity as measured by latency, throughput and connection persistence. 

 
Fig. 1. ACCORD supports operation of geographically distributed clouds with mobile, wireless clients. 

Although each microcluster contains a mechanism to control and allocate resources within 
that microcluster, cloud operation is otherwise fully distributed. ACCORD relies on a 
distributed, game-theoretic algorithm and protocol for efficient prioritization and load balancing 
across all microclusters reachable by clients of the cloud, as we explain in Section II. In Section 
III we describe an initial software implementation of the ACCORD architecture. We highlight 
initial experimental results in Section IV, showing how ACCORD’s distributed, collaborative 
approach to resource allocation supports adaptive, resilient access to cloud services in the face of 
microcluster loss due to causes such as power-down, physical attack, cyber attack, or loss of 
network connectivity. Section V highlights some areas of ongoing investigation in the ACCORD 
project. 

 
II. Distributed, Game-Theoretic Allocation of Computing Resources 

Fundamental to our approach is the concept of Nash Bargaining [2,3], a form of cooperative 
game theory. In response to attacks or failures that diminish cloud capacity, ACCORD utilizes 
distributed bargaining algorithms to re-apportion available computational resources among users 
in a rapid, prioritized fashion. In general, an Asymmetric Nash Bargaining Solution (NBS) 
among ! users will maximize the Nash product  

                                                                                                                                max !! − !! !!                                                                                                                               (1)
!

!!!

 

where !! is the user utility, !! is the user priority, and !! are the “disagreement points” that 
correspond to the utility that each user receives in the case of a breakdown in bargaining. For the 
purpose of this paper, we assume that !! = 0; that is, users only derive utility in the case of 
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successful bargaining. The NBS provides a unique maximum with several attractive properties: it 
is efficient, achieves proportional fairness [4], and is also Pareto-Optimal: it is not possible to 
increase any !! without decreasing one or more other !!. The solution to the generalized Nash 
product (1) is the same as that for  

                                                                                                                        max !! log !!
!

!!!
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The NBS maximizes the sum of individual logarithmic utilities, weighted by their respective 
priorities.  

Nash Bargaining apportions a cluster’s computational resources among clients utilizing that 
cluster, and provides clients with utility and congestion price estimates to help them select the 
most favorable cluster(s) for future job execution. This selection may include intentional 
replication of jobs among multiple clusters to increase the probability of successful job 
completion. We explain the rationale and details of these steps in greater detail below. 

Estimation of a cluster’s processing delay goes hand-in-hand with the problem of optimal 
intra-cluster resource sharing. Jobs require resources in different relative quantities. Say job ! 
uses a vector !! = !!! , !!! ,… , !!"

!
 of resources per scheduling time unit, e.g. !!! MIPS of 

CPU, !!! GB of memory, and !!! Mb/s of I/O capacity. Given !! and priority level !!, 
! = 1,… , !, the cluster controller can derive an NBS for Pareto-optimal mapping of resources to 
jobs. Let !! be the effective processing rate achieved by job ! in a given allocation period  !, i.e., 
the number of times that job ! can be completed within time slot !. Since jobs are by assumption 
elastic, if we allocate more resources to a single job, it will simply finish (proportionally) faster, 
but jobs are fungible in that they can operate with a fractional multiple of their profiles. This 
models the situation where a job consists of a large number of sub-tasks, each of which can be 
completed independently of the others, in parallel or sequentially. For ! total jobs, the NBS for 
intra-cluster resource allocation solves the problem 

                                                                                                max !! log !!!
!!!                   !"#$%&'  !"  !" ≤ !                                                 3   

Here ! = !!, !!,… , !! ! is a column vector of the aforementioned processing rates for each 
job, ! =    !!,… ,!!  is the matrix of resource usage profiles for each job, and 
! =    !!, !!,… , !! ! is a column vector of the resource bounds in each dimension. The 
Lagrangian of (3) is  

                                          ! !, !, ! = !! log !! − !!!!"!
!!! !!!

!!! + !!!!!
!!!                                             (4)  

 
For each job !, we can define a per-unit-rate congestion price !! = !!!!"!

!!! . At optimality, 
we have  1 !!∗ = !!∗ !! = !!∗!!"!

!!! !!. The cluster controller conveys the optimal !! to the 
client submitting the job request, which (because the client knows !!) enables the client to 
estimate both expected utility and resource cost in selecting this cluster for the job. 

 
III. Implementation of NBS and Client-Cluster Protocol 

To achieve distributed allocation of computing resources across the cloud, ACCORD utilizes 
software residing at clients and at microclusters (hereafter referred to simply as clusters), along 
with a client-cluster control protocol. Figure 2 illustrates this architecture at a high level, for the 
case where a client has access to three separate clusters. Each cluster contains a cluster controller 
that accepts job pricing queries from authorized, authenticated clients and returns a “congestion 
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price” which reflects to the aggregate load within that cluster. The job pricing requests consist of 
a description of the job to be executed and the desired priority level. The congestion price is 
computed based on the cumulative number of jobs currently being executed within the cluster, 
weighted by the priority of each job. The congestion price is proportional to the computing load 
currently within the cluster. As the cluster load increases, the cost reflected by the congestion 
price also increases. 

 
Fig. 2. Architecture and protocol for cluster selection by clients of the cloud. 

Clients independently make cluster selections based on the congestion price received via the 
protocol described below. The client will typically submit its job to the cluster returning the best 
price. Upon receipt of a job execution request, the cluster controller will formulate the job and 
submit the job request to Hadoop for execution. The cluster controller maintains status of the 
jobs in progress and revises its congestion pricing to reflect the new job, if and when future price 
queries are received. 

ApacheTM HadoopTM (hadoop.apache.org) from The Apache Software Foundation was used 
as the cloud environment to demonstrate the principles of a distributed NBS solution. A Hadoop 
cluster consists of a series of tightly coupled relatively low cost Linux nodes. Storage is 
distributed among all machines within the cluster and replicated for reliability using the Hadoop 
distributed file system. Hadoop through its map-reduce framework provides for rapid elasticity 
in the allocation of computing resources to jobs. Jobs within Hadoop are broken down into 
independent tasks that can be completed in parallel or sequentially, depending on available 
resources and priorities of other jobs currently being executed within the cluster. 

The rate at which tasks from a given job are executed is dependent on the priority of the tasks 
comprising a job and the level of congestion within the Hadoop cluster. Control of task 
scheduling is done by the Hadoop fair scheduler. The fair scheduler enables rates to be assigned 
to jobs and proportionally schedules tasks for execution based on these assigned rates. The rates 
are a relative weighing of job pools within Hadoop where each pool services a given priority 
level. Pools allow concurrent execution of jobs within the cluster. Our cluster controller adjusts 
the respective weights assigned to each pool which in turn manages the allocation of computing 
resources to each job. As more jobs at a given priority level are offered to the system, the 
proportion of resources allocated to the pool is increased, thus providing a higher level of 
computing resources to higher priority jobs and reducing the allocation to lower priority pools. 
As jobs complete, resources are redistributed among the remaining jobs for execution. Other than 
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leveraging the capabilities of the Hadoop fair-scheduler, no modifications were made to the 
Hadoop software. 

ACCORD’s client-cluster protocol includes a message set supporting prioritization, load 
balancing, and status monitoring of jobs by clients. A client that has a computing job to submit to 
the cloud initiates the process by requesting a congestion price for the job from all clusters that 
the client can reach. (Client access can be limited to some subset of otherwise reachable clusters 
via configuration.) The client evaluates the congestion price from all clusters that return a 
congestion price before a timeout.  

ACCORD has multiple functions to select cluster(s), taking account of the returned 
congestion price.  The simplest function just submits the job to the cluster with the lowest 
congestion price. The function compute_expected_utility uses congestion price, utility of the job,  
and probability of cluster failure to compute the net expected utility (NEU) of submitting a job to 
a particular cluster.  The cluster with highest NEU is selected. Use of the NEU concept to control 
replication of jobs or tasks across clusters is explored in Section V. 

The client-cluster protocol is comprised of price_query, price_response, job_submit, 
job_complete and job_status messages. A client sends price_query messages to available clusters 
and waits for price_response messages. Clusters compute the congestion price based on 
instantaneous load, resources required to finish the job and reply with a congestion price for the 
job. Clients evaluate all congestion prices and send a job_submit message to cluster(s). The 
winning cluster(s) periodically sends job_status messages to the client with estimated completion 
time. The cluster sends a job_complete message when the job is finished.  

Currently, the clusters always reply with the instantaneous congestion price regardless of the 
number of price_query messages it had received. This aspect of the client-cluster protocol can 
cause  a relatively unloaded cluster to become temporarily overloaded, because its advertised 
congestion price only reflects the load of existing jobs, while ignoring potentially numerous, 
imminent job submissions. 

One possible approach to address this issue is to make congestion prices available to all 
clients reachable from the cluster (e.g., via a publish-subscribe mechanism). The cluster will 
publish congestion prices periodically and asynchronously as they change. The clients will 
choose the cluster and submit the job based on this asynchronous price information, where the 
job submission indicates the price assumed by the client. The cluster may choose to accept the 
job if its instantaneous congestion price matches the price indicated in the job submission, or 
reject the job if the prices differ significantly. The client will then repeat the job submission 
process until one of the clusters accepts the job. 

 
IV. Testbed and Experimental Results 

Our testbed consists of clients that can be scripted to submit jobs at random times and at 
designated priority levels. The network consists of a series of routers providing configurable 
connectivity to the clusters. Each cluster runs an instance of Hadoop and the ACCORD cluster 
controller software. Impairments to the network such as limited bandwidth, packet loss, and loss 
of connectivity can be applied to the network in an automated fashion. We used three clusters of 
different computational capacities in our experiments. Each cluster functioned independently, 
including NBS and congestion price computation.  

We show our experimental results for four scenarios. Scenario 1 focuses on Nash Bargaining 
within a single cluster to demonstrate the proportional fair sharing of computing resources 
among prioritized jobs within the cluster. Scenario 2 shows how Nash Bargaining successfully 
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balances prioritized loads among the three clusters within our testbed. Scenario 3 illustrates a 
failure situation where a single micro-cluster fails. Via Nash Bargaining and congestion pricing, 
clients redistribute their loads among the remaining clusters. Scenario 4 illustrates a case where a 
cluster fails but is later restored and becomes accessible to clients. 

 
IV.A. Scenario 1 

 
Figure 3 - Single Cluster Resource Allocation via NBS. 

Figure 3 shows the fair proportional sharing of computing resources within a single cluster. 
Each of 3 clients submitted a job at a staggered interval. The jobs were long in duration and 
consisted of many Hadoop “map” tasks. Each client submitted its job at a different priority level. 
Priorities were structured such that the medium-priority job was weighted twice that of the low- 
priority job, and the high-priority job was weighted at twice that of the medium-priority job. Jobs 
were submitted from lowest priority to highest priority. 

The graph shows the percentage of resources allocated to each priority level as a function of 
time. Since the cluster was initially idle, all cluster resources were initially allocated to the 
lowest priority job. Fair proportional scheduling allows resources to be consumed by lower-
priority jobs when no other competing jobs exist. At approximately 50 seconds, clients submitted 
the 2 higher-priority jobs. As can be seen the cluster computing resources were redistributed 
among the jobs proportionally to the priorities of each job – roughly 58%, 28% and 14% of 
resources to each of the priority levels. 

A second, shorter high-priority job was submitted by a fourth client approximately 150 
seconds into the run. The system rebalanced the computing resource proportionally, based on the 
new job mix – roughly 70% to the high-priority jobs, 20% to the medium-priority job, and 10% 
to the low-priority job. Rebalancing was accomplished by reassigning the weights via the 
ACCORD cluster controller assigned to each pool to reflect the current job priority mix. 
Although the number of tasks belonging to high-priority jobs was large, the lowest-priority job 
was never starved for resources. Once the shorter high-priority job completed, the system 
rebalanced to the earlier state.  When the highest-priority job completed, the computing 
resources were rebalanced, allocating 2/3 of the computing resources to the medium-priority job 
and 1/3 to the lowest-priority job, reflecting the priority weightings originally assigned to the 
pools. Eventually all resources were allocate to the low-priority job. The system continuously 
rebalanced its resources based on the quantity and priority levels of the jobs being executed. 

Figure 4 shows the resource allocations from a sequence of short jobs each comprising a 
relatively few tasks of short duration. Each of the 3 clients submitted their sequence of jobs at an 
average of 10 second intervals at a specific priority level. The balancing of computing resources 
is similar to that shown in Figure . Since the system favored the higher priority client, the 
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computing resources allocated to this client reached a steady completion rate and was able to 
keep up with the arrival rate of the high-priority client. However, since the computing resource 
applied to the lower-priority jobs was reduced, the number of lower-priority jobs in the system 
actually increased. Due to proportional fair sharing, the ratio of lower-priority jobs to high-
priority jobs increased. The net result was that more computing resources were allocated to the 
lower-priority jobs. At 250 seconds, the high-priority client doubled its job submission rate. Due 
to Nash Bargaining, the computing resources were rebalanced proportionally providing similar 
resources to that shown in Figure . Once jobs completed, resource were rebalanced accordingly. 

 
Figure 4 - Single Cluster Resource Allocation - Short Jobs 

Figure 5 shows that NBS allocation of resources within the cluster consistently enabled 
higher-priority jobs to finish faster than lower-priority jobs concurrently executed in the cluster. 

 
Figure 5 – Scenario 1 Job Duration 

IV.B. Scenario 2 
Scenario 2 focused on multiple clusters and the use of congestion prices for cluster selection. 

In this scenario, clients solicited congestion prices from each cluster prior to job submission. The 
cluster offering the lowest congestion price was used by the client. No job replication across 
clusters was included in this scenario.  Jobs were of short duration. Clients offered jobs to the 
clusters at a 10 second inter-arrival rate. 
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Fig. 6. Congestion price across three clusters in Scenario 2. 

Figure 6  shows the results of the use of congestion price to balance loads via ACCORD’s 
distributed NBS implementation. Since congestion price directly reflects the computing load 
within a cluster, we see that congestion pricing among clusters is consistent. Service rate as 
reflected by job duration shown in Fig. 7  is also consistent among clusters. Jobs at each priority 
level achieve similar performance among clusters with that of the highest-priority jobs 
completing faster than those of lower-priority jobs. 

 
Figure 7 Cluster Job Duration for each cluster and priority level in Scenario 2. 

IV.C. Scenario 3 
Scenario 3 shows ACCORD’s adaptation and resilience in the event of a failed or 

unreachable cluster. The experiment was similar to that of Scenario 2. However, in Scenario 3, 
Cluster 1 failed after 600 seconds. Clients submitting jobs detected the failure via time out 
mechanisms built into their ACCORD price query modules. Figure 8 shows the congestion 
prices as a result of the failed cluster. Immediately, clients began to submit their jobs to the 
remaining two clusters. Outstanding jobs not acknowledged by the failed Cluster 1 were also 
resubmitted to the remaining clusters for execution. The failed cluster caused the congestion 
price to rise in the respective remaining clusters. However, the computing load rebalanced 
absorbing the added requests for computing resources to fill the computing resource gap caused 
by the failure of Cluster 1. Fair sharing of computing resources among the two remaining 
clusters continued after the failure. 
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Figure 8 Scenario 3 Congestion Price before and after failure of Cluster 1 

Figure 9 shows measurements of Scenario 3 job duration for each of the priority levels. 
Queuing delays build up due to the reduced overall computing resources as a result of the cluster 
failure. Relative times for job durations remain consistent and those of high-priority jobs 
complete before those of lower-priority jobs. 

 
Figure 9 – Scenario 3 Job Duration 

IV.D. Scenario 4 
Figure 10 shows a cluster recovery scenario. A cluster itself might not fail, but can become 

unreachable due to sustained network impairment. Clients monitor the status of submitted jobs 
via the client-cluster protocol described in Section III, and conclude that a cluster and associated 
jobs have failed after a configurable interval in which no status messages have been received. 
Clients continue to submit price queries to all known clusters, including those that may be 
temporarily unreachable. Figure 10 illustrates a case where, at 300 seconds, Cluster 1 became 
unreachable via the client-cluster protocol, at which point clients submitted their job requests to 
the remaining Clusters 2 and 3. At 500 seconds, reachability to Cluster 1 was restored. Since no 
jobs existed in Cluster 1 at that time, its congestion price was lower than those of the other 
clusters, and clients begin to direct new job submissions to that cluster. We see that after a 
relatively short interval, the total load across all clusters again rebalanced. 

 

 
Figure 10 – Re-balancing after cluster failure and restoration. 
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V. Summary and Further Work 
ACCORD provides a means for efficiently and optimally balancing prioritized loads across 

distributed cloud resources, without the need for centralized, cloud-wide control. The 
architecture is particularly well-suited to clouds with mobile, wireless clients and resources, but 
is applicable to any cloud deployment with geographically dispersed cloud capacity, unreliable 
network access to the cloud, and/or intermittent availability of cloud components. We have 
shown that a distributed implementation of the NBS provides rapid, adaptive response to attacks 
or failures within the cloud, with the response maintaining prioritized access to those resources 
that remain reachable during and after the attack. 

Numerous extensions to this initial ACCORD implementation are underway.  The first 
extension focuses on optimal replication of jobs or tasks across clusters. Although the NBS 
approach in Section II provides an expected utility for a given job instance, and reflects the cost 
of resources for that instance, it does not take into account the expected cost of failure, or the 
cost of resources that might be invested to reduce it by running multiple instances of the job in 
parallel. The idea of adding job or task redundancy within datacenters to overcome isolated 
cluster component failures has been well explored in current art [5]. However, ACCORD focuses 
on a different failure mode – complete loss of one or more clusters – that, in the envisioned 
tactical cloud, may be more prevalent than failure of internal cluster components, due to a variety 
of failure and attack modes described earlier. Job or task replication within a cluster cannot 
address this failure mode. Instead, given the probabilities that job instances will fail, ACCORD 
clients will maximize NEU by estimating the marginal gain in NEU that would result in running 
redundant job instances at different clusters, whenever multiple clusters are reachable. This NEU 
maximization trades the reduction in expected cost of failure against the added cost of resources 
to run the job replica(s). 

A second extension concerns maximization of deadline-dependent utility (DDU). Due to the 
proportional fairness that is inherent in the NBS formulation of Section II, cloud resource 
allocations that are unaware of job deadlines may not guarantee cloud resources that are 
sufficient to meet those deadlines (see also [6,7]) As our next step, we plan to investigate the 
maximization of DDU under the NBS framework in Section II, which aims to assign cloud 
resources based on not only how much resources are requested by job instances, but also when 
the resources need to be delivered to ensure mission effectiveness. The DDU maximization shall 
apportion cloud resources among various missions while offering completion guarantee to time-
critical and high-priority jobs.  
 
Acknowledgment 
 
This work was supported by Contract FA8750-11-C-0254 with the US Defense Advanced 
Research Projects Agency and the Air Force Research Laboratory. 
 
References 
 
  
[1] S. Kandula et al., “The nature of datacenter traffic: measurement and analysis,” Proc. 
IMC’09, Chicago, Nov. 4-6.  
[2] J. Nash, “The Bargaining Problem”, Econometrica, Vol. 18, No. 2, April 1950, pp. 155-162. 
[3] J. Nash, “Two-person Cooperative Games”, Econometrica, Vol. 21, No. 1, April 1953, pp. 



11 
 

128-140. 
[4]  Tian Lan, David Kao, Mung Chiang, and Ashutosh Sabharwal. “An Axiomatic Theory of 
Fairness for Resource Allocation”, In proceedings of IEEE INFOCOM, March 2010. 
[5] VMware, “Protecting Mission-Critical Workloads with VMware Fault Tolerance,” Technical 
Report, available online at www.vmware.com/files/pdf/resources/ft_virtualization_wp.pdf, 
February 2009. 
[6] P. Patel, A. Ranabahu, and A. Sheth, “Service Level Agreement in Cloud Computing, in 
Proceedings of the Workshop on Best Practices in Cloud Computing, 2009. 
[7] Wei Wang, Peng Zhang, Tian Lan, and Vaneet Aggarwal. "Datacenter Net Profit 
Optimization with Individual Job Deadlines", In proceedings of CISS 2012, March 2012. 
 
 
 
 


