
SAP: Similarity-Aware Partitioning for Efficient
Cloud Storage

Bharath Balasubramanian1, Tian Lan2, and Mung Chiang1
1Princeton University, NJ, USA, 2George Washington University, DC, USA

{bharathb, chiangm}@princeton.edu, tlan@gwu.edu

Abstract—Given a set of files that show a certain degree
of similarity, we consider a novel problem of deduplicating
them (eliminating redundant chunks) across a set of distributed
servers in a manner that is: (i) space-efficient: the total space
needed to deduplicate and store the files is minimized and, (ii)
access-efficient: each file can be accessed by communicating with
a bounded number of servers, thereby minimizing network-
access times in congested data center networks. A space-
optimal solution in which we first deduplicate all the files and
then distribute them across the servers (referred to as chunk-
distribution), may require communication with many servers to
access each file. On the other hand, an access-efficient solution
in which we randomly partition the files cross the servers, and
then store their unique chunks on each server may not exploit
the similarities across files to reduce the space overhead. In
this paper, we first show that finding an access-efficient, space
optimal solution is an NP-Hard problem. Following this, we
present the similarity-aware-partitioning (SAP) algorithms that
find access-efficient solutions within polynomial time complexity
and guarantees bounded space overhead for arbitrary files.
Our experimental verification on files from Dropbox and CNN
confirm that the SAP technique is much more space-efficient
than random partitioning, while maintaining compression ratio
close to the chunk-distribution solution.

I. INTRODUCTION

Data volumes are increasing at an unprecedented rate due
to the advent of social networks such as Facebook, on-
demand cloud-based video services like Netflix, and file shar-
ing applications such as Dropbox. These cloud-based services
must satisfy two important concerns (among many others):
(i) They should be access-efficient in terms of minimizing
network accesses to read or write to the files in the system.
This is a crucial factor with increasing network congestion
in the underlying data center networks [14], [4]. (ii) They
should be space-efficient to manage the high volumes of
data [11]. Given a set of files that show a certain degree of
similarity or redundancy, we consider the problem of storing
them across a set of distributed servers and present solutions
that are both access-efficient and space-efficient.

Space efficiency is often achieved by the process of
deduplication [19], [6], [17], [2], [9], which splits all the files
in the system into chunks and maintains only a unique copy
of each chunk. Deduplication operates on server file systems
and typically achieves 30% - 50% compression in various
applications. In Fig. 1(i), we illustrate a simplified version of

deduplication. To store the files A1, . . . , A5, without dedupli-
cation, we require ten chunks (assuming chunk size of 3 bits).
However, if we eliminate duplicate chunks, we need to store
only six chunks, B1 . . . B6. Typically, most deduplication
solutions have focused on reducing the space-overhead within
a single server [7], [21], [26]. These techniques do not
consider the problem of distributed deduplication due the
cost of network accesses and file maintenance in a distributed
solution. However, files with a high degree of similarity may
be deduplicated on different servers. In this paper, we show
that it is possible to achieve both space and access-efficiency
in a distributed solution.

Consider the example in Fig. 1. Given a set of distributed
servers, each of capacity 9 bits, how can we store the chunks
of the files in A1 . . . A5 across the servers? We illustrate three
different approaches to this problem. In the first approach, as
shown in Fig. 1(ii), we first deduplicate the files in a central
location and distribute the unique file chunks B1, . . . , B6

sequentially across each server. A chunk-location mapping
can be stored at any of the servers to allow file access.
This particular deduplication technique is space-optimal and
requires only two servers. However, this approach suffers
from several drawbacks. First, to access file A3, we need
to retrieve its chunks from two servers across the network.
When there are many servers, in the worst case, we may
need to retrieve chunks from a prohibitively large number
of servers across the network. With network congestion
being a significant concern, this is not an access-efficient
solution in terms of either network-access times or message
overhead. Second, there is considerable engineering overhead
associated with reconstructing files from chunks obtained
from multiple servers and is hence rarely used, especially
when the data needs to be accessed frequently. Finally, since
all the files need to be deduplicated first, the centralized
server performing deduplication needs to have a large amount
of physical memory to enable efficient deduplication.

In Fig. 1(iii), we randomly partition the set of files across
the servers and then deduplicate them to maintain unique
chunks. Due to the server space constraints, while A1 and
A2 “fit” on the first server, only A3 with three chunks each
of three bits can reside on the second server. This forces the
need for a third server for A4 and A5. This solution is access-
efficient, since to access any file we need to communicate
with only one server, but it is not as space-efficient as the978-1-4799-3360-0/14/$31.00 c©2014 IEEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

U.S. Government work not protected by U.S. copyright 592

2

(ii)
Chunk Distribution

Space Optimal
NOT Access Efficient

Server1 Server 2

Server1 Server 2 Server 3

(iii)
Random Partitioning:

Access Efficient
NOT Space Efficient

Server1 Server 2

(iv)
Similarity Aware

Partitioning
Access Efficient

AND Space Efficient

(ii)
Chunk Distribution

Space Optimal
NOT Access Efficient

Server1 Server 2 Server1 Server 2 Server 3

(iii)
Random Partitioning:

Access Efficient
NOT Space Efficient

Server1 Server 2

(iv)
Similarity Aware

Partitioning
Access Efficient

AND Space Efficient

(i) Deduplication

Fig. 1. Space and Access-Efficient SAP

|

(i)

diffGraph({ .A })
Edge weights not

shown due to space constraint.

(ii)
A minimum
branching

|

(i)
diffGraph({ .A })
Edge weights not

shown due to space constraint.

(ii)
A minimum
branching

Fig. 2. Delta-Encoding for File Similarity

first solution.
We present a similarity-aware-partitioning (SAP) ap-

proach that is both access- and space-efficient in Fig. 1(iv).
The key insight, in this illustrative example, was to iden-
tify that A1 and A3 have similar chunks, and so do A2

and A4. Hence by partitioning the files as {A1, A3} and
{A2, A4, A5}, and then deduplicating them on each server,
we require only two servers. Clearly, the chunks of any one
file are contained locally on each server. Unlike the solution
in Fig. 1(ii), the load of performing deduplication is shared
by the servers (this is true even for the random partitioning
solution). In Fig. 1, the SAP approach and chunk-distribution
both require the same number of servers. In general, this may
not be the case and we may have additional redundancy in
the SAP approach. However, in the process, we reduce the
network-overhead for file access.

Our main goal is to minimize the space required by the
access-efficient SAP solution. For this small example, we are
able to determine the optimal partition simply by inspection.
For a general set of files it is a very computationally
expensive task to compute all possible partitions, and then
identify the ones which capture file similarity better. In this
paper, we present polynomial time algorithms to partition the
given set of files and store them across the servers in a space
and access-efficient manner.

In the following paragraphs, we summarize the contribu-
tions in this paper.

Definition of (k,C)-distribution: First, we need to define
the distributed storage problem in a way that captures the
notion of access-efficiency. Consider a set of k servers each
of capacity C and a set of files A = {A1, . . . , An}, where
the size of any file is less than C. Informally, a (k,C)-
distribution of A is a set of k elements D = {D1, . . . , Dk},
such that: (i) Di contains chunks belonging to the files in A,
(ii) the chunks of any Ai ∈ A is contained in exactly one of
the Dis in D and, (iii) the size needed to represent any Di is
less than or equal to C. The solution in Fig. 1(iv) is (2, 9)-
distribution of A = {A1 . . . A5} with D1 = {B1, B2, B4}

and D2 = {B3, B5, B6}. Similarly, the solution in 1(iii) is a
(3, 9)-distribution of A. However, the solution in figure 1(ii)
is not a (k, C)-distribution of A since the chunks belonging
to A3 are across servers 1 and 2.

We define access-efficiency based on communication with
exactly one server, mainly to understand the performance
trade-offs of a solution that completely minimizes network
accesses. In future work, we will extend this to the case where
we consider communication with multiple servers. This will
enable us to quantify the trade-off between the speed due
to the concurrent retrieval of files against the overhead of
network accesses. In the technical report [3], we show that
the problem of generating a space-optimal (k,C)-distribution
for a given set of files is NP-Hard. We address this problem,
using the delta-encoding function, to present polynomial time
algorithms that generate space-efficient solutions.

Delta-Encoding Approximation for Deduplication:
Delta-encoding is commonly used to find the differences
among two files [8], [5], [15]. There are many popular tools
such as the UNIX diff, vcdiff and gdiff to perform this
function. In [20], the authors present a technique to compress
a set of files A using just the delta-encoding function between
each pair of files. Their key intuition is to construct a directed
graph, which we denote dGraph(A), in which each node
corresponds to one of the files in A and the weight of an edge
Ai → Aj is the size of Aj delta-encoded over Ai, i.e., the
amount of information needed to represent Aj given Ai. They
show that the minimum directed spanning tree (branching) of
such a graph represents the space-optimal way of storing a
set of files, given just the delta-encoding function.

In this paper, we present an analytic framework to com-
pare: (i) total size of files in A compressed using deduplica-
tion, denoted SΔ(A) and, (ii) total size of files compressed
using delta-encoding, denoted Sδ(A). We show the surprising
result that this compression ratio is bounded tightly as
Sδ(A)
SΔ(A) ≤ Γ(ρ), where ρ is the maximum chunk popularity,

i.e., the maximum number of unique files in A any chunk
appears in, and Γ(ρ) is a quadratic function whose value

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

593

3

TABLE I
NOTATION USED IN THE PAPER

A Given set of files n Number of files
k Number of servers C Size or capacity of each server
Δ Deduplication function δ Delta-Encoding function
P Bit-size function dGraph Delta-encoding based graph
s Maximum file size ρ Maximum chunk popularity

is bounded by ρ. Since for practical data sets, ρ is a small

constant, the compression-ratio
Sδ(A)
SΔ(A) is bounded, even for

arbitrary files. Based on this intuition, we present efficient
algorithms to generate the (k,C)-distribution for a set of
files.

SAP Algorithms for (k, C)-distribution: We present
the efficient, bounded, similarity-aware-partitioning (SAP)
algorithms to generate a (k,C)-distribution for a given set
of files A. (i) For a fixed number of servers k, we balance
storage-load among the servers. Let the space required by the
optimal deduplication-based (k, C)-distribution be Sopt. Let
the maximum file size be denoted by s. The SAP algorithm
has time complexity O(n2s + k) and generates a (k,C)-
distribution that requires space at most Γ(ρ)Sopt + (k− 1)s.
(ii) For fixed server capacity C, we minimize the number
of servers needed. The SAP algorithm has time complexity

O(n
2s log(C) log(n)

C) and generates a (k, C)-distribution that

requires at most 1 +
Γ(ρ)Nopt

[1−log2(
C
s)/(C

s)]
servers, where Nopt

is the servers required by the optimal deduplication-based
(k,C)-distribution.

Implementation and Experiments: We performed basic
experiments on user files chosen from Dropbox and random
web files downloaded from CNN. For the Dropbox files, on
average, our SAP technique achieves 22% compression (over
the uncompressed set of files), while random partitioning
(based on Fig. 1(iii)) and chunk-distribution (deduplication
based on Fig. 1(ii)) achieve 15.0% and 23.3% compression
respectively. For the CNN files, our technique on average
achieves 28% compression while random partitioning and
chunk-distribution achieve 15% and 30.1% compression, re-
spectively. These results confirm that the SAP algorithms are
much more space-efficient than random partitioning, while
maintaining compression ratio close to the access-inefficient
chunk-distribution solution.

In the following section, we describe the system model
and assumptions, followed by the problem definition. In
section III, we describe the delta-encoding based technique
for capturing file similarities. In section IV, we present the
SAP algorithms. The results of our experiments are presented
in section V. Finally, we describe the related work and end
with the conclusions and future work.

II. SYSTEM MODEL AND DEFINITIONS

In this section, we first describe the assumptions on
our servers and the nature of file accesses. Following this,
we describe the two operations that we use to measure

the similarity among these files: deduplication and delta-
encoding. Finally, we present the formal definition of a
(k, C)-distribution for a given set of files. The notation used
in this paper is summarized in Table I.

We are given files A = {A1, . . . , An} to store on a set
of distributed servers with no shared state or memory. Each
Ai can be broken down into fixed-size chunks. The servers
in our system maintain a subset of these fixed size chunks.
We consider a fault-free system in this paper. Dealing with
faults in the storage servers is an important avenue of future
work. Accesses to the files, is performed by an external
client which knows both the location and order of the chunks
for each file. When a server receives a read request for
a file Ai, it replies to the client with all the information
it has corresponding to Ai. Writes are more complicated
since it may change the nature of chunk references and
requires consistency management over distributed servers.
While propagating updates in deduplicated or delta encoded
systems is a well studied topic [2], [19], we focus on an
offline algorithm for the partitioning and storage of the files.
Addition and deletion of files is part of our future work.

Deduplication: Given a set of files A, deduplication
breaks each file Ai ∈ A into fixed-size q-bit chunks (with
padding if necessary), and removes all redundant chunks
through similarity check. Let F be a sample space, that
is the set of all possible file chunks of q-bits. Each file
Ai can be represented as an ordered tuple of q-bit chunks
belonging to F . For a set of files A, and a value of q, the
deduplicated representation of A, denoted by Δ(A) ∈ F ,
is the set of unique file chunks among all the files in A.
In Fig. 1(i), q = 3, Δ(A) = {000, 110, 100, 010, 011, 111}
while Δ({A4}) = {011, 100}. The amount of space needed
to represent any subset F ⊆ F is called the bit-size of F and
is denoted by P (F). For example, P (Δ(A)) = 18.

Delta-Encoding: Given any two files Ai and Aj , the
delta-encoding of Aj over Ai, denoted δ(Aj |Ai), is defined
as, δ(Aj |Ai) = Δ({Aj}) − Δ({Ai}) (in terms of set
subtraction). It represents the amount of information needed
to represent Aj given that Ai is available. We refer to Ai

as the base file and Aj as the target file. In Fig. 1(i),
δ(A3|A1) ={110,010,000} - {000, 110} = {010}. Also,
the bit-size of δ(A3|A1), denoted by P (δ(A3|A1)) = 3.
Note the following assumptions, inherent in our definitions
of deduplication and delta-encoding:

• Deduplication in practical systems is much more com-
plex to address concerns such as uneven file lengths and

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

594

4

Rabin-fingerprinting for shift resistant chunks [19]. Sim-
ilarly, delta-encoding can be performed based on longest
common string searches with different techniques for
different file formats [23], [15]. Our simplified def-
initions conceptually represent both these operations
and provide a common framework to compare their
performance. For ease of comparison, we assume that
the chunk size chosen for all the functions in the paper
are identical.

• Given Δ(A), to regenerate any file Ai ∈ A, we need
the chunks in Δ(A) as well as meta information that
specifies which chunks belong to Ai, as well as their
exact order in Ai. We assume that the chunk size q
relative to the file size is large enough so that the size
occupied by the meta information is negligible. There-
fore, Δ(A) represents a lower bound of the minimum
information needed to construct all files in A using
practical deduplication algorithms.

• We do not consider chains of delta-encoding, e.g.,
δ(Ai|Aj |Al). Given a set of files, we assume that the
delta-encoding function can eliminate identical chunks
only among pairs of files, while the deduplication func-
tion can identify identical chunks across all the files
in the system. Even without assuming chains of delta-
encoding, we show that our solution is space-efficient.

We now present the definition of the main problem
addressed in this paper. The main idea behind
this definition is to describe the distributed storage
problem in a way that captures access-efficiency.

Definition 1 ((k, C)-distribution): Given a set of files
A = {A1, . . . , An} and a set of k servers each of capacity
C, a (k, C)-distribution of A is a set D = {D1, . . . , Dk},
such that:

• Each Dj is a multi-set of Δ(A) such that P (Dj) ≤ C.
• The unique chunks of each file Ai is a subset of some

Dj ∈ D, i.e., Δ(Ai) ⊆ Dj . In other words, each file
can be locally regenerated from one of the elements in
D.

A (k, C)-distribution D of A is access-efficient by defini-
tion, since we can simply place each Di ∈ D on a different
server. This ensures that to regenerate any file in A, we need
information from only one server, thereby minimizing: (i)
network access times, (ii) number of network messages, and
(iii) consistency management across the distributed servers.
The solution in Fig.1 (iv) with D1 = Δ({A1, A3}) and
D2 = Δ({A2, A4, A5}) is a (2, 9)-distribution of A =
{A1, . . . , A5}. On the other hand, the solution in Fig.1(ii) is
not a (k, C)-distribution since the chunks of A3 are spread
across the two servers.

The main goal of this paper is to generate a space-efficient
(k,C)-distribution for the given set of files in A. This
is a hard problem, mainly due to the exponentially many
partitions of A that we need to consider. In the following

section, we present the approach of using the delta-encoding
function to capture file similarities. This forms the basis of
our polynomial time, bounded heuristics in section IV. Due to
space constraints, we maintain all the proofs in our technical
report [3].

III. FILE SIMILARITIES USING DELTA-ENCODING

Given a set of n files, A = {A1 . . . An}, in [20], the
authors present a technique to compress a set of files using
just the delta-encoding function between all pairs of files in
A. While using a similar technique, we present a theoretical
framework to compare: (i) the space occupied by a set
of files compressed using just the delta-encoding function,
denoted by Sδ(A) (ii) the space occupied by a deduplication-
based solution, denoted by SΔ(A). Our analysis shows the
surprising result that Sδ

SΔ
is bounded, even for arbitrary files.

It provides the key result that we leverage to quantify the
performance of our SAP algorithms.

We define dGraph(A) as a directed weighted graph with
n nodes, each corresponding to one of the files in A. The
weight of the directed edge (Ai → Aj), j �= 0, denoted
by w(i, j), is calculated as P (δ(Aj |Ai)). The edge-weight
captures file-similarity using delta-encoding: if the weight
of any edge is small, then the files are similar. Futher, we
add an additional node labeled Aφ (the null node) and edges
(Aφ → Ai) with weights P (Δ({Ai})) to allow the delta-
encoding of single files. In Fig. 2(i), we show dGraph(A) for
A = {A1 . . . A5} in Fig. 1(i). Note that w(1, 3) = 3 since
δ(A3|A1) = {010} (very similar), whereas w(1, 4) = 6 since
δ(A4|A1) = {011, 100} (different).

Given a graph G = (V,E), a directed spanning tree (DST)
or branching of G rooted at r, is a subgraph T of G such
that the undirected version of T is a tree and T contains a
directed path from r to any other vertex in V . The cost
w(T) of a directed spanning tree T is the sum of the costs
of its edges. A minimum branching rooted at r is a directed
spanning tree rooted at r of minimum cost.

In the graph dGraph(A), the minimum branching repre-
sents a tree contained in the graph, in which very similar files
are parents (or children) of each other. Consider the minimum
branching shown in Fig. 2(ii). We denoted the null node
Aφ as ‘0’. The most space-efficient way of maintaining the
files in A, using just the pair-wise delta-encoding function,
is to maintain the files: Aφ, δ(A5|Aφ), δ(A2|A5), δ(A4|A2),
δ(A3|A4) and δ(A1|A3). Given these files, we can regenerate
all the files in A. For example, assume that we need to
retrieve A4. Since δ(A5|Aφ) = Δ(A5), we can first obtain
A5; then A2 using A5 and δ(A2|A5) and then A4 using
A2 and δ(A4|A2). We state this formally in the following
observation.

Observation 1: Given a set of files, A = {A1, . . . , An},
consider a minimum weight branching of dGraph(A) defined
by the n edges: {Ai1 → Aj1 , Ai2 → Aj2 , . . . Ain → Ajn},
for Ai1 , . . . , Ain , Aj1 , . . . , Ajn ∈ A∪{Aφ}. The most space-
optimal way of maintaining the files in A, using just the pair-

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

595

5

wise delta-encoding function, is to maintain Δ({Ai1}) (the
root of the branching) followed by the chain of delta-encoded
files, δ(Ajt |Ait) for all t = 1, . . . , n. Here, Ai1 is called the
reference file.

A. Delta-Encoding: An approximation for Deduplication
While the delta-encoding function can at best capture

pair-wise similarity among the files in A, deduplication
can identify and remove similar chunks across all the files
in A. Hence, one would expect the deduplication function
to achieve much more compression across a set of files
as compared to the delta-encoding function. However, in
Theorem 1, which is the main result of this section, we derive
a uniformly-tight upper bound of the compression ratio and
then show that the bound does not increase on the order of
the number of files, n. To this end, we first provide an upper
bound of Sδ(A) as follows.

Lemma 1: Consider a set of n arbitrary files A =
{A1 . . . An}. Let the size of the optimal delta-encoding based
solution to maintain the set of files in A be denoted Sδ(A).
We have

Sδ(A) ≤
n∑

i=1

P (Δ({Ai}))− 2

n

∑
i<j

P (Δ(Ai) ∩Δ(Aj)) (1)

where Ai ∩ Aj denotes the set of common chunks between
files Ai and Aj .

We prove Lemma 1, in the technical report [3], by replac-
ing the minimum weight branching (which achieves Sδ(A))
with an average over all possible branching of dGraph(A).
The result, extending Bonferroni-type inequalities [10] in
probability theory, validates our intuition that the optimal
delta-encoding based solution can effectively reduce pair-
wise duplications P (Δ(Ai) ∩Δ(Aj)).

Following this, we derive an asymptotically tight bound

for
Sδ(A)
SΔ(A) using a new technique which we refer to as chunk

popularity analysis. We define the popularity of a chunk
belonging to the files in A, to be the number of unique files
of A it appears in. For example, in Fig. 1, chunk B1 has a
popularity of two, since it appears in files A1 and A3. To state
our bound in a general form, we define a chunk frequency
function fA(p), which is the fraction of chunks in A that
have a popularity of p. An example of fA(p) for randomly
selected CNN and Dropbox files is discussed in Fig. 5 of
Section V.

Theorem 1: Let SΔ(A) be the size of the optimal
deduplication-based solution to store the files in A. For
any n arbitrary files A = {A1 . . . An}, we can bound the
compression ratio of the delta-encoding based solution by,

1 ≤ Sδ(A)

SΔ(A)
≤

n∑
p=1

fA(p)
[
p− p2 − p

n

]
(2)

The upper bound is uniformly tight since there exist a set of
files whose compression ratio achieves exactly the bounds.

In the proof, which is provided in the technical report
[3], we separately analyze the contributions of chunks with
different popularities and aggregate them to derive the bound
in (2). It is also shown that the upper bound is tight in a
symmetric worst case where every subset of p files share
exactly one common chunk, a condition rarely possible for
any realistic dataset. When chunk popularities are bounded
by a constant, which we denote ρ, it is easy to show that the
upper bound in Theorem 1 reduces to a constant.

Corollary 1: If fA(p) = 0 for all p ≥ ρ, then we can
uniformly bound the compression ratio of the delta-coding
based solution by,

Sδ(A)

SΔ(A)
≤ ρ− ρ2 − ρ

n
� Γ(ρ). (3)

Corollary 1 provides a constant upper bound of compres-
sion ratio for any files that have maximum chunk popularity
ρ. For most practical data sets ρ is a constant, as illustrated
by our graph in Fig. 5. In fact, for the data sets from CNN
and Dropbox, ρ is as small as 8. Henceforth, in this paper, we
assume that the maximum chunk popularity is a constant and

use the bound,
Sδ(A)
SΔ(A) ≤ Γ(ρ). It is easy to see that even in the

worst case, Γ(ρ) outperforms an oblivious solution that stores
and compress each of the n files independently. The bound
achieved in this section provides the theoretical foundation
for analyzing the performance of our SAP algorithms.

IV. SAP ALGORITHMS FOR (k, C)-DISTRIBUTION

In this section, we present polynomial time algorithms
(Fig. 3) to generate a (k,C)-distribution for a given set of
files and show that our algorithms have a bounded optimality
gap. In the technical report [3], we prove that this problem
is NP-Hard.

A. Minimize Total Space Occupied

We first describe the SAP-Space algorithms for gener-
ating a (k, C)-distribution D of A for some C > 0, given
a fixed number of servers k. In this algorithm, we generate
a minimum branching for the given set of files, and then
partition the branching into k sub-trees by removing any k−1
edges from this branching. Based on how we represent the
files of the sub-trees in step 2 (or step 2’) we consider two
algorithms: (i) SAP-Space-Delta which maintains the
files in each server using one reference file and a sequence
of delta-encoded files and, (ii) SAP-Space-Dedup that
deduplicates all the files belonging to that sub-tree. While
the latter algorithm can be computationally more expensive,
it can also be more space efficient since we use deduplication.
Since the minimum branching keeps “near-similar” files in
consecutive positions on the tree, the files in each of the
servers exhibit good similarity.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

596

6

Algorithm SAP-Space
Input: Set of files A = {A1, A2, . . . An},
no. of servers k;
Output: (k, C)-distribution of A for some C > 0;
//Step 1: Identify “similar” files
Construct dGraph(A) ;
Find a minimum branching Topt of dGraph(A) ;
Set of trees, T ← φ;
D ← φ;
T ← Remove k − 1 edges randomly from Topt

to create k trees;

// Step 2: Store files in delta-encoded form
// SAP-Space-Delta
for each tree M in T do

Let the tree M be At1 → At2 . . . → At|M|;
//root as reference and chain of deltas
D ← D ∪ {Δ(At1),∪i=|M|

i=2 δ(Ati|parent(Ati))};

// Alternate Step 2’: Store files in dedup form
// SAP-Space-Dedup
for each tree M in T do

Let the tree M be At1 → At2 . . . → At|M|;
D ← D ∪ {Δ({At2, At2, . . . , At|M|})};

return D;(k, C)-distribution of A;

Algorithm SAP-Servers
Input: Set of files A = {A1, A2, . . . An},

server capacity C;

Output: (k,C)-distribution of A minimizing k;

//Step 1: Identify “similar” files

Construct dGraph(A) ;

Find a minimum branching Topt of dGraph(A) ;

Set of trees, T ← φ;

D ← φ;

while (Topt is not empty) do
Tree Tc=size-partition(Topt, C);
Add Tc to T ;

Remove Tc from Topt: Topt ← Topt − Tc;

/* step 2 and 2’ are identical to SAP-Space */

return D; //(k,C)-distribution of A;

—————————————————————————————

Subroutine size-partition
Input: Tree T , remaining deficit d;

Output: Largest tree Tc of size ≤ d;

// Step 0: Terminating conditions

if (T is a single node)

return Tc = T if P (T) ≤ d or Tc = {·} otherwise;

// Step 1: Find a candidate sub-tree

Find a sub-tree Tr (root r) in T such that:

P (Tr) ≥ d− P (r) and for each child tree Lm

with root rm, P (Lm) < d− P (rm);
Deficit d ← d− P (r);//amount to be removed

// Step 2: Select child trees from Tr

Sort Lms in descending order of P (Lm): [L1, L2, . . .];
Initialize m = 0;

while (
∑m

j=1 P (Lm) < d) do

m = m+ 1 ;

L̂m=size-partition(Lm, d−∑m−1
j=1 P (Lj));

//Step 3: Add r as root to all child trees and return

return Tc = (r → L̂m) ∪ (r → L1) . . . ∪ (r → Lm−1);

Fig. 3. SAP Algorithm for (k,C)-distribution

For example, consider the files in Fig. 1 with k = 2. To
divide these files among two servers, we construct their min-
imum branching (Fig. 2) and remove the edge A4 → A3 to
create two sub-trees. For SAP-Space-Delta, we generate
the following (2, C)-distribution D = {D1, D2} (for some
C > 0):

D1 = {Δ({A5}), δ(A2|A5), δ(A4|A2)}
D2 = {Δ({A3}), δ(A1|A3)}

For SAP-Space-Dedup we generate:

D1 = {Δ({A5, A2, A4}), D2 = {Δ({A3, A1})
The files in D1 and D2 are maintained on two in-

dependent servers. Note that, in either of these so-
lutions, all files can be retrieved locally at each
server, thereby ensuring access-efficiency. In the fol-
lowing theorem, we present bounds on the space-
efficiency of the solution generated by our algorithms.

Theorem 2: Consider a set of files A = {A1 . . . An},

whose sizes are bounded by s. Let the amount of
space required by the optimal deduplication-based (k, C)-
distribution be Sopt. Let the space required by the (k, C)-
distribution generated by the SAP-Servers-Delta and
SAP-Servers-Dedup algorithms be SSAP-Delta and
SSAP-Dedup respectively. For arbitrary files, we have,

• SSAP-Dedup ≤ SSAP-Delta ≤ Γ(ρ)Sopt + (k − 1)s
• Both SAP-Space algorithms have time complexity

O(n2s+ k).

Remark To partition our minimum branching we can use
other algorithms in the literature to achieve different trade-
offs [13], [16]. For example, we can use the technique in
[25] that bounds the ratio of edges among any two sub-trees
to at most three. This can be used for better load-balancing
among the servers.

B. Minimize Number of Servers
In this section, we describe the SAP-Servers algorithm

that generates a (k, C)-distribution of A for a fixed server
capacity C. The only difference between this algorithm and

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

597

7

the SAP-Space algorithms is in the way we partition
the tree to satisfy server capacity constraints. We use the
space-partition routine to split the minimum branch-
ing of the files into k subtrees, each of which has size
as close to C as possible. Similar to step 2 (or 2’) in
SAP-Space, we have algorithms SAP-Servers-Delta
and SAP-Servers-Dedup based on how the partitioned
subtrees are stored.

We now focus on the space-partition routine. The
bit-size of a tree T with edges, {Ai1 → Aj1 , Ai2 → Aj2 , . . .}
is defined as, P (T) = P (δ(Aj1 |Ai1))+P (δ(Aj2 |Ai2))+
The goal of the partitioning routine is to create a subtree
Tc as large as possible while ensuring that the size of the
tree, i.e., P (Tc) plus the cost of maintaining its root as a
reference file, is no more than the remaining deficit d (i.e.,
remaining server capacity). In other words, Tc along with its
reference file can be maintained on a single server. In Step
1, we identify a subtree of the minimum branching that has
size greater than d, but with child trees each of size less than
the d. We decrease the deficit d to ensure that the sub-tree
we partiton “out” can accomodate a reference file as root. In
step 2, we try to pack in as many child trees as we can within
the space of d. If the total size goes beyond d after adding
child tree m, we keep child trees L1, . . . , Lm−1 and fill in
the remaining space by further partitioning child tree, Lm

to generate L̂m. This is achieved by recursively calling the
space-partition routine with T = Lm and a renewed
deficit. The algorithm terminates once T becomes a single
node that cannot be further partitioned. Finally, we return the
child trees selected along with their root edge as Tc.

Consider the minimum branching shown in Fig. 2 with
C = 9. The only tree Tr which acts as a candidate tree is
the one with r = A3. Clearly, P (Tr) + P (r) = 9 = C
and its only child tree has size less than C − P (A1) = 9−
P (A1) = 3. Hence, A3 → A1 with A3 as the reference
file is returned as Tc for C = 9 and placed on one server.
The remaining tree is placed on the other server. The bound
on the number of servers required by the SAP-Servers
algorithm is crucially dependent on the number of reference
files added by the algorithm. In the previous section, this
was trivially calculated as k − 1, since we remove at-most
k − 1 edges. In this section, this is more involved and we
show in the following lemma that it is at most logarithmic
in C/s. The key insight is that our space-partition
routine recursively cuts down the deficit d (initially d = C)
by at least 1/2 each time and returns once Tc becomes a
single node.

Lemma 2: Given a set of files A, the number of reference
files added by the SAP-Servers-Delta algorithm is at
most g(A) ≤ log2(C/s).

Finally, we bound the number of servers required by
SAP-Servers algorithms and prove their polynomial time
complexity.

Theorem 3: Let the number of servers required by the

optimal deduplication-based (k, C)-distribution be Nopt

and the number of servers required by the (k, C)-
distribution generated by the SAP-Servers-Delta and
SAP-Servers-Dedup algorithms be NSAP-Delta and
NSAP-Dedup respectively. For arbitrary files, we have,

• NSAP-Dedup = NSAP-Delta ≤ 1 +
Γ(ρ)Nopt

[1−log2(
C
s)/(C

s)]
• Both SAP-Servers algorithms have time complexity

O(n
2s log(C) log(n)

C).

As discussed in Corollary 1, Γ(ρ), is a quadratic function
bound by the maximum chunk popularity. Since its value is
small for most practical cases, our SAP algorithms provide
bounded space guarantees.

V. EXPERIMENTAL RESULTS

We implemented our SAP-Space algorithms (for fixed
number of servers k) in Java 1.6 and compared it with three
other solutions: (i) Chunk-distribution, in which we identify
the unique chunks in the given set of files A and spread
them across the k servers. This solution is space-efficient
but expensive in terms of the network accesses for each file.
(ii) Random partitioning, in which we randomly partition
the set of files in A across the k servers and then apply
the deduplication function on each server. We performed
basic experiments on two sets of files: (a) random web files
downloaded from CNN (120 files) with file sizes varying
from 22 KB to 182 KB and, (b) files belonging to two users in
Dropbox (140 files) that contains sets of evolving file versions
with file sizes varying from 13 KB to 132 KB.

For both these applications, we kept the chunk-size con-
stant at 50 bytes and varied the number of files (n) in
increments of 3 and measured the % compression achieved
by each of the solutions w.r.t to the total size of the un-
compressed files in A. For each value of n, k was chosen
to be max(2, n/20) to make sure the number of servers
increases slowly with the number of files. The results of our
experiments are shown in Fig. 4.

For CNN files, on average, SAP-Space-Dedup achieves
28% compression, while SAP-Space-Delta achieves 25
% compression. Random partitioning and chunk-distribution
achieve 15% and 30.1% compression respectively. For the
Dropbox files, both SAP algorithms perform almost iden-
tically, indicating that for this example there is not much
advantage of deduplicating the files after partitioning them.
On average, the SAP-Space algorithms achieve 22% com-
pression, while random partitioning and chunk-distribution
achieve 15.0% and 23.3% compression respectively. These
results confirm that our SAP technique achieves much better
compression than random partitioning. Further, our technique
achieves compression almost similar to the space-optimal
access-inefficient chunk-distribution solution.

In Fig. 6, we illustrate through a conceptual plot, the trade-
offs in terms of access-efficiency for the different approaches
discussed in this section. While the SAP algorithms and

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

598

8

Fig. 4. Space Efficiency: SAP outperforms Random and is close to Chunk-distribution.

Fig. 5. Illustration of Access-Efficiency Fig. 6. Chunk frequency decreases very fast with popularity.

random partitioning requires exactly one server to access
any file, the chunk-distribution solution could require up to k
servers. We plot the graph in Fig. 6 based on our chosen value
of k as a function of n, i.e., max(2, n/20). Hence, while
the SAP approach achieves nearly the same compression as
chunk distribution, it can be much more efficient in terms of
file access.

A key intuition for our bounded space guarantees (despite
only considering pairs of files to generate the partitions)
is based on chunk frequency distribution. Fig. 5 shows the
chunk frequency distribution for both our data sets. A point
(x, y) in the graph denotes that y % of unique chunks among
all the files have a popularity of x, i.e., appear in exactly x
files in the data set. As seen in the graph, the majority of
chunks appear just in one, two or three files and almost no
chunk appears in more than 7 or 8 files for either of the data
sets. Hence, the maximum chunk popularity, ρ is bound by
7 or 8. This validates corollary 1, which in turn bounds the
optimality gap of our SAP algorithms.

VI. RELATED WORK

Deduplication is one of the most prevalent techniques for
reducing storage. However, most of the existing systems
either consider centralized systems, or require cross-server
communication [7], [26], [19]. The deduplication technique,
referred to as DEDE in [6], prevent cross-host communi-
cation, but uses a shared disk as a centralized reservoir in
which file chunks are periodically written to. Similarly, the
DDE system [12] avoids network communication costs by

using a centralized file system. We, instead focus on a fully
distributed system with no shared state (apart from index
information on the client). Further, most of the literature
focus on the various system and architectural challenges
in implementing these solutions. Our focus is to present a
provably space-efficient off-line algorithm for the distributed
storage problem.

Delta-encoding is a technique widely used to capture
the changes between versions of the same file [8], [5],
[15]. In many cases it is used along with deduplication
to transmit file changes to various servers in an efficient
manner. In this paper, we suggest delta-encoding to capture
differences between files that are not necessarily versions on
one another. Further, we use delta-encoding to partition the
files as well as store them (in the SAP-Space-Delta and
SAP-Servers-Delta algorithms). So we suggest it as a
potential alternate to deduplication. In [20], [24], the authors
construct a graph to capture pair-wise differences and use the
minimum branching or a traveling salesman heuristic to find
optimal paths through the graph. They compare their solution,
empirically against commonly used compression tools like
zip and cat. The authors in [1] use such graph based tech-
niques to compress web-graphs. We use a similar technique,
but also present the theoretical framework to compare the
space-efficiency of the technique with deduplication and use
it for distributed storage.

In [17], [18], the authors make the point that using just the
diffs between all files to identify similar files is an expen-
sive operation since it requires O(n2) comparisons among

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

599

9

the files. Further, they present an approximate differencing
technique called Sif which can be be used to find similar
files in large systems efficiently. We can use such techniques
to make our practical implementations far more scalable.

Finally, we note that there are many algorithms for
document-clustering such as the agglomerative hierarchical
clustering and k-means clustering [22]. These algorithms use
a notion of similarity among files based on sophisticated mea-
sures such as the cosine measure, aimed more at capturing
semantic similarities. This in turn leads to computationally
expensive algorithms. We on the other hand, present polyno-
mial time algorithms with similarity based purely on the size
of the delta-encoding between the documents.

VII. CONCLUSION AND FUTURE WORK

In this paper, we consider the problem of storing a set
of files A that exhibit some similarity among distributed
servers. Our main constraint, which we call access efficiency,
is to ensure that all information corresponding to any single
file can be acquired at a single server even in a distributed
setting. To capture this constraint, we define the notion of a
(k,C)-distribution of A, which essentially prescribes a way
to divide the chunks across all the files so as to ensure access
efficiency. We first show that generating a space-optimal,
access-efficient (k,C)-distribution is an NP-Hard problem.
We present polynomial time similarity aware partitioning
(SAP) techniques, to partition the files in A and store them
across the servers such that the solution is access-efficient
with a bounded space overhead. Our experimental results
on files from Dropbox and CNN confirm the fact that our
technique is much more space-efficient than a scheme in
which we randomly partition the files (similarity oblivious)
and store them on each server. In the future we wish to
consider the additional factors of fault tolerance, load-balance
and multiple-server communication to explore new trade-offs.

REFERENCES

[1] M. Adler and M. Mitzenmacher. Towards compressing web graphs.
In Proceedings of the Data Compression Conference, DCC ’01, pages
203–, Washington, DC, USA, 2001. IEEE Computer Society.

[2] B. S. Baker. On finding duplication and near-duplication in large
software systems. In Proceedings of the Second Working Conference on
Reverse Engineering, WCRE ’95, pages 86–, Washington, DC, USA,
1995. IEEE Computer Society.

[3] B. Balasubramanian, T. Lan, and M. Chiang. SAP: Similarity-aware
partitioning for efficient cloud storage. Technical report, Princeton
University and George Washington University, 2013. Available as http:
//www.seas.gwu.edu/∼tlan/papers/sap.pdf.

[4] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, IMC ’10, pages 267–280, New
York, NY, USA, 2010. ACM.

[5] R. C. Burns and D. D. E. Long. Efficient distributed backup with delta
compression. In Proceedings of the fifth workshop on I/O in parallel
and distributed systems, IOPADS ’97, pages 27–36, New York, NY,
USA, 1997. ACM.

[6] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentralized
deduplication in san cluster file systems. In Proceedings of the 2009
conference on USENIX Annual technical conference, USENIX’09,
pages 8–8, Berkeley, CA, USA, 2009. USENIX Association.

[7] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer.
Reclaiming Space from Duplicate Files in a Serverless Distributed
File System. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS ’02), pages 617–624, Vienna,
Austria, July 2002.

[8] F. Douglis and A. Iyengar. Application-specific delta-encoding via
resemblance detection. In Proceedings of the General Track: 2003
USENIX Annual Technical Conference, June 9-14, 2003, San Antonio,
Texas, USA, pages 113–126. USENIX, 2003.

[9] G. Forman, K. Eshghi, and S. Chiocchetti. Finding similar files in large
document repositories. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, KDD
’05, pages 394–400, New York, NY, USA, 2005. ACM.

[10] Y. Galambos, J. an Xu. A new method for generating bonferroni-
type inequalities by iteration. In Mathematical Proceedings of the
Cambridge Philosophical Society, 107, pages 601–607, 1998.

[11] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. Rcfile:
A fast and space-efficient data placement structure in mapreduce-
based warehouse systems. In Proceedings of the 2011 IEEE 27th
International Conference on Data Engineering, ICDE ’11, pages
1199–1208, Washington, DC, USA, 2011. IEEE Computer Society.

[12] B. Hong and D. D. E. Long. Duplicate data elimination in a SAN
file system. In In Proceedings of the 21st IEEE / 12th NASA Goddard
Conference on Mass Storage Systems and Technologies (MSST, pages
301–314, 2004.

[13] G. Jäger and A. Srivastav. Improved approximation algorithms for
maximum graph partitioning problems extended abstract. In Proceed-
ings of the 24th international conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS’04, pages
348–359, Berlin, Heidelberg, 2004. Springer-Verlag.

[14] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
nature of data center traffic: measurements & analysis. In Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement
conference, IMC ’09, pages 202–208, New York, NY, USA, 2009.
ACM.

[15] D. G. Korn and K.-P. Vo. Engineering a differencing and compression
data format. In Proceedings of the General Track of the annual
conference on USENIX Annual Technical Conference, ATEC ’02, pages
219–228, Berkeley, CA, USA, 2002. USENIX Association.

[16] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.
Technical report, Stanford, CA, USA, 1977.

[17] U. Manber. Finding similar files in a large file system. In Proceedings
of the USENIX Winter 1994 Technical Conference on USENIX Winter
1994 Technical Conference, WTEC’94, pages 2–2, Berkeley, CA,
USA, 1994. USENIX Association.

[18] U. Manber and S. Wu. Glimpse: a tool to search through entire
file systems. In Proceedings of the USENIX Winter 1994 Technical
Conference on USENIX Winter 1994 Technical Conference, WTEC’94,
pages 4–4, Berkeley, CA, USA, 1994. USENIX Association.

[19] D. T. Meyer and W. J. Bolosky. A study of practical deduplication.
Trans. Storage, 7(4):14:1–14:20, Feb. 2012.

[20] Z. Ouyang, N. D. Memon, T. Suel, and D. Trendafilov. Cluster-
based delta compression of a collection of files. In Proceedings
of the 3rd International Conference on Web Information Systems
Engineering, WISE ’02, pages 257–268, Washington, DC, USA, 2002.
IEEE Computer Society.

[21] S. Quinlan and S. Dorward. Venti: A new approach to archival data
storage. In Proceedings of the 1st USENIX Conference on File and
Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002. USENIX
Association.

[22] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document
clustering techniques, 2000.

[23] W. F. Tichy. RCS - a system for version control. Softw. Pract. Exper.,
15(7):637–654, July 1985.

[24] D. Trendafilov, N. Memon, and T. Suel. Compression file collections
with a tsp-based approach. Technical report, 2004.

[25] B. Y. Wu, H.-L. Wang, S. Ta Kuan, and K.-M. Chao. On the uniform
edge-partition of a tree. Discrete Appl. Math., 155(10):1213–1223,
May 2007.

[26] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in
the data domain deduplication file system. In Proceedings of the
6th USENIX Conference on File and Storage Technologies, FAST’08,
pages 18:1–18:14, Berkeley, CA, USA, 2008. USENIX Association.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

600

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

