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Abstract—We address the problem of scheduling jobs with
utilities that depend solely upon their completion-times in a
shared cloud that imposes considerable uncertainty on the jobs’
runtime. However, it is very hard to estimate the jobs’ runtime in
a shared cloud where jobs are often delayed due to reasons such
as slow I/O performance and variations in memory availability.
Unlike prior works, we acknowledge that runtime estimates are
often erroneous and instead shift the burden of robustness to
the job scheduler. Specifically, we present a scheduling problem
that jointly accounts for: (i) job utilities specified as functions of
their completion-time, and (ii) uncertainty in the jobs’ runtime.
Our proposed solution to this problem achieves lexicographic
max-min fairness among the job utilities. We implement this
as a robust scheduler, named RUSH, for YARN in Hadoop.
Our experiments, using real-world data sets, illustrate RUSH’s
efficacy when compared with other commonly used schedulers.

I. INTRODUCTION

With the rapid growth in demand for data analytics, shared

cloud platforms such as Amazon EC2 and Microsoft’s Azure

are heavily utilized by various clients to run data processing

jobs. This gives rise to challenges in providing individual job

performance guarantees, especially regarding job completion-

times. These guarantees are very important as data processing

requirements become more stringent. Jobs with applications

such as augmented reality and video streaming often require

quick turn-around times with guaranteed service latency. It

is crucial for the scheduler in the data processing platform

(like Hadoop [1]) to allocate resources in a manner that

acknowledges jobs’ relative priorities and sensitivity with

respect to completion-times.

The uncertainty in the jobs’ runtimes, imposed by the

shared infrastructure, is well recognized as a key challenge in

designing job scheduling algorithms [2]–[4]. This uncertainty

is due to factors such as job heterogeneity (some CPU-

heavy while others I/O-heavy), scarcity of resources, and

complex dependencies among tasks in the jobs. For example,

in a typical Hadoop-MapReduce cluster, the aforementioned

reasons for uncertainty may cause a task to run slower than

expected, resulting in non-deterministic execution time. In this

paper, we address this challenge by solving the following

problem: Given a set of jobs in a shared infrastructure, how
do we allocate resources fairly across these jobs, through
a systematic optimization framework taking into account:

(i) job utilities specified as functions of their completion-
time, (ii) uncertainty in the jobs’ runtimes?

The de-facto industry standards for schedulers, such as those

used in Hadoop, Dryad or Spark [5], [6], are based on simple

notions of proportional fair scheduling [7]–[9]. There have

been prior works targeting the completion-times or deadlines

of Hadoop jobs [3], [4]. These system models assume de-

terministic task runtimes that are proportional to the resource

demand and must be estimated through benchmarking different

applications’ average task runtime. This approach does not

address non-deterministic task runtimes in scheduling and is

prone to performance degradation that is invariably caused by

uncertainty due to the vagaries of shared infrastructure. An-

other line of works considers job scheduling with speculative

execution to mitigate uncertainty due to task dependencies and

data locality [2], [10]–[12]. However, none of them provide

any formal guarantees regarding job completion times. On

the other hand, in this paper, we focus on the design of

an optimal, robust, completion-time aware scheduler for a

computing cluster that runs a resource management framework

such as Apache YARN [13]. In a setting where reliable esti-

mates of jobs’ runtime are not available, our RUSH scheduler

calculates and allocates cluster resources to active jobs so that

their completion time maximizes a lexicographical max-min

fairness objective function. In the following paragraphs we

provide high-level intuitions behind our design.

Runtime Estimation: The need for accurate runtime esti-

mations to enable efficient job scheduling can be illustrated as

follows. Without runtime estimation, one may fail to identify

and preempt a low priority job with excessively long runtime.

It may create a head-of-line blocking which may unnecessarily

cause the subsequent jobs to miss their deadlines. However,

job runtime estimation is not a trivial task due to the ex-

ceeding number of uncertain factors that may affect the jobs’

runtime (e.g., hardware heterogeneity, bottlenecks in multiple-

dimensional resources). A practical solution may adopt the

black-box approach that learns the empirical runtime behaviors

of jobs from historical observations. In our design, a distribu-

tion estimator (DE) module will be dynamically created and

assigned to each of the jobs to continuously estimate the job’s

runtime probability distribution using customizable machine

learning techniques. The goal of the DE module is to report

2016 IEEE 36th International Conference on Distributed Computing Systems

1063-6927/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDCS.2016.95

242



the runtime distributions to the scheduling algorithm from time

to time with improving accuracies.

Robust Scheduling: For each submitted job, the corre-

sponding client is only required to specify its relative job

priority and utility function of the job’s completion time.

The scheduling algorithm calculates the approximated total

workload according to the job’s runtime distribution infor-

mation reported and performs resource allocation accordingly

in order to maximize the client-specified utilities regarding

max-min fairness. The robustness in our approach comes from

the fact that the proposed scheduling algorithm acknowledges

that there exists runtime distribution estimation errors. Instead

of directly using the estimates from the runtime distribution

estimator modules, the scheduling problem is solved with the

allowance that the actual distribution of the jobs’ runtimes can

diverge from this estimate within a certain threshold.

In summary, we make the following contributions in this

paper:

• We frame a robust resource allocation/scheduling prob-

lem (RUSH) that accounts for: (i) job utilities as func-

tions of the completion-time and (ii) the uncertainty in

the jobs’ runtime. The goal of scheduling is to achieve

lexicographical max-min fairness among job utilities.

We decouple the entire scheduling problem into two

sub-problems, i.e., a worst case distribution estimation

problem and a time-aware scheduling problem. These two

components are part of the continuous runtime feedback

cycle which allows the system to recalibrate scheduling

decisions [Section II and III].

• We transform the two sub-problems into simpler equiv-

alent problems and propose efficient algorithms to solve

both. The proposed solution algorithms are simple and

efficient enough to be implemented and integrated into

the software stack of resource managers such as YARN

[Section III].

• We implement our solution for RUSH in the YARN

framework for Hadoop. The implementation is fast, light-

weight and has no dependency on any third party opti-

mization software. Since the implementation is directly

interfaced with the YARN resource manager, the sched-

uler can be directly used by any computational cluster as

a resource scheduler similar to the other YARN sched-

ulers (e.g., the fair scheduler and the capacity scheduler)

[Section IV].

• We examine the performance of our prototype using a

Hadoop cluster hosted by our private cloud. The results

show that the scheduling decisions made by RUSH are

well protected by the built-in runtime estimation and

robustness. Further, they illustrate that RUSH is able to

perform completion-time aware scheduling to improve

the jobs’ utility, while requiring a small proportion of

completed task samples for its runtime estimation. Fi-

nally, our experiments confirm that RUSH consumes a

limited amount of CPU and RAM and causes very little

overhead in terms of time [Section V].

II. SYSTEM MODEL AND PROBLEM FORMULATION

The performance of job scheduling algorithms could suffer

from many sources of uncertainty, including unpredictable sys-

tem perturbations, non-deterministic execution time, random

job interference and dynamic arrivals/departures [14]–[16].

In this paper, we propose a robust optimization framework

called RUSH, that accounts for various uncertainties through

a quantitative model and enables a robust scheduling frame-

work for utility optimization under inaccurate and imperfect

information. To measure the users’ satisfaction regarding the

completion-time of their jobs, a time-dependent utility function

is introduced for each job. We assume that the utility functions

are non-increasing, as satisfaction should never increase with

delays in job completion-time. The proposed RUSH scheduler

is designed to provide best scheduling service for cloud envi-

ronments with the following conditions: (1) processing batch
jobs that consist of tasks that are not heavily correlated,
(2) resources in a cloud are packed and apportioned
among jobs using a homogeneous unit. Following by the

common practices of YARN, we refer to this homogeneous

resource unit as a container1. Under the above conditions,

RUSH’s efficacy is the direct result of the fact that tasks

runtime behaviors in each job can be estimated with sufficient

accuracy as shown later in this paper. Some typical examples

of these computing environments includes MapReduce-like

systems such as Hadoop and Spark. We will focus on the

robust scheduling problem for a given system state in this

section and extend the results in Section IV to a dynamic

setting where the robust scheduling problem is re-optimized

constantly to rectify any previous mistake. Symbols used in

our formulations and algorithms are summarized in Table I.

We consider a discrete time model with arbitrary fixed

length time slots (e.g., 1 second). As acknowledged in prior

works [3], [17], [18], the use of discrete time slots to ap-

proximate the continuous time of scheduling is necessary to

enable tractable, efficient solutions. We assume that the cloud

computing cluster has a capacity of C containers. Denote

N = 1, ..., N to be a set of N user jobs. We introduce a

decision variable xi,t as the number of containers assigned

to job i at time t. We denote Ti as the completion-time of

job i, which mathematically is defined as the time slot that

job i receives its last container assignment before completion.

Each job i is associated with an arbitrary non-increasing utility

function Ui(Ti). Please refer to Section IV for examples of

utility function.

To model the uncertainty that impacts jobs’ execution time

in the cloud, we define a random demand variable vi to

quantify the total number of container time slots needed to

finish all tasks of job i. For example, if job i requires 2

containers, each running for 10 time slots, it consumes a

total of 20 container time slots. Required container time slots

vi is a random variable, which captures various sources of

uncertainty and translates into a random completion-time of

1Please note that YARN allow containers with heterogeneous size, which
is not considered in this paper.
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TABLE I
TABLE OF NOTATION

Symbol Definition Symbol Definition
xi,t number of container(s) assigned to job i at time t Ti completion-time of job i
vi total number of container time slots requested by job i Ui(t) utility function of job i

ωi(vi) a distribution of vi that acts as a decision variable φi(vi) reference distribution of vi
θ minimum probability of any job i receiving more than vi containers before Ti δi entropy threshold for job i

φi,l quantized PMF version of φi(vi) pi,j quantized PMF version of ωi(vi)
ηi total resource demand of job i return by solving the WCDE problem Ri average container runtime for job i
C cluster capacity in terms of number of containers Δ tolerance of the bisection algorithm

job i. More precisely, the necessary condition for job i to

complete at time Ti is that it receives more than vi container

time before time Ti. Rather than considering the average vi
that is susceptible to uncertainty, or the worst case vi that is

overly conservative, we propose a robust scheduler that focuses

on job completion-time with θ-th percentile. In particular, we

require that the probability of job i being assigned enough

resources and being completed by time Ti to be greater than

θ. This robust design enables a range of solutions that offer

different levels of robustness.

However, to use this model we need to find the exact

distribution of vi, which poses another challenge for our robust

optimization. While the distribution could be numerically

estimated from measurements obtained from a real system,

such estimated distribution (denoted by φi(vi)) can be no

more than an (often rough) approximation due to many forms

of systemic uncertainties and time-varying dynamics. Using

φi(vi) directly to measure the θ-th percentile of vi and Ti

may introduce substantial inaccuracy that will propagate to the

utility optimization problem. To tackle this issue, we propose

another measure of robust optimization. We use φi(vi) only as

a reference distribution and consider a set of possible distribu-

tions, denoted as {ωi(vi)}, that have a Kullback-Leibler (KL)

distance (also known as relative entropy) δi from the reference

point φi(vi). We refer to δi as the “entropy threshold” of job

i. A robust utility optimization problem is then formulated to

maximize a guaranteed utility over any possible distribution in

the set. This requires the robust optimization to be solved over

a functional space. The intuition is to guarantee the scheduling

performance for all the possible distributions in {ωi(vi)}. If

the exact distribution of vi is no further than δi distance from

φi(vi) and in {ωi(vi)}, the actual scheduling performance

received by the users are captured and guaranteed even we

do not know the exact distribution of vi. However, this robust

design significantly complicates the problem and makes it less

traceable.

Our Robust Scheduling (RS) problem aims to maximize a

lexicographical max-min fairness objective. Let Y and W be

two N -dimensional vectors in Z
N , and

−→
Y and

−→
W be the

corresponding sorted vectors in non-decreasing order. Y is

said to be lexicographically greater than W, denoted by Y �
W, if the first non-zero component of

−→
Y − −→

W is positive.

Let [U1(T1), U2(T2), ..., UN (TN )] be the vector of the utility

values achieved by all the active jobs, the lexicographical max-

min fairness objective is to produce a utility vector that is

maximized according to the lexicographic order defined above.

Intuitively, it means that RS problem ensures fairness by trying

to first maximize the worst utility among jobs, then moving

to maximize the second worst utility and so on. On the other

hand, if assigning more resources does not help improve a

particular job (e.g., an expired job with a minimal utility),

the lexicographical max-min objective function will prefer to

allocate resources to other jobs because doing so can improve

their utility without lowering the utility of this job.
Denote T to be the set of time slots considered in the time

horizon. With the model defined above, the RS problem can

be mathematically defined as follows.

(RS)

lex-max
X, {ωi(vi)}

[U1(T1), U2(T2), ..., UN (TN )]

s.t.

Ti = max{t|xi,t > 0, ∀t ∈ T }, ∀i ∈ N (1)∑
i∈N

xi,t ≤ C, ∀t ∈ T (2)

min
ωi(vi)

Pr(vi ≤
∑
t∈T

xi,t|vi ∼ ωi(vi)) ≥ θ, ∀i ∈ N (3)

∫ ∞

0

ωi(vi)dvi = 1, ∀i ∈ N (4)

∫ ∞

0

[
ln

ωi(vi)

φi(vi)

]
ωi(vi)dvi ≤ δi, ∀i ∈ N (5)

xi,t ∈ Z
+, ∀i ∈ N , ∀t ∈ T (6)

ωi(vi) ∈ {f : Z+ → [0, 1]}, ∀i ∈ N . (7)

Constraint (1) defines the job’s completion-time. Constraint

(2) is the capacity constraint. The minimization over different

distribution functions in (3) guarantees that the probability of

job i receiving enough resources to complete at Ti is larger

than θ even for the worst case distribution (and therefore for

all distributions within a δ-distance defined by (4) and (5)).

Note that the summation in (3) is equivalently over all t ∈ T ,

because constraint (1) ensures that xi,t = 0 for any t > Ti.

Constraint (6) demands that the assignment is performed in the

unit of container time slot. Constraint (7) means that function

ω(vi) participates in the optimization as a decision variable.
Solving the RS problem consists of solving two main sub-

problems: (i) a time-aware scheduling (TAS) sub-problem for

assigning containers to jobs, associated with constraints (1 -

3), and (ii) a worst case distribution estimation (WCDE) sub-

problem associated with constraints (3 - 5). These two sub-
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problems are coupled through constraint (3). In the next sec-

tion, we present our solution method that transforms constraint

(3) and decomposes the RS problem into the WCDE and TAS

sub-problems.

III. SOLUTION METHODS FOR ROBUST SCHEDULING

In this section, we propose a robust, completion-time aware

scheduler that collectively maximizes the lexicographical max-

min utility of all jobs. The scheduling algorithm takes into

account both (i) random runtime time due to system un-

certainty and (ii) unpredictable distribution perturbation due

to estimation inaccuracy. First, we transform the problem

of finding the worst case distribution in (3) into a problem

that can be solved efficiently with the bisection method.

Second, we develop an onion peeling algorithm that performs

robust scheduling with respect to the worst case distribution.

It guarantees the optimal completion-time of all jobs that

maximizes the lexicographical max-min objective. Finally, we

address a practical challenge that each job requires continuous

and uninterrupted container assignment for atomic execution.

A mapping algorithm with provable optimality is developed

to assign continuous container time slots according to the

optimal completion-time obtained. Due to the limited space,
the proofs are presented in the technical report [19].

A. Solving for the Worst-case Distribution

To solve the RS problem, locating the worst case distribution

function ωi(vi) for job i in the minimization (3) is the key. We

refer to it as the worst case distribution estimation (WCDE)

sub-problem. We show that it is possible to transform the

WCDE problem and decouple it among different jobs. Let

Ω−1
i (x) be the inverse CDF of ωi(vi). Due to monotonicity,

constraint (3) can be rewritten as
∑

t∈T xi,t ≥ maxΩ−1
i (θ).

This implies that the processes of locating the worst case

distribution function among all the jobs can be decoupled,

and each job only has to compute the value of maxΩ−1
i (θ)

satisfying constraints (4) and (5). To facilitate the computation,

we replace the continuous PDF ωi(vi) with a discrete PMF

through quantization into a finite number of bins in a range

of [0, τmax]. Let pi,l be the probability that vi falls in bin l
according to distribution ωi(vi). We further define φi,l to be

the quantized PMF of the reference distribution φi(vi). The

WCDE problem can be transformed as follows.

(WCDE)

max
pi,l

Ω−1
i (θ)

s.t.
τmax∑
l=0

[
ln

pi,l
φi,l

]
pi,l ≤ δi, (8)

τmax∑
l=0

pi,l = 1,

pi,l ∈ R
+, ∀l ∈ [0, τmax] ∩ Z

+.

In the new WCDE problem, the objective Ω−1
i (θ) depends

on the underlying probability distribution pi,l. We leverage

the monotonicity of Ω−1
i (θ) to develop an efficient bisection

search method, which in each iteration considers a target

objective value L and evaluates its feasibility. The bisection

search is summarized in Algorithm 2. To evaluate the fea-

sibility of a given L in the bisection search, we notice that

Ω−1
i (θ) ≥ L implies θ ≥ Ωi(L) =

∑L
l=0 pi,l because Ωi is a

CDF. An objective value L is feasible only if there exists a

distribution pi,l satisfying θ ≥ ∑L
l=0 pi,l as well as the relative

entropy constraint (8). This can be easily verified by solving

a Relative Entropy Minimization (REM) problem as follows:

(REM)

min
pi,l

τmax∑
l=0

[
ln

pi,l
φi,l

]
pi,l

s.t.
τmax∑
l=0

pi,l = 1, (9)

L∑
l=0

pi,l ≤ θ, (10)

pi,l ∈ R
+, ∀l ∈ {0, ..., τmax}.

If the problem returns an optimal value smaller than δi,
we know that the corresponding target objective L must be

feasible for the WCDE problem.

Now it only remains to solve the REM problem. It is easy to

see that the REM problem minimizes a convex function over

linear constraints. The problem can be solved in closed-form

using its KKT conditions. Let μ and ν be two Lagrangian

multipliers for constraints (9) and (10), respectively. We can

directly obtain the optimal solution from the KKT conditions:

Pi,l =
φi,l

e1+μ+ν
, ∀l ≤ L and Pi,l =

φi,l

e1+μ
, otherwise. (11)

Equation (11) implies that the optimal solution to REM

problem partitions {Pi,l} into 2 groups (for l ≤ L and l > L)

and assigns to each group a normalized version of φi,l. To

determine the Lagrangian multipliers, we can use the fact that

constraint (9) must hold and that ν = 0 if constraint (10) is

a strict inequality due to the slackness condition. Therefore,

we propose a closed-form method as shown in Algorithm 1 to

determine the appropriate normalization factors, 1/e1+μ+ν and

1/e1+μ, based on these constraints. It has a time complexity of

O(1) and is guaranteed to find a feasible solution to the KKT

conditions, thus an optimal solution for the REM problem.

Theorem 1. The closed-form method solves the REM problem
optimally.

Using Algorithm 1, we can evaluate the feasibility of any

given L in the bisection search. To initialize the bisection

method, we can pick the largest possible utility value among

all jobs as an upper bound and use a feasible solution

pi,l = φi(vi) to obtain a lower bound in the WCDE problem.
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Algorithm 1 Closed-Form Method

1: Input: Target objective value L
2: Calculate pi,l = φi,l/

∑Tmax

l=0 φi,l for all l
3: if pi,l violates (10) then
4: Calculate pi,l =

θφi,l∑L
l=0 φi,l

for l ∈ [0, L]

5: Calculate pi,l =
(1−θ)φi,l

∑Tmax
l=L+1 φi,l

for l ∈ [L+ 1, Tmax]

6: end if
7: return pi,l

Algorithm 2 WCDE Bisection Search

1: Initiate Lf = Φ−1
i (θ) and Li = maxi,x(Ui(x)).

2: while Li − Lf > 1 do
3: Select L = 
 1

2 (Li + Lf )�
4: Calculate p∗i,l using Algorithm 1 with input L

5: Set Lf = L if
∑τmax

l=0

[
ln

p∗
i,l

φi,l

]
p∗i,l ≤ δi

6: Else, set Li = L
7: end while

B. Solving the Robust Scheduling Problem

By solving the WCDE problem, the optimal value of

maxΩ−1
i (θ) is obtained for each job. To simplify the presen-

tation, we use ηi to represents this value for job i. Therefore,

the Time-Aware Scheduling (TAS) problem now becomes a

deterministic problem with deadline constraints:

(TAS)

lex-max
X

[U1(T1), U2(T2), ..., UN (TN )]

s.t.

Ti = max{t|xi,t > 0, ∀t ∈ T }, ∀i ∈ N∑
i∈N

xi,t ≤ C, ∀t ∈ T
∑
t∈T

xi,t ≥ ηi, ∀i ∈ N

xi,t ∈ Z
+, ∀i ∈ N , ∀t ∈ T .

In our previous work [3] we have shown that the above TAS

problem can be transformed and efficiently solved using linear

programming techniques (e.g., simplex method). However,

considering that multiple decision variables are introduced for

each job at each time slot in the linear programming solution,

the large number of decision variables introduced by a large

number of jobs may deem the performance of linear program-

ming method unsatisfactory. We propose a novel solution using

techniques that we refer to as onion peeling and continuous

time slot mapping which allow very fast convergence even as

the size of the problem becomes large.

To solve the TAS problem, we use the onion peeling

method to determine the optimal target completion-time for

jobs one by one. Then the continuous time slot mapping

method will produce a detailed container assignment. Note

that the lexicographical max-min objective is maximizing the

minimum utility of jobs “layer” by “layer”. In each layer, a job

that reaches the maximum possible utility is identified and will

not participate in the optimization in the next layer. Without

loss of generality, we now consider the first layer problem

in which the optimization is simply maximizing the minimum

utility among all the jobs (i.e., max-min problem). Because the

jobs’ utility functions are non-increasing as completion-time

grows, and also because all other constraints are convex, the

max-min problem can be again solved using bisection method.

Denote U−1
i (·) to be the inverse of job i’s utility function.

Given any target max-min objective value L, each job i has to

finish before time U−1
i (L) in order for all jobs to collectively

achieve a max-min utility no less than L. Therefore, in each

iteration of the bisection algorithm, to test whether a target

utility value L is feasible or not, one just need to examine

whether a set of completion-time U−1
i (L) is feasible for jobs

i = 1, . . . , N . To simplify the representation, without loss of

generality, we sort the jobs according to their U−1
i (L) values.

We further define Nk to be the set of first k jobs. To test

feasibility of U−1
i (L), we only need to examine whether there

exist enough resources (i.e., container time slots) in the system

to support each desired completion-time U−1
i (L), i.e.,∑

i∈Nk

ηi ≤ C · U−1
k (L), ∀k ∈ 1, 2, ...N (12)

Theorem 2. When condition (12) is satisfied, there exists a
feasible resource scheduling {xi,t} to finish each job i before
time U−1

k (L), thus attaining a utility value at least L.

With Theorem 2, the design of the bisection algorithm is

straightforward. Moreover, for each infeasible L value during

the process of bisection search, there exists at least one

infeasible job that cannot meet its completion-time in (12).

The infeasible jobs corresponding to the last infeasible L
before the bisection search terminates are clearly bottlenecks

for further utility maximization. In other words, these jobs

have already achieved their optimal utility in this layer and

cannot be further improved. Therefore, only the remaining jobs

should proceed to the next layer in our lexicographical max-

min optimization, while (12) is examined with consideration

of resource allocated previously. We repeat this process to

identify the completion-time of bottleneck jobs one by one,

and hence the name “peeling an onion”. Let Δ be the tolerance

of the bisection algorithm. Pseudocode shown in Algorithm 3

summarizes the onion peeling algorithm.

C. Mapping the Solution to a Practical Assignment

We now address another important constraint that arises

from resource scheduling in real systems, i.e., resource alloca-

tion of any single task has to be continuous and uninterrupted.

Unlike the assumption of infinitely-divisible workload made

in many prior works, this constraint means that when a task

receives a container, this assignment has to be continuous

before the container is released. Therefore, the workload of

a task carried out by a container cannot be further divided.
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Algorithm 3 Onion Peeling Algorithm

1: Initiate N = {1, 2, ...N} and Gt = 0, ∀t ∈ T
2: Set Lf = mini,x(Ui(x))
3: while N is not empty do
4: Set Li = maxi,x(Ui(x)|i ∈ N ).
5: while Li − Lf > Δ do
6: Select L = 1

2 (Li + Lf )
7: if

∑
i∈Nk

ηi+GU−1
k (L) ≤ CU−1

k (L), ∀k ∈ N then
8: Set Lf = L
9: else

10: Set Li = L
11: end if
12: end while
13: Locate the bottleneck job i
14: Assign Ti = U−1

i (Lf ) as its target completion-time

15: Set Gt = Gt + ηi, ∀t ≥ Ti

16: Remove i from N
17: end while

After solving the utility maximization to get a set of

optimal target completion-time, we create a practical con-

tainer assignment {xi,t} ∀i, t that achieves the completion-

time and satisfies the continuity requirement. Let Ri denote

the average container runtime for job i, reported by the

distribution estimator. Job i should be assigned consecutive

time slots in an integer multiple of Ri, in order for each

task to continuously occupy a container until it finishes.

Let Ti be the target completion-time obtained by the onion

peeling method. Due to the continuity constraint, a practical

container assignment may further extend the job’s completion-

time beyond Ti. However, the following theorem shows that it

is possible to find a practical solution satisfying the continuity

constraint while achieving a completion-time very close to Ti.

Theorem 3. There exists a continuous container assignment
scheme that achieves a job completion-time no later than Ti+
Ri for all the jobs.

Theorem 3 shows that the actual achievable job completion-

time under the continuity constraint is upper bounded by

Ti + Ri. The extra delay is no more than Ri, the average

container holding time by a single task, which is relatively

small compared to the overall runtime of the job. More

importantly, we can compensate for this extra time by reducing

the time budget of each job in the onion peeling method by

Ri. This allows the target completion-time produced by the

onion peeling method to be implementable in practice.

To summarize, first, jobs are ordered by their target

completion-time obtained by the onion peeling method. We

maintain C number of queues. When performing assignment

for a job i, the operation always starts from the first queue. The

total workload of ηi is assigned to the current queue in the unit

of Ri until the current queue occupation is larger than Ti. After

the assignment, if a job has residual workload, the next queue

is used to continue the process. We repeat this process until

all the jobs are assigned. Please note that this approach may

stretch the workload of a job beyond the target job completion-

time. The condition that we switch to another queue guarantees

that the jobs’ completion-time is upper bounded by Ti + Ri.

The above continuous time slot mapping is summarized as

Algorithm 4.

Algorithm 4 Continuous Time Slot Mapping

1: Input: Target completion-time {T1, ...TN}
2: Input: Estimated workload {η1, ...ηN}
3: Input: Average container runtime {R1, ...RN}
4: Initiate occupation of queues Ok = 0, ∀k ∈ {1, ...C}
5: for every job i ∈ N do
6: Select the first queue, set k = 1
7: while ηi �= 0 do
8: Assign A = min(
Ti−Ok

Ri
�, ηi) to queue k

9: Update ηi = ηi −A and Ok = Ok +A
10: Select the next queue, set k = k + 1
11: end while
12: end for

IV. RUSH-YARN ARCHITECTURE AND IMPLEMENTATION

In this section, we describe the architecture and implemen-

tation of our robust scheduling algorithm as a scheduler in the

YARN Hadoop framework. The RUSH scheduler has three

main components: (i) a job configuration interface, (ii) a dis-

tribution estimator (DE) unit for each job and (iii) a container

assignment (CA) unit. A new job’s requirements are submitted

through the configuration user interface and the CA unit is

triggered whenever there is an empty container in the system.

When the CA unit is triggered, it obtains the estimated total

workload for all the jobs from the corresponding DE units,

calculates and assigns the containers to each of them based

on our algorithms. The CA unit repeats this in a feedback

cycle as containers are freed, tasks finish and job utilities are

updated. We illustrate the RUSH-YARN architecture in Figure

1 and explain it in further detail in the following paragraphs.

Apache Yarn

Job Config
Interface

Job Description File
Distribution Estimator 1

Distribution Estimator i

...
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Fig. 1. RUSH-YARN architecture describing the feedback cycle of estima-
tion, recalculation of container assignment and YARN integration for actual
allocation of containers to jobs.
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Job Configuration User Interface: When a job is sub-

mitted to the YARN Hadoop cluster, an XML file with its

requirements such as time budget B, priority value W and

utility value sensitivity β is submitted through this interface.

Currently, we provides three utility classes: (1) piece-wise

linear; (2) sigmoid; and (3) constant. We encourage the users to

submit their own utility classes that best describe their quality

of service requirements. Given a completion-time T , the linear

utility class produces a utility value of max(β(B−T )+W, 0).
This utility class represents completion-time sensitive jobs

whose utility decays linearly along with a further completion-

time. The sigmoid class has a more versatile utility function of

W/(1+eβ(B−T )), where the sensitivity coefficient β can deter-

mine if a job is time-sensitive or time-critical. It determines

how steep the utility drops when the job’s completion-time

exceeds the time budget.

Distribution Estimator (DE): The main task of the DE unit

is to estimate the reference total workload distribution φ(vi)
and produce ηi. Algorithm 2 is efficient with a time complexity

being logarithmic in the number of bins that the estimator

chooses to describe the PMF of the reference distribution.

Currently, we provide two distribution estimator classes: (i)
The mean time estimator, that reports an impulse distribution

at the bin equals to the multiple of the mean container runtime

and the number of pending tasks. (ii) The Gaussian estimator,

that learns the sample mean and variance from the runtime

statistical data received from YARN. Based on the central

limit theorem, the estimator returns a Gaussian distribution

with sampled mean and sampled variance multiplied by the

number of pending tasks.

Container Assignment (CA): The CA unit is responsible

for solving the TAS problem using the onion peeling and the

continuous time slot mapping algorithms to produce schedul-

ing decisions. When at least one container is empty in the

system, the CA unit first obtains the new workload estimates,

ηi, for each job from the DE unit. The onion peeling algorithm

is then used to estimate the job completion-time, following

which, the continuous time slot mapping method is used to

produce the actual container assignment. However, only the

container assignment for the next time slot will be used since

every time a scheduling event is triggered, the feedback cycle

is repeated and a new assignment is calculated. When the

decision for the next time slot is obtained, it is compared with

the number of containers occupied by each job, and the CA

unit selects a job that has the largest difference between the

new and old assignments to assign the available container.

YARN Integration: We integrate RUSH with the YARN

(version 2.6) by interfacing the CA unit described above

with YARN resource manager (code available in [19]). This

allows the job-container assignment prescribed by CA to be

applied by the resource manager. Since RUSH is integrated

with the resource manager of YARN, RUSH obtains first hand

statistic information of all the jobs and resources. This direct

integration with YARN, bypassing any third party software

makes our prototype light-weight and stable. Figure 2 shows

the enhanced HTTP management interface for the RUSH

Fig. 2. RUSH-YARN enhanced HTTP interface that shows jobs’ target
completion-time and highlights impossible jobs in red (zoom in for details).

scheduler that is able to provide a projected completion-time

for all the jobs. More importantly, when a job cannot be

finished without its utility dropping to zero, the interface

highlights this job (e.g., the red row in Figure 2), thereby

alerting the user to reconfigure job requirements by submitting

a new job configuration XML file.

V. EXPERIMENTAL RESULTS

In this section, we present results evaluating RUSH on a

YARN Hadoop cluster with real-world data sets. To examine

the performance of RUSH, we construct a v2.6 Hadoop cluster

with 48 vCPU cores and 48 GB of RAM. The Hadoop cluster

is built using six virtual machines hosted on heterogeneous

servers including two Dell R320 servers with Intel E5-2470v2

CPU at 2.7GHz, two Dell T320 servers with Intel E5-2470

CPU at 2.3GHz, and two Dell Optiplex desktop computers

with Intel i5-3470 CPU at 3.2GHz.

A. Robustness in the Distribution Estimation

Robustness in scheduling is a fundamental part of our work.

In this section, we present results evaluating the DE unit

described previously. First, we recap the definitions of δi and

θ. The DE unit estimates the worst-case workload distribution

for each job i that is at most δi KL distance away from the

reference distribution. A larger δi allows the DE unit more

margin in selecting the worst-case distribution and makes the

scheduling decisions more conservative. The θ-th percentile

requires the scheduler to allocate more than vi among of

container time slots with a probability higher than θ. We try

to answer two questions: (i) how many task runtime samples

does the DE unit need to produce meaningful distribution

estimation results? (ii) how confident are we in these results?

We construct a Hadoop job with 100 map tasks and 1 reduce

task. Each of these MapReduce tasks lasts for a time that

is randomly generated using a Gaussian distribution with a

mean of 60 seconds and a standard deviation of 20. Since

we know the distribution of the task execution times a priori,
we can evaluate the efficacy of our distribution estimator in

comparison with this ground truth. This job is submitted to

the Hadoop cluster repeatedly for 100 times. During each

run, the Gaussian distribution estimator is used to produce

the reference distribution. In Figure 3, we plot the probability

of the ηi value produced by the DE unit being larger than
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the random workload vi. We can evaluate this probability

because the distribution of vi is known. When the DE unit

only has 25 samples, the produced ηi fails to cover vi with

a probability of θ no matter how conservative δi is. This is

because the DE unit does not have enough samples to construct

an accurate distribution estimation. However, when we have

more than 35 samples, a δi larger than 0.7 achieves the goal.

This implies that among the 101 MapReduce tasks, the DE unit

is able to construct an accurate enough reference distribution

after the first 35 tasks are completed. The RUSH scheduler

has the rest of the 101 MapReduce tasks to correct any

scheduling mistakes made previously. More samples also allow

the scheduling decision to be less conservative by selecting a

smaller entropy threshold δi value.

B. Time-awareness and the Utility Performance

In this section, we present results comparing the timeliness

and utilities achieved by RUSH with the following commonly

used scheduling techniques that are time-aware: (i) FIFO
scheduling, in which jobs are scheduled according to the

order of their arrival time. (ii) Earliest-deadline-first (EDF)

scheduling, in which jobs are scheduled according to the

order of their time budget. (iii) Risk-reward-heuristic (RRH)

scheduling [20], in which scheduling decisions are made based

on the future utility gain and opportunity cost of reallocating

resources. The FIFO scheduler, being the default scheduler

used in most Hadoop implementations, is an important point

of comparison. The EDF scheduling is the optimal policy for

meeting the jobs’ deadlines when jobs are queued in a preemp-

tive queue [21]. However, it does not consider the completion-

time sensitivity of jobs. To the best of our knowledge, the RRH

scheduler is the only job scheduler that considers the different

utility sensitivities of the jobs’ completion-time. Other non-

time-aware schedulers such as the fair scheduler [8] are not

considered because these schedulers do not capture the jobs’

utility value according to their completion time.

To closely emulate a real-world Hadoop cluster, 100 jobs are

created from an equal mix of eight heterogeneous Hadoop job

templates (Movie Classification, Histogram of Movies, His-

togram of Ratings, InvertedIndex, SelfJoin, SequenceCount,

WordCount and Terabyte Data Sorting) with multiple real-

world data sets from the PUMA benchmark suite [22]. These

jobs are submitted to the cluster according to a Poisson arrival

process with mean arrivial time of 130 seconds. To randomize

the runtime of the jobs, each job is assigned with a data set

whose size is randomly selected between 1 and 10 GB. The

Gaussian distribution estimator and the Sigmoid job utility

class are used. The job’s priority W is randomly selected from

1 to 5. 20% of the jobs are time critical jobs whose utility

drops rapidly if the final runtime pass a target completion-

time. 60% of the jobs are time sensitive jobs whose utility

drops gradually. The rest of the 20% jobs are time insensitive.

The runtime of each job is benchmarked with all the resources

available in the cluster. We repeat our experiments for cases

in which the time budget of jobs is varied from 2, 1.5 and 1

times of the benchmarked runtime. The scheduling for these

experiments become more challenging because the deadlines

of the jobs are made tighter.

We define latency as the difference between the actual

job runtime and the time budget. Figure 4 shows the box-

plot statistic information on the latency for jobs that are

completion-time sensitive and critical. As we reduce the time

budget from 2.5 times to 1 time the benchmarked time, the

scheduling problem becomes harder and the performance of

all the schedulers worsens. Please note that RUSH is able

to finish the majority of the completion-time sensitive and

critical jobs even when the jobs’ time budget is equal to the

benchmarked time. This is because RUSH is able to delay the

execution of the completion-time insensitive jobs (not shown

in the figure) and a very limited number of completion-time

sensitive jobs. EDF and FIFO fail to finish the completion-

time sensitive and critical jobs before their time budgets are

depleted because they do not capture the completion-time

sensitivities among jobs and spend unnecessary resources on

executing completion-time insensitive jobs. The fact that EDF

and FIFO only execute one job at a time creates head-of-

line blocking which also prevent completion-time sensitive
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Fig. 6. Distributions of 100 jobs’ utilities with different jobs’ time budget values. They demonstrate that RUSH in general achieves much better utility
values for the jobs because of the lexicographic max-min fairness.

and critical jobs from finishing before their deadline. RRH

is not able to complete the completion-time sensitive jobs

because the design of RRH favors heavily the completion-time

critical jobs. As a result, a few completion-time critical jobs

are completed much earlier than their corresponding deadline

(shown as the lower outliers in the RRH box) at the cost of

the completion-time sensitive jobs.

Finally, we illustrate that RUSH is able to achieve much

better utility values with its robust scheduling design and

lexicographic max-min fairness when compared to the other

schedulers. Figure 6 shows the CDF of the jobs’ utilities

achieved by the examined schedulers. Since the lexicographic

max-min fairness achieved by the RUSH scheduler not only

maximizes the minimum utility, but also iteratively maximizes

the next lowest utility and so forth, the majority of the jobs

receive a higher utility value. We show three graphs each of

which with a different ratio of the time budget to benchmarked

runtime. As this ratio gets smaller, scheduling becomes harder.

RUSH consistently outperforms all other schedulers. This is

reflected by RUSH shifting the CDF curves of jobs’ utilities

to the right hand side for all the three graphs, an effect that is

more pronounced as the ratio of time budget to benchmarked

runtime decreases. Please note that the other schedulers fail to

finish a considerable number of jobs before their deadlines, re-

sulting in those jobs receiving zero utility. For example, in the

third graph, more than 50% of the jobs for the other schedulers

receive zero utility. RUSH successfully minimizes the number

of jobs which receive zero utility because the lexicographic

max-min fairness always tries its best to complete jobs before

their deadlines.

C. Resource Consumption and Execution Time

In this experiment, we measure the resource consumption

and execution time of RUSH hosted by a virtual machine with

8 vCPU cores and 8 GB of memory. Multiple WordCount jobs

with random configurations are submitted to create scheduling

events that have simultaneous jobs varied from 20 to 1000.

Each experiment is repeated 1000 times. Figure 5 shows that

RUSH consumes only 15% CPU cycles and less than 130

MB of memory on average. The average algorithm runtime

increases linearly from 0.32 second to 7.34 seconds. These

results confirm that RUSH is both light-weight and efficient.

VI. RELATED WORK

Scheduling is a fundamental problem for Hadoop-like sys-

tems that share resources among jobs [23]. Task schedulers in

data-processing systems like Hadoop are simple (e.g., FIFO,

Fair Scheduler [7], [8], Capacity Scheduler [9]) and usually

ignore completion-time. Multiple recent works in this area

[24], [25] have addressed job deadlines. For example, Quincy

[24] prevents jobs from missing their deadline by enforcing

that a job which runs for t seconds is given exclusive access

to a cluster no more than Jt seconds when there are J jobs

concurrently executing on that cluster. Similarly, [25] evicts

low priority jobs in order to minimize the chance of high

priority jobs missing the deadline. The above completion-

time aware approaches have very specific heuristic rules that

have no notion of optimality or overall fairness. There also

exists prior works [2], [10]–[12], [26], [27] that perform

task scheduling in data processing clusters with the consid-

erations of dependencies among tasks such as data locality

and network-awareness. However, these approaches require the

scheduler to know the dependencies and their effects on the

jobs’ completion-time. Further, they do not make any formal

guarantees regarding jobs’ completion-time.

Real-time and high performance computing systems do

model the completion-time awareness using individual job’s

utility [20], [28]–[30], with different job deadline types (hard,

soft etc.). For example, the authors of [20] model the jobs’

utility using a piece-wise linear function and scheduling deci-

sions are made based on the future utility gain and opportunity

cost of reallocating resources. Unlike RUSH, these approaches

do not provide any guarantees on optimality. They do not

handle a wide range of utility functions and being heuristics,

and they are not robust in terms of scheduling. While [3]

optimally schedules for completion-time through job utilities,

as mentioned in the introduction, it relies on benchmarking

for job runtime estimates which is prone to error. In contrast,

our main focus is on robustness in scheduling for jobs’

completion-time.

While robust scheduling with uncertainty is a well stud-

ied problem [14]–[16], these proposals are not suitable for

practical systems because their solutions are not specifically

designed for Hadoop-like systems. The complexity of their
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solutions make it unclear how they can be applied to optimize

the completion-time in compute clusters.

In our solution, the workload and runtime distribution is

captured by the very efficient distribution estimator. There is

a body of work in recent years that focuses on the online

estimation of job’s runtime. For example, [4], [31] both

apply linear regression method to perform runtime estimation

for Hadoop jobs. These techniques can be implemented as

distribution estimation classes and integrated into our system.

VII. CONCLUSION

Allocating resources among the jobs to maximize the total

utility in a fair manner is a challenging problem. This is

mainly because of the inherent unpredictability in a shared

infrastructure that necessitates scheduling algorithms that need

to be re-calibrated multiple times during the life-time of a job,

while taking into account the job and cluster heterogeneity. We

address these challenges and present RUSH, which performs

robust, completion-time aware scheduling. Our scheduler is

well integrated with the Hadoop YARN framework and is

ready for wide-deployment. The experimental results indicate

that RUSH can perform completion-time aware scheduling in

a fair, efficient and optimal manner. To further improve the

robustness of the scheduler, we plan to include the estimation

of task failure probability in our future work.
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