
A Reinforcement Learning Approach for Online Service Tree
Placement in Edge Computing
Yimeng Wang, Yongbo Li, Tian Lan, Nakjung Choi

ABSTRACT
We consider the problem of optimally mapping an edge computing
service that is modeled as a tree with multiple processing sub-tasks
and data flows onto the underlying physical network. As new com-
puting and data analytics applications require more complicated
data processing structures, and different types of data (e.g., images,
videos, and numbers) sensed at geographically distributed locations
must be collected and processed to obtain a complex and compre-
hensive result, highly intelligent algorithms are needed to solve this
challenging problem. In this paper, we propose a learning-based hi-
erarchical service tree placement strategy that aims to optimize the
net utility, defined as achieved utility minus network congestion.
The key idea is to decouple a service tree into appropriate sub-trees
each containing a single computing sub-task as well as associated
data flows and to recursively leverage Q-learning to place each sub-
tree while maintaining the dependencies of sub-tasks in the service
tree structure. It enables a scalable solution for large networks with
unknown arrival statistics and complex service structures. Numer-
ical results show that our solution can significantly outperform
baseline heuristics in online service tree placement.

ACM Reference Format:
Yimeng Wang, Yongbo Li, Tian Lan, Nakjung Choi. 2019. A Reinforcement
Learning Approach for Online Service Tree Placement in Edge Computing.
In Proceedings of ACM SIGCOMM 2019 Workshop on Network Meets AI & ML
(NetAI 2019). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
The growing explosion of data generation and consumption at the
network edge, together with new technologies such as Internet of
Things (IoT) and software-defined networking (SDN), has prompted
a rapid shift toward edge/fog computing. The network architec-
ture of edge computing can be broadly described as a hierarchical
model with each layer offering different combinations of comput-
ing/networking resources and performance tradeoffs. The problem
of dividing computation between the different layers and optimally
mapping a service request consisting of multiple processing and
data flow elements onto the underlying physical network is a very
challenging problem.

Consider a simple edge computing application where surveil-
lance cameras upload sequences of images to the edge network

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NetAI 2019, ,
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Mapping service requests onto physical edge net-
work.

for object identification, and the results are returned to different
end-devices. Since the computed result (i.e., object tags) have a
much smaller data rate than incoming image data flows, a greedy
strategy to push the computation closer to the network edge where
the images are captured may seem appealing. However, there are
multiple factors to be considered. First, edge servers/nodes such as
smart routers and set-top boxes often have limited capacities. In
an online environment with dynamic computing request arrivals,
such a greedy approach may quickly saturate (part of) the edge
network, leaving no room to accommodate future latency-sensitive
or traffic-intensive requests that are more crucial for edge process-
ing. Second, the placement problem requires a joint optimization of
both computing and network resource consumption. While push-
ing all computations to a small number of resource-contained edge
nodes is not feasible, to spread computation across the network,
we also need to carefully place the services to mitigate congestion.
Finally, there also exist services with more complex topology and
different data rate requirements, such as image upscaling [10] that
generates higher output data rate than the input. A more intelligent
service placement algorithm is necessary to handle these diverse
service requests on the fly, with respect to resource availability in
the physical network.

We consider the problem of online service placement in edge
computing, to optimize overall net utility defined as the utility
received from admitted requests minus resulting network conges-
tion. Prior work on network service placement problems often
optimize the placement focusing on single task [11], the chain
structure [4], [16], [9], [7] and the tree structure [1], [8], using
various model-based approaches, e.g., game theory [15] and virtual
machine placements [2], [3]. A key feature of our solution is the
use of deep reinforcement Q-learning, which has been successfully
applied to address many network optimizations such as software-
defined network (SDN) routing [6], transmission scheduling [17],
caching [5], and edge network security [14]. Our solution lever-
ages a Q-learning agent to interact with the system environment,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

NetAI 2019, , Yimeng Wang, et al.

select placement decisions (i.e., actions), and improve the decision
makings of service placement according to the experience with-
out knowing the stationary state transition stochastics in the edge
network. Furthermore, it can also adopt to environment changes
during the online training.

One of the challenges in applying Q-learning to the service place-
ment problem is the need to deal with a huge action space. More
precisely, new computing and data analytics applications require
more complicated data processing structures [1]. Different types of
data (e.g., images, videos, numbers, etc.) sensed from geographically
distributed locations must be collected and processed to obtain a
complex and comprehensive result. Take intelligent traffic manage-
ment as an example. The application may require multiple photos,
traffic densities of multiple streets, inter-vehicle communications,
and weather information. The graphic data can be processed first
to recognize a vehicle, then combined with the traffic and weather
information to produce a route prediction or driving guidance. In
this paper, we model an edge computing service request as an ar-
bitrary tree topology (denoted as a service tree), in which each
node represents a computing sub-task and each edge a data flow.
As shown in Figure 1, placing each service tree requires jointly
mapping all sub-tasks and data flows in the tree to proper edge
nodes and links respectively, in the underlying physical network.
It is easy to see that for a network of n edge nodes and a service
tree ofm sub-tasks, the action/decision space has an exponential
size o(nm) even without considering different routing strategies.
Hence, a heuristic or model-based strategy - such as value iteration
method of Markov decision process - either is faced with prohibitive
complexity or cannot adapt to a wide range of service requirements
with the large variety of today’s applications. A highly intelligent
placement strategy is expected to work in an unsupervised fashion.

To address this challenge, we propose a hierarchical service tree
placement strategy. It (i) decouples a service tree into appropriate
sub-trees each containing a single computing sub-task as well as
associated data flows, and (ii) recursively leverages a Q-learning
agent to place each sub-tree on the physical network while main-
taining the dependencies of sub-tasks in the service tree structure.
In particular, the sub-problems to place each sub-tree is efficiently
computed using Q-learning and online training, and then popular
routing strategies such as shortest path and minimum congestion
are employed to solve the routing problem with known placement
decisions. For a network of n edge nodes and a service tree of size
m, our hierarchical service tree placement strategy can effectively
reduce the action space size from o(nm) to o(n ·m), since the sub-
trees are iteratively placed. It makes our learning-based solution
more scalable for large networks and more complex service struc-
tures. Numerical results show that our solution can significantly
outperform baseline heuristics in terms of optimizing overall utility
and congestion in online service tree placement.

The main contributions of this paper are summarized as follows:

• We consider the problem of online service tree placement in
edge computing and propose a learning-based solution that
can effectively solve the joint optimization of received utility
and network congestion on the fly with dynamic service
request arrivals.

• Our solution makes novel use of deep Q-learning and em-
ploys a hierarchical service tree placement strategy, which
decouples the problem and recursively use Q-learning to
place sub-trees. It can effectively reduce the action/decision
space size from o(nm) to o(n ·m), enabling scalable solutions.

• We implement the Q-learning agent and evaluate its perfor-
mance using numerical simulations. The results show that
our proposed solution outperforms the hueristics by up to
35.97% and 25.70% in terms of the total reward and network
congestion.

2 SYSTEM MODEL
Consider an edge network denoted as an undirected graph, G =
(V, E), where each vertex i ∈ V represents an edge node (i.e., an
edge server) and each edge e ∈ E represents a physical link in the
network. Sensors and IoT devices that are connected to these edge
nodes continuously generate data flows. Various service requests
are then (dynamically) submitted to process (a set of) these data
flows to produce results to be consumed by end-devices that are also
located in the edge network. The service placement problem aims
to map a structural request - often represented as a tree [1] [8] [12]
or a chain [13] - onto the physical edge network, as depicted in
Figure 1. More precisely, for a given set of sensors (i.e., sources) and
a given end-device (i.e., destination), the service placement problem
needs to jointly identify (i) a set edge nodes with the necessary
computing resources to compute the request and (ii) a set of links
to connect the edge nodes with the sources and destination for data
transfer. It is easy to see that each edge computing request must be
assigned with both network and computing resources, which are
tightly coupled and lead to a challenging joint online optimization
problem under dynamic request arrivals and departures.

In this paper, we model each edge computing request as a service
tree T . As shown in Figure 2, the leaf nodes of each service tree
denote the sources of related data flows, the root node denotes the
destination of the request, all other nodes represent multiple inter-
mediate computing steps (or sub-tasks, which we use interchange-
ably in this paper) to process the data and produce the final result
for consumption, and each edge in the tree represents required
data flow between sub-tasks. Each computing sub-task requires a
certain amount of computing resources to process one or multiple
incoming data flows and generate a single output data flow for the
next processing step until reaching the final destination (i.e., the
root node) of the request. We note that while each computing sub-
task requires a separate bundle of computing resources, multiple
sub-tasks can be mapped to the same physical edge node, as long
as there is enough computing resource available, eliminating the
need for cross-node data transfer as the traffic is contained inside
the edge node. We consider a virtualized resource sharing strategy,
where the computing resources available at each edge node, e.g.,
CPU, GPU, memory, are bundled into virtual resource containers
(i.e., VMs). In particular, each edge node i ∈ V has a computing
resource capacity constraint withCi containers available. Sub-tasks
can be assigned to node i only if there are free containers available.

We consider an online service tree placement problem, where
edge computing requests (i.e., service trees) are submitted on the
fly, not known a priori. Let uT be the utility if a service tree T is

A Reinforcement Learning Approach for Online Service Tree Placement in Edge Computing NetAI 2019, ,

Table 1: Example of computing requests for different appli-
cations

Request Inputs Output Structure

Video Captioning 625KB/s 625KB/s Line, length 3,
1 source.

Image Upscaling 20KB/s 600KB/s Line, length 3,
1 source.

Traffic Information 64KB/s
4KB/s 20KB/s Tree, height 3,

2 sources.

Image Recognition 600KB/s
1000KB/s 1KB/s Tree, height 3,

2 sources.

Driving Assistant
20KB/s
1KB/s
1KB/s

1KB/s
Tree, height 4,
5 sources,
3 sub-tasks.

Medical Implants 1KB/s
1KB/s 1KB/s Tree, height 3,

2 sources.

1KB/s

20KB/s

1KB/s 1KB/s

600KB/s 1000KB/s 64KB/s 4KB/s

Figure 2: Example request of the driving assistant service.
The circles represent fixed nodes including the destination
(user) and the source nodes. The rectangles represent the
computing tasks which need to be mapped/placed in the
physical network.

accepted and successfully placed. If T is rejected, then no utility is
achieved. Then, under dynamic request arrivals, the goal of service
tree placement is to map sub-tasks and data flows of the new service
trees onto vertices and edges of the physical network on the fly, in
order to maximize the net difference between total utility achieved
and network congestion, under computing resource constraints at
edge nodes.

Some examples of real-world edge requests are shown in Table 1.
Note that some computed results may have very low data rates
(e.g., image recognition labels, etc), we use a default data rate of
1KB/s for those data flows. Consider the driving assistant applica-
tion further illustrated in Figure 2. Two cameras/sources mounted
on the vehicle provide raw input data flows (images or videos) at
rates of 600KB/s and 1000KB/s respectively, which are processed
by an image identification software (i.e., sub-task 1) to identify and
label nearby objects, such as other vehicles, pedestrians, and obsta-
cles. The resulting label is then sent via a much smaller data flow
(e.g., integer indexes of the object labels) at a rate of only 1KB/s.

At the same time, two data flows containing real-time traffic infor-
mation at 64KB/s and weather information at 4KB/s are processed
by another navigation software (i.e., sub-task 2) to calculate route
recommendations at an output data rate of 20KB/s. Finally, by com-
bining results from these sub-tasks, along with GPS location of the
vehicle coming from another sensor at 1KB/s, a driving assistant
software (i.e., sub-task 3) computes the final output to be displayed
on end-device.

While an output data flow from data processing tasks often has
lower data rate as in the driving assistant application, there also
exist opposite examples, where data processing tasks can generate
an output data flows at higher rates. Such examples include image
upscaling [10] and video captioning applications. Therefore, we
consider arbitrary data flow rates in our service tree model, so it is
applicable to diverse edge applications in real-world.

3 PROBLEM FORMULATION
Our goal is to optimize the net utility, defined as total utilities
achieved in the system minus (weighted) network congestion. To
utilize reinforcement learning, the problem is formulated as aMarkov
decision process (MDP), in which the learning agent can interact
with the environment, and learn from the experiences of its behav-
iors. The MDP is described as follows: In any system state, making
an action will generate some reward (i.e., optimization objective),
while the system will transit to another state as a result. The MDP
formulation of the service tree placement problem is discussed next.

System States. A system state consists of current link traffic
loads Lt , remaining edge node capacitiesCt , and target service treeTt
to be placed. We consider a discrete-time model for the service tree
placement problem, where time slots are sufficiently small, such
that there is at most one request arrival in each slot. For a network
with n = |E| edge nodes, we use a n × n symmetric matrix Lt to
denote the link load matrix, where Lt ,(i , j) is the total traffic load
on link (i, j) at time slot t . Next, we bundle multi-resources into
containers on each edge node and use a vector Ct to denote the
currently remaining containers on each edge node, available for
placing new computing sub-tasks. Finally, the target service tree is
defined by its topology as well as resource requirements associated
with each vertex and edge.

Actions and State Transition.At state st = (Lt ,Ct ,Tt), action
at defines the service tree placement decision, i.e., a mapping from
service tree Tt to the edge networkG = (V, E). In particular, each
node k ′ in the service tree beside the root and leafs (which denote
known destination and sources of request Tt) is mapped to some
vertex v ∈ V, and each edge (i ′, j ′) in the service tree is mapped to
some edge (i, j) ∈ E. It is easy to see that for an edge network of size
n and a service tree withm nodes, the action space may have size
o(nm). Later, we will develop an efficient hierarchical placement
strategy to significantly reduce the action space.

Once an action at is implemented, the system state immedi-
ately moves to (L′t ,C

′
t , 0), in which link loads L′t and remaining

computing capacity C ′
t are both updated based on the service tree

placement and the resource requirements of Tt . The new system
state st+1 = (Lt+1,Ct+1,Tt+1) at time slot t +1 is further derived by
removing all requests and their resource consumption that departs
in time slot t . We note that action at is feasible only if there are
enough computing resource available to support the placement of

NetAI 2019, , Yimeng Wang, et al.

Tt . Otherwise, the request Tt is rejected with no changes in traffic
load or remaining capacity, and no utility will be received. Existing
solutions for the MDP problems, e.g., value iteration and policy
iteration, require the quantification of transition probabilities for
all state/action pairs. In this paper, we use deep Q-learning to solve
the problem. The state transitions can be learned by the neural
network, thus analytically quantifying the transition probabilities
becomes unnecessary.

Rewards. The rewards of an MDP is a sum of the immediate
reward and the discounted future reward. With a discount factor
γ < 1, the reward function can be defined as

rt =
∞∑
τ=0

γ τ rim (t + τ), (1)

where the rim (t + τ) represents the immediate reward obtained
at future time slot t + τ . The immediate reward at τ = 0 can be
calculated directly from system state st and action at , by taking
into account the additional traffic load and computation resource
requirement of placing Tt . Our goal is to optimize the net utility,
defined as total utilities achieved in the system minus (weighted)
network congestion. In particular, we consider the maximum link
congestion:

w1(t) = max(L′t), (2)
and the sum utility collected from all active service trees during
time slot t , i.e.,

w2(t) =
t∑

τ=0
uTτ · 1(Tτ , t), (3)

where the uTτ denotes the utility of request Tτ (defined in Section
2), and the 1(Tτ , t) is an indicator function that is equal to 1 if
request Tτ is actively served at time t and 0 otherwise. Thus, using
some tradeoff factors α1,α2 > 0, the immediate reward (i.e., overall
optimization objective) is defined as weighted net utility:

rim (t) = −α1w1(t) + α2w2(t). (4)

4 SERVICE TREE PLACEMENT VIA
REINFORCEMENT LEARNING

We leverage deep Q-learning to solve the online service tree place-
ment problem formulated as an MDP. A reinforcement learning
agent is set up to interact with state evolution in the MDP model.
By observing the system states st and making action decisions at ,
the agent can explore the action space, observe consequences, and
then continuously self-improve according to the experience. It is
easy to see that for an edge network of size n and a service tree
withm nodes, the action space at each time t - which commonly
equals to the size of the output layers of the neural network in
Q-learning - has an exponential size of o(nm) since all sub-tasks
in a service tree Tt are placed jointly. Next, we will develop an
efficient hierarchical placement strategy to significantly reduce the
action space. Our key idea is to iteratively place each sub-task and
its associated data flows using Q-learning, until the entire service
tree Tt is successfully placed. Then, the network reaches a new
state and the corresponding reward is calculated, to update the
Q-learning agent.

We start by considering a sub-task node k in Tt , whose children
are only leaf nodes, i.e., data sources for sub-task k . Let Yk denote

1KB/s

20KB/s

1KB/s 1KB/s

600KB/s 1000KB/s 64KB/s 4KB/s

(a)

1KB/s

20KB/s

1KB/s 1KB/s

64KB/s 4KB/s

(b)

1KB/s

20KB/s

1KB/s 1KB/s

(c)

1KB/s

(d)

Figure 3: Illustrating our hierarchically placement strategy.

𝑡

New Req

Check

State

Input Output

Action

Check

Reward

Learn

𝑡′ 𝑡 + 1

New Req

Figure 4: Illustration of online service tree placement using
Q-learning.

the sub-tree consisting of node k and its leaf children. We note that
sub-tree Yk can be placed before any other decisions of Tt , because
we only need to determine the placement of node k (i.e., to find
an edge hosting the sub-task), while the data flow routing from
given source nodes in Yk to node k can be determined using simple
heuristics such as minimum congestion or shortest path routing. Let
ck denote the computing resource requirement of sub-task k , λi ,k a
vector of its incoming data flow rates from the source child nodes in
Yk , λo,k the output data rate after data are processed by sub-task k .
The placement of sub-tree Yt is determined with respect to system
state st and sub-task related parameters, which are represented as a
seven-tuple Pk = (Yk , λi,k, ck , λo,k , rTt ,dTt ,uTt), with rTt , dTt and
uTt as the destination, duration and utility of the (parent) request.

For given st and Pk , Q-learning implements a neural network
to calculate the Q-values (i.e., achievable discounted reward) for
each action at and use them to guide the decision making. More
precisely, for edge network of size n = |E |, st and Pk are fed into
the input layer of the neural network, and n + 1 Q-values are gen-
erated at the output layer, corresponding to n possible placements
of sub-task k in Yk as well as an additional action to reject Yk . In
Q-learning, the most common decision making policy is Epsilon-
greedy – with a probability ϵ , the action having the highest Q-value
will be chosen, and otherwise, it will pick a random action in the
action space equally-likely. We note that a rejection may also occur
if the assigned edge node i does not have enough computing re-
source to satisfy the requirement ck . When an action is chosen, we
will place sub-tree Yk on the edge network and update link loads
Lt and remaining computing capacities Ct accordingly.

Our hierarchical service tree placement strategy will iteratively
identify such sub-trees using depth-first search and place them on
the edge network. Once a sub-tree Yk is placed, we remove Yk from
the service tree Tt and replace it by a virtual source node with
rate λo,k . This is because as far as later placement decisions are

A Reinforcement Learning Approach for Online Service Tree Placement in Edge Computing NetAI 2019, ,

concerned, Yk simply generates a data flow at rate λo,k that is fed
into the next processing sub-task, as if it is a source node for the rest
of service treeTt . Next, considering the reduced service treeTt −Yk ,
we can recursively use the same procedure and Q-learning agent
to identify another proper sub-tree (e.g., with depth-first search)
and place it on the network, until either (i) the entire service tree
is mapped onto the physical edge network, i.e., Tt reduces to a
single source and a single destination with no more sub-tasks to
consider, or (ii) no feasible placement can be found for some sub-
tree Yk , causing the entire service tree being rejected. Figure 3
demonstrates the hierarchical service tree placement strategy for
the example discussed in Section 2. We note that the proposed
strategy effectively reduces the action space from o(nm) to o(n ·m),
because each sub-tree is now placed separately by recursively using
Q-learning.

Once service tree Tt is processed, either placed or rejected, the
systemwill reach state (L′t ,C

′
t , 0) and subsequently (Lt+1,Ct+1,Tt+1)

at the next request arrival. Using Equations (2), (3), and (4), the im-
mediate reward rim (t) can be calculated if Tt has been successfully
placed. Otherwise, if any sub-tree ofTt is rejected,Tt is denied with
all remaining sub-tasks removed, and zero utilities achieved. The
Q-learning engine will continue to make placement decisions on
the fly and adjust based on the achieved reward. In particular, when
Tt is successfully placed, we evenly distribute its immediate reward
rim (t) to all the state/action pairs that are selected during the it-
erative sub-tree placement process, since all the sub-tree actions
together obtain this immediate reward. Finally, the neural network
is trained by comparing the actual reward obtained from the envi-
ronment, and the estimated Q-values from the output layer. The
general process of online service tree placement using Q-learning
and training is depicted in Figure 4.

5 IMPLEMENTATION
We build an experimental edge network to evaluate the proposed RL
scheme. To simulate a heterogeneous real-world edge network sce-
nario, totally 7 edge nodes, including one personal computer, four
virtual machines, and three RaspberryPis are utilized. We imple-
ment the Image Upscaling, Image Recognition, and Medical Implants
or Video Captioning (recall from Table 1) as the user requests.

The tasks are pre-defined and stored in all nodes. Each task has
the information of source nodes, sub-tasks, input rates, output rate,
duration, and type code. When a job is requested from a node, all
the tasks in the request tree are sent to the centralized controller
which keeps monitoring the bandwidth usages on all links, and
the container occupancy on all edge nodes. The task requested,
bandwidth matrix, and computation slot vector together define the
system state for decision making.

The controller then runs the Reinforcement Learning procedure
to get an action. During the learning procedure, the link congestion
and computation resource occupation evolvements are simulated
between steps. After the learning/decision making process, the
actions are made for all computation nodes the job required.

Request orders are sent to the destination node and all the pro-
cessing nodes. The order message indicates i) the child nodes’ IP
addresses, ii) the IDs of the requested data streams, iii) the dura-
tion of the request, iv) the type code of the process, and v) the ID

15

105

1

1

5

1 1

10

5

1 1

5

1

1

10 5

5

10

5

5

(a) Simulation

10

5

1 1

5

1 5

(b) Implementation

Figure 5: The edge network topologies. Computing capaci-
ties are marked on each node.

of the output data. According to the received order, the destina-
tion/processing nodes send data requests, containing data stream
IDs and the duration, to their logical child nodes.

With the data requests received, the lower-tier nodes provide
data streams to their parent nodes according to the IDs and duration.
The data streams are collected either from the sensors (for leaf
nodes), or from thememories which temporarily store the processed
data (for processing nodes). Once received by the higher-tier nodes,
following the type code, the data streams will be processed. At
the mean time, a message is sent to the controller to update the
container status. The output data will be marked by the output ID,
and stored in either the file system for the destination node, or the
memory for non-destination nodes.

6 EVALUATION
We evaluate our learning-based service tree placement strategy
using the requests listed in Table 1 and on a random edge network
consisting of n = 21 edge nodes with one instance shown in Fig-
ure 5a. For given system state st , we generate a new request Tt
with equal probability, leverage the Q-learning module to make
placement decisions at , and evaluate the resulting reward (i.e., util-
ity gain and network congestion) through simulation. In particular,
we compare our proposed placement strategy, namely Q-learning,
against two baseline strategies, Nearest and Random, i.e., Nearest:
The computation sub-tasks are iteratively placed in nearest feasible
edge nodes, so data are processed as close to network edge (and
data sources) as possible. Random:We randomly place sub-tasks
anywhere between the sources and the destination using a uni-
form distribution. A sub-task is rejected if no nodes with sufficient
resource are available.

We implement a Q-learning module with 6 hidden layers, includ-
ing 1 convolutional layer, 1 pooling layer, and 4 fully connected
layers. The learning rate is set to 0.001, and the discount factor
for future reward is γ = 0.9. To calculate the reward, we set the
weights for network congestion and received utility to w1 = 103
and w2 = 1, thus the total reward is the net difference between
utility and congestion. For instance, assigning a sub-task with unit
utility u = 1 gains zero rewards if the resulted congestion increases
by 1KB/s .

NetAI 2019, , Yimeng Wang, et al.

Q-learning Nearest Random
0

2

4

·104

36,039
37,514

33,052

10,803

14,738 14,492

25,236
22,776

18,560

Utility Congestion Reward

Figure 6: Rewards and breakdown for different placement
policies – Q-learning, Nearest, and Random.

Figure 6 compares the average reward achieved by different poli-
cies, as well as the breakdown of reward into utility and network
congestion. Our proposed Q-learning based service tree placement
strategy achieves the highest reward, which is 10.80% and 35.97%
higher than the two baseline strategies, nearest and random, re-
spectively. Moreover, although the Nearest strategy achieves the
highest utility since it tries to accommodate all service requests as
close to the edge as possible, with the result of low rejection rate
and high network congestion, our Q-learning based strategy can
achieve similar utility value, but significantly reduce the network
congestion by both rejecting resource-costly jobs when needed and
placing all service trees in an prioritized manner. In fact, it is able to
reduce network congestion by 26.70% comparing with the Nearest
strategy. Hence, by jointly considering network congestion and
utility gain, our Q-learning based strategy is able to optimize the
net utility in the online service tree placement problem.

Next, to illustrate why our Q-learning based strategy achieves a
much higher reward than the baselines, we depict and compare the
placement decisions of the three different strategies. In particular,
in Figure 7 we calculate the distance (measured by the number
of hops) between each placed computing sub-task and its data
sources on the network, and plot the distribution of these distances
to visualize the locations of service tree placements. We run each
strategy for 1000 requests and analyze the decisions made by the
three strategies. Figure 7c spread services trees across the whole
network, resulting in longer travel distance for the data flows and
thus high congestion. Depicted in Figure 7b, the Nearest policy
allocates as many sub-tasks as possible close to the source nodes,
with most of the sub-tasks placed at 1-2 hops away from the sources.
However, since there is limited computing resource available at the
network edge, it causes the links and servers at network edge to
quickly saturate, which not only results in high network congestion
and low computing resource availability at network edge, but also
forces future service requests that could have gained more savings
to move away from network edge.

0 1 2 3 4 5 6

131 108 105
27

569

22 38

Hops

F
re
q
u
en

cy

(a) Q-learning

0 1 2 3 4 5 6

213

613

174

0 0 0 0

Hops

F
re
q
u
en

cy

(b) Nearest

0 1 2 3 4 5 6

21
121 132 151

236 209
130

Hops

F
re
q
u
en

cy

(c) Random

Figure 7: The histogram of the distance (in hops) between
the assigned computing node and the sources.

0 20 40 60 80 100

Iteration

R
ew

ar
d

1 layer
2 layers
3 layers
4 layers

Figure 8: Convergence of Q-learningwith different numbers
of layers.

In Figure 7a, the Q-learning based strategy also tends to place the
tasks close to the source nodes, but in a more intelligent, prioritized
fashion. Analyzing the placement decisions, we make a number
of key observations: (i) Those service trees that do not have large
input data flows can be placed in edge nodes farther away from the
sources, without bringing much of a negative impact on network
congestion. In an online setting, this helps release precious edge
resources for future services trees that can benefit most. (ii) Some
tasks such as video captioning and image upscaling have higher
output data rates than their inputs. Thus, it is more beneficial to
assign them to edge nodes close to the destinations, rather than the
sources. Our Q-learning based strategy is able to distinguish these
different traffic patterns and intelligently place each service tree to
maximize reward.

Finally, to demonstrate the effect of neural network size, we
run another set of experiment to compare the convergences of the
Q-learning module with different number of layers. As shown in
Figure 8, training a neural network with 2 or 3 layers have the
similar convergence speed and optimal reward. Fewer or more
layers will negatively affect the optimization results.

7 CONCLUSION
In this paper, we propose a new, multi-step Q-learning method to
solve the problem of online service tree placement in edge networks,
to jointly optimize the received utility and network congestion. Our
numerical results show that the proposed learning-based strategy
outperforms the baselines by up to 35.97% and 26.70% in terms of
the net utility achieved.

A Reinforcement Learning Approach for Online Service Tree Placement in Edge Computing NetAI 2019, ,

REFERENCES
[1]
[2] O. Ascigil, T. K. Phan, A. G. Tasiopoulos, V. Sourlas, I. Psaras, and G. Pavlou.

On uncoordinated service placement in edge-clouds. In 2017 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pages 41–48.
IEEE, 2017.

[3] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca. The dynamic
placement of virtual network functions. In 2014 IEEE network operations and
management symposium (NOMS), pages 1–9. IEEE, 2014.

[4] L. Guo, J. Pang, and A. Walid. Joint placement and routing of network function
chains in data centers. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 612–620. IEEE, 2018.

[5] Y. He, N. Zhao, and H. Yin. Integrated networking, caching, and computing for
connected vehicles: A deep reinforcement learning approach. IEEE Transactions
on Vehicular Technology, 67(1):44–55, 2018.

[6] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo. Qos-aware adaptive routing in
multi-layer hierarchical software defined networks: A reinforcement learning
approach. In 2016 IEEE International Conference on Services Computing (SCC),
pages 25–33. IEEE, 2016.

[7] S. Mehraghdam, M. Keller, and H. Karl. Specifying and placing chains of virtual
network functions. In 2014 IEEE 3rd International Conference on Cloud Networking
(CloudNet), pages 7–13. IEEE, 2014.

[8] A. Pathak and V. K. Prasanna. Energy-efficient task mapping for data-driven
sensor network macroprogramming. IEEE Transactions on Computers, 59(7):955–
968, 2010.

[9] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. Simple-fying middle-
box policy enforcement using sdn. In ACM SIGCOMM computer communication
review, volume 43, pages 27–38. ACM, 2013.

[10] S. Schulter, C. Leistner, and H. Bischof. Fast and accurate image upscaling with
super-resolution forests. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3791–3799, 2015.

[11] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar. Towards qos-aware fog service
placement. In 2017 IEEE 1st international conference on Fog and Edge Computing
(ICFEC), pages 89–96. IEEE, 2017.

[12] U. Srivastava, K. Munagala, and J. Widom. Operator placement for in-network
stream query processing. In Proceedings of the twenty-fourth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 250–258.
ACM, 2005.

[13] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs. Network function
placement for nfv chaining in packet/optical datacenters. Journal of Lightwave
Technology, 33(8):1565–1570, 2015.

[14] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani. Security in mobile edge
caching with reinforcement learning. IEEE Wireless Communications, 25(3):116–
122, 2018.

[15] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein. Dynamic service
placement in geographically distributed clouds. IEEE Journal on Selected Areas in
Communications, 31(12):762–772, 2013.

[16] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani, R. Mishra,
R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan, et al. Steering: A
software-defined networking for inline service chaining. In 2013 21st IEEE inter-
national conference on network protocols (ICNP), pages 1–10. IEEE, 2013.

[17] J. Zhu, Y. Song, D. Jiang, and H. Song. A new deep-q-learning-based transmission
scheduling mechanism for the cognitive internet of things. IEEE Internet of Things
Journal, 5(4):2375–2385, 2018.

	Abstract
	1 Introduction
	2 System Model
	3 Problem Formulation
	4 Service Tree Placement via Reinforcement Learning
	5 Implementation
	6 Evaluation
	7 Conclusion
	References

