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ABSTRACT

In this paper, we propose a novel decentralized learning algorithm,
namely DLLR-OA, for resource-constrained over-the-air computa-
tion with formal privacy guarantee. Theoretically, we characterize
how the limited resources induced model-components selection
error and compound communication errors jointly impact decen-
tralized learning, making the iterates of DLLR-OA converge to a
contraction region centered around a scaled version of the errors.
In particular, the convergence rate of the DLLR-OA algorithm in
the error-free case O(\/%) achieves the state-of-the-arts. Besides,

we formulate a power control problem and decouple it into two
sub-problems of transmitter and receiver to accelerate the conver-
gence of the DLLR-OA algorithm. Furthermore, we provide quanti-
tative privacy guarantee for the proposed over-the-air computation
approach. Interestingly, we show that network noise can indeed
enhance privacy of aggregated updates while over-the-air compu-
tation can further protect individual updates. Finally, the extensive
experiments demonstrate that DLLR-OA performs well in the com-
munication resources constrained setting. In particular, numerical
results on CIFAR-10 dataset shows nearly 30% communication cost
reduction over state-of-the-art baselines with comparable learning
accuracy even in resource constrained settings.
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Figure 1: An illustration of key communication challenges
in a decentralized learning framework: 7 = t for the left and
7 =t +1 for the right.
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1 INTRODUCTION

Recently, distributed machine learning has attracted much research
attention [14, 19] due to the explosive growth of data at network
edge. Federated Learning (FL) [15] and fully decentralized learn-
ing [13] are two widely adopted distributed machine learning ap-
proaches to support intelligent data analytics and learning in edge
computing environments. In particular, fully decentralized learning
[13] is a dominating approach in areas such as the Internet of Vehi-
cles [25], where clients communicate only with their neighbors thus
forming an arbitrary (potentially time-varying) topology without
relying on the coordination of a central server.

While wireless networks are often used in fully decentralized
learning to support the high mobility of edge devices [24], it could
easily become a performance bottleneck due to frequent informa-
tion exchange among the computing clients and the resulting high
communication overhead. Most existing works on communication-
effective learning algorithms employ compression techniques, e.g.,
sparsification and quantization, to mitigate the communication
overhead. Distributed stochastic gradient descent by exchanging
sparse updates instead of dense updates was proposed in [1]. Re-
lated works also include Quantized SGD (QSGD) [2] enabling a
tradeoff between compression and convergence speed, as well as
algorithms [12] increasing local training sessions. However, these
existing works either fail to provide a theoretical convergence guar-
antee, or ignore time-varying network conditions/topologies and
resource constraints in wireless transmission.

To this end, over-the-air computation in decentralized learning
(in contrast to the traditional “communication-then-aggregation”
mechanism) has been proposed to utilize the superposition property
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of the wireless channels to complete aggregation during transmis-
sion in the physical wireless channel [4]. As shown in Figure 1,
over-the-air computation must account for wireless resource con-
straints (e.g., the number of subcarriers and available transmit
power), as well as the dynamism of network conditions and time-
varying topologies, in the learning algorithms. In this paper, we
address a number of key challenges in over-the-air computation: (1)
model-components selection error. In over-the-air computation,
the number of subcarriers among each connection/link might be
limited due to wireless bandwidth constraints. Therefore, only part
of the model parameters can be transmitted to its neighbors in
each step [27], leading to a model-components selection error that
needs to be analyzed. (2) Compound communication errors.
Since wireless channels are noisy, the received model parameters
in over-the-air computation could suffer from compound commu-
nication errors. This requires novel solutions to optimize client
device’s individual transmit power, with the goal of maximizing
resulting model accuracy in decentralized learning. (3) Dynamic
network conditions. The high mobility of edge devices leads to
time-varying network topologies. In addition, the constraints on
communication resources are not fixed due to the unstable network.
The above dynamically changing network conditions make the
communication mode more complicated, which brings challenges
to convergence analysis and optimization of decentralized learning.
(4) Privacy guarantee. Finally, wireless channel noise and over-
the-air computation mechanism also present a unique opportunity
for providing privacy protection in distributed learning. Rigorously
characterizing the privacy guarantee has not been considered.
This paper proposes a novel decentralized learning algorithm,
namely DLLR-OA, for resource-constrained over-the-air computa-
tion with formal privacy guarantee. Firstly, with respect to wireless
channel noise and limited number of subcarriers available for each
wireless link, we theoretically characterize how model-components
selection error and compound communication errors jointly im-
pact the convergence of decentralized learning under the dynamic
network conditions and time-varying topologies. In particular, we
prove that the iterates of DLLR-OA would converge to a neighbor-
hood of the scale of these two types of errors. Next, we formulate an
optimization problem for minimizing the communication error (in
terms of MSE) to accelerate the convergence of DLLR-OA. Decou-
pling into two sub-problems of transmitter and receiver, a power
control problem is formulated and solved through a two-step oper-
ation consisting of scaling and recovery steps. Finally, we quantita-
tively analyze the privacy guarantee for the proposed over-the-air
computation approach. To analyze the privacy-preserving mecha-
nism of network noise, we leverage differential privacy (DP) tech-
nique, and solve the key problem on how to bound L-sensitivity in
this technique through power constraints and inequality transfor-
mation. Intuitively, over-the-air computation can protect individual
information because it completes aggregation during the communi-
cation process, but there is currently a lack of theoretical analysis,
we here use the properties of the solutions to linear equations to
give a formal mathematical support. Interestingly, we show that net-
work noise can indeed enhance privacy of aggregated updates while
over-the-air computation can further protect individual updates.
Our key contributions are summarized as follows:
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e We propose a decentralized learning algorithm, namely DLLR-
OA, for resource constrained over-the-air computation with
formal privacy guarantee.

o The convergence of DLLR-OA is quantified under dynamic
network conditions/topologies, model-components selection
error due to limited bandwidth, and compound communica-
tion errors due to channel noise. We prove that the iterates
of DLLR-OA would converge to a small neighborhood of
the scale of these errors and at a rate of O(—=) in the

VnT

resource-unconstrained setting, suffering no loss in conver-
gence speed compared with state-of-the-arts.

e We provide quantitative privacy guarantee for DLLR-OA
by analyzing how the existence of channel noise enhances
privacy in aggregation of neighboring information and how
over-the-air aggregation protect individual updates from
potential eavesdropping.

e We perform extensive experiments to evaluate the perfor-
mance of DLLR-OA. Numerical results on CIFAR-10 dataset
shows nearly 30% communication cost reduction over state-
of-the-art baselines with comparable learning accuracy even
in resource constrained settings.

2 RELATED WORK

In recent years, decentralized learning that relies on large-scale data
and high-dimensional models often has extremely high demands
on communication resources. Therefore, it is important to study
communication-efficient decentralized learning to obtain higher
performance with limited network resources. Such algorithms in
the decentralized learning literature are based on compression, such
as sparsification [1, 22] and quantization [2, 3], assuming lossless
communication. In practice, however, communication is often lossy
due to unstable networks and limited resources.

Classical model/gradient transmission often suffers from privacy
leakage due to model inversion and reconstruction attacks [7, 9].
Differential privacy (DP) [5] methods can achieve a certain level
of privacy protection within a given privacy budget by adding
noise. Farokhi et al. [6] considered asynchronous collaborative
algorithms for machine learning models with DP settings. Wei et
al. [23] show that the proposed method NbAFL can satisfy DP by
correctly tuning the artificial noise variance. Seif et al. [20] proposed
a FL framework under the local differential privacy and showed that
the superposition property of the simulation scheme is beneficial
for privacy preservation.

Over-the-air computation exploits the superposition property
of multi-access channel (MAC) to ensure that communication and
aggregation can be done simultaneously, which facilitates enhanced
communication efficiency and reduced training latency [4, 18, 21].
In addition, the paper [4] pointed out that the potential eavesdrop-
pers can only access the aggregated updates instead of individual
ones, which can protect private data.

Due to the advantages gradually shown by over-the-air compu-
tation, some works have started to investigate it in conjunction
with various decentralized learning frameworks. Ozfatura et al.
[17] focused on decentralized stochastic gradient descent (DSGD)
taking into account the physical channel characteristics, without
essential results on theoretical convergence. Shi et al. [21] proposed



Communication Resources Limited Decentralized Learning with Privacy Guarantee through Over-the-Air ComputatiodMobiHoc "23, October 23-26, 2023, Washington, DC, USA

an AirComp-based DSGT-VR algorithm in decentralized FL, where
both precoding and decoding strategies at devices are developed
to guarantee algorithm convergence. Unfortunately, this work is
based on the assumption of sufficient available resources, without
considering the poor network conditions. Michelusi [16] presented
NCOTA-DGD to solve distributed machine learning problems over
wirelessly-connected systems. But its assumption that the channels
are noiseless and static cannot be applied to complex networks that
are dynamically changing in reality.

In summary, under dynamic networks and constrained resources,
decentralized learning via over-the-air computation with detailed
theoretical convergence results and privacy analysis has not yet
been well investigated.

3 PRELIMINARIES
3.1 Decentralized Learning Model

We consider the decentralized learning scenario with n clients V =
{1,---,n}, W = (W;j)nxn is a doubly stochastic matrix, W;; > 0
if client-i and client-j can communicate with each other. During
the learning process, time is divided into synchronous rounds. In
each round, client-i receives information aggregated over the air
from all its neighbors, and then updates the model by performing
local training using the aggregated neighbor information and its
own local information.
The general learning problem is as follows:

1 n
D e, [Fi(0.6)] M
=1 — e’
=fi(0)
In this paper, we consider a general dynamic scenario where the
connections between clients can vary arbitrarily after each round.
i.e., The neighboring set Nl.t = {]|le >0,j€V,j+i} of client-i

and weight matrix W! = (‘/Vi;)nxn of clients vary with the rounds.

3.2 Over-the-Air Aggregation

In the above decentralized learning scenario, we complete the pro-
cess of client-i receiving information from all its neighbors client- j
€ Nl.' through over-the-air computation. That is, based on MISO
communication, client-i receives aggregated information from all
its neighbors over the wireless multiple access channel (MAC).

Specifically, each component of the parameters required by
client-i is considered to be carried by one subcarrier of the channel.
Thus, in round t of decentralized learning, the signal in subcarrier-k
received by client-i can be expressed as:

yi k) = " b (kg (k)xk; (k) + nf (k)
JEN}

@

when client-j sends message to client-i through subcarrier-k in
round ¢, bfj(k) is the transmit power scaling factor, hfj(k) is the
channel gain, bf ; (k)xit j (k) is the power of client- j when it transmits
message to client-i through subcarrier-k, and nf (k) is the channel
noise. In this paper, xl.tj (k) represents a component of the local
model of client-j transmitted to client-i via subcarrier-k in round
t. If the model-components of the corresponding coordinates of
all neighboring client models are transmitted to client-i through
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subcarrier-k, the information received by client-i is already aggre-
gated because of the superposition property of the channel.
In Table 1, we summarize the main notations in this paper.

Table 1: Notations and Descriptions

Notations Descriptions

Gl.t The local model parameter of client-i in round ¢
n The step length of algorithm DLLR-OA

€ The budget of DP mechanism

1 The slack variable of DP mechanism

Di The local data set of client-i

T The total round for algorithm DLLR-OA

t The current round for algorithm DLLR-OA

Fi(Qf, ff) The loss of client-i on data sample flt in round ¢

yit (k) The signal in subcarrier-k received by client-i
in round ¢

xl.' j (k) The signal in subcarrier-k sent by client-j to
client-i in round ¢

bf j(k) The transmit power scaling factor

hfj(k) The channel gain

ni (k) The channel noise and nf (k) ~ N(0, a?)

mf The mask generated by client-i based on its local
model-components selection in round #

g The gradient of client-i in round ¢, g = VF; (6!, £})

ﬁ(@f ) The loss function of client-i in round ¢, f,(@f )=

E¢,p, [Fi(6},&)]
ri The model-components selection error of client-i
in round t, rit = ZjENit Wf](Cf(@;) - Gjt)

eit The communication error of client-i in round ¢,
ef = Rl = 5yt WECHY)

rt rt = [r{ ,r,tl]T

¢ et = [e, - eb]”

G! G'=[g},-- . ghl"

H! H' = [VAO),- - V(00T

e e = [0, 04]T e rPxd

4 DECENTRALIZED LEARNING WITH
LIMITED RESOURCES THROUGH
OVER-THE-AIR COMPUTATION

4.1 DLLR-OA Algorithm

With constrained subcarriers, it is often difficult for an arbitrary
client-i to obtain information about all components of its neighbor
models. We consider that for client-i, in each round ¢, it expects
to get as much model-components information as possible from
its neighbors j € Nit according to its model-components selection
strategy. The number of selected model-components depends on
the number of subcarriers of the corresponding channel.

DEFINITION 1. (model-components Selection). Suppose we have
a d-dimensional model 0 € R? and a certain strategy, m € {0,1}% is
a mask generated based on the strategy, we can pick some components
of the current model parameters by 0 © m. And for the l-th component
of 6 © m, we have
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Figure 2: An overview of the process of the DLLR-OA algo-
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Specifically, we assume that for round ¢, the model-components
selection strategy for client-i generates a mask mf , where mf €
{0,1}4. Thus, the aggregated information that client-i expects to re-
ceive from neighboring clients can be expressed as )’ ;¢ N! W.t. (Qt.

mi) = ZjEN' WéCf(@t) where Wt
and client-j at round ¢, Nit = {]|Wl§ > 0,j € V,j# i} is the neigh-
boring set of client-i at round ¢, Git is the local model of client-i at
round ¢ and Cl.t (9}{) = (Gjt. o} mlt ). We next elaborate the learning

process in round t as shown in Figure 2:

is the weight between chent i

e Mask Generation and Transmission. First, client-i finds
the di[ coordinates that may contain more local information
based on the local model-components selection strategy,
then generates a mask mf and transmits it to all neighboring
clients (for all j € N} ).

e Receive and correct the Aggregate Sum of Neighbor-
ing Information Then, every neighboring client-j will get
le (95.) = 95. 0) mf according to the mask mf of client-i. Next,
ideally, client-i will receive every non-zero component of

> JjEN! w; JC ; (Qt) transmitted by client-j € N, lt . However, in

practlce due to the transmit power limitation and the pres-
ence of channel noise, the model component information re-
ceived by client-i carried by subcarrier-k can be represented
as (R)1(k) = 4 () = X jen by (KL ()t (k) + nf (). Tn
this representation, bl? ; (k) is the transmit power scaling fac-
tor, which will be optimized in subsequent parts of this paper.
hg ! (k) is the time-varying channel gain. xl.tj (k) represents
a component of the local model of client-j transmitted to

204

Qiao et al.

Algorithm 1 DLLR-OA

Input: The initial local model 9? e R4 (i=1,---,n), the number
ofsubcarriersall.t (dlt <di=1---,nt=0,1---,T —1), step
length 7 and client-i’s model-components selection strategy
(,' =1,---, n)

Output: Local model 0; (i=1,---,n)

1: forroundt=0,1,---,T -1 do

2. // Receiver Side:

3. for Receiver client-i = 1,-- - , n (In Parallel) do

4 Generate a mask mf based on the local model-components
selection strategy;

5: Send m to client-j, for all j € N;

6: Receive the sum of neighboring clients’ information ﬁlt
through over-the-air aggregation;

7 Correct ﬁt locally to get a good estimator léf of

X W Ct(et );

jEN

s:  Update local model 0/*! = Rl + WL0! — yVF;(6%,&").

9: end for

10:  // Transmitter Side:
11:  for Transmitter client-j € Nl.t (i=12,---,n) (In Parallel)
do

12: Receive mf from client-i, where || mlt li= dlt

13: Compute power allocation coefficients bf j(k) k =
dt)

14: Transmlt bt (k)xt (k) through subcarrier-k (k =
Lty

15: Transmit information related to scaling factors.

16:  end for

17: end for

client-i, bfj(k)xl.tj(k) is the power of client-j when it trans-
mits message to client-i through subcarrier-k, and nf (k) is
the channel noise. _

After receiving (Rit)l(k): client-i can locally correct (Rit)l(k)
to obtain a good estimate (Iéf)l(k) of the corresponding com-

ponent (ZjeN: WUCf(Qt))I(k), and thus use R{ for subse-
quent local model updates.

Local Update Finally, client-i updates its model using the
neighbor information obtained through over-the-air aggre-

gation and local information.

Algorithm 1 shows that client-i can receive signals carried by at
most dit subcarriers at round ¢, where all.t is determined by both the
local model nature of client-i and the number of subcarriers.

REMARK 1. For client-i (i € V), the component coordinates and
subcarriers are one-to-one mapping:

-, ~ 0,
(R)1(k) = {y{(k),

if (mrky =0
if (mrky =1
4.2 Convergence Analysis of DLLR-OA

We next analyze the convergence rate of Algorithm 1. At first, we
present the assumptions for this algorithm, which are widely used
in decentralized learning [13].
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AssumpTION 1. (Lipschitzian gradient). Loss function f;(-)s
are with Lipschitzian gradients. i.e., For VGi(l), Gi(z) € Rd, it holds
that

1VAOM) - VO I L1 6f” - 02 |

AssuMPTION 2. (Bounded variance). The variance of the sto-
chastic gradient is bounded as follows.

E || VEi(6}, &) - V£(6)) II°< of,
E || V£(0) - Vf(O) |I°< 03, Vi

Vi, Vit

AssUMPTION 3. (Symmetric double stochastic matrix). In each
round t, the communication matrix ‘W is a real double stochastic
matrix that satisfies Wt = (WHT, W1, = 1,, and 1L W* =17,

ASSUMPTION 4. (Spectral gap). For any symmetric doubly sto-
chastic matrix W' above, we assume that p; = max{A2(‘W?), A, (W*
< 1. And we write p = max py.

Based on the above assumptions, we can obtain the convergence
result of DLLR-OA as Theorem 1.

THEOREM 1. Let

1-2Ly D ( 1 27nL?p? )
1= > 2=\5 - . ’
2 2 - ppfi - )
(1-p)*(1 (1-p)2
54nL2n?
D3=1- ——
(1-p)?

Ifp? < mln{l, 108an } we have the following result for Algorithm 1:

-—ZEM —ZVfwf) 12+

Dy

T

D, - % B VS - o ) I
5@ 5@
nT

3L2
—pz)Dg
1,17 "
2n@l |2 -E | 0 -
2nTDs

L 3nL%p? 27nL%n?
LS SN L

n (1-p*)Ds (1-p)?Ds3

T-1 T-1

—— ) (BN 2+ Y, a0)

t=0 "~ =0

MSE

E|e°|?

2T(1

2 0 a1y 2
L(Eu@— T®*|I)

+

2L

( 912
nTn

— 4 T —
(1-p)2DsT 2D2nT17

ProoF (THEOREM 1). Due to page limitation, we only outline the
proof and state the important definitions and lemmas in the proof.

Lemma 1 is an important property that is based on the assumptions
on the network topology matrix W'. And its proof idea is similar to
that of Lemma 5 in the paper [13]. With the help of Lemma 1, we can
derive the subsequent Lemma 2 and 3 which are important for the
convergence results.

LEMMA 1. Under Assumptions 3-4 above, we have

‘wl _ t—1+1

T
lef WiW T2, ol B

)}
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Then, we elaborate the model-components selection error in
Definition 2:

DEFINITION 2. (model-components selection error). In round t,
model-components selection error can be written as follow:

n
Ellrt 2= Ellr |

n
— t L nt t 2
= DB D whchoh -0l |l
i=1 JEN}
NG,
And then we rewrite Gl.”l as
o = el 4l 4 Z W0t - nVEi(0F, &)

WlJCf(Qt) is generated by communication
aggregation. And rl.t = ZJENit Wls (Cf(@}t.) - 95.) is caused by model-
components selection. And this rewriting allows the impact of resource
constraints to be represented visually in the subsequent results.

Next, Lemma 2 and Lemma 3 illustrate two bounds, using which
the final convergence results can be directly derived.

(1-p)*
54nL?

t_pt
where €; = R; _ZjeNf

LemMA 2. Ifn € (0,min{1,
above, we have

}), under Assumption 1-4

Z E “ @l‘ n ®t ”Z
T
Bl - Mlig0 |2 _E | ¢* - Inlag |2
<
- (1 _ 54nL2772)
(1-p)*
3n
il Kl
(-1 55
6n2r]20'f 54n21720'22
* 1— p2(1 = 34nLin * (1-p)2(1- 54nL?n?
S ey 2 Ul
54n?n? = 2
+ sy 2 BNV
(- p2(1- i) =
T-1
9
+ n e D E €+ |
( —p)2(1 - (1—;);]2 ) =0

LEMMA 3. Under Assumption 1-4 above, we have

7]—2L7]2 T-1 1 n UT_l ~
T LB D VAE) 1Py Y BN VAE) I
t=0 n i=1 =0
-1

T
<&f(6 2B e @)

+LZE|| "ZEH@’

Substituting Lemma 2 into Lemma 3, Theorem 1 can be further
deduced. O

1n1 2
n®t ”

( +r) |17 +
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Theorem 1 characterizes the convergence rate of the average
gradient of all local optimization variables 91’? and the gradient of
the average local model § with the communication error and the
model-components selection error. We choose an appropriate step
length n in Theorem 1 to derive the following result.

216n?L?

2 (1-p)? and T >

1
——=IfT >
2L+01\T/n fT 2

COROLLARY 1. Letn =
2 2
9n5L4( %, 2%

2
1-p? (1,1,)2)

oy (Ef (6°)-Ef(67)+L)*’

1 & 1 17
Dy-= S E| VA = —— (b 440 |12
7 2 BITIE) - g e

we have

92 412

_ o Al 2Loy
(1 —p)2D3T nT

+ —+
nvVnT
T-1 T-1
1 (2L 01)2) ( ‘2 (1)
—(=+2)) (BN 12+ Y a®)
2D2 vnT n ;;_\,__/ ;

MSE
where the communication aggregation error term and the model-

components selection error term are not included in Bound, :
2

<Bound; + (

Bound, :%(Ef(éo) —Ef(é*)) + Bl e’ ||?

2T(1 - p?)

T T
Lile? |2 -5 || e - 12ler |2 )

n

LZ(E | e —

+
2nTDs3

201 (Ef(éo) —Ef(§%) +L)
vVnT '

In Corollary 1, the bound sharply decreases as the number of
clients n and training round T increase. And it also shows that the
communication error MSE caused by over-the-air aggregation may
inhibit the convergence of the decentralized learning process. We
can also know another fact that if there is no communication error
and no model-components selection error, Corollary 1 indicates a
convergence rate of O( V%T) when T is sufficiently large.

+

4.3 Transmit Power Allocation of DLLR-OA

From the above analysis, we find that the convergence result of
Algorithm 1 may be affected by the communication error MSE.
In this part, we will consider minimizing MSE by proper power
allocation to speed up the convergence.

We assume that the channel state information is only available
at the corresponding transmitter. i.e., only the client-j has the infor-
mation ofhfj = [h,-j(l)t, e ,hl?j(dit)]T in the process of sending
signals from client-j to client-i.

Theoretically, if the transmit power of each client is not limited,

K7
hi; (k)
biased estimate of aggregated neighboring information. However,
when the transmit power of each client is constrained, which is
often a very common situation in real life, it is difficult for the
client-i to receive an unbiased estimate of the transmitted signal.

In round t, all client-j € N, lt optimize their local power allocation

we can set b; J.(k) = to ensure that client-i receives an un-

for transmitting the selected model-components over the dit sub-
carriers to client-i, aiming to minimize the communication error so
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as to achieve a good estimation of ), jeN? WELCt (th_) (or its scaled

ij i
version).

Since the power needs to be re-allocated in each round, in order
to simplify notation, we omit ¢ when it is clear from the context in
the following.

For the neighboring model-components information in the subcarrier-
k (k = 1,---,d;) received by client-i, we introduce the model-
components estimator coefficients {¢; (k) }z’zl (the model-components
estimation error incurred by the lossy communication) to correct
the aggregated information obtained. That is to say, (th k) =
ai (k) ( 2 jen; bij(K)hij(k)xij (k) + ni(k)) is actually an estimator
of (Xjen, Wiij(Hj))I(k) = Y jen; Wijxij(k). Then the aggrega-

tion error in every round can be denoted as:

n d; d;
MSE= " (D (3 laaooby ()b () = Wiglxis(k)* + ) e (k)
i=1 k=1 JjEN; k=1

An intuitive power allocation strategy is to solve the following
optimization problem:

P1: min MSE
a,b
d;
s.t. |bij(k)xij(k)|2 <Ejj, VieV,jeEN;
k=1
ai(k) >0, VieV,jeN,ke{l,---,di}
bij(k) 20, VieV,ke{l,---,di}

Obviously, it is difficult to optimize o, b simultaneously to solve
P1, and a feasible approach [27] is to optimize a,b alternately.
i.e., first initialize b, then find « that minimizes MSE and satisfies
the constraint, then use the obtained « to find b that satisfies the
constraint and minimizes MSE, and so on alternately. This method
not only has a large computational overhead but also requires global
information for each iteration to optimize e, b for each client, which
is difficult to implement in practice.

Therefore, we focus on designing a sub-optimal solution for the
power allocation and the setting of the model component estima-
tion coefficients. In the process of transmitting signals to client-i,
our objective is to minimize the communication aggregation error
with the guarantee that a; (k) ( X jen; bij(k)hij(k)xij(k) +ni(k))
is an unbiased estimate of 3 ;e N, Wijxij(k). Specifically, this opti-
mization problem P2 can be divided into two sub-problems:

In the sub-problem of transmitter-j. Unbiased estimation of
the model-components information is often not possible due to the
constrained transmit power. This makes it meaningful to achieve an
unbiased estimation of a scaled version of the model-components
information. Therefore the goal of the transmitter is to rationally
allocate the available power to get an unbiased estimation of the
scaled version.

P2 (Transmitter-j):
max Gij
{yyyy 7

st GjWijxij(k) = bij(k)hij(k)x;j(k) =0, Vke{1,---,d;}

d;
D Ibij (o)xi; () < Eij,
k=1
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bij(k) 20, Vke({l,---,di}

The first constraint above makes it possible for the transmitter-j
to transmit signals unbiased from the scaled versions of the cor-
responding product of weights and model-components. And the
second and third are the power constraints. By using Karush-Kuhn-
Tucker (KKT) conditions, the solution of the power allocation prob-
lem for transmitter-j can be derived as follows:

In the sub-problem of receiver-i. model-components estima-
tion coefficients {a;(k)}xe(1,... 4;,} need to be set appropriately to
minimize communication errors and to achieve unbiased estimation
of model component information. (The scaled version is appropri-
ately corrected by the model component estimation coefficients to
approximate the unscaled version)

P2 (Receiver-i):

di 2 di
min Z ( Z (ai (k) i jWijxij (k) — Wijxij(k))) + Z ola? (k)
a2 few, k=1

s.t. Z (ai(k)é/iﬂ/l/}jxij(k) —VVijxij(k)) =0, Vke{1---.,di}
JEN;
aij(k) 20, Vke{1,---,di}

The first constraint indicates that the scaled version of the cor-
responding product of weights and model-components with the
adjustment of the model-components estimation coefficients is zero
deviation from the unscaled version. And for given {{ ;kj}, it holds
. Z M/l jXij (k)
* JeN;
<o (k) =
! Z gle‘II]xl](k)

— ©
max

JEN; l] l]

rmn

€N;
We note that in the above, x; j(k) is not available at receiver-i. So
it is wise to use one of the following two considerations as an

approximation to &} (k):
N
s
JEN;
> Wij
i JEN;

TS Wl
JEN;

* T
i =

®)

U

i T

(6)

where 3 l*] or ¥ Wi, szj can be transmitted to receiver-i through
JEN; JEN;
a control channel.

The most important feature of this resource allocation scheme
is that it is considered separately by the transmitter side and the
receiver side. During the communication, the target information is
manipulated in two steps—scaling and recovery—in order to utilize
the available resources sufficiently.

REMARK 2. From the above discussion, ifthe transmit power con-
x3; (k)
Xij )

straints are large enough (E;j > Zk 1 hz Bk

, Vi, j), with scaling

factor {;; and coefficient a; (k) equal to 1, we can recover b;j (k) = W”
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to make each receiver obtain an unbiased estimate of the aggregated
neighboring information. However, a potential possibility of our mech-
anism is able to reduce the variance of the network noise while ob-

w; k
taining an unbiased estimate by transmitting a multiple oij()

and going through a subsequent recovery operation at the recewer
side.

REMARK 3. By solving the sub-problem P2, we obtain the transmit
power scaling factor b;‘j (k) as in eq. (3). One possible solution to solve
P1 mentioned above is to alternately optimize o and b, which may
cause a computational bottleneck. Since we have already obtained
b;‘j(k) by solving P2, can we directly substitute it back to problem
P1 to obtain the optimal a;(k) thus avoiding a lot of alternating
optimizations? If so, after a simple algebraic transformation, the
optimal a;(k) of the P1 problem can be expressed as

> Wijxij(k)
JEN;

ai(k) = ™)

Z §zjmfxlf(k)+_z g*—wuxl,m

However, eq. (7) shows that receiver-i has access to the model com-
ponent information x;j (k) of its neighbors, which is not reasonable in
practice. Therefore, a presumptuous attempt to solve P1 is not feasible.

Moreover, theoretically, if the variance o> of the channel noise

is much smaller than Z % lex,](k) eq. (7) can be considered
Jj€
equivalent to the a} (k) obtamed by solving the receiver sub-problem

of P2 as in eq. (4).

REMARK 4. Due to the unavailability of individual information,
it is also difficult to solve P2 in practical scenarios, which motivates
an approximate solution. The approximation of o} (k) in eq. (4) is
given by eq. (5) or (6), and the corresponding error can be bounded as
follows, respectively:

1 N; N, 1
|oc;5(k)—a;r| < max{ — - l ll*, [Ni]
il X O % &, maxd
JEN; JEN; JEN; JEN;
8)
1 'ZN VVij 'ZN I/Vij 1
% k3 JEN; JEN;
a; (k) — | < max - s -
i) — el < maxd e T S W s Wl maxd
JjeN: TV éN; T jen; T jeN; Y

©)
4.4 Privacy Guarantee of DLLR-OA

In this part, we give an analysis on privacy preservation of DLLR-
OA. First, we introduce some definitions of privacy protection.

DEeFINITION 3. (Privacy Preserving). [26] A mechanism M:
M(X) — Y is privacy preserving if the input X cannot be uniquely
derived from the output Y.

DEFINITION 4. ((£, 8)-DP). Given a dataset with domain D and
range R, a randomized mechanism M preserves (¢, §)-DP if for any
two adjacent datasetsd,d € D and any subset of outputs S C R it
holds that

Pr(M(d) € S) < e“Pr(M(d ) € S) + 6,

where € > 0 is a constant and § is the probability of breaking this
lower bound.
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The Ly-sensitivity of the query function can be used to analyze
DP, we elaborate it in Definition 5.

DEFINITION 5. (La-sensitivity). For a vector-valued function f :
D — RY | the Ly-sensitivity of f is
Ao f = max di) — f(d s
of X, Il f(d1) = f(d2) ll2

where di and dy differ in at most one element.

LEMMA 4. (Gaussian Mechanism). [5] Lete € (0, 1) be arbitrary.
For ¢® > 2In(1.25/6), the Gaussian Mechanism with parameter o >
cAaf e is (& 8)-differentially private.

We consider that each client-i is honest but curious about its
neighboring model-components information. Since over-the-air ag-
gregation makes each client-i receive neighboring model-components
information in the form of an aggregated sum, we first analyze the
privacy performance of Algorithm 1 by considering this aggregated
sum as a whole, which is given by Theorem 2.

THEOREM 2. In round t, Algorithm 1 satisfies (ef(k), 8)-DP for
aggregated neighboring information in any subcarrier-k received by
client-i, where

2hinax Zjent /Eij [ 125
) = ——— X o =2
(e

and hly,, = max hi (k).
ijk Y

ProoF (THEOREM 2). We firstly bound the Ly -sensitivity ofzf(k) =
ZjeNl_: bfj(k)hfj(k)xitj(k). Consider two datasets D and D', Ly-
sensitivity can be expressed as

Ao f
=l 2} (k. D) ~z{ (. D) ||
=1l D bk DR (K)x (k, D) = 7 bE(k, D )hE (k)xt (k, D) ||
JjeNt JeN}

d;
Since Y, |bt.(k)xt.(k)|? < EE., we have |b%.(k)xf. (k)| < JEL..
k=1 1 1 13 ij ij ij

Andh! . = max h;fj (k), then La-sensitivity can be bounded as
i.js

Asz 2hﬁnax Z \[Efj

SNt
JEN;
O

Further, if client-i makes aggregation of neighboring model-
components available to it by some means, obtaining information
about the model-components of one of its neighbors is also impos-
sible, and we give the result in Theorem 3.

THEOREM 3. At round t, for an honest but curious receiver-i, if

t . . . .
IN}| > 1, Algorithm 1 can preserve the privacy of each neighboring
model componentxl.tj(k).

ProoF (THEOREM 3). If client-i has access to aggregation of neigh-
boring model-components by some means, ZjeNi’ bfj (k)hfj (k)xitj (k) =
ZjeNi: ijWijxij(k) is available for client-i.

Under the assumption that |Nlt| > 1, whether client-i receives the
model-components estimation coeﬁ‘icientait (k) in the form of (5) or (6),
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client-i can know all {l’] (k) vj € Nl.t) if and only if l.tjl (k) = itjz (k)
Vj1, j2 € Nl.t and j1 # jo). At this point, ZjeNi’ Wl.z.xl.tj(k) is avail-
able for client-i. However, this single equation has |Nit| unknowns.
Hence, client-i can not have a unique solution for xi’j(k) (€ Nl.’)

since the number of unknowns |Ni’| is greater than the number of
equations, which is 1. O

5 EXPERIMENTS

In this part, we perform extensive experiments to evaluate our work.
The details are shown as follows.

5.1 Experimental Setup

In our experiments, we train ResNet-18 [8] model on MNIST [11]
and CIFAR-10 [10] datasets in different resource-constrained sce-
narios. We evaluate our work against the following baselines with
sufficient available resources:

o Local isimplemented by each client using its own data based
on SGD algorithm, without any communication.

e D-PSGD [13] is based on the SGD algorithm for parallel
training of all clients, considering neither constrained com-
munication resources nor network noise.

e D-PSGD (noise) takes into account network noise compared
to D-PSGD, but is still based on unconstrained communica-
tion resources.

For an arbitrary client-i € V in round ¢, we consider the follow-
ing three model-components selection strategies according to the
number of subcarriers d; of the corresponding channel:

o Strategy-1: Randomly select dl.t coordinates.

o Strategy-2: Select the top—dl.t coordinates corresponding to
the Ly parametrization of the model-components.

o Strategy-3: Select the top—di' coordinates corresponding to
the Ly parametrization of the gradient components.

For all clients in round ¢, we can get decentralized learning systems
with different restriction levels of subcarriers LS by setting different
dl.t < d (i € V), where 6; € R%. Take MNIST dataset in Table 2
as an example, D LS = 1.00, @ LS = 0.50, @ LS = 0.10 indicate
that each client can receive a full model, 50% of model, and 10%
of model information, respectively. And 3) LS = 0.50 means the
clients receiving 75% of models, 50% of models and 25% of models
information are each 1/3. We can compare 2) LS = 0.50 and @) LS =
0.50 to explore the impact of heterogeneous limited subcarriers on

decentralized learning performance. As for the transmit power
limit E? ¢ opeedt (Wi () gy

imit Eij, we let Eij = ﬁ(zk:l(w) ), where f > 1 indicates
excess transmit power, f = 1 indicates proper transmit power, and
B < 1 indicates insufficient transmit power. By adjusting different
B values, we can set different levels of transmit power constraints.
In particular, we satisfy the heterogeneity of the limited transmit

power by adding a Gaussian noise for each f in E:f it Without loss of

generality, we take the variance of the channel noise as o2 = 0.0001
and {h;;j(k)} are independent and identically distributed Rayleigh
random variables with mean 1. In all our experiments, the number
of clients is 12, the batch size is 128, the number of local training
epochs is 5 and the learning rate is 0.001.
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Table 2: Performance comparison of decentralized learning with different restriction levels of subcarriers based on different

model-components selection strategies.

Dataset Restriction level Strategy-1 Strategy-2 Strategy-3
of subcarriers Acc. (%) Average Comm.cost (MB) || Acc. (%) Average Comm.cost (MB) || Acc. (%) Average Comm.cost (MB)
Local 98.46 - 98.46 - 98.46 -
D-PSGD LS=1.00 99.50 2836.55 99.50 2836.55 99.50 2836.55
D-PSGD (noise) LS=1.00 99.49 2836.55 99.49 2836.55 99.49 2836.55
MNIST (@ LS=1.00 99.49 2836.55 99.49 2836.55 99.49 2836.55
(@ LS=0.50 99.42 1404.27 99.44 2804.52 99.51 2324.74
3 LS=0.50 99.36 1416.05 99.03 2761.47 99.48 2322.40
@ LS=0.10 99.58 263.74 98.49 2115.99 99.10 229.92
Local 64.03 - 64.03 - 64.03 -
D-PSGD LS=1.00 83.13 2830.47 83.13 2830.47 83.13 2830.47
D-PSGD (noise) LS=1.00 83.70 2830.47 83.70 2830.47 83.70 2830.47
CIFAR-10 (@ LS=1.00 83.24 2830.47 83.24 2830.47 83.24 2830.47
(@ LS=0.60 80.19 1660.75 82.26 2821.91 82.25 2045.41
3 LS=0.60 79.74 1659.45 79.82 2816.92 82.25 2035.29
@ LS=0.30 75.39 809.32 65.01 2744.09 81.56 1100.48

All the experiments are implemented in PyTorch 1.11.0, Python
3.8, Cuda 11.3. And we run them on a Cloud Server with AMD EPYC
7642 48-core processors and total 4 RTX 3090 GPUs in Ubuntu 20.04.

5.2 Numerical Results

We evaluate our work using metrics: training loss, test accuracy,
average communication cost and communication rounds. In par-
ticular, we explore the effects of the constraints on subcarries and
transmit power separately.

Impact of limited subcarriers. On the MNIST and CIFAR-10

datasets, we compare the impact of limited subcarriers on decen-
tralized learning under three different model-components selection
strategies within 100 communication rounds.
As shown in Table 2, in general, the smaller the average number
of subcarriers, the lower the test accuracy. The results show that
the test accuracy of decentralized learning in resource-constrained
situations outperforms that of fully local training method Local.
For example, on CIFAR-10, the average test accuracy of 3 LS =
0.3 under the three strategies improved by 9.96% over that of Local.
Furthermore, when the average restriction levels of subcarriers are
same, the test accuracy of decentralized learning is lower with het-
erogeneous subcarrier restrictions (d; may be different for varying
i). Take (2) and () on CIFAR-10 with Strategy-2 as an example, the
case (3 with higher heterogeneity is 2.44% less accurate than the
test results of (2). Further, the results show that transmitting the
partial model rather than the full model determined by a proper
model-components selection strategy is a communication-efficient
mechanism. On MNIST, this mechanism achieves an accuracy com-
parable to traditional D-PSGD on the basis of reducing the commu-
nication cost by 91.89%. On CIFAR-10, it reduces the communication
cost by 61.12%, bringing only 1.57% accuracy reduction.

Impact of limited transmit power. On MNIST and CIFAR-10,
we compare the impact of limited transmit power on decentral-
ized learning under three different model-components selection
strategies within 100 communication rounds. Note that here the
number of subcarriers is also restricted, and the restriction levels
correspond to (2) LS = 0.5 for MNIST and (2) LS = 0.6 for CIFAR-10
in Table 2.

As shown in Figure 3-4, proper transmit power (ff = 1.0) or excess

uuuuu nist st
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lection Strategy-1 lection Strategy-2 lection Strategy-3

Figure 3: Test accuracy comparison of decentralized learning
with different power limits on MNIST.
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(d) model-components Se-(e) model-components Se-(f) model-components Se-
lection Strategy-1 lection Strategy-2 lection Strategy-3

Figure 4: Performance comparison of decentralized learning
with different power limits on CIFAR-10, with test accuracy
on the top and training loss on the bottom.

transmit power (f = 1.5) leads to a faster convergence rate and
a higher test accuracy than insufficient transmit power (f = 0.5).
In particular, under model-components selection strategy-3, the
excess transmit power (f = 1.5) enables decentralized learning with
the limited number of subcarriers to reduce the communication
cost by 29.04%, compared with D-PSGD and D-PSGD (noise) on
CIFAR-10. However the accuracy of them is about the same. This
result is due to the fact that during the communication process,
the SNR is improved by amplifying the signal, thereby reducing

209



MobiHoc ’23, October 23-26, 2023, Washington, DC, USA

the impact of noise after subsequent recovery operations at the
receiver side.

6 CONCLUSION

In this paper, we proposed the DLLR-OA algorithm integrating the
communication resources allocation and privacy guarantee. Theo-
retically, we characterized the inhibition of the model-components
selection error and compound communication errors caused by
communication resources constraints on the convergence of decen-
tralized learning. And we accelerated the convergence by designing
an efficient resource allocation scheme. Moreover, we provided
quantitative privacy guarantee with the help of differential privacy
techniques and over-the-air computation mechanism. To further
evaluate our work, we conducted sufficient experiments to show
the possibility to achieve a high accuracy under communication
resources constrained settings.
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