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Abstract. Communication protocol security is among the most signif-

icant challenges of the Internet of Things (IoT) due to the wide variety

of hardware and software technologies involved. Moving target defense

(MTD) has been adopted as an innovative strategy to solve this problem

by dynamically changing target system properties and configurations to

obfuscate the attack surface. Nevertheless, the existing work of MTD pri-

marily focuses on lower-level properties (e.g., IP addresses or port num-

bers), and only a limited number of variations can be generated based

on these properties. In this paper, we propose a new approach of MTD

through communication protocol dialects (MPD) - which dynamically

customizes a communication protocol into various protocol dialects and

leverages them to create a moving target defense. Specifically, MPD har-

nesses a dialect generating function to create protocol dialects and then

a mapping function to select one specific dialect for each packet during

communication. To keep different network entities in synchronization, we

also design a self-synchronization mechanism utilizing a pseudo-random

number generator with the input of a pre-shared secret key and previ-

ously sent packets. We implement a prototype of MPD and evaluate its

feasibility on standard network protocol (i.e., File Transfer Protocol) and

internet of things protocol (i.e., Message Queuing Telemetry Transport).

The results indicate that MPD can create a moving target defense with

protocol dialects to effectively address various attacks - including the de-

nial of service attack and malicious packet modifications - with negligible

overhead.
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1 Introduction

The Internet of Things (IoT) refers to the concept of a large number of smart
objects and devices connected to the Internet, offering diverse capabilities, such
as sensing, actuating, processing, and communication. It integrates and relies on
various enabling components, e.g., software, application libraries, middleware,
embedded systems, and network artifacts. Any vulnerability in these components
would lead to exploitations to create serious threats - such as the denial of service
attack and reconnaissance attack- to the IoT system.
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The Moving Target Defense (MTD) has been developed as an effective de-
fense strategy to dynamically (and randomly) change the properties of configura-
tions of a target system while maintaining its essential functionalities to diversify
its defense mechanism and obfuscate the resulting attack surfaces. It significantly
increases the work factor of an adversary to launch an effective attack towards
a constantly evolving defense. System attributes (and thus the potential attack
surfaces) that can be dynamically changed to confuse attackers include instruc-
tion sets, address space layouts, IP addresses, port numbers, proxies, virtual
machines, and operating systems [5]. Existing work on MTD has primarily fo-
cused on low-level attributes, such as instruction set randomization [4, 13] and
address space layout randomization [11, 30]. Some other MTD methods target
network-level features, such as IP address randomization [2, 12], virtualization-
based MTD [26] and software-defined networking based MTD [19, 34]. However,
considering the security of communication protocols in IoT, these MTD meth-
ods cannot achieve desired defense diversity against potential attacks, as the
low-level protocol properties to be mutated (e.g., IP addresses or port numbers)
are minimal.

In this paper, we propose a new approach for communication protocol MTD
through protocol dialects, denoted by MPD. Our key idea of MPD is to au-
tomatically create many protocol dialects, which are variations of the target
protocol created by mutating its handshake and message formats while keeping
the communication functionalities unchanged. By selecting different protocol di-
alects and switching between them on the fly, we craft an MTD solution with
substantially boosted diversity in communication. In order to enable easy man-
agement of dialects, our proposed solution also leverages distributed hash and
keyspace partitioning to allow adding, removing, modifying any protocol dialect
independent of others in MPD. We show that MPD requires very low overhead
and is suitable for lightweight communication protocols in IoT using client-server
architecture, e.g., File Transfer Protocol (FTP) and Message Queuing Telemetry
Transport (MQTT). These protocols are usually lightweight and focus on data
exchange efficiency while offering very limited security mechanism [3, 24]. We
argue that vigilantly customizing protocol dialects for higher-level features such
as handshake and message format is crucial for directly protecting IoT security
from potential attacks, especially for insecure communication channels in IoT
that adversaries frequently target.

At the core of creating customized packet dialects, the critical problem is to
design appropriate dialect generating functions that are easy to implement and
will not introduce a high computational cost. Manually creating dialect tem-
plates is costly and also unrealistic for a huge program. Apart from that, we
need to consider how to make the automatically created dialect applied on each
packet vary following a random and unpredictable pattern. Only by increasing
the uncertainty of the moving target can our approach help improve communica-
tion security. We propose two types of dialect generating functions - targeting at
handshake and message format, respectively - to automatically create a number
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of protocol dialects as candidates for MTD. During communication, different
dialects will be selected by a mapping function and applied to every handshake
to dynamically change the defense properties, thus varying the attack surface on
the fly. Furthermore, to deal with potential disruptions and attacks on the com-
munication channel, we design the self-synchronization mechanism motivated
by the self-synchronizing stream cipher [23] to ensure that the server and clients
in an IoT system always return to a synchronized state after a limited error
propagation.

The main contributions of our work are as follows:

– We propose MPD , an automated and self-synchronous framework for cre-
ating and leveraging protocol dialects for effective MTD in IoT communi-
cations. Given a specific protocol, MPD can automatically generate enough
dialects per user needs and apply them to certain packets/handshakes during
communication to improve security.

– MPD leverages distributed hash and keyspace partition for easy dialect man-
agement. It also implements a self-synchronization mechanism. Packets are
cached and used in conjunction with a pseudo-random generator to ensure
the randomness and unpredictability of dialects.

– Evaluation using two communication protocols, namely FTP and IoT pro-
tocol MQTT, shows that MPD can efficiently generate a large number of
dialects and dynamically select the dialects for a round of communication
for improved security in IoT systems.

2 Motivation

In this paper, we focus on IoT communication protocols that adopt a server-client
architecture and employ packets for a communication, e.g., FTP and MQTT.
Such protocols often emphasize communication efficiency and offer limited pro-
tection and security. We consider a threat model in which adversaries in an
IoT system can dominate all communications, erase, replay, and replace arbi-
trary control packets between the client and server. In particular, an attacker
can launch the Denial of Service (DoS) attack to exhaust the resources avail-
able at a victim network entity (e.g., a server or a client). This type of attack
can be easily implemented by replaying the system with numerous connection
requests [8] or intentionally keeping all the connections alive on the network
busy [32]. Besides, in our threat model, we also consider malicious modification
of communication. Given a pre-owned privilege, an attacker can modify gen-
uine control packets or inject malformed control packets to launch the command
injection attack [17, 33], and this could undermine the system’s integrity by mali-
ciously disrupting handshakes or guiding a victim to execute unauthorized code.
These attacks can also be indicated by the documented real-world vulnerabili-
ties such as CVE-2019-9760 on FTP and CVE-2016-10523 on MQTT. We note
that the above-mentioned threat models support a proof-of-concept for MPD
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as a promising new direction of MTD in communication security without being
over-aiming for an all-encompassing solution. Therefore, this work serves as an
initial step toward a comprehensive solution based on MTD through protocol
dialects.

Moving target defense (MTD) [25] enables us to create, analyze, evaluate,
and deploy mechanisms and strategies that are diverse and that continually
shift and change over time to increase complexity and cost for attackers, limit
the exposure of vulnerabilities and opportunities for attacks, and increase system
resiliency. Current MTD methods are limited in increasing complexity against
potential attacks because low-level system attributes (e.g., IP addresses and port
numbers) only offer a limited degree of freedom for mutation. Due to the above
reasons, we design MPD , an MTD technique combined with protocol dialect
that leverages more application-layer properties of communication protocols and
efficiently increases the number of variations that we can create.

The goal of MPD is to customize a standard protocol and create a mov-
ing target defense by (i) fabricating desired protocol dialects and (ii) allowing
servers/clients to dynamically select dialects for communication in a synchronous
fashion. We first introduce our definition of protocol dialects as follows:

Definition 1. Protocol Dialect. Given a standard communication protocol, a
dialect in this paper is a variation created by mutating its packets and handshakes
while keeping the communication functionalities unchanged. More precisely, let D
be a set of possible packet mutation functions, such as byte swapping and obfus-
cation. If the standard protocol employs packets {m1,m2, . . .}, then the protocol
dialect corresponding to dn ∈ D (denoted as a dialect generating function) uses
packets {dn(m1), dn(m2), . . .} for communication under the same communica-
tion rules. Thus, each protocol dialect is uniquely defined by a distinct dialect
generating function dn ∈ D.

From the given definition, protocol dialect can increase the variation of sys-
tem attributes to improve communication security. We design a protocol dialect
customization scheme to ensure the evolving of dialects used for every hand-
shake. MPD allows the client and server, who are aware of the same protocol
dialect varying pattern to communicate with each other correctly. Any infil-
trated malicious packets sent by an attacker will be detected and discarded by
the client/server without noticing the mutation pattern.

In order to develop a moving target defense using protocol dialects, the crit-
ical challenge is keeping both client and server synchronized during communi-
cation. Under the ideal circumstance, both sides will follow the same protocol
dialect variation pattern. Thus, the client/server can send and receive pack-
ets using the same dialect during one handshake. However, supposing there are
disruptions in the channel (e.g., losing packets in transmission), the client and
server will lose synchronization without an appropriate synchronization mecha-
nism, leading to the disorder of selecting dialects within coming handshakes. This
paper borrows the idea from the self-synchronizing stream cipher and redesigns
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Fig. 1: MPD System Diagram.

its key mechanism in MPD . We use previously sent packets as the reference to
guarantee that the dialect selected by the client and server will rematch after a
limited time of error propagation when disruptions or attacks happen.

3 System Design

MPD consists of three major modules: (i) Moving Target Customization (MTC),
(ii) Self-Synchronization Mechanism (SSM), and (iii) Protocol Dialect Manage-
ment (PDM). Its architecture is illustrated in Figure 1. When commands (e.g.,
GET command to retrieve a file or LS command to display a local directory
in FTP) are received by a client, PDM automatically selects a protocol dialect
(with a dialect index n) for the corresponding packets, and SSM ensures that the
server and the client remain synchronized with respect to the dialect they decide
to use. We note the dialect selections must be unpredictable to eves-droppers
in order to prevent attacks on the protocol dialect, such as the denial of service
attacks and command injection attacks. To this end, a pair of pseudo-random
number generators that are self-synchronous are employed by SSM at the server
and the client, respectively. Then, the consistent hashing mapping function is
used in PDM to map the output of such pseudo-random number generators to
proper dialect index n. Next, PDM instructs MTC to generate customized com-
munication packets using the selected dialect generating function dn – which
are pre-installed on the server and the client – and send those packets to the
receiver. In particular, the sender’s MTC module applies dn on each out-going
packet while the receiver’s MTC module employs its inverse function d−1n to
destruct the dialect and recover the standard packets for processing at the re-
ceiver.
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3.1 Moving Target Customization

In our system, the MTC module can utilize any function dn to create protocol
dialects, as long as (i) dn can sufficiently (i) mutate any communication packets
m and (ii) the inverse d−1n exists and can be used to recover the original packets
m, i.e.,

m′ = dn(m) and m = (dn)−1(m′), ∀m, (1)

where m and m′ are the original and customized packets containing application
layer information. To demonstrate the key ideas, we design two groups of dialects
which are (i) shuffling dialect and (ii) packet-splitting dialect.

Shuffling: The shuffling function aims to generate various protocol dialects
by switching randomly selected segments from the original packet. Assuming a
total number of s switching-available segments within one packet, the mutations
that we can create are the permutation of the s segments. Each of these per-
mutations is considered as one specific dialect. In practice, we often carefully
select the subset of mentioned permutations to achieve better performance, as
not the shuffling of every available segment will be valid given the possibility that
some segments contain the same information or vital information that cannot
be arbitrarily moved.

Example 1: In this example, we illustrate byte-shuffling by defining three
parameters, i.e., position, length and offset. Position decides starting byte of
first segment. Offset is the distance between starting bytes of two segments.
Length determines the length of two segments. We used p, l and o to denote
those three parameters accordingly. The dialect index n for bytes-shuffling maps
to the available combination of three mentioned parameters, noted as n(p, l, o),
which is predefined. Meanwhile, letting m be a packet of k bytes, we denote
its i byte by m(i) for i = 1, 2, . . . , k. A segment of the packet m from ith to
jth is denoted as m(i, j). Therefore, we describe the bytes-shuffling function as
following:

dn(p,l,o)(m) = [m(1, p)||m(p+ o, p+ o+ l)||m(p+ l, p+ o)||
m(p, p+ l)||m(p+ o+ l, k)]

= m′,

(2)

where || denotes the separation of two segments within a packet. In equation,
m(p, p + l) and m(p + o, p + o + l) are the two segments shuffled by function
dn(p,l,o). The final result is the customized packets m′. In order to destruct the
dialect and retrieve original packet m on receiver side, we need to employ an
inverse function of (d(p,l,o))

−1, which is:

(dn(p,l,o))
−1(m′) = [m(1, p)||m(p, p+ l)||m(p+ l, p+ o)||

m(p+ o, p+ o+ l)||m(p+ o+ l, k)]

= m.

(3)

Since three parameters will be synchronous for both sides during communi-
cation, we can locate two segments we need to shuffle back and then recover the
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original packets. By using the bytes-shuffling function and its inverse function,
we can automatically generate the desired number of dialects for packets.

Packet-splitting: The second type of dialect is packet-splitting dialect. This
will generate protocol dialects by splitting a single packet into several sub-packets
of any length (smaller than the original packet). In each sub-packet, the lower-
layer header remains, but it only carries part of the application layer information
of the original packet. Considering that each sub-packet will receive its corre-
sponding response from the receiver, it breaks one handshake into several hand-
shakes. Therefore, the packet-splitting dialect will change the original handshake
pattern into a customized one with multiple handshakes.

Example 2: In this example, we split one single packet into four sub-packets.
We introduce three predefined parameters t1, t2 and t3 to denote the length of
first three sub-packets correspondingly. Since the original packet has the fixed
message length k, the length of the last sub-packets is equal to k−t1−t2−t3. The
combination of every four sub-packets is a new dialect. Therefore, we describe
the packet-splitting function as following:

dn(t1,t2,t3)(m) = dn(t1,t2,t3)([m(1, t1)||m(t1, t1 + t2)||
m(t1 + t2, t1 + t2 + t3)||m(t1 + t2 + t3, k)])

= [m′1||m′2||...||m′4],

(4)

where m′i denotes each sub-packet created by function dn(t1,t2,t3). Each sub-
packet accordingly contains a segment of the information from original packet.
In order to retrieve the original packet m from each sub-packet, receiver need to
leverage inverse function (dn(t1,t2,t3))

−1 to merge all received sub-packets, which
is:

(dn(t1,t2,t3))
−1([m′1||m′2||...||m′4]) = (dn(t1,t2,t3))

−1([m(1, t1)||m(t1, t1 + t2)||
m(t1 + t2, t1 + t2 + t3)||m(t1 + t2 + t3, k)])

= m.

(5)

Each index indicates one specific combination of three defined parameters
t1, t2 and t3. With different dialect index n, the length of the sub-packets will
be different. Due to the synchronization mechanism of protocol dialect, both
sides will synchronize and generate the same dialect index n during the commu-
nication. Hence, we can collect all the sub-packets and merge them to recover
original packets.

3.2 Self-Synchronization Mechanism

Dialect selection by the server and client must be unpredictable to any eves-
droppers and yet remain synchronized to ensure the proper functioning of the
communication protocol. To this end, we propose a mechanism that leverages
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Fig. 2: An illustration of the proposed self-synchronization mechanism.

a pseudo-random number generator to create randomness for selecting random
dialects. Similar to the idea of self-synchronizing stream ciphers, we make future
dialect indexes depend on past packet values to allow the server and client to
self-synchronize even under packet erasures/modifications.

We cache one past packet (denoted by mi−1) in a local buffer at the server
and the client, i.e.,

Mi = mi−1. (6)

The Keyed-hash function is widely used in the keyed-hash message authen-
tication code (HMAC). However, we note that rather than using the keyed-hash
value for message authentication, we consider it as a pseudo-random number
that can be securely generated by the client and server and compute the current
dialect index from the keyed-hash value. Therefore, next, we leverage the keyed-
hash function to produce a pseudo-random number based on a shared secret key
K known to both the server and client. For a current cached message Mi and
shared secret K, the keyed-hash function will generate a pseudo-random number
S from Mi.

More precisely, we present the keyed-hash function we used in our implemen-
tation as following:

S = H((K ⊕ opad)||H(K ⊕ ipad)||Mi)

= H((K ⊕ opad)||H(K ⊕ ipad)||mi−1),
(7)

where H is cryptographic hash function such as MD5, and ⊕ denotes bitwise
exclusive or (XOR). According to RFC 2104, outer padding opad consists of
repeated bytes valued 0x5c, and inner padding ipad consists of repeated bytes
valued 0x36. As shown in equation 7, the input becomes shared secret key K
and cached past packet Mi, and those work as random seed for each iteration.

The modified keyed-hash function used in this paper is just one among many
possible candidates from the available pseudo-random functions family. Due to
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the security properties provided by keyed-hash functions, the resulting pseudo-
random number S is unpredictable to any eves-dropper who does not have access
to the shared secret key K. It is also apparent that the server and the client will
eventually resume synchronization even under packet erasures and modification.
As illustrated in Figure 2, as long as the past packets stored in local buffers
are the same for both client and server, their pseudo-random number genera-
tor would compute the same pseudo-random number. Now the self-synchronous
property is realized between client and server and can always be achieved if
making the final dialect index depend on past packet values.

We note that similar to self-synchronizing stream ciphers, caching more than
one previous packet and concatenate them as new Mi will leverage the contents
of previously sent packets, which increases the complexity of modified keyed-hash
function (i.e., equation 7) and efficiency against brute force attacks aiming at
the self-synchronizing mechanism. In contrast, it takes longer to re-synchronize
the server and the client under network errors.

3.3 Protocol Dialect Management

Finally, we need to map the pseudo-random number got from equation 7 to
dialect index n. We implement the idea borrowed from consistent hashing in
keyspace partitioning. Keyspace partitioning originally aims at mapping keys
to nodes in a distributed hash table. We keep the concept but replace the keys
with the pseudo-random number we had and nodes with protocol dialect indexes.
Therefore, we design consistent hashing mapping that treats protocol dialect in-
dexes as points on a circle, and δ(n, n + 1) is the distance between two points,
which is traveling clockwise around the circle from index n to n + 1, as shown
in Figure 3. Assuming the pseudo-random number value is S and distance δ be-
tween every two indexes are equally distributed, in this case, consistent hashing
mapping is presented as following:

n = S//(Smax//nmax + 1) + 1, (8)

where Smax is the maximum pseudo-random number value we can generate, and
// denotes floor division. Considering that the total number of protocol dialects
is nmax, we can decide the certain dialect with index n that should be applied
to the current packet by computing equation 8.

Due to the different protocol dialects that we created, consistent hashing
mapping gives us the flexibility to add new dialects or drop existing dialects.
Without making significant changes in the mapping function, we can minimize
the update of equation 8 and thereby increase the efficiency of the design.

Example 3: Given the example illustrated in Figure 3, the circle in this figure
represents the range of pseudo-random numbers ranging from 0 to Smax. We
have four existed dialects in use shown in Figure 3 (a), and each of them takes
a quarter of the circle. Assuming that we add a new dialect 5 as a candidate, in
equation 8, the only changed parameter is the total number of protocol dialects
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Fig. 3: Consistent hashing mapping before (a) and after (b) adding new dialect.

nmax, which should increase from 4 to 5. Representing in Figure 3 (b), the
distance δ will decrease to δ′ which is one-fifth of the circle. Therefore, we can
update nmax value in the equation without modifying any parameters else and
thereby mitigate the impact made by adding/dropping of dialect in our system.

3.4 Security Analysis

IoT protocol MQTT is widely applied in many popular IoT applications, such as
IBM Watson IoT Platform and AWS IoT services. Four phases are in an MQTT
session: (i) connection, (ii) authentication, (iii) communication, and (iv) termi-
nation. After establishing the connection by creating a TCP/IP connection with
the server (broker) on a predefined port, the client will send the CONNECT
packet that includes user identification to start the MQTT communication. In
this step, an attacker can launch a Denial of Service (DoS) attack by sending
many CONNECT requests continuously and thereby maliciously making the
server busy as in requests flooding, which impairs the availability of the sys-
tem [7]. As the server is not able to differentiate the normal CONNECT and
the malicious CONNECT packets, on receiving the flooding request messages,
the broker starts to acknowledge all with CONNACK message. Assuming many
connection requests that arrive simultaneously, the server’s buffer will be drained
out, and the server will not be capable of processing new incoming requests. In
our design, we will apply the MPD on CONNECT packets. Before the server
receiving incoming CONNECT packets from the client, the system will check
whether the dialect index of the current packet matches that of the server. For
malicious CONNECT packets, no dialect will be applied, and therefore they will
fail the dialect index check. In this case, the server will refuse to start MQTT
communication when receiving malicious request messages, saving its resources
for processing valid requests.

Attacks such as command injection attacks and cipher suite downgrade at-
tacks can intentionally erase or alter the communication packets on a public
channel, damaging the integrity of communication. In the light-weight controller
area network (CAN) protocol, a message-based IoT protocol designed to allow
microcontrollers and devices to communicate with each other’s applications, no
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encryption or authentication is initially applied due to their high cost. Thus,
it is vulnerable and threatens by safety issues such as command injection at-
tack [17]. In this type of attack, attackers will use reprogrammed electronic
control units (ECU) to send malicious packets to the CAN bus. These malicious
packets are fabricated and injected with forged ID and data to distract vic-
tim ECUs or make them execute malformed actions. For some other protocols,
a standard mechanism such as SSL/TLS can be used to protect communica-
tion security. However, aiming to vulnerability existed in SSL/TLS, man in the
middle (MITM) attackers can launch cipher suite downgrade attacks by aban-
doning the ClientHello packet sent by the genuine client and replacing it with
a malformed packet containing lower-version TLS [16, 31]. In consequence, the
server will start the communication with the client using insecure lower-version
TLS. We propose the MPD that will guarantee the evolution of packet dialect
patterns during communication. Even though an attacker leverage the fetched
information to launch an attack, malicious packets such as command injection
packet or lower-version ClientHello packet will not be processed by the target
because they cannot match the dialect evolution pattern of the receiver without
acquiring knowledge of MPD .

In the above threat models, if packets are missing in an unstable commu-
nication channel or maliciously erased/altered by an attacker, it will affect the
current packet in communication and drive the moving target defense of the
client and server into an asynchronous state. The self-synchronization mech-
anism in our proposed solution guarantees the resilience of our system under
packet erasures and modifications. Supposing there is a packet missing or mod-
ified, according to Equation (7), it will only affect the dialect selection of the
next packet (i.e., causing the server and the client to select different dialects for
the next packet). Thus, such an error only propagates once. The server and the
client will resume synchronization after a short, finite, and predictable transient
time (when the erased or corrupted packet moves out of the local buffer).

As shown in Figure 2, supposing the packet PKT #2 is missing/erased, when
transferring the PKT #3, previously cached packets stored in the local buffer of
both sides are different. The sender assumes PKT #2 was successfully sent and
updates it into its local buffer, while the cached packets in the receiver’s local
buffer remain unchanged. The total number of past packets we cached is one,
and therefore the error will propagate for only one handshake from PKT #2
to PKT #3. After that, the sender and receiver return to a synchronous state
again as the cached error packets move out of their local buffers. We note that if
expanding the total number of cached packets in the local buffer to h, the error
will propagate for h handshakes accordingly.

4 Implementation

We implement a prototype of MPD on FTP and MQTT, which includes the
following main components.
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Table 1: Examples of byte-shuffling dialect evolution pattern, including dialect
index and parameters for the dialect generating function, computed for different
FTP GET commands.

Original packet Customized packet Index Position Length Offset

rget,sample.txt r,etgsample.txt 8 1 1 3

rget,sample.txt tger,sample.txt 7 0 1 3

rget,blog.css etrg,blog.css 4 0 2 2

rget,template.pdf etrg,template.pdf 4 0 2 2

Table 2: Examples of packet-splitting dialect evolution pattern, including dialect
index and parameters for the dialect generating function, computed for different
FTP GET commands.

Original packet Customized sub-packets Index
Length

Pkt1 Pkt2 Pkt3 Pkt4

rget,sample.txt [r][ge][t,][sample.txt] 6 1 2 2 10

rget,sample.txt [r][ge][t][,sample.txt] 2 1 2 1 11

rget,blog.css [r][ge][t][,blog.css] 2 1 2 1 9

rget,template.pdf [rg][et][,][template.pdf] 4 2 2 1 12

Dialect Customization and Management: We implement our dialect customiza-
tion functions (e.g., shuffling-byte) in FTP and MQTT. Its input parameters are
predefined and bundled together. We use indexes to indicate those parameter
combinations. The index is decided by the consistent hashing mapping function
in the PDM module. It determines which dialect is used for each communication
packet.

Pseudo-Random Number Generator: We implement a keyed-hash function as
the pseudo-random number generator. The output pseudo-random number will
be fed into the consistent hashing mapping function to compute the correspond-
ing dialect index.

Self-Synchronization Module: We implement our SSM module and cache one
previous packet, which implies that any network errors will propagate for only
one cycle during communication. The buffer will be filled with one predefined
initial packet at the beginning of the program execution.

5 Evaluation

In this section, we evaluate the performance of MPD and the effectiveness of the
proposed moving target defense.

Experiment Setup: Our experiments are conducted on a 2.60GHz Intel(R)
Core(TM) CPU i7-9750H machine with 16 Gigabytes of memory. The operating
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Fig. 4: Timing diagram of GET command in FTP (a) and CONNECT action in
MQTT (b).

Fig. 5: Results of establishing connection with server by genuine FTP client (a)
and attacker FTP client (b).

system is Ubuntu 18.04 LTS. We perform MTC, SSM, and PTD modules on the
selected communication protocol.

Target Protocol: FTP FTP is a standard network protocol used for the
transfer of computer files between the client and the server. Many FTP clients
and automated utilities have been developed for desktops, servers, mobile de-
vices, and hardware. As a target protocol for our proof of concept evaluation,
FTP offers two main benefits: (i) It is a lightweight protocol having better per-
formance and easier to test, and (ii) it does not have many complex features,
making it easier to customize and analyze.

FTP packet format contains IP header, TCP header, and FTP message con-
tents. We programmed a standard FTP client and server and applied our im-
plementation to them. For instance, when a GET command is received on the
server, the corresponding file (if file exists) or rejection message (if the file does
not exist) will be sent to the client via four handshakes, as shown in Figure 4
(a). After adding the MTC module on both server and client, the packet for
transferring the GET command will be cast into a proper dialect during each
handshake.
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Fig. 6: Packets captured by Wireshark showing error propagation equal to the
total number of previously sent packets cached in the buffer.

Table 3: Self-synchronization mechanism demonstration with missing Pkt #1.

Iteration Client Cached Pkt Server Cached Pkt Status

1 Pkt #1 [Pkt #p] — [Pkt #p] Synchronized, Nothing received

2 Pkt #2 [Pkt #1] Pkt #2 [Pkt #p] Not synchronized

3 Pkt #3 [Pkt #2] Pkt #3 [Pkt #2] Synchronized

4 Pkt #4 [Pkt #3] Pkt #4 [Pkt #3] Synchronized

1 We assume Pkt #1 is erased/missing during communication.
2 Pkt #p is previously sent packet that has already been cached in local buffer.

Table 1 and 2 show byte-shuffling dialect and packet-splitting dialect as well
as the evolution process of key parameters during four consecutive file transfers.
Due to the different pseudo-random numbers being generated for each message/-
packet, the PDM module will map the number into different dialect indexes, re-
sulting in different dialect selections and different input parameters of the MTC
module for customizing packets. On the server-side, after performing the inverse
process, the original packets are recovered, and the server will send the requested
file to the client, as shown in Figure 5 (a).

To demonstrate the effectiveness of our moving target defense, we create an
attacker FTP client that implements a spoofed (and fixed) dialect of the FTP.
The attacker client connects to the FTP server equipped with our moving target
defense and starts fabricating and sending the malicious command to the server
to launch the command injection attack. The result are presented in Figure 5
(b). It is obvious that the command injection attack fails to work. Since the
attacker’s client protocol dialect pattern is fixed, it is unable to understand the
dialect evolution pattern generated in our moving target defense applied on the
GET command. We prove that our method can effectively defend the system
from such attacks.

Next, we evaluate the effectiveness of our self-synchronization mechanism
under erased/missing packets. In particular, we choose to store only one past
packet in the buffer for self-synchronization. As is shown in Figure 6, suppose
that, due to some network error or intentional attack, one GET command packet
before frame #33 gets lost during communication (Thus, this missing packet



MPD: Moving Target Defense through Communication Protocol Dialects 15

Table 4: Evaluating the overhead of designed moving target defense in FTP.

Performance Index Original FTP Modified FTP

System time/sec 0.57 0.60

Elapsed time/sec 42.64 44.53

Percent of CPU this job got 1% 1%

Maximum resident set size/KB 6402 7683

1 System time: time spent in kernel mode while running the

program.
2 Maximum resident set size: Maximum memory space oc-

cupied while running the program.

cannot be captured by Wireshark in the screenshot). As we can observe, for the
second GET command packets that the client sent, which in Figure 6 corresponds
to frame #33, the server generates no response. Till now, the dialect selection at
the client and the server are not synchronized because the previously sent packet
cached in the local buffer is different, resulting in selecting different dialect for
Pkt #2 as shown in Table 3 Row 3. However, starting from the third packet,
which is frame #39 in Figure 6 and Row 4 in Table 3, both sides are successfully
re-synchronized, as the different packets move out of their local buffers after one
(network) cycles, and as a result, the same previously sent packets are again
shared between them. It demonstrates MPD ’s ability to self-synchronize under
packet erasures or in an unstable communication channel.

Finally, we evaluate the overhead of MPD , by comparing it with the execu-
tion overhead of a standard FTP implementation on the server-side, concerning
the network, CPU, and memory overhead. To this end, we use the time com-
mand in the terminal to monitor several performance indexes such as running
time and maximum resident set size. To avoid potential statistical bias, we run
each experiment four times and record the average overhead in Table 4. For
each test, we write a script to execute one billion FTP commands randomly
(e.g., using GET to continuously retrieve a small text file from the server to the
client).

As it is shown in the Table 4, while a number of functions (including dialect
generating function, pseudo-random function, and consistent hashing mapping
function) are added in FTP to support our moving target defense, the overhead
is almost negligible as compared to a standard FTP program. More precisely, the
execution overhead (as measured by elapsed time) increases by 4.43%, while the
maximum resident set size we need compared to standard FTP implementation
increase by 1281 KB.

Target Protocol: MQTT MQTT is a standard lightweight IoT protocol
for transporting messages among IoT devices. Due to its small size, it is designed
to provide efficient message delivery for the network where the bandwidth is
limited. Apart from the similar reasons we mentioned for choosing FTP, we
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Fig. 7: Results of establishing connection with server (broker) by genuine MQTT
client (a) and attacker MQTT client (b).

select MQTT as another target protocol for analysis because it is the typical
IoT protocol used by many IoT devices, and shares many common characters
compared with other IoT protocols.

MQTT usually runs over TCP/IP. Besides IP header and TCP header, an
MQTT packet also contains a fixed header (including control field, e.g., CON-
NECT/CONNACK, and packet length field), variable length header, and pay-
load on the application layer. We programmed a standard MQTT client and
server (broker) and applied MPD on them. The timing diagram of establishing
the MQTT connection is shown in Figure 4 (b). The client will send the CON-
NECT to the server to request MQTT communication. After receiving CON-
NECT packet, server will response with CONNACK to confirm the connection.
We add the MTC module using the byte-shuffling function on both sides, and
thus the CONNECT/CONNACK packet will be cast into an appropriate dialect
during each handshake.

To demonstrate the capability of the modified MQTT system in defending
the DoS attack, we implement an attacker MQTT client that tries to flush the
modified server by continuously sending CONNECT packets with different iden-
tities. The MTC module uses the byte-shuffling function, which will shuffle the
control field with other fields in the CONNECT packet. As shown in Figure 7
(b), the attacker fails to use multiple malicious CONNECT packets to exhaust
the server’s buffer space because these packets will fail the dialect index check
before getting accepted. In contrast, as shown in Figure 7 (a), the genuine client
is able to successfully start communication and publish information on the server
due to their having the synchronized dialect evolution pattern. Therefore, we can
apply MPD on IoT protocol MQTT to prevent the system from some types of
DoS attacks.
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6 Related Work

Pseudo-random number generator: Pseudo-random number generator (PRNG)
is an algorithm for generating a sequence of numbers that have properties approx-
imating the properties of random-number sequences. Since we need to implement
MPD with randomly varying moving targets, the basic idea is using PRNG to
output a random number for self-synchronization and dialect selection. Many
previous works [29, 1, 35, 15] provide us with insight of choosing PRNG, such
as PRNG based on logistic chaotic system [35] and elliptic curve PRNG [15].

Self-synchronizing stream cipher: Stream cipher [10, 28, 20] is a symmet-
ric key cipher where the digits of plain text are combined with a pseudo-random
cipher digit stream (which is the keystream), including two types: (i) synchronous
stream cipher (SSC), and (ii) self-synchronizing stream cipher (SSSC). The latter
uses previous ciphertext digits to compute the keystream. In paper [21], several
alternative design approaches for SSSCs are proposed that are superior to the
design based on the block cipher with respect to encryption speed and security.
Joan Daemen et al. introduce another design approach for hardware-oriented
SSSCs named Moustique [6]. Besides, many other discussions are about SSSCs,
which can be found in papers [14, 23].

Moving target defense (MTD): Plenty of previous works about MTD
have different areas of focus respectively. Some of them are about leveraging
lower-level system configurations, which provide insights into our design. In
OpenFlow random host mutation [12], Jafarian et al. provided an MTD archi-
tecture that transparently mutates IP addresses with randomness. RPAH [18]
achieved MTD by constantly changing IP addresses and ports to realize random
port and address hoping. On protocol level, Ghost-MTD [27] applied mutation
on protocols to achieve MTD, while the protocol mutation pattern should be
pre-defined and pre-shared between client and server.

Security risks of IoT protocols: Internet of things is growing rapidly
and reaches a multitude of different domains such as environmental monitoring,
smart home, and automatic driving. However, many low-end IoT products do not
usually have strong security mechanisms embedded [7, 9]. Hence, threats such as
leakage of sensible information, DoS attacks, and unauthorized network access
attacks bring a severe safety issue to the IoT system [22]. Some researches are
conducted previously to mitigate the threat of attacks targeting IoT protocols
and devices. Besides, in the survey [24], Nebbione et al. provided some basic
ideas for solving the security issues in many IoT protocols.

7 Conclusion

We design and evaluate a novel moving target defense framework, MPD, which
aims to generate customized dialects during communication and dynamically
select different dialects in a self-synchronous manner. Our experiment results
using FTP and MQTT indicate that MPD is able to harden the security while
incurring low execution overhead effectively.
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