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Multi-agent Deep Covering Option Discovery
Jiayu Chen, Marina Haliem, Tian Lan, and Vaneet Aggarwal

Abstract—The use of options can greatly accelerate exploration
in RL, especially when only sparse reward signals are avail-
able. While option discovery methods have been proposed for
individual agents, in MARL settings, discovering collaborative
options that can coordinate the behavior of multiple agents and
encourage them to jointly visit under-explored regions of the
state space has not been considered. In this paper, we propose a
novel framework for multi-agent deep covering option discovery.
Specifically, it first leverages an attention mechanism to find
collaborative agent sub-groups that would benefit most from
coordination. Then, a hierarchical algorithm based on soft actor-
critic, namely H-MSAC, is developed to learn the multi-agent
options for each sub-group and then to integrate them through a
high-level policy. This hierarchical option construction allows our
framework to strike a balance between scalability and effective
collaboration among the agents. The evaluation based on multi-
agent collaborative tasks shows that the proposed algorithm
can effectively capture agent interaction during learning and
significantly outperforms prior works using single-agent options
or no options, in terms of both faster exploration and higher task
rewards.

Index Terms—Multi-agent Reinforcement Learning, Option
Discovery, Deep Covering Options

I. INTRODUCTION

Options discovery [1] enables temporally-abstract actions to
be constructed in the reinforcement learning process. It can
greatly improve the performance of reinforcement learning
agents by representing actions at different time scales. Among
recent developments on the topic, Covering Option Discovery
[2] has been shown to be a promising approach. It leverages
Laplacian matrix extracted from the state-transition graph
induced by the dynamics of the environment. To be specific,
the second smallest eigenvalue of the Laplacian matrix, known
as the algebraic connectivity of the graph, is considered as
a measure of how well-connected the graph is [3]. In this
case, it uses the algebraic connectivity as an intrinsic reward to
train the option policy, with the goal of connecting the states
that are not well-connected, encouraging the agent to explore
infrequently-visited regions, and thus minimizing the agent’s
expected cover time of the state space. Recently, deep learning
techniques have been developed to extend the use of covering
options to large/infinite state space [4], e.g., Deep Covering
Option Discovery. However, these efforts focus on discovering
options for individual agents. Discovering collaborative options
that encourage multiple agents to jointly visit under-explored
regions of the state space has not been considered.

In this paper, we propose a novel framework for multi-
agent deep covering option discovery. Recent works [5], [6],
[7] compute options with exploratory behaviors for each
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individual agent by considering only its own state transitions,
and then learn to collaboratively leverage these individual
options. However, our proposed framework directly recognize
joint options composed of multiple agents’ temporally-abstract
action sequences to encourage joint exploration. We note that
in practical scenarios, multi-agent tasks can often be divided
into a series of sub-tasks and each sub-task can be completed
by a sub-group of the agents. Our proposed algorithm leverages
an attention mechanism [8] in the option discovery process
to quantify agents interactions and to find collaborative agent
sub-groups. Thus, we can train a set of multi-agent options for
each sub-group to complete their sub-tasks and then integrate
them through a high-level policy. This sub-group partitioning
and hierarchical learning structure can effectively construct
collaborative options that jointly coordinate the exploration
behavior of multiple agents, while keeping the algorithm
scalable in practice.

The main contributions of our work are as follows: (1)
We propose multi-agent deep covering option discovery and
demonstrate that the use of multi-agent options can further
improve the performance of MARL agents compared with
single-agent options. (2) We propose to leverage an attention
mechanism in the discovery process to enable agents to find
peer agents that it should interact with closely and form sub-
groups. (3) We propose a hierarchical MARL algorithm based
on soft actor-critic [9], which integrates the training of intra-
option policies (for constructing options) and the high-level
policy (for integrating the options). The proposed algorithm,
which is evaluated on MARL collaborative tasks, significantly
outperforms prior works in terms of faster exploration and
higher task rewards.

II. RELATED WORK

Option Discovery. The option framework was proposed in
[1], which extends the usual notion of actions to include options
— closed-loop policies for taking actions over a period of time.
Formally, a set of options defined over an MDP constitutes a
semi-MDP (SMDP), where the SMDP actions (options) are no
longer black boxes, but policies in the base MDP which can be
learned in their own right. In literature, lots of option discovery
algorithms utilize the task-dependent reward signals generated
by the environment, such as [10], [11], [12], [13]. However,
these algorithms require dense reward signals which are usually
hard to obtain. Therefore, [14] proposed an approach to
generate options through maximizing an information theoretic
objective so that each option can generate diverse behaviors.
It learns useful skills/options without reward signals and thus
can be applied in environments where only sparse rewards are
available.

On the other hand, [15], [2] focused on Covering Option
Discovery, a method which is also not based on the task-
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dependent signals but on the Laplacian matrix of the environ-
ment’s state-transition graph. This method aims at minimizing
the expected cover time of the state space with a uniformly
random policy. To realize this, it augments the agent’s action
set with options obtained from the eigenvector associated with
the second smallest eigenvalue (algebraic connectivity) of the
Laplacian matrix. However, this Laplacian-based framework
can only be applied to tabular settings. To mitigate this issue, [4]
proposed Deep Covering Option Discovery to combine covering
options with modern representation learning techniques for the
eigen-function estimation, which can be applied in domains
with infinite state space. In [4], the authors compared their
approach with the one proposed by [14]: both approaches are
sample-based and scalable to large-scale state space, but RL
agents with deep covering options have better performance on
the same benchmarks.

Note that all the approaches mentioned above are for single-
agent scenarios and we will extend the adoption of deep
covering options to multi-agent reinforcement learning.

Options in multi-agent scenarios. As mentioned in Section
I, most of the researches about adopting options in MARL tried
to define or learn the options for each individual agent first, and
then learn the collaborative behaviors among the agents based
on their extended action sets – {primitive actions, individual
options}. Therefore, the options they use are still single-agent
options, and the coordination in the multi-agent system can
only be shown/utilized in the option-choosing process while
not the option discovery process. We can classify these works
by the option discovery methods they used: [16], [17] directly
defined the options based on their task without the learning
process; [18], [5], [6] learned the options based on the task-
related reward signals generated by the environment; [7] trained
the options based on a reward function that is a weighted
summation of the environment reward and the information
theoretic reward term proposed in [14].

In this paper, we propose to construct multi-agent deep cov-
ering options using the Laplacian-based framework mentioned
above. Also, in an N-agent system, there may be not only
N-agent options, but also one-agent options, two-agent options,
etc. In this case, we divide the agents into some sub-groups
based on their interaction relationship first, which is realized
through the attention mechanism [8], and then construct the
interaction patterns (multi-agent options) for each sub-group
accordingly. Through these improvements, the coordination
among agents is considered in the option discovery process,
which has the potential to further improve the performance of
MARL agents.

III. BACKGROUND

Before extending deep covering options to the multi-agent
setting, we will introduce the formal definition of the option
framework and some key issues of deep covering options.

A. Formal Definition of Option:

In this paper, we use the term options for the generalization
of primitive actions to include temporally-extended courses
of actions. As defined in [1], an option ω consists of three

components: an intra-option policy πω : S x A → [0, 1], a
termination condition βω : S → [0, 1], and an initiation set
Iω ⊆ S. An option < Iω, πω, βω > is available in state
s if and only if s ∈ Iω. If the option ω is taken, actions
are selected according to πω until ω terminates stochastically
according to βω. Therefore, in order to get an option, we
need to train/define the intra-option policy, and give out the
definition of the termination condition and initiation set.

B. Deep Covering Option Discovery

As descried in [4], they get the deep covering options
by greedily maximizing the state-space graph’s algebraic
connectivity – the second smallest eigenvalue, so as to minimize
the expected cover time of the state space. To realize this, they
first compute the eigenfunction f associated with the algebraic
connectivity by minimizing G(f):

G(f) =
1

2
E(s,s′)∼H[(f(s)− f(s′))2] + ηEs∼ρ,s′∼ρ

[(f(s)− 1)(f(s′)− 1) + f(s)2f(s′)2]
(1)

where H is the set of sampled state-transitions and ρ is the
distribution of the states in H. Note that this is a sample-based
approach and thus can scale to infinite state-space domains.
Then, based on the computed f , they define the termination
set as a set of states where the f value is smaller than the k-th
percentile of the f values on H. Accordingly, the initiation set
is defined as the complement of the termination set. As for
the intra-option policy, they train it through maximizing the
reward, r(s, a, s′) = f(s)− f(s′), to encourage the agent to
explore the states with lower f values, i.e., the less-explored
states in the termination set.

In this paper, we will compute f of the joint observation
space of certain multiple agents, and then learn multi-agent
options based on it to encourage the joint exploration and thus
increase the connectivity of the joint observation space.

IV. PROPOSED APPROACH

In this section, we will introduce Multi-agent Deep Covering
Option Discovery and how to adopt it in a MARL setting. First,
we will give out the hierarchical framework of the algorithm
and the key objective functions to optimize. Then, we will
show how to integrate the attention mechanism in the network
design. Finally, we will provide H-MSAC, a hierarchical
MARL algorithm based on soft actor-critic.

A. Main Framework

In order to take advantage of options in the learning process,
we adopt a hierarchical RL framework shown as Algorithm 1.
Typically, we train a RL agent to select among the primitive
actions, aiming to maximize the accumulated reward. In
our algorithm framework, we view this agent as a one-step
option – primitive option. When getting a new observation,
the hierarchical RL agent first decides on which option ω to
use according to the high-level policy, and then decides on the
action (primitive action) to take based on the corresponding
intra-option policy πω. As mentioned in Section III, once an
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Fig. 1: The agent first decides on which option ω to use ac-
cording to the high-level policy, and then decides on the action
(primitive action) to take based on the corresponding intra-
option policy πω . Primitive option: Typically, we train a RL
agent to select among the primitive actions; we view this agent
as a special option, whose intra-option policy lasts for only
one step. Option 1 ∼ N: Based on the attention mechanism,
each agent can figure out which agents to collaborate closely
and form a sub-group with, so there are at most N sub-groups
(duplicate ones need to be eliminated), and we need to train a
multi-agent option for each sub-group.

Algorithm 1 Main Framework

1: Input: primitive option A, high-level policies for each
agent π1:N and corresponding Q-functions Q1:N , genera-
tion times of options Nω , generation frequency Nint;

2: Initialize the set of options Ω′ ← {A}
3: Create an empty replay buffer B
4: Set nω ← 0
5: for episode i = 1 to Nepi do
6: Collect a trajectory τi by repeating this process until

done: choose an available option from Ω′ according
to π1:N , and then execute the corresponding intra-
option policy until it terminates

7: Update B with τi
8: if i mod Nint == 0 and nω < Nω then
9: Generate a set of multi-agent options Ω using

Algorithm 2 based on trajectories in B
10: Update Ω′: Ω′ ← {A} ∪ Ω
11: Update nω: nω ← nω + 1
12: end if
13: Sample trajectories τ1:batchsize from B
14: Update π1:N , Q1:N and options within Ω′ using H-

MSAC (defined in Section IV-C) based on τ1:batchsize
15: end for

option is taken, the actions will be selected according to πω
until the option terminates, so we do not decide on a new
option until last option terminates.

Except for the primitive option, other options are extracted
from transitions collected in the training process. To realize
this, we extend Algorithm 1 of [4] and Equation (1) from
a single-agent scenario to a multi-agent scenario to obtain
our Algorithm 2 and Equation (2). Through this extension,
collaboration among the agents is considered not only at a

Algorithm 2 Multi-agent Option Discovery

1: Input: percentile 0 ≤ k ≤ 100, joint observation transi-
tions T : {((o1, ..., oN ), (o′1, ..., o

′
N ))1:sizeof(T )};

2: Output: a set of multi-agent options Ω;
3: Create an empty set of options Ω
4: Divide the N agents into sub-groups using Algorithm 3
5: for every sub-group G do
6: Define the agents in G as {g1, ..., gsizeof(G)}
7: Extract the set of transitions for G from T as TG ←

{((og1 , ..., ogsizeof(G)
)︸ ︷︷ ︸

~oG

, (o′g1 , ..., o
′
gsizeof(G)

)︸ ︷︷ ︸
~oG

′

)1:sizeof(T )}

8: Learn the connectivity function of G’s joint observa-
tion space fG by minimizing L(fG) (Equation (2))

9: Define β′ as the k-th percentile value of fG in TG
10: Acquire the termination condition of option ωG:

βG( ~oG)←

{
1 if fG( ~oG) < β′

0 otherwise

11: Acquire the initiation set of option ωG: IG ←
{ ~oG|βG( ~oG) == 0}

12: Learn the policy πG of option ωG by maximizing
the accumulated reward defined as Equation (3) using
H-MSAC based on TG

13: Add option ωG: < IG, πG, βG > to Ω
14: end for

high level, but also in the option discovery process, which
can further improve the performance in scenarios where close
collaboration is required.

L(fG) =
1

2
E(~o,~o′)∼TG [(fG(~o)− fG(~o′))2] + ηE~o∼ρ,~o′∼ρ

[(fG(~o)− 1)(fG(~o′)− 1) + fG(~o)2fG(~o′)2]
(2)

As mentioned in Algorithm 2, the reward function for
learning the intra-option policy is based on fG which represents
the connectivity of the joint observation space and is task-
independent. Through this intrinsic reward term, agents are
encouraged to explore their joint observation space. Further,
inspired by [7], we can take advantage of the extrinsic reward
that is specific to the environment to guarantee that the
skills/options learned are also useful for team performance, so
the reward at step t for learning the intra-option policy can be
defined as:

(rit)option = (rit)env + η[fGi(o
Gi
t )− fGi(o

Gi
t+1)] (3)

where (rit)env is task-related, η is the weight for the intrinsic
term, and Gi is the sub-group that agent i belongs to.

B. Network Structure

In real-life multi-agent systems, the agents can usually be
divided into some sub-groups and each sub-group is responsible
for a sub-task (option). In this paper, we adopt the widely-used
soft attention mechanism [8] to get the interaction relationship
among the agents from which we can abstract the sub-groups.
Through this division, we can also avoid the joint observation
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Fig. 2: Policy Network

Fig. 3: Q-function Network

space growing too large, so as to learn the multi-agent options
more efficiently.

The network structure of the high-level policy is shown
in Figure 2. When deciding on which multi-agent option is
available or to execute, agent i needs to know other agents’
observation to see whether they have reached the initiation set,
so the communication among the agents is required. Further, we
view this multi-agent system as a fully-connected directional
graph, where each node represents an agent and the weight of

Algorithm 3 Sub-group Division

1: Input: threshold z ∈ (0, 1), a set of joint observations T :
{(o1, ..., oN )1:sizeof(T )}, policy network π;

2: Output: a set of sub-groups;
3: for t = 1 to sizeof(T ) do
4: Feed (o1, ..., oN )t into π
5: Save the soft attention weights (W i,j

S )t, where i ∈
[1, N ] and j 6= i

6: end for
7: for each agent i do
8: Insert i to its sub-group Gi
9: for each agent j 6= i do

10: if
∑
t(W

i,j
S )t ≥ z ∗

∑
n 6=i

∑
t(W

i,n
S )t then

11: Insert j to Gi
12: end if
13: end for
14: end for
15: Collect G ← {G1, ..., GN} and eliminate duplicate ele-

ments
16: Return G

edge i → j represents the importance of agent j to agent i.
These weights can be learnt through a soft attention mechanism
(a query-key system). After that, we adopt GNN (e.g., weighted
summation) to extract xi, the contribution from other agents
to agent i, and then concatenate it with its own observation
embedding hi as the input of its own policy head πi. In this
way, πi is based on observations of all the agents, and the
attention mechanism filters out observations from the agents
that have no/low interaction with agent i, which can reduce the
communication cost and ensure the scalability of the system.

The Q-value function network is shown as Figure 3. We only
use the observations o1:N to extract the interaction relationship
rather than the observation-option pairs (o, ω)1:N (like in [19],
[20]), because: (1) the interaction relationship extracted by
the policy and Q-function network should be the same; (2)
parameters of the attention mechanism can be shared between
the two networks, which can improve the training efficiency.
Also, note that the parameters of the soft attention and GNN
part: Wk,Wq,Wv,W

ω
v are shared by all the agents.

The structure of the networks for learning the intra-option
policy πω is the same as the ones for learning the high-level
policy. As mentioned above, the primitive actions can be
viewed as one-step options and the policy network for selecting
among the primitive actions can be used for the sub-group
division. As shown in Algorithm 3, we use the transitions
collected in the training process as input and calculate the
accumulated soft attention weight matrix based on the output
of the attention layer. Then we compare the normalized results
with a predefined threshold z to finalize the sub-group for each
agent. (z is set as 0.6.)

C. Hierarchical Multi-agent Reinforcement Learning based on
Soft Actor-Critic

In this section, we extend soft actor-critic (SAC) [9], a
widely-used reinforcement learning algorithm, to a hierarchical
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Fig. 4: Single-agent Scenario: The agent chooses the option ω1 at s1 (initω1(s1) == 1), then the corresponding intra-option
policy πω1 is executed until s4 (βω1(s4) == 1). Meanwhile, a new option ω4 is chosen at s4 (initω4(s4) == 1). Note that the
high-level policy is executed at state s only when the last option ω ends at this step (βω(s) == 1).

Fig. 5: Multi-agent Scenario: Similar with the single-agent scenario, initω
i
t(oit) == 1, if agent i starts to execute the option ωit

when getting the observation oit at step t; βω
i
t(oit′) == 1, if the option ωit ends at step t′. However, the option choice among

the agents maybe asynchronous, which brings new difficulty as compared with the single-agent scenario. For example, agent 2
starts a new option at step 3, while agent 1 is still within ω1

1 , so the two agents’ high-level policy are not executed at the same
time. Note that when updating the high-level policy of agent i, the gradient calculated based on the transition at step t can be
applied only if initω

i
t(oit) == 1, which means the high-level policy of agent i is executed at this step.

multi-agent reinforcement learning scenario with attentive
actors and critics, which we name as H-MSAC. This algo-
rithm can be used to update the high/low-level policy and
corresponding Q-function network in an off-policy manner.

The authors of [20] extended SAC to a multi-agent scenario
with attentive critics and define the objective functions as
follows:

LQ(φ) =

N∑
i=1

E(o,a,r,o′)∼B [(Qφi (o, a)− yi)2] (4)

yi = ri + γEa′∼πθ(o′)[Q
φ
i (o′, a′)− αlog(πθi(a

′
i|o′i))] (5)

∇θiJ(πθi) = Eo∼B,a∼πθ(o)[∇θi log(πθi(ai|oi))
(−αlog(πθi(ai|oi)) +Qφi (o, a)− b(o, a\i))]

(6)

b(o, a\i) = Eai∼πθi (oi)[Q
φ
i (o, (ai, a\i))]

=
∑
ai∈Ai

πθi(ai|oi)Q
φ
i (o, (ai, a\i))

(7)

where B represents the replay buffer, θ and φ are the parameters
of the target policy and Q-function network, αlog(πθ) is the
entropy term. b is the baseline term of the advantage function,

and in the case of discrete policies, it can be calculated
explicitly (Equation (7)). However, we have to estimate the
expectation in Equation (5) and (6) through sampling. For
example, in Equation (5), we can’t enumerate all the possible
joint actions a′, so we calculate a′i ∼ πθi(o

′
i), for i = 1 to N ,

and then obtain the sampled joint action a′.
In our setting, we use attentive actors, which means that

each agent’s policy takes observations of all the agents as input,
so we modify the calculation of yi, ∇θJ(πθ), and b(o, a\i) as
follows:

yi = ri + γEa′∼πθ(o′)[Q
φ
i (o′, a′)− αlog(πθi(a

′
i|o′))] (8)

∇θJ(πθ) =

N∑
i=1

Eo∼B,a∼πθ(o)[∇θi log(πθi(ai|o))

(−αlog(πθi(ai|o)) +Qφi (o, a)− b(o, a\i))]

(9)

b(o, a\i) = Eai∼πθi (o)[Q
φ
i (o, (ai, a\i))]

=
∑
ai∈Ai

πθi(ai|o)Q
φ
i (o, (ai, a\i))

(10)

Note that when estimating the expectation in Equation (8) and
(9), we don’t need any extra sampling process as compared
with Equation (5) and (6).
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As mentioned above, the learning process is based on
the extended action set which includes primitive actions and
options. As shown in Figure 4, the primitive actions are viewed
as one-step options (e.g., ω4), and once an option is chosen
by the high-level policy, the corresponding intra-option policy
will be executed until its termination condition is satisfied.
For example, in Figure 4, the agent chooses the option ω1

at s1 (initω1(s1) == 1), then the intra-option policy πω1

is executed until s4 (βω1(s4) == 1). Next, we describe the
objective functions for learning with options. We transfer the
option-critic framework [5] from a Q-learning setting to SAC,
and extend it from the single-agent scenario to the multi-agent
scenario.

As shown in Figure 4, during the sampling process,we can
collect transitions like (st, ωt, init

ωt
t , at, rt, st+1, β

ωt
t+1),

where ωt is the option choice at step t, initωt and βωt are
the corresponding initiation and termination signal. Based on
them, we can define the objective functions for the single agent
scenario as follows:

LQ(φ) = E(st,ωt,rt,st+1,β
ωt
t+1)∼B [(Qφ(st, ωt)− yt)2] (11)

yt = rt + γ[(1− βωtt+1)Qφ(st+1, ωt)+

βωtt+1Eωt+1∼πθ(st+1)(Q
φ(st+1, ωt+1)− αlog(πθ(ωt+1|st+1)))]

(12)
In this case, if ωt terminates at st+1 (βωtt+1 == 1), the agent
will choose a new option based on the target high-level policy
πθ; otherwise, it will still execute ωt (i.e., ωt+1 == ωt). The
objective function for updating the policy network is given as:

∇θJ(πθ) =

E(st,initt)∼B,ωt∼πθ(st)[initt ∗ ∇θlog(πθ(ωt|st))
(−αlog(πθ(ωt|st)) +Qφ(st, ωt)− b(st))]

(13)

The intuition behind this equation is that initt marks the steps
where the high-level policy πθ is executed (initt == 1) and
thus the computed gradient is effective for update.

As shown in Figure 5, when extended to the
multi-agent scenario (N agents), we can collect
transitions like: (ot, ωt, initt, at, rt, ot+1, βt+1) =

[(o1t , ..., o
N
t ), (ω1

t , ..., ω
N
t ), (init

ω1
t
t , ..., init

ωNt
t ),

(a1t , ..., a
N
t ), (r1t , ..., r

N
t ), (o1t+1, ..., o

N
t+1), (β

ω1
t

t+1, ..., β
ωNt
t+1)].

Note that the option choice among the agents maybe
asynchronous and this brings new difficulty. For example, in
Figure 5, agent 2 starts a new option at step 3, while agent 1 is
still within ω1

1 , so we can’t update the two agents’ high-level
policy at the same time. Next, we define its objective functions
as follows:

LQ(φ) =

N∑
i=1

E(ot,ωt,rt,ot+1,βt+1)∼B [(Qφi (ot, ωt)− yit)2]

(14)

yit = rit + γEωt+1∼πθ(ot+1)[Q
φ
i (ot+1, ωt+1)

−αβω
i
t

t+1log(πθi(ω
i
t+1|ot+1))]

(15)

Fig. 6: Task Scenario for Evaluation

When estimating the expectation in Equation (15), we need to
sample the joint option ωt+1, which is generated in this way:
for i = 1 to N : if βω

i
t

t+1 == 1, ωit+1 ∼ πθi(ot+1); otherwise,
ωit+1 = ωit. The intuition is that new option isn’t required until
last option terminates.

∇θJ(πθ) =

N∑
i=1

E(ot,ωt,initt)∼B,ω̂t∼πθ(ot)[init
i
t∗

∇θi log(πθi(ω̂
i
t|ot))(−αlog(πθi(ω̂

i
t|ot))+

Qφi (ot, ω̂t)− b(ot, ω̂\it ))]

(16)

b(ot, ω̂
\i
t ) = Eω̂it∼πθi (ot)[Q

φ
i (ot, (ω̂

i
t, ω̂
\i
t ))] (17)

where the expectation in Equation (17) is calculated in the same
way as Equation (10), while the expectation in Equation (16)
is estimated by sampling ω̂t: for i = 1 to N : if initit == 1,
ω̂it ∼ πθi(ot); otherwise, ω̂it = ωit. The intuition behind this is
similar with that of Equation (13), that is we need to use initit
to mask out the steps where πθi is not executed. In conclusion,
the objective functions of H-MSAC are listed as Equation
(14)-(17).

V. EVALUATION

Generally, a multi-agent task scenario can be divided into
some sub-tasks and each sub-task can be completed by a sub-
group of the agents, and meanwhile, the sub-groups need to
coordinate with each other very well to get the whole task done.
In our algorithm, under a hierarchical MARL framework, we
learn the optimal grouping through the attention mechanism,
learn the sub-skill of each sub-group through the multi-agent
option discovery and learn the coordination among the sub-
groups through the high-level policy learning. In this section,
we will test the effectiveness of our algorithm on a self-
designed simulator which is an extension of the commonly-used
benchmark – Push-Box [21].

A. Simulator Setup

As shown in Figure 6, there are four agents in the environ-
ment and their task is to push the box to the target. During the
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(a) Training reward of agent 0 (b) Training reward of agent 1

Fig. 7: Sub-setting 1.

(a) Training reward of agent 0 / 1 (b) Training reward of agent 2 / 3

Fig. 8: Sub-setting 2.

pushing process, they have to pass through a wall with a lock
which is controlled by the switch, so they have to turn on the
switch first (the wall in the middle will open), and then push
the box to the target. Note that only when two or more agents
contact the switch at the same time will the switch open, and
the box won’t move until two or more agents push it in the
same direction at the same time. In this case, the whole task
can be divided into two sub-tasks, and coordination among the
agents is required for each sub-task.

We compare our algorithm with two baselines: (1) a
multi-agent reinforcement learning algorithm with attention
mechanism but without option discovery, such as MAAC
[20] with the same network design as ours; (2) a multi-
agent reinforcement learning algorithm with single-agent option
discovery, where the option discovery algorithm is introduced
in [4] and apparently, the coordination among the agents is not
considered during the option discovery process.

The evaluation is based on the three sub-settings: (1) In
this sub-setting, we simplify the task scenario to a two-agent
version: agent 0 is able to turn on the switch, agent 1 is able
to push the box, and both sub-tasks require only one agent.
We will test the two baseline algorithms on this sub-setting
and show the effectiveness of the single-agent option discovery.
(2) Only two of the agents (agent 0 and 1) are able to turn on
the switch and the other two agents (agent 2 and 3) are able
to push the box. We will see whether the grouping (group 0:
agent 1 and 2, group 1: agent 3 and 4) can be found through

the attention mechanism, and whether the sub-tasks (i.e., group
0: turning on the switch, group 1: pushing the box to the target)
can be learned through our algorithm. (3) We only have three
agents in this sub-setting: agent 0 is only able to turn on the
switch, agent 2 is only able to push the box, while agent 1 can
do both. In this case, agent 1 should first group with agent 0
to turn on the switch and then group with agent 2 to push the
box to the target. For agent 1, the grouping is dynamic, which
brings more challenges to our task.

The reward function for the three sub-settings are the same,
which is defined as:

rienv = −c0 + c1e
i
switch + c2e

i
move + c3etarget (18)

where c0:3 > 0 are the weights, eimove represents whether the
box is moved for one step by agent i, eiswitch represents whether
the switch is turned on by agent i, and etarget represents
whether the box is pushed to the target area successfully (this
term is shared by all the agents). Besides, the whole task is
required to be completed within 400 steps.

B. Results and Discussion

In this section, we compare MARL with the single-agent
option, multi-agent option, and no option on the three sub-
settings introduced above.

In the sub-setting 1, there are only two agents and each of
them is responsible for a different task, i.e., agent 0: turn on
the switch, agent 1: push the box. Figure 7(a)-7(b) plot the
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reward function of agent 0 and 1 in the training process. It
can be observed that the agent without option can learn how
to turn on the switch and get the corresponding reward term,
however, it can’t learn the harder task – pushing the box to
the target, given the reward function is sparse. Then, we train
a single-agent option for each agent at step 2000 with the
transitions collected at the first 2000 steps, after which we
start to train the high-level policy and low-level policy together
within a hierarchical RL framework introduced above. The
performance starts to improve at step 2000, which shows the
effectiveness of MARL with the single-agent option. Agent 1
learns its sub-task through a denser reward function (Equation
(3)), and also agent 0 and 1 learns how to cooperate with each
other (turn on the switch first and then push the box through
the gate to the target) through the training of the high-level
policy.

In the sub-setting 2, agent 0 and 1 need to contact the switch
at the same time to turn on it, and agent 2 and 3 need to push
the box in the same direction to make it move, so collaboration
is required for each sub-task, which is different from the sub-
setting 1. Figure 8(a)-8(b) show that the agent without option
or with four single-agent options (one for each agent) can learn
to open the switch, while it can’t get how to push the box to
the target very well. Then, based on the transitions collected at
the first 5000 steps, we can get the attention weight distribution
of the agents. As shown in Figure 9(a), the attention weight
that agent 0 pays to agent 1 is higher than the threshold 0.6
(Algorithm 3) and vice versa, so we can get a sub-group: [0, 1];
similarly, we can get the other sub-group: [2, 3]. Then, we can
train the multi-agent option for each sub-group to complete
its corresponding sub-task, and integrate the options in the
whole learning process as shown in Algorithm 1. Results show
that the agent with multi-agent options performs better, since
it considers the collaboration among the agents in the option
discovery process while the agent with single-agent options
doesn’t.

Different from the sub-setting 2, in the sub-setting 3, agent 1
should cooperate with agent 0 first to open the switch, and then
push the box to the target area together with agent 2, which
makes the task even harder. Results in Figure 10 show that
agent 1 without options or with single-agent options (grouping:
[0], [1], [2]) tend to be stuck by the local optimum, after it
completes the easier task – open the switch. While, multi-agent
options (grouping results shown as Figure 9(b): [0], [1, 2])
can avoid this, since the adoption of the multi-agent option for
group [1, 2] can encourage the exploration of the joint state
space of agent 1 and 2, and improve the overall performance.
Note that the grouping results and multi-agent option discovery
are based on the transitions collected at the first 5000 steps.

VI. CONCLUSION

This paper proposes Multi-agent Deep Covering Option
Discovery and a hierarchical multi-agent reinforcement learning
algorithm based on soft actor-critic to integrate the options
in a MARL setting – H-MSAC. This approach first divides
all the agents into some sub-groups through the widely-used
attention mechanism based on their interaction relationship,

and then learns the multi-agent options for each sub-group
to encourage the joint exploration of the multiple agents in
a sub-group. Evaluation results on a self-designed simulator
show reasonable sub-group division results with the attention
mechanism, and superior performance of the MARL agents
with multi-agent options as compared to the ones with single-
agent options or no options.
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(a) Attention weights of sub-setting 2 (b) Attention weights of sub-setting 3

Fig. 9: Attention weights of sub-setting 2 and 3.

(a) Training reward of agent 0 (b) Training reward of agent 1 (c) Training reward of agent 2

Fig. 10: Sub-setting 3.
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