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Abstract—Deep learning based methods have demonstrated
great success in network intrusion detection. However, the use
of Deep Neural Networks (DNNs) makes it difficult to support
real-time, packet-level detections in communication networks that
handle high-speed traffic with low latency and energy. To this
end, this paper proposes a novel approach to efficiently realize a
DNN-based classifier by converting it into a pruned, explainable
decision tree and evaluating its hardware implementation using
an emerging architecture based on memristor devices, in order
to support network intrusion detections on the fly. Preliminary
experiments on real-world datasets show that the proposed
method achieves nearly four orders of magnitude speed up while
retaining the desired accuracy.
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I. INTRODUCTION

Deep learning has been successfully applied to many net-
work security problems such as packet inspection and network
intrusion detection [1]. However, the superior performance of
DNNs comes at the cost of using millions or even billions of
parameters to achieve universal function approximation, mak-
ing DNN-based classifiers not suitable for real-time, packet-
level detection. Therefore, an explainable, real-time learning-
based solution specifically tailored for networks with high
speed traffic and low latency is needed.

For network intrusion detection, we propose a new approach
that converts a learned DNN-based policy into a decision tree
policy — which is inherently explainable — then prunes the
decision tree and implements it using a flexible memristor
architecture. The conversion leverages a teacher-student train-
ing process developed in [2], where the DNN policy acts as
the teacher and generates input-output samples to construct
the student decision tree. We further adopt cost complexity
pruning (CCP) [3] to prune the branches down to a tractable
size for real-time network operations and explore its analog
hardware implementation.

To implement an adjustable decision tree for network in-
trusion detection, adjustable components with high efficiency
need to be utilized. Memristor devices are great candidates
for this endeavor since fully analog circuits with high ef-
ficiency can be implemented. We show that decision trees
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could benefit from efficient hardware implementations as well
[4], particularly in resource-constrained environments, e.g.
Internet of Things. This work models the proposed decision
tree after pruning by providing adjustable decision boundaries
implemented using analog memristor-based circuits.

II. METHOD DETAILS

We formulate network intrusion detection as a one-step Re-
inforcement Learning (RL), with packet- or flow-level features
as states S, detection outcome as actions A, and detection
cross-entropy loss —Zfilyo}c log(po,c) as rewards R. We
use a stochastic policy 7(a|s) to determine the probability
of selecting action a € A in each state s € S and optimize
the expected discounted long-term reward.

To extract the decision tree from a trained DNN policy
for intrusion detection, we adopt a teacher-student training
methodology. First, we follow the trajectories generated by the
teacher DNN and collect state-action pairs according to distri-
bution over states s ~ d” (s) for training. Second, we resample
the trajectory of state-action pair D using the sampling prob-
ability function p(s,a) oc (V™ (s) — mingeca Q™ (s,a’)) -
1{(s,a) € D}, where V(s) and Q(s,a) are the value
function and state-action value function of RL. Since there
is no -function available here, we use the maximum entropy
formulation (i.e., the inverse of a Boltzmann policy) to obtain
Q values, i.e.,Q(s,a) = logm*(s,a). 1{z} is an indicator
function equal to 1 only if x is true. We then retrain the
decision tree using CART algorithm [5] on the resampled
dataset. To enable efficient implementation using memristors,
we adopt cost complexity pruning (CCP) to reduce the number
of branches according to the requirements of network opera-
tors.

Memristors (also known as resistive switches or ReRAM)
are novel, two-terminal memory devices that are ultra-scalable
to a few nanometers and can have their internal state pro-
grammed in an analog fashion and retained in an energy-
efficient manner, similar to an artificial synapse [6], [7]. The
memristor-based circuit for one decision tree leaf consists of
circuitry for memristor read and programming, operational
amplifiers for signal amplification and compensation and a
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Fig. 1. Design of ReRAM circuit for single node.

block for comparison with the input data. The design is
inspired by [4], but was further optimized to reduce the number
of resistors and be suitable for an integrated circuit tape-out.
The goal was to reduce the area and the delay as needed for the
proposed application. The design was simulated in Cadence
and taped-out in SkyWater 130nm, which is one of the few
technologies for memristor tape-outs available to academic
researchers currently.

III. EXPERIMENTS

We evaluate the Decision Tree Policy Extraction algorithm
on the UNSW-NB15 dataset to perform a binary classification
to identify malicious traffic from begin. We train a classifier
using Multi-layer perceptron (MLP) with one hidden layer
with 100 neurons for 8000 steps, extract decision tree policy,
and prune it using CCP pruning technique which is parame-
terized by the cost complexity parameter, ccp alpha.

Without pruning, the extracted decision tree has more than
10,000 nodes. We show in Figure 2 that the number of nodes
and tree depth decreases as ccp alpha increases. Then in Figure
3, we see that when ccp alpha is set close to zero, the tree
overfits, leading to only 50% testing accuracy. In this example,
setting ccp alpha to 0.002 maximizes the testing accuracy
and got a decision tree with 16 nodes which is possible to
implement in memristor.

We also compare the classification accuracy using F-1
scores and inference time of the DNN classifier, Decision
Tree(DT) without pruning, Pruned 16-node Decision Tree for
memristor-based implementation in Table I. It shows pruning
and implementing decision tree that is extracted from DNN
policy on memristor provides human-readable interpretations
while preserving nearly no degradation in performance and
further allow the computing system to have higher density
and to be more energy efficient due to characteristics of our
memristor-based circuit.

The area of the circuit design for a single node with pads is
120 pm by 340 um and without the bare pads is 120 um by
20 pm, with an estimated power consumption of 150pW. The
delay in the node from the programmed boundary to the output
is 1.5ms. For the proposed 16-node decision tree, the estimated
total area consumption in the memristor-supported 130nm
technology is ~ 0.05mm?, the maximum power consumption
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Fig. 2. Greater values of ccp alpha increase the Fig. 3. Setting ccp alpha to 0.002 maxi-
number of nodes pruned.

mizes the testing accuracy.

is & 1mW per decision and the maximum delay considered
for the longest decision path is &~ 9ms. It is important to note
that these metrics would be improved further if a state-of-the-
art transistor node, e.g. 12nm would be used for integration
with memristor technology instead of the current 130nm node

explored.

TABLE I
PRUNING AND IMPLEMENTING THE DT THAT IS EXTRACTED FROM DNN
POLICY IN MEMRISTOR IS FASTER THAN OTHER TWO METHODS WITHOUT
LOSING MUCH ACCURACY COMPARED TO DNN POLICY.

Method F-1 Score | Inference Time(s)
DNN 0.82 71.5001
DT (10K+ nodes) 0.67 1.1964
DT (16 node, memristor) 0.75 0.009

IV. CONCLUSIONS

Our proposed method could interpret the DNN policy into
a pruned decision tree efficiently with lower energy and
fast prediction speed for real-time network intrusion. These
results suggest future research on the DNN policy explaination
using decision trees and implementation in energy-efficient
programmable memristors to perform real-time detection.
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