
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016 2443

Joint Latency and Cost Optimization for
Erasure-Coded Data Center Storage

Yu Xiang, Tian Lan, Member, IEEE, Vaneet Aggarwal, Senior Member, IEEE, and Yih-Farn R. Chen

Abstract—Modern distributed storage systems offer large ca-
pacity to satisfy the exponentially increasing need of storage space.
They often use erasure codes to protect against disk and node
failures to increase reliability, while trying to meet the latency
requirements of the applications and clients. This paper provides
an insightful upper bound on the average service delay of such
erasure-coded storage with arbitrary service time distribution
and consisting of multiple heterogeneous files. Not only does the
result supersede known delay bounds that only work for a single
file or homogeneous files, it also enables a novel problem of joint
latency and storage cost minimization over three dimensions:
selecting the erasure code, placement of encoded chunks, and
optimizing scheduling policy. The problem is efficiently solved
via the computation of a sequence of convex approximations with
provable convergence. We further prototype our solution in an
open-source cloud storage deployment over three geographically
distributed data centers. Experimental results validate our the-
oretical delay analysis and show significant latency reduction,
providing valuable insights into the proposed latency–cost tradeoff
in erasure-coded storage.
Index Terms—Content placement, data center, differ-

ence-of-convex programming, distributed storage, erasure code,
gradient descent, joint optimization, latency, Pollaczek–Kinchin
transform, queueing theory, scheduling.

I. INTRODUCTION
A. Motivation

C ONSUMERS are engaged in more social networking
and E-commerce activities these days and are increas-

ingly storing their documents and media in the online storage.
Businesses are relying on Big Data analytics for business
intelligence and are migrating their traditional IT infrastructure
to the cloud. These trends cause the online data storage demand
to rise faster than Moore's Law [8]. The increased storage
demands have led companies to launch cloud storage services
like Amazon's S3 [9] and personal cloud storage services like
Amazon's Cloud drive, Apple's iCloud, DropBox, Google

Manuscript received August 05, 2014; revised March 09, 2015 and May 18,
2015; accepted July 16, 2015; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor L. Ying. Date of publication September 16, 2015; date of
current version August 16, 2016. This work was presented in part at the IFIP
Performance, Oct. 2014.
Y. Xiang and T. Lan are with Department of Electrical and Computer Engi-

neering, George Washington University, Washington, DC 20052 USA (email:
xy336699@gwu.edu; tlan@gwu.edu).
V. Aggarwal was with AT&T Labs—Research, Bedminster, NJ 07921 USA.

He is now with the School of Industrial Engineering, Purdue University, West
Lafayette, IN 47907 USA (e-mail: vaneet@purdue.edu).
Y. R. Chen is with AT&T Labs—Research, Bedminster, NJ 07921 (e-mail:

chen@research.att.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2015.2466453

Fig. 1. Erasure-coded storage of 2 files, partitioned into 2 blocks and encoded
using (4, 2) and (3, 2) MDS codes, respectively. Resulting file chunks are spread
over 5 storage nodes. Any file request must be processed by 2 distinct nodes that
have the desired chunks. Nodes 3 and 4 are shared and can process requests for
both files.

Drive, Microsoft's SkyDrive, and AT&T Locker. Storing redun-
dant information on distributed servers can increase reliability
for storage systems since users can retrieve duplicated pieces
in case of disk, node, or site failures.
Erasure coding has been widely studied for distributed

storage systems ([12] and references therein) and used by
companies like Facebook [10] and Google [11] since it pro-
vides space-optimal data redundancy to protect against data
loss. There is, however, a critical factor that affects the ser-
vice quality that the user experiences, which is the delay in
accessing the stored file. In distributed storage, the bandwidth
between different nodes is frequently limited and so is the
bandwidth from a user to different storage nodes, which can
cause a significant delay in data access and perceived as poor
quality of service. In this paper, we consider the problem of
jointly minimizing both service delay and storage cost for the
end-users.
While a latency–cost tradeoff is demonstrated for the

special case of a single file, or homogeneous files with ex-
actly the same properties (file size, type, coding parameters,
etc.) [33], [37], [41], [42], much less is known about the latency
performance of multiple heterogeneous files that are coded with
different parameters and share common storage servers. The
main goal of this paper can be illustrated by an abstracted ex-
ample shown in Fig. 1. We consider two files, each partitioned
into blocks of equal size and encoded using maximum
distance separable (MDS) codes. Under an MDS code,
a file is encoded and stored in storage nodes such that the
chunks stored in any of these nodes suffice to recover
the entire file. There is a centralized scheduler that buffers
and schedules all incoming requests. For instance, a request
to retrieve file can be completed after it is successfully

1063-6692 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2444 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

processed by 2 distinct nodes chosen from where
desired chunks of are available. Due to shared storage nodes
and joint request scheduling, delay performances of the files
are highly correlated and are collectively determined by control
variables of both files over three dimensions: 1) the scheduling
policy that decides what request in the buffer to process when
a node becomes available; 2) the placement of file chunks over
distributed storage nodes; and 3) erasure coding parameters
that decide how many chunks are created. A joint optimization
over these three dimensions is very challenging because the
latency performances of different files are tightly entangled.
While increasing erasure code length of file B allows it to be
placed on more storage nodes, potentially leading to smaller
latency (because of improved load-balancing) at the price of
higher storage cost, it inevitably affects service latency of file
A due to resulting contention and interference on more shared
nodes. In this paper, we present a quantification of service
latency for erasure-coded storage with multiple heterogeneous
files and propose an efficient solution to the joint optimization
of both latency and storage cost.

B. Related Work
The effect of coding on content retrieval latency in

data-center storage systems is drawing more and more sig-
nificant attention these days, as Google and Amazon have
published that every 500 ms extra delay means a 1.2% user
loss [1]. However, to our best knowledge quantifying the exact
service delay in an erasure-coded storage system is an open
problem, prior works focusing on asymptotic queuing delay
behaviors [34], [35] are not applicable because redundancy
factor in practical data centers typically remain small due to
storage cost concerns. Due to the lack of analytical latency
models for erasure-coded storage, most of the literature is fo-
cused on reliable distributed storage system design, and latency
is only presented as a performance metric when evaluating the
proposed erasure coding scheme, e.g., [20], [22], [24], [25], and
[26], which demonstrate latency improvement due to erasure
coding in different system implementations. Related design
can also be found in data access scheduling [13], [15], [18],
[19], access collision avoidance [16], [17], and encoding/de-
coding time optimization [27], [28], and there are also some
works using the LT erasure codes to adjust the system to meet
user requirements such as availability, integrity, and confi-
dentiality [6]. Restricting to the special case of a single file
or homogeneous files, service delay bounds of erasure-coded
storage have been recently studied in [33], [37], [41], and [42].
Queuing-Theoretic Analysis: For a single file or multiple but

homogeneous files, under an assumption of exponential service
time distribution, the authors in [5] proved an asymptotic re-
sult for symmetric large-scale systems that can be applied to
provide a computable approximation for expected latency, how-
ever, under a assumption that chunk placement is fixed and so
is coding policy for all requests, which is not the case in reality.
Also, the authors in [33] and [37] proposed a block-one-sched-
uling policy that only allows the request at the head of the buffer
to move forward. An upper bound on the average latency of the
storage system is provided through queuing-theoretic analysis
for MDS codes with . Later, the approach is extended in
[41] to general erasure codes, yet for a single file or ho-
mogeneous files. A family of MDS-Reservation scheduling

policies that block all except the first of file requests are pro-
posed and lead to numerical upper bounds on the average la-
tency. It is shown that as increases, the bound becomes tighter
while the number of states concerned in the queueing-theoretic
analysis grows exponentially.
Fork-Join Queue Analysis: A queuing model closely related

to erasure-coded storage is the fork-join queue [14], which has
been extensively studied in the literature. Recently, in [2], the
authors proposed a heuristic transmission scheme using this
Fork-join queuing model where a file request is forked to all
storage nodes that host the file chunks, and it exits the system
when any chunks are processed to dynamically tuning coding
parameters to improve latency performance. In [4], the authors
proposed a self-adaptive strategy that can dynamically adjust
chunk size and number of redundancy requests according to
dynamic workload status in erasure-coded storage systems to
minimize queuing delay in fork-join queues. Also, the authors
in [42] used this fork-join queue to model the latency
performance of erasure-coded storage, a closed-form upper
bound of service latency is derived for the case of a single file or
homogeneous files and exponentially distributed service time.
However, the approach cannot be applied to a multiple-hetero-
geneous file storage where each file has a separate folk-join
queue and the queues of different files are highly dependent due
to shared storage nodes and joint request scheduling. In another
work [3], the authors applied this fork-join queue to optimize
threads allocation to each request, which is similar to our
weighted queue model, however, both proposed greedy/shared
scheme would waste system resources because in fork-join
queue there will always be some threads have unfinished
downloads due to redundant assignment. In addition, in [7],
the authors proposed a distributed storage system that analyzed
through the Fork-join queue framework with heteroge-
neous jobs, and provide lower and upper bounds on the average
latency for jobs of different classes under various scheduling
policies, such as First-Come-First-Serve, preemptive and non-
preemptive priority scheduling policies, based on the analysis
of mean and second moment of waiting time. However, under a
folk-join queue, each file request must be served by all nodes
or a set of prespecified nodes. It falls short to address dynamic
load-balancing of multiple heterogeneous files.

C. Our Contributions

This paper aims to propose a systematic framework that:
1) quantifies the outer bound on the service latency of arbitrary
erasure codes and for any number of files in distributed data
center storage with general service time distributions; and
2) enables a novel solution to a joint minimization of latency
and storage cost by optimizing the system over three dimen-
sions: erasure coding, chunk placement, and scheduling policy.
The outer bound on the service latency is found using four

steps.
1) We present a novel probabilistic scheduling policy, which

dispatches each file request to distinct storage nodes who
then manages their own local queues independently. A file
request exits the system when all the chunk requests
are processed. We show that probabilistic scheduling pro-
vides an upper bound on average latency of erasure-coded
storage for arbitrary erasure codes, any number of files, and
general service time distributions.

XIANG et al.: JOINT LATENCY AND COST OPTIMIZATION FOR ERASURE-CODED DATA CENTER STORAGE 2445

2) Then, we show that the probabilistic scheduling is equiv-
alent to accessing each of the storage nodes with cer-
tain probability. If there is a strategy that accesses each
storage node with certain probability, there exist a prob-
abilistic scheduling strategy over all subsets.

3) The policy that selects each storage node with certain prob-
ability generates memoryless requests at each of the nodes
and thus the delay at each storage node can be character-
ized by the latency of M/G/1 queue.

4) Knowing the exact delay from each storage node, we find
a tight bound on the delay of the file by extending ordered
statistic analysis in [36]. Not only does our result super-
sede previous latency analysis [33], [37], [41], [42] by in-
corporating multiple heterogeneous files and arbitrary ser-
vice time distribution, it is also shown to be tighter for a
wide range of workloads even in the single-file or homo-
geneous-files case.

Multiple extensions to the outer bound on the service latency
are considered. The first is the case when multiple chunks can
be placed on the same node. As a result, multiple chunk requests
corresponding to the same file request can be submitted to the
same queue, which processes the requests sequentially and re-
sults in dependent chunk service times. The second is the case
when the file can be retrieved from more than nodes. In this
case, smaller amount of data can be obtained from more nodes.
Obtaining data from more nodes has an effect of considering
worst ordered statistics having an effect on increasing latency,
while the smaller file size from each of the node helping more
parallelism, and thus decreasing latency. The optimal value of
the number of disks to access can then be optimized.
The main application of our latency analysis is a joint opti-

mization of latency and storage cost for multiple-heterogeneous
file storage over three dimensions: erasure coding, chunk place-
ment, and scheduling policy. To the best of our knowledge, this
is the first paper to explore all these three design degrees of free-
doms and to optimize an aggregate latency-plus-cost objective
for all end-users in an erasure-coded storage. Solving such a
joint optimization is known to be hard due to the integer prop-
erty of storage cost, as well as the coupling of control variables.
While the length of erasure code determines not only storage
cost but also the number of file chunks to be created and placed,
the placement of file chunks over storage nodes further dictates
the possible options of scheduling future file requests. To deal
with these challenges, we propose an algorithm that constructs
and computes a sequence of local convex approximations of the
latency-plus-cost minimization that is a mixed integer optimiza-
tion. The sequence of approximations can be efficiently com-
puted using a standard projected gradient method and is shown
to converge to the original problem in the end.
To validate our theoretical analysis and joint latency-plus-

cost optimization, we provide a prototype of the proposed
algorithm in Tahoe [40], which is an open-source, distributed
filesystem based on the zfec erasure coding library for fault tol-
erance. A Tahoe storage system consisting of 12 storage nodes
are deployed as virtual machines in an OpenStack-based data
center environment distributed in New Jersey (NJ), Texas (TX),
and California (CA). Each site has four storage servers. One
additional storage client was deployed in the NJ data center to
issue storage requests. First, we validate our latency analysis
via experiments with multiple-heterogeneous files and different

request arrival rates on the testbed. Our measurement of real
service time distribution falsifies the exponential assumption
in [33], [37], and [41]. Our analysis outperforms the upper
bound in [42] even in the single-file/homogeneous-file case.
Second, we implement our algorithm for joint latency-plus-cost
minimization and demonstrate significant improvement of
both latency and cost over oblivious design approaches. Our
entire design is validated in various scenarios on our testbed,
including different files sizes and arrival rates. The percentage
improvement increases as the file size increases because our
algorithm reduces queuing delay, which is more effective when
file sizes are larger. Finally, we quantify the tradeoff between
latency and storage cost. It is shown that the improved latency
shows a diminished return as storage cost/redundancy increase,
suggesting the importance of identifying a particular tradeoff
point.

II. SYSTEM MODEL

We consider a data center consisting of heterogeneous
servers, denoted by , called storage nodes.
To distributively store a set of files, indexed by ,
we partition each file into fixed-size chunks1 and then en-
code it using an MDS erasure code to generate dis-
tinct chunks of the same size for file . The encoded chunks are
assigned to and stored on distinct storage nodes, which leads
to a chunk placement subproblem, i.e., to find a set of storage
nodes, satisfying and , to store file . There-
fore, each chunk is placed on a different node to provide high re-
liability in the event of node or network failures. While data lo-
cality and network delay have been one of the key issues studied
in data center scheduling algorithms [18], [19], [21], the prior
work does not apply to erasure-coded systems.
The use of MDS erasure code allows the file to be re-

constructed from any subset of -out-of- chunks, whereas it
also introduces a redundancy factor of . To model storage
cost, we assume that each storage node charges a con-
stant cost per chunk. Since is determined by file size and
the choice of chunk size, we need to choose an appropriate
that not only introduces sufficient redundancy for improving
chunk availability, but also achieves a cost-effective solution.
We refer to the problem of choosing to form a proper
erasure code as an erasure coding subproblem.
For known erasure coding and chunk placement, we shall

now describe a queueing model of the distributed storage
system. We assume that the arrival of client requests for each
file form an independent Poisson process with a known rate
. We consider chunk service time of node with arbitrary

distributions, whose statistics can be obtained inferred from
existing work on network delay [28], [29] and file-size distribu-
tion [30], [31]. Under MDS codes, each file can be retrieved
from any distinct nodes that store the file chunks. We model
this by treating each file request as a batch of chunk requests,
so that a file request is served when all chunk requests in the
batch are processed by distinct storage nodes. All requests are
buffered in a common queue of infinite capacity.

1While we make the assumption of fixed chunk size here to simplify the
problem formulation, all results in this paper can be easily extended to variable
chunk sizes. Nevertheless, fixed chunk sizes are indeed used by many existing
storage systems [20], [22], [23].

2446 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

(a) (b)

……

Dispatch

A,1
2R

A,1
1R B,1

1R B,2
1R

A,1
2R

A,2
1R A,1

1R A,2
1R B,1

1R B,2
1R

A,2
2R

B,1
2R

B,2
2R

B,1
3R B,2

3R
A,1
3R

A,2
3R

A,1
4R A,2

4R

A,2
4R

A,2
2R

A,1
3R

A,1
4R

A,2
3R

B,1
2R

B,1
3R B,2

2R
B,2
3R

Fig. 2. Functioning of (a) an optimal scheduling policy and (b) a probabilistic
scheduling policy. (a) MDS scheduling, (b) Probabilistic scheduling.

Consider the 2-file storage example in Section I, where
files and are encoded using and MDS codes,
respectively, file will have chunks as , and ,
and file will have chunks , and . As depicted in
Fig. 2(a), each file request comes in as a batch of chunk
requests, e.g., , and ,
where , denotes the th request of file denotes
the first or second chunk request of this file request. Denote the
five nodes (from left to right) as servers 1, 2, 3, 4, and 5, and we
initialize 4 file requests for file and 3 file requests for file ,
i.e., requests for the different files have different arrival rates.
The two chunks of one file request can be any two different
chunks from , and for file and , and

for file . Due to chunk placement in the example, any
2 chunk requests in file A's batch must be processed by 2
distinct nodes from , while 2 chunk requests in file
B's batch must be served by 2 distinct nodes from .
Suppose that the system is now in a state depicted by Fig. 2(a),
wherein the chunk requests , and
are served by the 5 storage nodes, and there are 9 more chunk
requests buffered in the queue. Suppose that node 2 completes
serving chunk request and is now free to serve another
request waiting in the queue. Since node 2 has already served
a chunk request of batch and node 2 does not
host any chunk for file B, it is not allowed to serve either
or , where in the queue. One of the valid
requests, and , will be selected by a scheduling algo-
rithm and assigned to node 2. We denote the scheduling policy
that minimizes average expected latency in such a queuing
model as optimal scheduling.
Definition 1 (Optimal Scheduling): An optimal scheduling

policy: 1) buffers all requests in a queue of infinite capacity;
2) assigns at most 1 chunk request from a batch to each appro-
priate node; and 3) schedules requests to minimize average la-
tency if multiple choices are available.
An exact analysis of optimal scheduling is extremely diffi-

cult. Even for given erasure codes and chunk placement, it is un-
clear what scheduling policy leads to minimum average latency
of multiple heterogeneous files. For example, when a shared
storage node becomes free, one could schedule either the ear-
liest valid request in the queue or the request with scarcest avail-
ability, leading to different implications on average latency. A
scheduling policy similar to [33] and [37] that blocks all but the
first batches does not apply to multiple heterogeneous files be-
cause a Markov-chain representation of the resulting queue is

required to have each state encapsulating not only the status of
each batch in the queue, but also the exact assignment of chunk
requests to storage nodes, since nodes are shared by multiple
files and are no longer homogeneous. This leads to a Markov
chain that has a huge state space and is hard to quantify analyt-
ically even for small . On the other hand, the approach relying
on fork-join queue in [42] also falls short because each
file request must be forked to servers, inevitably causing con-
flict at shared servers.

III. UPPER BOUND: PROBABILISTIC SCHEDULING
This section presents a class of scheduling policies (and

resulting latency analysis), which we call the probabilistic
scheduling, whose average latency upper-bounds that of op-
timal scheduling.

A. Probabilistic Scheduling
Under MDS codes, each file can be retrieved by

processing a batch of chunk requests at distinct nodes that
store the file chunks. Recall that each encoded file is spread
over nodes, denoted by a set . Upon the arrival of a file
request, in probabilistic scheduling we randomly dispatch the

batch of chunk requests to out of storage nodes in ,
denoted by a subset (satisfying) with pre-
determined probabilities. Then, each storage node manages its
local queue independently and continues processing requests in
order. A file request is completed if all its chunk requests exit
the system. An example of probabilistic scheduling is depicted
in Fig. 2(b), wherein 5 chunk requests are currently served by
the 5 storage nodes, and there are 9 more chunk requests that
are randomly dispatched to and are buffered in 5 local queues
according to chunk placement, e.g., requests are only
distributed to nodes . Suppose that node 2 completes
serving chunk request . The next request in the node's local
queue will move forward.
Definition 2 (Probabilistic Scheduling): A probabilistic

scheduling policy: 1) dispatches each batch of chunk requests
to appropriate nodes with predetermined probabilities; 2) each
node buffers requests in a local queue and processes in order.
It is easy to verify that such probabilistic scheduling ensures

that at most 1 chunk request from a batch to each appropriate
node. It provides an upper bound on average service latency
for the optimal scheduling since rebalancing and scheduling of
local queues are not permitted. Let for all be the
probability of selecting a set of nodes to process the

distinct chunk requests.2
Lemma 1: For given erasure codes and chunk placement, av-

erage service latency of probabilistic scheduling with feasible
probabilities upper-bounds the latency of op-
timal scheduling.
Clearly, the tightest upper bound can be obtained by mini-

mizing average latency of probabilistic scheduling over all fea-
sible probabilities and , which involves

decision variables. We refer to this optimization as a
scheduling subproblem. While it appears prohibitive computa-
tionally, we will demonstrate next that the optimization can be
transformed into an equivalent form, which only requires

2It is easy to see that for all and because
such node selections do not recover distinct chunks and thus are inadequate
for successful decode.

XIANG et al.: JOINT LATENCY AND COST OPTIMIZATION FOR ERASURE-CODED DATA CENTER STORAGE 2447

variables. The key idea is to show that it is sufficient to con-
sider the conditional probability (denoted by) of selecting
a node , given that a batch of chunk requests of file are
dispatched. It is easy to see that for given , we can derive

by

(1)

where is an indicator function that equals to 1 if node
is selected by , and 0 otherwise.
Theorem 1: A probabilistic scheduling policy with feasible

probabilities exists if and only if there exists
conditional probabilities satisfying

and if (2)

The proof of Theorem 1 relying on Farkas–Minkowski The-
orem [44] is detailed in Appendix-A. Intuitively,
holds because each batch of requests is dispatched to exact

distinct nodes. Moreover, a node that does not host file chunks
should not be selected, meaning that if . Using
this result, it is sufficient to study probabilistic scheduling via
conditional probabilities , which greatly simplifies our anal-
ysis. In particular, it is easy to verify that under our model, the
arrival of chunk requests at node forms a Poisson Process with
rate , which is the superposition of Poisson
processes each with rate is the service rate of node .
The resulting queuing system under probabilistic scheduling is
stable if all local queues are stable.
Corollary 1: The queuing system can be stabilized by a

probabilistic scheduling policy under request arrival rates
if there exists satisfying (2)

and

(3)

B. Latency Analysis and Upper Bound
An exact analysis of the queuing latency of probabilistic

scheduling is still hard because local queues at different storage
nodes are dependent of each other as each batch of chunk
requests are dispatched jointly. Let be the (random) waiting
time a chunk request spends in the queue of node . The ex-
pected latency of a file request is determined by the maximum
latency that chunk requests experience on distinct servers,

, which are randomly scheduled with predetermined
probabilities, i.e.,

(4)

where the first expectation is taken over system queuing dy-
namics and the second expectation is taken over random dis-
patch decisions .
If the server scheduling decision were deterministic, a

tight upper bound on the expected value of the highest-order
statistic can be computed from marginal mean and variance of
these random variables [36], namely and . Re-
lying on Theorem 1, we first extend this bound to the case of
randomly selected servers with respect to conditional probabili-
ties to quantify the latency of probabilistic
scheduling.

Lemma 2: The expected latency of file under proba-
bilistic scheduling is upper-bounded by

(5)

The bound is tight in the sense that there exists a distribution of
such that (5) is satisfied with exact equality.
Next, we realize that the arrival of chunk requests at

node form a Poisson Process with superpositioned rate
. The marginal mean and variance of waiting

time can be derived by analyzing them as separate M/G/1
queues. We denote as the service time per chunk at node ,
which has an arbitrary distribution satisfying finite mean

, variance , second
moment , and third moment . These
statistics can be readily inferred from existing work on network
delay [29], [28] and file-size distribution [30], [31].
Lemma 3: Using Pollaczek–Khinchin transform [37], ex-

pected delay and variance for total queueing and network delay
are given by

(6)

(7)

where is the request intensity at node .
Combining Lemmas 2 and 3, a tight upper bound on ex-

pected latency of file under probabilistic scheduling can be ob-
tained by solving a single-variable minimization problem over
real for given erasure codes , chunk placement , and
scheduling probabilities .
Remark 1: Consider the homogeneous case studied in pre-

vious work [3], [33], [37], [42] where all nodes have the same
service time distribution and where files have the same chunk
placement (i.e.,). It is easy to show that due to
symmetry, the optimal scheduling probabilities minimizing
total system latency is for all . Therefore, each
node receives an equal request arrival rate , resulting in
equal mean and variance of waiting time . Using the con-
vexity of our bound with respect to , the latency upper bound
in (5) can be derived in closed form

(8)
where and are mean and variance of waiting
time given by (6) and (7).

C. Extensions of the Latency Upper Bound

In the above upper bound, we assumed that each file uses
MDS code, places exactly one chunk on each selected

node, and is retrieved from out of nodes on which the file
is placed. In practice, more complicated storage schemes can
be designed to offer a higher degree of elasticity by: 1) placing
multiple chunks on selected nodes; or 2) accessing the file from
more than nodes in parallel. In this section, we further extend
our latency upper bound to address these cases.

2448 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Placing Multiple Chunks on Each Node: This case arises
when a group of storage nodes share a single bottleneck (e.g.,
outgoing bandwidth at a regional datacenter) and must be mod-
eled by a single queue, or in small clusters where the number
of storage nodes is less than that of created file chunks (i.e.,

). As a result, multiple chunk requests corresponding
to the same file request can be submitted to the same queue,
which processes the requests sequentially and results in depen-
dent chunk waiting times.
To extend our latency bound, we assume that each node can

host up to chunks. Thus, our probabilistic scheduling policy
dispatches (random) chunk requests of file to node with
predetermined probability for .
Since represents the average number of chunks re-
trieved from node , we must have to guar-
antee access to enough chunks for successful file retrieval. Fur-
thermore, to maintain the Poisson arrival in our queuing model,
we group these chunk requests into a “super-chunk” request.
The service time of this “super-chunk” request is given by

, where are i.i.d. chunk service times of
node as before and follows distribution . Therefore, we
can find the mean, second, and third moment of the new service
time , denoted by and , respectively. Under this
model, the request queue at each storage server can still be
modeled as separate M/G/1 queues, the latency of each file
can be characterized by the following lemma.
Lemma 4: The expected latency of file is upper-bounded

by

(9)

where is the waiting time for all chunk request of file
submitted together to the queue of node , with moments given
by

(10)

(11)

where is the equivalent request arrival
and is the equivalent intensity at node .
The proof is very similar to that of Lemma 3, recognizing

that each batch of chunk requests can be considered as a single
“super-chunk” request in this case, with service time

. Thus, the arrival of these “super-chunk” requests at
each server queue form a Poisson process with a new service
time distribution. Finally, for all chunk requests in the same
batch, only the latency of last request (i.e., waiting time in the
queue plus processing time of all chunk requests in the batch)
has to be considered in the order statistic analysis because it
strictly dominates the queuing latency of other requests.
Using the i.i.d. property of service times and updating equiv-
alent request arrival rate , the proof of
Lemma 4 is straightforward.

Remark: Retrieving File From More Than Nodes: Let
be the size of file . We now consider the scenario where files
have different chunk sizes and where each file can be obtained
from nodes, requiring only amount of data from
each node. The scheme allows a higher degree of parallelism
in file access. Since less content is requested from each node, it
may lead to lower service latency at the cost of accessing more
nodes and more complicated coding strategy. We note that in
this case the latency bound and its queuing analysis is the same
as when MDS code is applied.

IV. APPLICATION: JOINT LATENCY AND COST OPTIMIZATION

In this section, we address the following questions: What is
the optimal tradeoff point between latency and storage cost for a
erasure-coded system? While any optimization regarding exact
latency is an open problem, the analytical upper bound using
probabilistic scheduling enables us to formulate a novel opti-
mization of joint latency and cost objectives. Its solution not
only provides a theoretical bound on the performance of optimal
scheduling, but also leads to implementable scheduling policies
that can exploit such tradeoff in practical systems.

A. Formulating the Joint Optimization

We showed that a probabilistic scheduling policy can be op-
timization over three sets of control variables: erasure coding
parameter , chunk placement , and scheduling probabili-
ties . However, a latency optimization without considering
storage cost is impractical and leads to a trivial solution where
every file ends up spreading over all nodes. To formulate a joint
latency and cost optimization, we assume that storing a single
chunk on node requires cost , reflecting the fact that nodes
may have heterogeneous quality of service and thus storage
prices. Therefore, total storage cost is determined by both the
level of redundancy (i.e., erasure code length) and chunk
placement . Under this model, the cost of storing file is given
by . In this paper, we only consider the storage
cost of chunks while network cost would be an interesting fu-
ture direction.
Let be the total arrival rate, so is the fraction

of file requests, and average latency of all files is given by
. Our objective is tominimize an aggregate latency-

cost objective, i.e.,

s.t.
var. (12)

Here, is a tradeoff factor that determines the relative
importance of latency and cost in the minimization problem.
Varying from to , the optimization solution to
(12) ranges from those minimizing latency to ones that achieve
lowest cost.
The joint latency-cost optimization is carried out over three

sets of variables: erasure code , scheduling probabilities ,
and chunk placement , subject to the constraints derived in
Section III. Varying , the optimization problem allows service
providers to exploit a latency–cost tradeoff and to determine the
optimal operating point for different application demands. We

XIANG et al.: JOINT LATENCY AND COST OPTIMIZATION FOR ERASURE-CODED DATA CENTER STORAGE 2449

plug into (12) the results in Section III and obtain a Joint La-
tency-Cost Minimization (JLCM) with respect to probabilistic
scheduling3:
Problem JLCM:

(13)

s.t. (14)

(15)

(16)

(17)

and (18)
var.

Problem JLCM is challenging due to two reasons. First, all
optimization variables are highly coupled, making it hard to
apply any greedy algorithm that iterative optimizes over dif-
ferent sets of variables. The number of nodes selected for chunk
placement (i.e.,) is determined by erasure code length
in (18), while changing chunk placement affects the feasi-
bility of probabilities due to (17). Second, Problem JLCM
is a mixed-integer optimization over and , and storage
cost depends on the integer variables. Such a
mixed-integer optimization is known to be difficult in general.

B. Constructing Convex Approximations
Next, we develop an algorithmic solution to Problem JLCM

by iteratively constructing and solving a sequence of convex
approximations. This section shows the derivation of such ap-
proximations for any given reference point, while the algorithm
and its convergence will be presented later.
Our first step is to replace chunk placement and erasure

coding by indicator functions of . It is easy to see that any
nodes receiving a zero probability should be removed
from , since any chunks placed on them do not help reducing
latency.
Lemma 5: The optimal chunk placement of Problem JLCM

must satisfy , which implies

(19)

Thus, Problem JLCM becomes to an optimization over only
, constrained by in

(17), with respect to the following objective function:

(20)

3The optimization is relaxed by applying the same axillary variable to all
, which still satisfies the inequality (5).

However, the indicator functions above that are neither contin-
uous nor convex. To deal with them, we select a fixed reference
point and leverage a linear approximation of (20)
with in a small neighbourhood of the reference point. For all

, we have

(21)

where is a sufficiently large constant relating to the ap-
proximation ratio. It is easy to see that the approximation ap-
proaches the real cost function within a small neighbourhood
of as increases. More precisely, when
the approximation reduces to , whose gradient
approaches infinity as , whereas the approximation con-
verges to constant for any as .
It is easy to verify that the approximation is linear and differ-

entiable. Therefore, we could iteratively construct and solve a
sequence of approximated version of Problem JLCM. Next, we
show that the rest of optimization objective in (13) is convex in

when all other variables are fixed.
Lemma 6: The following function, in which and are

functions of defined by (14) and (15), is convex in :

(22)

C. Algorithm JLCM and Convergence Analysis
Leveraging the linear local approximation in (21) our idea to

solve Problem JLCM is to start with an initial , solve
its optimal solution, and iteratively improve the approximation
by replacing the reference point with an optimal solution com-
puted from the previous step. Lemma 6 shows that such approx-
imations of Problem JLCM are convex and can be solved by
off-the-shelf optimization tools, e.g., Gradient Descent Method
and Interior Point Method [38].
The proposed algorithm is shown in Fig. 3. For each itera-

tion , we solve an approximated version of Problem JLCM over
with respect to a given reference point and a fixed

parameter , where is the objective value. More precisely,
for we solve

s.t. Constraints (14), (15), (16)

and

var. (23)

Due to Lemma 6, the above minimization problem with re-
spect to a given reference point has a convex objective func-
tion and linear constraints. It is solved by a projected gradient
descent routine in Fig. 4. Notice that the updated probabilities

in each step are projected onto the feasibility set
as required by Problem

2450 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Fig. 3. Algorithm JLCM: Our proposed algorithm for solving Problem JLCM.

Fig. 4. Projected Gradient Descent Routine, used in each iteration of Algorithm
JLCM.

JLCM using a standard Euclidean projection. It is shown that
such a projected gradient descent method solves the optimal so-
lution of Problem (23). Next, for fixed probabilities ,
we improve our analytical latency bound by minimizing it over

. The convergence of our proposed algorithm is proven in
the following theorem.
Theorem 2: Algorithm JLCM generates a descent sequence

of feasible points, for , which converges to a
local optimal solution of Problem JLCM as grows sufficiently
large.
Remark: To prove Theorem 2, we show that Algorithm

JLCM generates a series of decreasing objective values
of Problem JLCM with a modified cost

function

(24)

The key idea in our proof is that the linear approximation of
storage cost function in (21) can be seen as a subgradient of

, which converges to the real storage
cost function as , i.e.,

(25)

Therefore, a converging sequence for the modified objective
also minimizes Problem JLCM, and the

optimization gap becomes zero as . is the linear ap-
proximation of storage cost, defined in (44) in the Appendix.

Furthermore, it is shown that is a concave function. Thus,
minimizing can be viewed as optimizing the
difference between 2 convex objectives, namely
and , which can be also solved via a Difference-of-Convex
Programming (DCP). In this context, our linear approximation
of cost function in (21) can be viewed as an approximated super-
gradient in DCP. Please refer to [39] for a comprehensive study
of regularization techniques in DCP to speed up the conver-
gence of Algorithm JLCM.

V. IMPLEMENTATION AND EVALUATION

A. Tahoe Testbed
To validate our proposed algorithms for joint latency and

cost optimization (i.e., Algorithm JLCM) and evaluate their
performance, we implemented the algorithms in Tahoe [40],
which is an open-source, distributed filesystem based on the
zfec erasure coding library. It provides three special instances
of a generic node: 1) Tahoe Introducer: It keeps track of a
collection of storage servers and clients and introduces them
to each other. 2) Tahoe Storage Server: It exposes attached
storage to external clients and stores erasure-coded shares.
3) Tahoe Client: It processes upload/download requests and
connects to storage servers through a Web-based REST API
and the Tahoe-LAFS (Least-Authority File System) storage
protocol over SSL.
Our algorithm requires customized erasure code, chunk

placement, and server selection algorithms. While Tahoe uses
a default (10, 3) erasure code, it supports arbitrary erasure
code specification statically through a configuration file. In
Tahoe, each file is encrypted, and is then broken into a set
of segments, where each segment consists of blocks. Each
segment is then erasure-coded to produce blocks (using
an encoding scheme) and then distributed to (ideally)
distinct storage servers. The set of blocks on each storage

server constitute a chunk. Thus, the file equivalently consists
of chunks that are encoded into chunks and each chunk
consists of multiple blocks.4 For chunk placement, the Tahoe
client randomly selects a set of available storage servers with
enough storage space to store chunks. For server selection
during file retrievals, the client first asks all known servers
for the storage chunks they might have. Once it knows where
to find the needed chunks (from the servers that respond
the fastest), it downloads at least the first segment from those
servers. This means that it tends to download chunks from the
“fastest” servers purely based on round-trip times (RTTs). In
our proposed JLCM algorithm, we consider RTT plus expected
queuing delay and transfer delay as a measure of latency.
In our experiment, we modified the upload and download

modules in the Tahoe storage server and client to allow for cus-
tomized and explicit server selection, which is specified in the
configuration file that is read by the client when it starts. In ad-
dition, Tahoe performance suffers from its single-threaded de-
sign on the client side for which we had to use multiple clients
with separate ports to improve parallelism and bandwidth usage
during our experiments.

4If there are not enough servers, Tahoe will store multiple chunks on one
sever. Also, the term “chunk” we used in this paper is equivalent to the term
“share” in Tahoe terminology. The number of blocks in each chunk is equivalent
to the number of segments in each file.

XIANG et al.: JOINT LATENCY AND COST OPTIMIZATION FOR ERASURE-CODED DATA CENTER STORAGE 2451

Fig. 5. Our Tahoe testbed with average ping (RTT) and bandwidth measure-
ments among three data centers in New Jersey, Texas, and California.

We deployed 12 Tahoe storage servers as medium-sized vir-
tual machine (VM) instances in an OpenStack-based data center
environment distributed in NJ, TX, and CA. Each instance has
2 VCPUs, 2 GB of memory, and a 500 GB volume attached.
VMs residing on the same site can be treated as separate
storage servers in one data-center. Each site has four storage
servers. One additional storage client was deployed in the NJ
data center to issue storage requests. The deployment is shown
in Fig. 5 with average ping (round-trip time) and bandwidth
measurements listed among the three data centers. We note that
while the distance between CA and NJ is greater than that of
TX and NJ, the maximum bandwidth is higher in the former
case. The RTT measured by ping does not necessarily correlate
with the bandwidth number. Therefore, this testbed is very
representative of real geographically distributed data centers
since our theory has network connection delay considered into
the model. Furthermore, the current implementation of Tahoe
does not use up the maximum available bandwidth, even with
our multiport revision.

B. Experiments and Evaluation

Validate Our Latency Analysis: While our service delay
bound applies to arbitrary distribution and works for systems
hosting any number of files, we first run an experiment to
understand the actual service time distribution on our testbed.
We uploaded a 50-MB file using a (7, 4) erasure code and
measured the chunk service time. Service time depends on the
code only because it depends on the size of the chunk. We
chose the (7, 4) code as an example code, which together with
50-MB file size gives a chunk size of 12.5 MB. Fig. 6 depicts
the cumulative distribution function (CDF) of the chunk service
time. Using the measured results, we get the mean service time
of 13.9 s with a standard deviation of 4.3 s, second moment of
211.8 s , and the third moment of 3476.8 s . We compare the
distribution to the exponential distribution (with the same mean
and the same variance, respectively) and note that the two do
not match. It verifies that actual service time does not follow
an exponential distribution, and therefore the assumption of
exponential service time in [33] and [37] is falsified by empir-
ical data. The observation is also evident because a typical real
distribution is unlikely to have positive probabilities for very
small service times. Choosing a different code for our tests
can result in different chunk sizes, and thus the distribution
will be different, but it will still not follow an exponential
distribution. Furthermore, the mean and the standard deviation
are very different from each other and cannot be matched by
any exponential distribution.
Using the service time distribution obtained above, we com-

pare the upper bound on latency that we propose in this paper to

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Latency (sec)

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Service Time Distribution
Exponential Distribution with same Mean
Exponential Distribution with same Variance

Fig. 6. Comparison of actual service time distribution and an exponential
distribution with the same mean. It verifies that actual service time does
not follow an exponential distribution, falsifying the assumption in previous
work [33], [37].

0.03 0.04 0.05 0.06 0.07
Request Arrival Rate

0.08 0.09 0.1
0

160

140

120

100

80

60

40

20

180

200

L
a
te

n
cy

 (
S

e
c
)

Fig. 7. Comparison of our upper bound on latency to previous work [2] and
[42]. Our bound significantly improves previous result under medium to high
traffic and comes very close to that of [42] under low traffic (with less than 4%
gap).

the outer bound in [2] and [42]. Even though our upper bound
holds for multiple heterogeneous files, and includes connec-
tion delay, we restrict our comparison to the case for a single
file/homogeneous file (multiple homogeneous files with exactly
the same properties can be reduced to the case of single file)
without any connection delay for a fair comparison (since the
upper bound in [42] only works for the case of a single file/ho-
mogeneous files). For queuing models, [42] is using a modified

fork-join queue, where each request is forked to servers
that “store the coded content,” and is marked as servedwhen any
chunk requests are served, and the rest of the chunk re-

quests would be abandoned immediately. Reference [2] is using
fixed erasure code (requests are submitted to out of

storage servers) with general service time distribution. For a
fair comparison in Fig. 7, we use a (7, 4) erasure code for all
three of the models. We plot the latency upper bound that we
give in this paper and the upper bound in [42, Theorem 3] and
[2] in Fig. 7, and mean of service time in the three bounds is
set to be equal in this case. In our probabilistic scheduling, ac-
cess requests are dispatched uniformly to all storage nodes. We
find that our bound significantly outperforms the upper bound
in [2] and [42] for a wide range of (when comparing
to [42]) and (when comparing to [2]), which repre-
sents medium to high traffic regime. Under low traffic, the three
bounds get very close to each other with a less than 4% gap.

2452 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

0 50 100 150 200 250
0

500

1000

1500

2000

Number of Iterations

N
om

al
iz

ed
 O

bj
ec

tiv
e

Fig. 8. Convergence of Algorithm JLCM for different problem size with
files for our 12-node testbed. The algorithm efficiently computes a solution

in less than 250 iterations.

Validate Algorithm JLCM and Joint Optimization:We imple-
mented Algorithm JLCM and used MOSEK [43], a commercial
optimization solver, to realize the projected gradient routine.
For 12 distributed storage nodes in our testbed, Fig. 8 demon-
strates the convergence of Algorithm JLCM, which optimizes
latency-plus-cost over three dimensions: erasure code length ,
chunk placement , and load balancing . Convergence of
Algorithm JLCM is guaranteed by Theorem 2. To speed up its
calculation, in this experiment we merge different updates, in-
cluding the linear approximation, the latency bound minimiza-
tion, and the projected gradient update, into one single loop.
By performing these updates on the same timescale, our Algo-
rithm JLCM efficiently solves the joint optimization of problem
size files. It is observed that the normalized objective
(i.e., latency-plus-cost normalized by the minimum) converges
within 250 iterations for a tolerance , where each iter-
ation has an average run time of 0.81 s, when the algorithm is
running on a 8-core machine with i7-3770 CPU, i.e., the algo-
rithm converges within 202 s on average. To achieve dynamic
file management, our optimization algorithm can be executed
repeatedly upon file arrivals and departures.
To demonstrate the joint latency-plus-cost optimization of

Algorithm JLCM, we compare its solution to three oblivious
schemes, each of which minimize latency-plus-cost over only
a subset of the three dimensions: load-balancing (LB), chunk
placement (CP), and erasure code (EC). We implemented the
four algorithms for files of size 150 MB on our
testbed, with for every 25 MB storage and tradeoff
factor of s/dollar for Algorithm JLCM. The result
is shown in Fig. 9. First, even with the optimal erasure code
and chunk placement (which means the same storage cost as
the optimal solution from Algorithm JLCM), higher latency is
observed in Oblivious LB, which schedules chunk requests ac-
cording to a load-balancing heuristic that selects storage nodes
with probabilities proportional to their service rates. Second, we
keep optimal erasure codes and employ a random chunk place-
ment algorithm, referred to as Random CP. Large latency incre-
ment in the implementation outcome resulted by Random CP
highlights the importance of joint chunk placement and load bal-
ancing in reducing service latency. Finally, Maximum EC uses

Fig. 9. Comparison of Implementation results of Algorithm JLCM to some
oblivious approaches. Algorithm JLCM minimizes latency-plus-cost over three
dimensions: LB, CP, and EC, while any optimization over a subset of the di-
mensions is nonoptimal.

maximum possible erasure code. For bothRandomCP andMax-
imum EC, we use a round-robin request scheduling policy to se-
lect storage nodes for each request. Maximum EC approach
uses an erasure code with the maximum length (i.e.,)
to encode each file into chunks, so that one encoded chunk
is placed on each storage node. While this part is similar to
fork-join in [42], to schedule a request,Maximum EC employs a
round robin strategy to select storage nodes for each request.
Although its latency is comparable to the optimal solution from
Algorithm JLCM, higher storage cost is observed. We verify
that minimum latency-plus-cost can only be achieved by jointly
optimizing over all three dimensions.
Evaluate the Performance of Our Solution: First, we choose

files of size 150 MB and the same storage cost and
tradeoff factor as in the previous experiment. The files are di-
vided into four classes (each class has 250 files) with erasure
code parameter , respectively (class-1 files using

, class-2 files using , class 3 using , and class 4
has). Aggregate request arrival rate for each file class are
set to /s, /s, which leads
to an aggregate file request arrival rate of /s. We are
choosing the values of erasure codes for a proper chunk size
for our experiments so that the file sizes are widely used for
today's data center storage users, and setting different request
arrival rates for the two classes using the same value to see the
performance of JLCM on the storage-latency tradeoff. We ob-
tain the service time statistics (including mean, variance, second
and third moment) at all storage nodes and run Algorithm JLCM
to generate an optimal latency-plus-cost solution, which results
in four different sets of optimal erasure code (12, 6), (10, 7),
(10, 6), and (8, 4) for each quarter of the 1000 files, respectively,
as well as associated chunk placement and load-balancing prob-
abilities. Implementing this solution on our testbed, we retrieve
the 1000 files at the designated request arrival rate and plot the
CDF of download latency for each file in Fig. 10. We note that
95% of download requests for files with erasure code (10, 7)
complete within 100 s, while the same percentage of requests
for files using (12, 6) erasure code complete within 32 s due
to higher level of redundancy. In this experiment, erasure code
(12, 6) outperforms (8, 4) in latency though they have the same
level of redundancy because the latter has larger chunk size
when file size are set to be the same.

XIANG et al.: JOINT LATENCY AND COST OPTIMIZATION FOR ERASURE-CODED DATA CENTER STORAGE 2453

0 20 40 60 120 140 160 180
0

0.6

0.4

0.2

0.8

1

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

Empirical CDF

(12,6)

(10,7)

(10,6)

(8,4)

80 100

Latency (Sec)

Fig. 10. Actual service latency distribution of an optimal solution from Algo-
rithm JLCM for 1000 files of size 150 MB using erasure code (12, 6), (10, 7),
(10, 6), and (8, 4) for each quarter with aggregate request arrival rates set to

/s.

Fig. 11. Evaluation of different chunk sizes. Latency increases super-linearly
as file size grows due to queuing delay. Our analytical latency bound taking both
network and queuing delay into account tightly follows actual service latency,
with error percentage less than 9%.

To demonstrate the effectiveness of our joint optimization,
we vary file size in the experiment from 50 to 200 MB and plot
the average download latency of the 1000 individual files, out
of which each quarter is using a distinct erasure code (12, 6),
(10, 7), (10, 6), and (8, 4), and our analytical latency upper
bound in Fig. 11. We see that latency increases super-linearly
as file size grows since it generates higher load on the storage
system, causing larger queuing latency (which is super-linear
according to our analysis). Furthermore, smaller files always
have lower latency because it is less costly to achieve higher
redundancy for these files. We also observe that our analytic la-
tency bound tightly follows actual average service latency, and
the average error percentage between the two is no more than
9%.
Next, we varied aggregate file request arrival rate from

/s to /s (with individual arrival rates also varies
accordingly), while keeping tradeoff factor at s/dollar
and file size at 200 MB. Actual service delay and our analytical
bound for each scenario is shown by a bar plot in Fig. 12 and
associated storage cost by a curve plot. Our analytical bound
provides a close estimate of service latency. As arrival rates

Fig. 12. Evaluation of different request arrival rates. As arrival rates increase,
latency increases and becomes more dominating in the latency-plus-cost ob-
jective than storage cost. The optimal solution from Algorithm JLCM allows
higher storage cost, resulting in a nearly linear growth of average latency.

increase, latency increases and becomes more dominating in
the latency-plus-cost objective than storage cost. Thus, the mar-
ginal benefit of adding more chunks (i.e., redundancy) eventu-
ally outweighs higher storage cost introduced at the same time.
Fig. 12 shows that to achieve a minimization of the latency-
plus-cost objective, the optimal solution from Algorithm JLCM
allows higher storage cost for larger arrival rates, resulting in
a nearly linear growth of average latency as the request arrival
rates increase. For instance, Algorithm JLCM chooses (12, 6),
(12, 7), (11, 6), and (11, 4) erasure codes at the largest arrival
rates, while (10, 6), (10, 7), (8, 6), and (8, 4) codes are se-
lected at the smallest arrival rates in this experiment. We believe
that this ability to autonomously manage latency and storage
cost for latency-plus-cost minimization under different work-
load is crucial for practical distributed storage systems relying
on erasure coding. Also our latency bound accurately predicts
average service latency, with error percentage less than 10% in
this experiment.
Visualize Latency and Cost Tradeoff: Finally, we demonstrate

the tradeoff between latency and storage cost in our joint op-
timization framework. In this experiment, we consider three
classes of files, eachwith a fixed , for respectively.
Tradeoff factor is very important for system planning. In-
creasing value of means a more important role of storage cost
from storage clients, while decreasing value of means a more
important role of latency. With different values of , algorithm
JLCM will provide different values of for each class of file
with a fixed , i.e., with a small value of , algorithm JLCMwill
provide the user with low latency and relatively high storage
cost (larger), and with a large value of , implies a result
of higher latency and lower storage cost (smaller). Varying
the tradeoff factor in Algorithm JLCM from s/dollar
to s/dollar for fixed file size of 200 MB and aggre-
gate arrival rates /s, we obtain a sequence of so-
lutions, minimizing different latency-plus-cost objectives. As
increases, higher weight is placed on the storage cost component
of the latency-plus-cost objective, leading to less file chunks in
the storage system and higher latency. This tradeoff is visualized
in Fig. 13. When , the optimal solution from Algorithm
JLCM chooses three sets of erasure codes (12, 6), (12, 7), and
(12, 4), which is the maximum erasure code length in our frame-
work and leads to highest storage cost (i.e., 12 dollars for each

2454 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Fig. 13. Visualization of latency and cost tradeoff for varying s/dollar
to s/dollar. As increases, higher weight is placed on the storage cost
component of the latency-plus-cost objective, leading to less file chunks and
higher latency.

user), yet lowest latency (i.e., 110 s). On the other hand,
results in the choice of (6, 6), (8, 7), and (6, 4) erasure code,
which is almost the minimum possible cost for storing the three
file, with the highest latency of 128 s. Furthermore, the theoret-
ical tradeoff calculated by our analytical bound and Algorithm
JLCM is very close to the actual measurement on our testbed.
To the best of our knowledge, this is the first work proposing a
joint optimization algorithm to exploit such tradeoff in an era-
sure-coded, distributed storage system.

VI. CONCLUSION
Relying on a novel probabilistic scheduling policy, this paper

develops an analytical upper bound on average service delay
of erasure-coded storage with arbitrary number of files and any
service time distribution. A joint latency and cost minimiza-
tion is formulated by collectively optimizing over erasure code,
chunk placement, and scheduling policy. The minimization is
solved using an efficient algorithm with proven convergence.
Even though only local optimality can be guaranteed due to the
nonconvex nature of the mixed-integer optimization problem,
the proposed algorithm significantly reduces a latency-plus-cost
objective. Both our theoretical analysis and algorithm design are
validated via a prototype in Tahoe, an open-source distributed
file system. Several practical design issues in erasure-coded dis-
tributed storage, such as incorporating network cost in the joint
optimization and dynamic data management, have been ignored
in this paper and open up avenues for future work.

APPENDIX

A. Proof of Theorem 1
We first prove that the conditions and

are necessary. for all is obvious
due to its definition. Then, it is easy to show that

(26)

where the first step is due to (1), is an indicator
function, which is 1 if , and 0 otherwise. The second
step changes the order of summation, and the last step uses
the fact that each set contain exactly nodes and that

.
Next, we prove that for any set of (i.e., node

selection probabilities of file) satisfying and
, there exists a probabilistic scheduling scheme

with feasible load balancing probabilities to
achieve the same node selection probabilities. We start by con-
structing , which is a set containing at least
nodes, because there must be at least positive probabilities
to satisfy . Then, we choose erasure code

length and place chunks on nodes in . From (1), we
only need to show that when and ,
the following system of linear equations have a feasible so-
lution

(27)

We will make use of the following lemma.
Lemma 7: Farkas–Minkowski Theorem [44]. Let be an

matrix with real entries, and and be
two vectors. A necessary and sufficient condition that

has a solution is that, for all with the property
that , we have .
We prove the desired result using mathematical induction. It

is easy to show that the statement holds for . In this
case, we have a unique solution and
for the system of linear equations (27) because all chunks must
be selected to recover file . Now assume that the system of
linear equations (27) has a feasible solution for some .
Consider the case with arbitrary and

. We have a system of linear equations

(28)

Using the Farkas–Minkowski Theorem [44], a sufficient and
necessary condition that (28) has a nonnegative solution is that,
for any and , we have

for some (29)

Toward this end, we construct for all
. Here, is a truncating function and

is a proper water-filling level satisfying

(30)

It is easy to show that
and because . Here, we
used the fact that since

. Therefore, the system of linear equations in (27) with
on the right-hand side must have a nonnegative solution due to
our induction assumption for . Furthermore, without
loss of generality, we assume that for all (oth-
erwise a different can be chosen). It implies that

XIANG et al.: JOINT LATENCY AND COST OPTIMIZATION FOR ERASURE-CODED DATA CENTER STORAGE 2455

(31)

where (a) uses , (b) uses that is independent of , (c)
follows from (30), and the last step uses .
Applying the Farkas–Minkowski Theorem to the system of

linear equations in (27) with on the right-hand side, the
existence of a nonnegative solution (due to our induction as-
sumption for) implies that for some

. It means that

(32)
The last step uses since and . This
is exactly the desired inequality in (29). Thus, (28) has a non-
negative solution due to the Farkas–Minkowski Theorem. The
induction statement holds for . Finally, the solution indeed
gives a probability distribution since

due to (26). This completes the proof.

B. Proof of Lemma 2
Proof: Let be the maximum of waiting time
. We first show that is upper-bounded by the fol-

lowing inequality for arbitrary :

(33)

where is a truncate function. Now, taking the
expectation on both sides of (33), we have

(34)

where denotes the expectation over randomly selected
storage nodes in according to probabilities

. From Cauchy–Schwarz inequality, we have

(35)
Combining (34) and (35), we obtain the desired result by taking
a minimization over .
Finally, it is easy to verify that the bound is tight for the

same binary distribution constructed in [36], i.e.,
with probabilities

(36)

and , which satisfy the mean and variance condi-
tions. Therefore, the upper bound in (5) is tight for this binary
distribution.

C. Derivation of Problem JLCM
Proof: Plugging the results from Lemmas 2 and 3 into (12)

and applying the same to all [which relax the problem and
maintains inequality (5)], we obtain the desired objective func-
tion Problem JLCM. In the derivation, we used the fact that

from (3). Notice that the first summation
is changed from in Lemma 2 to because
we should always assign to storage node that does
not host any chunks of file , i.e., for all .

D. Proof of Lemma 6
Proof: We only need to show that

is convex in as . To prove

that is convex in , we have

(37)

from where we can see that in order for to be positive we

only need and to be positive. Then, we have

Now we can verify that is convex in
. It further implies that is also convex. This

completes the proof.

E. Proof of Theorem 2
Proof: To simplify notations, we first introduce two auxil-

iary functions

(38)

(39)

Therefore Problem (23) is equivalent to over
. For any , due to the the concavity of

logarithmic functions we have
for any nonnegative . Choosing

and and multiplying a constant on both
sides of the inequality, we have

(40)

2456 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 4, AUGUST 2016

Therefore, we construct a new auxiliary function

(41)

Since minimizes Problem (23), we have

(42)

Next, we consider a new objective function and show
that it generates a descent sequence, i.e.,

(43)

where the first step uses (42) and the last step follows from (40).
Therefore, Algorithm JLCM generates a descent sequence,
for , for objective function . Notice that for
any , we have

(44)

which is exactly the cost function in Problem JLCM. The con-
verging point of the descent sequence is also a local optimal
point of Problem JLCM as .

REFERENCES
[1] E. Schurman and J. Brutlag, “The user and business impact of server

delays, additional bytes and http chunking in web search,” presented at
the OReilly Velocity Web Perform. Oper. Conf., Jun. 2009.

[2] G. Liang andU. Kozat, “FASTCLOUD: Pushing the envelope on delay
performance of cloud storage with coding,” IEEE/ACM Trans. Netw.,
vol. 22, no. 6, pp. 2012–2025, Nov. 2013.

[3] S. Chen et al., “When queueing meets coding: Optimal-latency data
retrieving scheme in storage clouds,” in Proc. IEEE INFOCOM, Apr.
2014, pp. 1042–1050.

[4] G. Liang and U. C. Kozat, “TOFEC: Achieving optimal throughput-
delay trade-off of cloud storage using erasure codes,” in Proc. IEEE
INFOCOM, Apr. 2014, pp. 826–834.

[5] V. Shah and G. Veciana, “Performance evaluation and asymptotics for
content delivery networks,” in Proc. IEEE INFOCOM, Apr. 2014, pp.
2607–2615.

[6] C. Angllano, R. Gaeta, and M. Grangetto, “Exploiting rateless codes
in cloud storage systems,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 5, pp. 1313–1322, May 2015.

[7] A. Kumar, R. Tandon, and T. C. Clancy, “On the latency of erasure-
coded cloud storage systems,” arXiv:1405.2833, May 2014.

[8] A. D. Luca and M. Bhide, Storage Virtualization for Dummies, Hitachi
Data Systems Edition. Hoboken, NJ, USA: Wiley, 2009.

[9] Amazon S3, “Amazon Simple Storage Service,” [Online]. Available:
http://aws.amazon.com/s3/

[10] M. Sathiamoorthy et al., “XORing elephants: Novel erasure codes for
big data,” in Proc. 39th VLDB Endowment, 2013, pp. 325–336.

[11] A. Fikes, “Storage architecture and challenges,” Talk at the Google
Faculty Summit, 2010 [Online]. Available: http://bit.ly/nUylRW

[12] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” arXiv:1004.4438, Apr. 2010.

[13] A. Fallahi and E. Hossain, “Distributed and energy-awareMAC for dif-
ferentiated services wireless packet networks: A general queuing ana-
lytical framework,” in Proc. IEEE CS, CASS, ComSoc, IES, SPS, 2007,
pp. 381–394.

[14] F. Baccelli, A. Makowski, and A. Shwartz, “The fork-join queue and
related systems with synchronization constraints: Stochastic ordering
and computable bounds,” Adv. Appl. Probab., vol. 21, no. 3, pp.
629–660, 1989.

[15] A. S. Alfa, “Matrix-geometric solution of discrete time MAP/PH/1 pri-
ority queue,” Naval Res. Logistics, vol. 45, pp. 23–50, 1998.

[16] J. H. Kim and J. K. Lee, “Performance of carrier sense multiple access
with collision avoidance in wireless LANs,” inProc. IEEE IPDS, 1998,
pp. 161–183.

[17] E. Ziouva and T. Antoankopoulos, “CSMA/CA performance under
high traffic conditions: Throughput and delay analysis,” Comput.
Commun., vol. 25, pp. 313–321, 2002.

[18] N. E. Taylor and Z. G. Ives, “Reliable storage and querying for collab-
orative data sharing systems,” in Proc. IEEE ICDE, 2010, pp. 40–51.

[19] R. Rosemark and W. C. Lee, “Decentralizing query processing in
sensor networks,” in Proc. 2nd Mobiquitous, Netw. Services, 2005,
pp. 270–280.

[20] A. D. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Distributed
data storage in sensor networks using decentralized erasure codes,”
in Conf. Rec. 38th Asilomar Conf. Signals, Syst. Comput., 2004, pp.
1387–1391.

[21] R. Rojas-Cessa, L. Cai, and T. Kijkanjanarat, “Scheduling memory ac-
cess on a distributed cloud storage network,” in Proc. IEEE 21st Annu.
WOCC, 2012, pp. 71–76.

[22] M. K. Aguilera, R. Janakiraman, and L. Xu, “Using erasure codes ef-
ficiently for storage in a distributed system,” in Proc. Int. Conf. DSN,
2005, pp. 336–345.

[23] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” in Proc. 16th ICS, 2002, pp.
84–95.

[24] H. Kameyam and Y. Sato, “Erasure codes with small overhead factor
and their distributed storage applications,” in Proc. 41st Annu. CISS,
2007, pp. 80–85.

[25] J. Li, “Adaptive erasure resilient coding in distributed storage,” inProc.
IEEE Int. Conf. Multimedia Expo, 2006, pp. 561–564.

[26] X.Wang, Z. Xiao, J. Han, and C. Han, “Reliable multicast based on era-
sure resilient codes over Infiniband,” in Proc. Commun. Netw. China,
1st Int. Conf., 2006, pp. 1–6.

[27] S. Mochan and L. Xu, “Quantifying benefit and cost of erasure code
based file systems,” Technical Report, Dec. 2007 [Online]. Available:
http://nisl.wayne.edu/Papers/Tech/cbefs.pdf

[28] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. repli-
cation: A quantitative comparison,” in Proc. 1st IPTPS, 2002, pp.
328–338.

[29] A. Abdelkefi and J. Yuming, “A structural analysis of network delay,”
in Proc. 9th Annu. CNSR, 2011, pp. 41–48.

[30] A. B. Downey, “The structural cause of file size distributions,” in Proc.
9th MASCOTS, 2011, p. 361.

[31] F. Paganini, A. Tang, A. Ferragut, and L. L. H. Andrew, “Network
stability under alpha fair bandwidth allocation with general file size
distribution,” IEEE Trans. Autom. Control, vol. 57, no. 3, pp. 579–591,
Mar. 2012.

[32] B. Calder et al., “Windows azure storage: A highly available cloud
storage service with strong consistency,” in Proc. 23rd ACM SOSP,
2011, pp. 143–157.

[33] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can re-
duce queueing delay in data centers,” in Proc. IEEE ISIT, 2012, pp.
2766–2770.

[34] M. Bramson, Y. Lu, and B. Prabhakar, “Randomized load balancing
with general service time distributions,” in Proc. ACM SIGMETRICS,
2010, pp. 275–286.

[35] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and A. Greenberg,
“Joinidle-queue: A novel load balancing algorithm for dynamically
scalable web services,” Perform. Eval. Archive 2011, vol. 68, no. 11,
pp. 1056–1071, 2011.

[36] D. Bertsimas and K. Natarajan, “Tight bounds on expected order sta-
tistics,” Probab. Eng. Inf. Sci., vol. 20, no. 4, pp. 667–686, 2006.

[37] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can re-
duce queueing delay in data centers,” arXiv: 1202.1359, 2012.

[38] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2005.

[39] L. T. H. An and P. D. Tao, “The DC (difference of convex functions)
programming and DCA revisited with DC models of real world non-
convex optimization problems,” Ann. Oper. Res., vol. 133, no. 1–4, pp.
23–46, Jan. 2005.

[40] B. Warner, Z. Wilcox-O'Hearn, and R. Kinninmont, “Tahoe-LAFS
docs,” 2015 [Online]. Available: https://tahoe-lafs.org/trac/tahoe-lafs

XIANG et al.: JOINT LATENCY AND COST OPTIMIZATION FOR ERASURE-CODED DATA CENTER STORAGE 2457

[41] N. Shah, K. Lee, and K. Ramachandran, “The MDS queue: Analyzing
latency performance of codes and redundant requests,” arXiv: 1211.
5405, Nov. 2012.

[42] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in
content download from coded distributed storage systems,” IEEE J.
Sel. Areas Commun., vol. 32, no. 5, pp. 989–997, May 2014.

[43] MOSEK, “MOSEK: High performance software for large-scale LP,
QP, SOCP, SDP and MIP,” [Online]. Available: http://www.mosek.
com/

[44] T. Angell, “The Farkas-Minkowski theorem,” Lecture notes, 2002 [On-
line]. Available: http://www.math.udel.edu/~angell/Opt/farkas.pdf

Yu Xiang received the B.A.Sc. degree from Harbin
Institute of Technology, Harbin, China, in 2010, and
is currently pursuing the doctoral degree in electrical
and computer engineering at George Washington
University, Washington, DC, USA.
Her current research interests are in cloud resource

optimization and distributed storage systems.

Tian Lan (S'03–M'10) received the B.A.Sc. degree
from Tsinghua University, Beijing, China, in 2003,
the M.A.Sc. degree from the University of Toronto,
Toronto, ON, Canada, in 2005, and the Ph.D. degree
from Princeton University, Princeton, NJ, USA, in
2010, all in electrical engineering.
He is currently an Assistant Professor of electrical

and computer engineering at George Washington
University, Washington, DC, USA. His research in-
terests are in cloud resource optimization, distributed
systems, and cyber security.

Dr. Lan received the 2008 IEEE Signal Processing Society Best Paper Award,
the 2009 IEEE GLOBECOM Best Paper Award, and the 2012 INFOCOM Best
Paper Award.

Vaneet Aggarwal (S'08–M'11–SM'15) received the
B.Tech. degree from the Indian Institute of Tech-
nology, Kanpur, India, in 2005, and the M.A. and
Ph.D. degrees from Princeton University, Princeton,
NJ, USA, in 2007 and 2010, respectively, all in
electrical engineering.
He is currently an Assistant Professor with Purdue

University, West Lafayette, IN, USA. Prior to this,
he was a Senior Member of Technical Staff Research
with AT&T Labs—Research, Bedminster, NJ, USA,
and an Adjunct Assistant Professor with Columbia

University, New York, NY, USA. His research interests are in applications
of information and coding theory to wireless systems and distributed storage
systems.
Dr. Aggarwal was the recipient of Princeton University's Porter Ogden Ja-

cobus Honorific Fellowship in 2009.

Yih-Farn (Robin) Chen received the B.S. degree in
electrical engineering from National Taiwan Univer-
sity, Taiwan, in 1980, the M.S. degree in computer
science from the University of Wisconsin–Madison,
Madison, WI, USA, in 1983, and the Ph.D. degree in
computer science from the University of California,
Berkeley, CA, USA, in 1987.
He is a Director of Inventive Science, leading the

Cloud Platform Software Research Department with
AT&T Labs—Research, Bedminster, NJ, USA. His
current research interests include cloud computing,

software-defined storage, mobile computing, distributed systems, World Wide
Web, and IPTV.
Dr. Chen is an ACM Distinguished Scientist and a Vice Chair of the Inter-

national World Wide Web Conferences Steering Committee (IW3C2). He also
serves on the Editorial Board of IEEE Internet Computing.

