
Multi-Tenant Latency Optimization in Erasure-Coded Storage with Differentiated
Services

Yu Xiang

Department of ECE
George Washington University

DC, USA
xy336699@gwmail.gwu.edu

Tian Lan

Department of ECE
George Washington University

DC, USA
tlan@gwu.edu

Vaneet Aggarwal

School of Industrial Engineering
Purdue University

West Lafayette, IN, USA
vaneet@purdue.edu

Yih-Farn R Chen

AT&T Labs-Research
Bedminster, NJ, USA

chen@research.att.com

The effect of coding on content retrieval latency in data-

center storage system is drawing more and more significant

attention these days, and customizing elastic service latency

for the tenants is undoubtedly appealing to cloud storage,

but it also comes with great technical challenges: due to the

lack of analytic latency models for erasure-coded storage,

most of the literature is limited to the analysis of average

service latency, e.g., [1], [2], having assumptions like ho-

mogeneous files, exponential service time distribution [3],

fixed erasure codes [4], which is unsuitable for a multi-tenant

cloud environment where each tenant has a different latency

requirement for accessing files in an erasure-coded, online

cloud storage. Optimizing differentiated service delay in an

erasure-coded storage system is an open problem. This work

considers an erasure-coded storage with multiple tenants and

differentiated delay demands, studies two types of service

policies, non-preemptive priority queue and weighted queue,

quantifying service latency of these policies, propose a novel

optimization framework that provides differentiated service

latency to meet heterogeneous application requirements in

cloud storage.

We assume that files are divided into 2 service classes, one

for delay-sensitive files and the other for delay-insusceptible

files. The file requests arrives as a Poisson process. For a

given placement for each file, and erasure-coded parameters

(n, k), we will use probabilistic scheduling to select k file

chunks when a file is requested. This scheduling strategy was

proposed in [2] and was shown to be equivalent to choosing

each of the storage nodes with certain probability, πi,j .

Next, we describe the two queuing models that are used

in this work. Our first policy is modeled as a non-preemptive

priority queue. We assign a high priority for delay-sensitive

files and a low priority for delay-insusceptible files. There

are two sets of queues (high/low priority) at each storage

node. We assume that service time distribution for all the

storage nodes is the same. A chunk is served from high

priority queue as long as there is a chunk in the queue,

and a chunk is serviced from the low priority queue only if

there is no chunk in the high priority queue, the request

which is already in service will not be affected by the

later arrival of high priority requests. Weighted queuing

apportions service rate among different service classes in

proportion to given weights. Tenants with higher weights

receive more service rates, while tenants with lower weights

can still receive their fair share if the weights are properly

balanced. Unlike priority queuing, each server now is able to

serve two requests from different classes at the same time,

offering different service bandwidth for different classes.
We consider two types of delay in the latency upper

bound, Queuing delay Qj and Connection delay Nj . Qj is

the waiting time a chunk request receives in node j and is

determined by service rates and arrival rates of chunk request

at each storage node according to our queuing models. We

assume that the connection delay is independent of Qj . Then

the latency of a file-i request is determined by the maximum

of queuing plus connection delay of the ki nodes in Ai.

Therefore, we have:

T̄i = E[max
j∈Ai

(Nj +Qj)] (1)

The authors of [2] gave an outer bound on T̄i using its mean

and variance as follows.

T̄i ≤ min
z∈R

⎧⎨
⎩z +

∑
j∈Si

πi,j

2
(E[Dj]− z)

+
∑
j∈Si

πi,j

2

[√
(E[Dj]− z)2 +Var[Dj]

]⎫⎬
⎭ , (2)

where Dj = Nj+Qj is the aggregate delay on node j with

mean E[Dj] and variance Var[Dj].
We notice that the latency bound depends on mean and

variance of the aggregate delay, which depends on our

queuing models. For priority queuing, we consider two

priority queues (high/low priority) for each storage node.

We analyze non-preemptive priority queues on each node

and obtain the mean and variance of Dj using variations of

Pollaczek-Khinchine formula to obtain an upper bound on

service latency for each file in the two service classes.
For weighted queuing, each storage node employs a

separate queue for each service class. Queuing delay for

2015 IEEE 35th International Conference on Distributed Computing Systems

1063-6927/15 $31.00 © 2015 IEEE

DOI 10.1109/ICDCS.2015.111

790

requests of each class on a node depends on the queuing

weights since service bandwidth on each storage node is

shared among all queues in proportion to their assigned

weights. Due to Poisson property of request arrivals, each

weighted queue can be modeled as a independent M/G/1

queue whose mean and variance can be found in closed-

form.

Using these analysis, we propose a novel optimization

framework for minimizing differentiated service latency for

all tenants in an erasure-coded storage system.We need to

optimize over i) chunk placement ii) access probabilities

iii) weights for different files in the case of weighted

queues. We formulate latency optimization problem using

the queuing models: For priority queues, we propose a

two-stage optimization problem as follows. First, we jointly

optimize the chunk placement and access probabilities for

all files in high priority class to minimize service latency.

Then, latency for low priority files are minimized based

on existing traffic generated by high priority files. Let

λ̂k =
∑

i is file of priority class k λi be the total arrival rate for

high priority requests, and thus λi/λ̂k is the fraction of file

i requests among the class k priority files.

min
∑
i∈Rk

λi

λ̂k

T̃ik

We can see this optimization problem is a mixed integer

optimization due to we have fixed n servers to select for

chunk placement for each request, so it is hard to solve

in general, thus we propose to break this problem into

2 sub-problems: placement and scheduling. We consider

the sub-problem for optimizing scheduling probabilities and

recognize that for fixed chunk placements, which is convex

in πij . We also show that the placement sub-problem can

be equivalent to a bipartite matching problem and can be

efficiently solved by Hungarian algorithm. For weighted

queuing we consider a joint optimization of all files in

different service classes by minimizing a weighted aggregate

latency. Let λ̂k =
∑

i∈Rk
λi, λ̂ =

∑
k λ̂k and and T̃ik be

given by the upper bound.

minC1T̃1 + C2T̃2

T̃k =
λ̂k

λ̂

∑
i is file of class i

T̃ik

Similarly we have a fixed (n, k) erasure code applied,

problem is an mixed integer optimization and is broken into

three sub-problems: (i) a weight sub-problem for optimizing

service bandwidth among different queues by choosing

weights, (ii) a scheduling sub-problem and (iii) a placement

sub-problem.

We first recognize the scheduling sub-problem is convex.

As for the placement problem we again cast it into a

matching, similar to the one proposed for priority queuing.

Also, we show that the weight sub-problem is convex with

respect to weights.
To validate our theoretical analysis and joint latency

optimization for different tenants, we provide a prototype of

the proposed algorithms in Tahoe, which is an open-source,

distributed file system based on the zfec erasure coding

library for fault tolerance. A Tahoe storage system consisting

of 12 storage nodes are deployed as virtual machines in an

OpenStack-based data center environment. One additional

storage client was deployed to issue storage requests. From

the experiment results, we first find that the service time

distribution is proportional to the bandwidth of the server,

which validates an assumption used in the analysis of the

weighted queue latency. Further, the experiment results vali-

date fast convergence of our differentiated latency optimiza-

tion algorithms. We see that our algorithms efficiently reduce

latency both with the priority and the weighted queues, and

the results from the experiments are reasonably close to the

given latency bounds for both the models. Finally, we note

that priority queuing could lead to unfairness since the low

priority tenants only share residual service rates left over

by high priority tenants, while weighted queuing is able to

balance service rates by optimizing weights assigned to each

service class.
To summrize, relying on a novel probabilistic scheduling

policy, this work develops an analytic upper bound on aver-

age service delay of multi-tenant, erasure-coded storage with

arbitrary number of files and any service time distribution

using weighted queuing or priority queuing to provide differ-

entiated services. An optimized distributed storage system is

then formalized using these queues. Even though only local

optimality can be guaranteed due to the non-convex nature of

the problems, the proposed algorithm significantly reduces

the latency. Both our theoretical analysis and algorithm

design are validated via a prototype in an open-source,

distributed cloud storage deployment that simulates three

geographically distributed data centers through bandwidth

reservations.

REFERENCES

[1] L. Huang, S. Pawar, H. Zhang and K. Ramchandran, “Codes
Can Reduce Queueing Delay in Data Centers,” Journals
CORR, vol. 1202.1359, 2012.

[2] Y. Xiang, T. Lan, V. Aggarwal, and Y. R. Chen, “Joint
Latency and Cost Optimization for Erasure-coded Data Center
Storage,” Proc. IFIP Performance, Oct. 2014 (available at
arXiv:1404.4975).

[3] G. Joshi, Y. Liu, and E. Soljanin, “On the Delay-Storage Trade-
off in Content Download from Coded Distributed Storage
Systems,” arXiv:1305.3945v1, May 2013.

[4] S. Chen, Y. Sun, U.C. Kozat, L. Huang, P. Sinha, G. Liang, X.
Liu and N.B. Shroff, “ When Queuing Meets Coding: Optimal-
Latency Data Retrieving Scheme in Storage Clouds,” IEEE
Infocom, April 2014.

791

