
Taming latency in data center networking with
erasure coded files

Yu Xiang, Vaneet Aggarwal, Yih-Farn R. Chen, and Tian Lan

Abstract—This paper proposes an approach to minimize ser-
vice latency in a data center network where erasure-coded files
are stored on distributed disks/racks and access requests are
scattered across the network. Due to limited bandwidth avail-
able at both top-of-the-rack and aggregation switches, network
bandwidth must be apportioned among different intra- and
inter-rack data flows in line with their traffic statistics. We
formulate this problem as weighted queuing and employ a class
of probabilistic request scheduling policies to derive a closed-
form outer-bound of service latency for erasure-coded storage
with arbitrary file access patterns and service time distributions.
The result enables us to propose a joint latency optimization
over three entangled “control knobs”: the bandwidth allocation
at top-of-the-rack and aggregation switches, the probabilities for
scheduling file requests, and the placement of encoded file chunks,
which affects data locality. The joint optimization is shown to be a
mixed-integer problem. We develop an iterative algorithm which
decouples and solves the joint optimization as three sub-problems,
which are either convex or solvable via bipartite matching in
polynomial time. The proposed algorithm is prototyped in an
open-source, distributed file system, Tahoe, and evaluated on a
cloud testbed with 16 separate physical hosts in an OpenStack
cluster. Experiments validate our theoretical latency analysis and
show significant latency reduction for diverse file access patterns.
The results provide valuable insight on designing low-latency data
center networks with erasure-coded storage.

I. INTRODUCTION

Data center storage is growing at an exponential speed and
customers are increasingly demanding more flexibility in the
tradeoffs among the reliability level, performance, and storage
cost. These trends have caused the storage service providers
to start shifting from simple data replication schemes to more
powerful erasure codes, which can provide the same or higher
level of reliability at a significantly lower storage cost. As a
result, the effect of coding on content retrieval latency in data-
center storage system is drawing more attention these days.
Google and Amazon have published that every 500 ms extra
delay means a 1.2% user loss [1]. Data centers often consist
of multiple racks and all the data transfers between racks go
through an aggregation switch, while data transfers within a
rack go through a Top-of-Rack (TOR) switch. With knowledge
of the access patterns of different files, the use of erasure
coding enables a novel latency optimization of data center
storage with respect to placement of erasure coded content

Y. Xiang and T. Lan are with Department of ECE, George Washington
University, DC 20052 (email: xy336699@gwmail.gwu.edu, tlan@gwu.edu).
V. Aggarwal is with the School of IE, Purdue University, West Lafayette
IN 47907. He was with AT&T Labs-Research, Bedminster, NJ 07921 when
this research was performed (email: vaneet@purdue.edu). Y. R. Chen is with
AT&T Labs-Research, Bedminster, NJ 07921 (email: chen@research.att.com).

on different racks and bandwidth reservations at different
switches, which can be optimized jointly to reduce latency.

Exact latency for erasure-coded storage system is an open
problem. Recently, there has been a number of attempts at
finding latency bounds for an erasure-coded storage system
[13], [16], [14], [28], [23]. In this work, we will use a latency
analysis that is based on probabilistic scheduling developed in
[28]. To the best of our knowledge, this is the first analysis
that accounts for multiple files and arbitrary file access patterns
in quantifying service latency. Further, the analysis applies to
general service time distributions by modeling the delay at
each storage node via the latency of M/G/1 queue. Knowing
the exact delay from each storage node, a tight upper bound
on the average service latency could be found by extending
ordered statistic analysis in [36].

We consider a data center storage system with a hierarchical
structure in this work. Each rack has a TOR switch that is
responsible for routing data flows between different disks and
associated storage servers in the rack, while data transfers
between different racks are managed by an aggregation switch
that connects all TOR switches. Multiple client files are stored
distributively using an (𝑛, 𝑘) erasure coding scheme, which
allows each file to be reconstructed from any 𝑘-out-of-𝑛
encoded chunks. We assume that file access requests may
be generated from anywhere inside the data center, e.g., a
virtual machine spun up by a client on any of the racks.
Due to limited bandwidth available at both the TOR and
aggregation switches, a simple First Come First Serve (FCFS)
policy to schedule all file requests falls short on minimizing
service latency, not only because of its inability to differentiate
heterogeneous flows or adapt to varying traffic patterns, but
also due to the entanglement of different file requests. More
precisely, the latency of each file request is determined by
the maximum delay in retrieving 𝑘-out-of-𝑛 encoded chunks.
Without proper coordination in processing each batch of chunk
requests that jointly reconstructs a file, service latency is
dominated by staggering chunk requests with the worst access
delay performance, significantly increasing overall latency in
the data center. To avoid this, bandwidth reservation can be
made for routing traffic among racks [24], [25], [26]. Thus,
we apportion bandwidth among different pairs of racks so that
each pairwise allocated bandwidth has its own FCFS queue for
the data transfer between the corresponding pair of racks. We
jointly optimize bandwidth allocation and data locality (i.e.,
placement of encoded file chunks) to achieve service latency
minimization.

For a given set of pair-wise bandwidth allocations among
racks, and placement of different erasure-coded files in dif-

2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-8006-2/15 $31.00 © 2015 IEEE

DOI 10.1109/CCGrid.2015.142

241

ferent racks, we first find an upper bound on average latency
of each file request when accessed from a certain rack. Since
each file is erasure coded with an (𝑛, 𝑘) erasure code, and the
file request needs 𝑘 file chunks rather than the whole file, the
upper bound uses probabilistic scheduling proposed in [28]
to choose different subsets with certain probabilities. These
probabilities (which model load-balancing in scheduling file
requests) can then be optimized to give a tighter upper bound.

Having studied the upper bound of latency for each request,
we consider a joint optimization of average service latency
(weighted by the rate of arrival of requests) over the placement
of contents of each file, the bandwidth reservation between
any pair of racks, and the scheduling probabilities. Knowing
the access pattern of each file from different racks is the key
in having asymmetric bandwidth allocations and placements in
line with the access pattern. To the best of our knowledge, this
is the first latency analysis for an erasure-coded single data-
center storage considering the impact of TOR and aggregation
switches. The joint optimization problem optimizes over the
content placement, bandwidth allocations between pair of
racks, and the access probabilities from different racks for
each request. This optimization is shown to be a mixed-integer
optimization, especially due to the integer constraints for the
content placement. In this work, the latency minimization is
decoupled into 3 sub-problems, two of which are proven to be
convex. We propose an algorithm which iteratively minimizes
service latency over the three engineering degrees of freedom
with guaranteed convergence.

To validate our theoretical analysis and joint latency op-
timization for different tenants, we provide a prototype of
the proposed algorithms in Tahoe [37], which is an open-
source, distributed file system based on the zfec erasure
coding library for fault tolerance. A Tahoe storage system
consisting of 10 racks is deployed on hosts of virtual machines
in an OpenStack-based data center environment, with each
rack hosting 8 storage servers running Tahoe ports. Each
rack has a client node deployed to issue storage requests.
The experimental results show that the proposed algorithm
converges within a reasonable number of iterations. We further
find that the service time distribution is nearly proportional to
the bandwidth of the server, which is an assumption used in
the latency analysis, and implementation results also show that
our proposed approach significantly improved service latency
in storage systems compared to native storage settings of the
testbed.

II. SYSTEM MODEL

We consider a data center consisting of 𝑁 racks, denoted
by 𝒩 = {𝑖 = 1, 2, . . . , 𝑁}, each equipped with 𝑚 homoge-
neous servers that are available for data storage and hosting
application. There is a Top-of-Rack (TOR) switch at each rack
to route intra-rack traffic and an aggregate switch in the data
center that connects all TOR switches for routing inter-rack
traffic. A set of files ℛ = {1, 2, . . . , 𝑅} are stored among
these 𝑚 ∗ 𝑁 servers and are accessed by client applications
running in the data center.

In this paper, we focus on file storage systems that employ
erasure coding to achieve optimal space efficiency, while

Symbol Meaning

𝑁 Number of racks, indexed by 𝑖 = 1, . . . , 𝑁

𝑚 Number of storage servers in each rack

𝑅 Number of files in the system, indexed by 𝑟 = 1, . . . , 𝑅

(𝑛, 𝑘) Erasure code for storing files

𝐵 Total available bandwidth at the aggregate switch

𝑏 Total available bandwidth at each top-of-the-rack switch

𝐵eff
𝑖,𝑗 Effective bandwidth for servicing requests from rack 𝑖 to rack 𝑗

𝑤𝑖,𝑗 Weight for apportioning aggregate switch bandwidth

𝜆𝑖
𝑟 Arrival rate of request for file 𝑟 from rack 𝑖

𝜋𝑟
𝑖,𝑗 Probability of routing rack-𝑖 file-𝑟 request to rack 𝑗

𝑆𝑟 Set of racks for placing encoded chunks of file 𝑟

𝑁𝑖,𝑗 Connection delay for service from rack 𝑖 to rack 𝑗

𝑄𝑖,𝑗 Queuing delay for service from rack 𝑖 to rack 𝑗

𝑇 𝑖
𝑟 Expected latency of a request of file 𝑟 from rack 𝑖

TABLE I: Main notation.

enabling sufficient redundancy for reliability. More precisely,
each file 𝑟 is partitioned into 𝑘 fixed-size chunks and then
encoded using an (𝑛, 𝑘) erasure code to generate 𝑛 chunks of
equal size. The encoded chunks are assigned to and stored on
𝑛 out of 𝑚 ∗𝑁 distinct servers in the data center. While it is
possible to place multiple chunks in the same rack1, we choose
servers in 𝑛 distinct racks to maximize the distribution of
chunks across all racks, which achieves the highest reliability
against rack failures. This is a common practice adopted by
QFS[12], an erasure-coded storage file system that is desgined
to replace HDFS for Map/Reduce processing. For each file 𝑟,
we use 𝒮𝑟 to denote the set of racks selected for placing its
encoded chunks, satisfying 𝒮𝑟 ⊆ 𝒩 and ∣𝒮𝑟∣ = 𝑛. To process
file access requests, an (𝑛, 𝑘) MDS erasure code allows the
file to be reconstructed from any subset of 𝑘-out-of-𝑛 chunks.
Therefore, a file request generated by a client application must
be routed to a subset of 𝑘 racks in 𝒮𝑟. The selection of these 𝑘
racks needs to be determined for each file request and it must
take load balancing into account, so that the access latency is
minimized. We refer to this routing and selection problem as
the request scheduling problem.

There are series of requests generated by applications to
access 𝑅 files. We model the arrival of requests for each file
𝑟 as an independent Poisson process. Let 𝜆𝑖

𝑟 be the rate of file
𝑟 requests that are generated by a client application running
in rack 𝑖. We note that a file 𝑟 request can be generated
from a client application in any of the 𝑁 racks with certain
probabilities (= 𝜆𝑖

𝑟∑
𝑖 𝜆

𝑖
𝑟

). The overall request arrival for file 𝑟

is a composition of Poisson process with rate 𝜆𝑟 =
∑

𝑖 𝜆
𝑖
𝑟.

1Our results in this paper can be easily extended to the case where multiple
chunks are placed on each rack using the techniques in [28].

242

Since solving the optimal request scheduling is still an open
problem for erasure-coded storage [13], [16], [14], [28], we
employ the probabilistic scheduling policy proposed in [28],
which provides a practical solution to the request scheduling
problem as well as an outer bound of service latency. Upon
the arrival of each request, a probabilistic scheduler selects
𝑘-out-of-𝑛 racks in 𝒮𝑟 hosting the file chunks according to
some known probability and route the resulting traffic to the
client application. It is shown that determining the probability
distribution of each 𝑘-out-of-𝑛 combination is equivalent to
solving the marginal probabilities for scheduling requests 𝜆𝑖

𝑟,

𝜋𝑟
𝑖,𝑗 = ℙ[𝑗 ∈ 𝒮𝑟

𝑖 is selected ∣ 𝑘 racks are selected], (1)

under constraints 𝜋𝑟
𝑖,𝑗 ∈ [0, 1] and

∑
𝑗 𝜋

𝑟
𝑖,𝑗 = 𝑘 [28]. Here

𝜋𝑟
𝑖,𝑗 ∈ [0, 1] is the probability of routing a file 𝑟 request from

rack 𝑖 to rack 𝑗. It is easy to see that 𝜋𝑟
𝑖,𝑗 = 0 if no chunk

of file 𝑟 exists on rack 𝑗, i.e., 𝑗 /∈ 𝒮𝑟
𝑖 . Further, constraint∑

𝑗 𝜋
𝑟
𝑖,𝑗 = 𝑘 is due to the fact that 𝑘 distinct racks containing

desired chunks are needed for file reconstruction.
To accommodate various cloud applications with different

bandwidth requirements, we propose a weighted queuing
model to apportion bandwidth available at the TOR and
aggregate switches among different data flows. At each rack 𝑗,
we buffer all incoming requests generated by applications in
rack 𝑖 in a local queue named 𝑞(𝑖, 𝑗). Therefore, each rack 𝑗
manages 𝑁 independent queues, which include 1 queue (i.e.,
𝑞(𝑗, 𝑗)) that manages intra-rack traffic traveling through the
TOR switch and 𝑁 − 1 queues (i.e., 𝑞(𝑖, 𝑗)) that manages
inter-rack traffic to other racks 𝑖 ∕= 𝑗.

Assume the total bi-direction bandwidth at the aggregate
switch is 𝐵, which is apportioned among the 𝑁(𝑁−1) queues
for inter-rack traffic. Let {𝑤𝑖,𝑗 , ∀𝑖 ∕= 𝑗} be a set of 𝑁(𝑁−1)
non-negative weights satisfying

∑
𝑖,𝑗:𝑖∕=𝑗 𝑤𝑖,𝑗 = 1. We assign

to each queue 𝑞(𝑖, 𝑗) a share of 𝐵 that is proportional to {𝑤𝑖,𝑗 ,
i.e., queue 𝑞(𝑖, 𝑗) receives a dedicated service bandwidth 𝐵eff

𝑖,𝑗

on the aggregate switch, i.e.,

𝐵eff
𝑖,𝑗 = 𝐵 ⋅ 𝑤𝑖,𝑗 , ∀𝑖 ∕= 𝑗. (2)

According to our routing model, the same amount of band-
width has to be reserved on the TOR switches of both racks 𝑖
and 𝑗. Then, any remaining bandwidth on the TOR switches
will be available for intra-rack traffic routing. On rack 𝑗, it
is computed by the total TOR bandwidth 𝑏 minus aggregate
incoming and outgoing inter-rack traffic 2, i.e.,

𝐵eff
𝑖,𝑗 = 𝑏−

∑
𝑘:𝑘 ∕=𝑖

𝑤𝑖,𝑘𝐵 −
∑
𝑘:𝑘 ∕=𝑖

𝑤𝑘,𝑖𝐵, ∀𝑖 = 𝑗. (3)

By optimizing 𝑤𝑖,𝑗 , the weighted queuing provides a fair
allocation of data center bandwidth among different data flows
both within and across racks. Bandwidth under-utilization
and congestion can be mitigated because queues with heavy
workload will receive more bandwidth and those with light
workload will get less.

Under the probabilistic scheduling policy, it is easy to see
that requests for file 𝑟 chunk from rack 𝑖 to rack 𝑗 form

2all the analysis and algorithm can be trivially modified depending on
whether the TOR switch is non-blocking and/or duplex

a (decomposed) Poisson process with rate 𝜆𝑖
𝑟𝜋𝑖,𝑗 . Thus, the

aggregate arrival of requests from rack 𝑖 to rack 𝑗 becomes a
(superpositioned) Poisson process with rate

Λ𝑖,𝑗 =
∑
𝑟

𝜆𝑖
𝑟𝜋

𝑟
𝑖,𝑗 . (4)

It implies that the system can be modeled as 𝑁2 M/G/1
queues, where service time per chunk is determined by the
allocation of bandwidth 𝐵 ⋅𝑤𝑖,𝑗 to each queue 𝑞(𝑖, 𝑗) handling
inter-rack traffic or available bandwidth 𝑏𝑗 to 𝑞(𝑗, 𝑗) handling
intra-rack traffic. The service latency for each data flow can
be computed using ordered statistics analysis in [28]. Our goal
in this work is to quantify service latency under this model
and to minimize average service latency for all traffic in the
data center by solving an optimization problem over three
dimensions: placement of encoded file chunks 𝒮𝑟, scheduling
probabilities 𝜋𝑖,𝑗 for load-balancing, and allocation of system
bandwidth through weights 𝑤𝑖,𝑗 .

Fig. 1: System model
Fig. 1 shows our system model with an example file request

generated by rack 1. Due to (5, 3) erasure coding of files,
3 chunks from rack 1, rack 2 and rack 3 are retrieved
respectively. Inter-rack data flows from rack 2 and rack 3
travel through the TOR switches and then are routed via the
aggregate switch, which assigns the requests to 2 weighted
queues with bandwidth 𝐵eff

2,1 = 𝐵 ⋅𝑤2,1, 𝐵eff
3,1 = 𝐵 ⋅𝑤3,1. The

data flows are received by the TOR switch at rack 1 and then
go to the destination server. On the other hand, intra-rack data
flow is routed via the TOR switch of rack 1 only with available
bandwidth 𝐵eff

1,1 = 𝑏−∑
𝑗:𝑗 ∕=1 𝑤1,𝑗𝐵 −

∑
𝑗:𝑗 ∕=1 𝑤𝑗,1𝐵.

III. ANALYZING SERVICE LATENCY FOR DATA REQUESTS

In this section, we will derive an outer bound on the service
latency of a file for each client application running in the
data center. For each chunk request, we consider two latency
components: connection delay N𝑖,𝑗 that includes the overhead
to set up the network connection between client application in
rack 𝑖 and storage server in rack 𝑗 and queuing delay Q𝑖,𝑗

that measures the time a chunk request experiences at the

243

bandwidth service queue 𝑞(𝑖, 𝑗), i.e., the time to transfer a
chunk with the allocated network bandwidth. Let 𝑇 𝑟

𝑖 be the
average service latency for accessing file 𝑟 by an application in
rack 𝑖. Due to the use of (𝑛, 𝑘) erasure coding for distributed
storage, each file request is mapped to 𝑘 parallel chunk
requests. The chunk requests are scheduled to 𝑘 different racks
𝒜𝑟

𝑖 ⊂ 𝒮𝑟 storing the desired file chunks. A file is reconstructed
if all 𝑘 = ∣𝒜𝑟

𝑖 ∣ chunks are successfully retrieved, which takes
on average

𝑇 𝑖
𝑟 = 𝔼𝒜𝑟

𝑖
[max
𝑗∈𝒜𝑟

𝑖

(N𝑖,𝑗 +Q𝑖,𝑗)], (5)

where the expectation is taken over set 𝒜𝑟
𝑖 that are randomly

selected with respect to known probabilities 𝜋𝑟
𝑖,𝑗 for all 𝑗 under

the probabilistic scheduling policy.
According to (5), average latency 𝑇 𝑖

𝑟 is given by the highest
order statistic of random delay N𝑖,𝑗 + Q𝑖,𝑗 measured at 𝑘
randomly selected racks 𝒜𝑟

𝑖 . Without relying on any service
time assumptions, we can use the method developed in [28] to
obtain a closed-form upper bound of average latency using first
and second moments of N𝑖,𝑗+Q𝑖,𝑗 . The result is summarized
in Lemma 1.

Lemma 1: (Bound for the random order statistic [28].) For
arbitrary 𝑧 ∈ ℝ, the average service time is bounded by

𝑇 𝑖
𝑟 ≤

⎧⎨
⎩𝑧 +

∑
𝑗∈𝒮𝑟

𝜋𝑟
𝑖,𝑗

2
(𝔼[D𝑖,𝑗]− 𝑧)

+
∑
𝑗∈𝒮𝑟

𝜋𝑟
𝑖,𝑗

2

[√
(𝔼[D𝑖,𝑗]− 𝑧)2 +Var[D𝑖,𝑗]

]⎫⎬
⎭ , (6)

where D𝑖,𝑗 = N𝑖,𝑗 +Q𝑖,𝑗 is the combined delay. The tightest
bound that is obtained by optimal 𝑧 ∈ ℤ is tight in the sense
that there exists a distribution of D𝑖,𝑗 to achieve the bound
with exact equality.

We assume that connection delay N𝑖,𝑗 is independent of
queuing delay Q𝑖,𝑗 . With the proposed system model, the
chunk requests arriving at each queue 𝑞𝑖,𝑗 form a Poison
process with rate Λ𝑖,𝑗 =

∑
𝑟 𝜆

𝑖
𝑟𝜋

𝑟
𝑖,𝑗 . Therefore, each queue

𝑞(𝑖, 𝑗) can be modeled as a M/G/1 queue that processes chunk
requests in an FCFS manner. Due to the fixed chunk size in
our system, we denote X as the standard (random) service
time per chunk when bandwidth 𝐵 is available. We assume
that the service time is inversely proportional to the bandwidth
allocated to 𝑞(𝑖, 𝑗), i.e., 𝐵eff

𝑖,𝑗 . We obtain the distribution of
actual service time X𝑖,𝑗 :

X𝑖,𝑗 ∼ X ⋅𝐵/𝐵eff
𝑖𝑗 , ∀𝑖, 𝑗 (7)

With the service time distributions above, we can derive the
mean and variance of queueing delay Q𝑖,𝑗 using Pollaczek-
Khinchine formula. Let 𝜇 = 𝔼[X], 𝜎2 = Var[X], and Γ𝑡 =
𝔼[X𝑡], be the mean, variance, 𝑡th order moment of X, 𝜂𝑖,𝑗
and 𝜉2𝑖,𝑗 are mean and variance for connection delay N𝑖,𝑗 .
These statistics can be readily available from existing work on
network delay [32], [10] and file-size distribution [34], [33].

Lemma 2: The mean and variance of combined delay D𝑖,𝑗

for any 𝑖, 𝑗 is given by

𝔼[D𝑖,𝑗] = 𝜂𝑖,𝑗 +
Λ𝑖,𝑗Γ2𝐵

2

2𝐵eff
𝑖,𝑗 (𝐵

eff
𝑖,𝑗 − Λ𝑖,𝑗𝜇𝐵)

(8)

Var[D𝑖,𝑗] = 𝜉2𝑖,𝑗 +
Λ𝑖,𝑗Γ3𝐵

3

3(𝐵eff
𝑖,𝑗)

2(𝐵eff
𝑖,𝑗 − Λ𝑖,𝑗𝜇𝐵)

+

Λ𝑖,𝑗Γ
2
2𝐵

4

4(𝐵eff
𝑖,𝑗)

2(𝐵eff
𝑖,𝑗 − Λ𝑖,𝑗𝜇𝐵)2

(9)

where 𝐵eff
𝑖,𝑗 is the effective bandwidth assigned to the queue.

Proof: Consider an M/G/1 queue 𝑞(𝑖, 𝑗) with effective band-
width 𝐵eff

𝑖,𝑗 . Under our system model, its service time per
chunk has distribution X𝑖,𝑗 ∼ X⋅𝐵/𝐵eff

𝑖,𝑗 . Applying Pollaczek-
Khinchine formula [36], we can obtain that:

𝔼[Q𝑖,𝑗] =
Λ𝑖,𝑗𝔼[X

2
𝑖,𝑗]

2(1− Λ𝑖,𝑗𝔼[X𝑖,𝑗])
, (10)

and similarly,

Var[Q𝑖,𝑗] =
Λ𝑖,𝑗𝔼[X

3
𝑖,𝑗]

3(1− Λ𝑖,𝑗𝔼[X𝑖,𝑗])
+

Λ𝑖,𝑗(𝔼[X
2
𝑖,𝑗])

2

4(1− Λ𝑖,𝑗𝔼[X𝑖,𝑗])2
, (11)

where Λ𝑖,𝑗 =
∑

𝑟 𝜆
𝑖
𝑟𝜋

𝑟
𝑖,𝑗 is the total arrival rate of chunk

requests from rack 𝑖 to rack 𝑗.
Finally, using our service time model and bandwidth al-

location, we recognize that 𝔼[(X𝑖,𝑗)
𝑡] = 𝔼[X𝑡] ⋅ (𝐵/𝐵eff

𝑖,𝑗)
𝑡.

Plugging this into (10) and (11), we get the mean and variance
for both cases 𝑖 ∕= 𝑗 and 𝑖 = 𝑗. Let 𝜂𝑖,𝑗 = 𝔼[N𝑖,𝑗] and
𝜉2𝑖,𝑗 = Var[N𝑖,𝑗] be the mean and variance of connection
delay. Since 𝑁𝑖,𝑗 and 𝑄𝑖,𝑗 are independent, we obtain the
mean and variance of delay of queue 𝑞(𝑖, 𝑗) as desired. □

Combining these results, we derive an upper bound for
average service latency 𝑇 𝑟

𝑖 as a function of chunk placement
𝒮𝑟, scheduling probability 𝜋𝑟

𝑖,𝑗 , and bandwidth allocation 𝐵eff
𝑖,𝑗

(which is a function of the bandwidth weights 𝑤𝑖,𝑗 in (2) and
(3)). The main result of our latency analysis is summarized in
the following theorem.

Theorem 1: For arbitrary 𝑧 ∈ ℝ, the expected latency 𝑇 𝑖
𝑟 of

a request of file 𝑟, requested from rack 𝑖 is upper bounded by

𝑇 𝑖
𝑟 ≤ 𝑧 +

∑
𝑗∈𝑆𝑟

[
𝜋𝑟
𝑖,𝑗

2
⋅ 𝑓(𝑧,Λ𝑖,𝑗 , 𝐵

eff
𝑖,𝑗)], (12)

where function 𝑓(𝑧,Λ𝑖,𝑗 , 𝐵
eff
𝑖,𝑗) is an auxiliary function de-

pending on aggregate rate Λ𝑖,𝑗 and effective bandwidth 𝐵eff
𝑖,𝑗

of queue 𝑞(𝑖, 𝑗), i.e.,

𝑓(𝑧,Λ𝑖,𝑗 , 𝐵
eff
𝑖,𝑗) = 𝐻𝑖,𝑗 +

√
𝐻2

𝑖,𝑗 +𝐺𝑖,𝑗 (13)

𝐻𝑖,𝑗 = 𝜂𝑖,𝑗 +
Λ𝑖,𝑗Γ2𝐵

2

2𝐵eff
𝑖,𝑗 (𝐵

eff
𝑖,𝑗 − Λ𝑖,𝑗𝜇𝐵)

− 𝑧 (14)

𝐺𝑖,𝑗 = 𝜉2𝑖,𝑗 +
Λ𝑖,𝑗Γ3𝐵

3

3(𝐵eff
𝑖,𝑗)

2(𝐵eff
𝑖,𝑗 − Λ𝑖,𝑗𝜇𝐵)

+
Λ𝑖,𝑗Γ

2
2𝐵

4

4(𝐵eff
𝑖,𝑗)

2(𝐵eff
𝑖,𝑗 − Λ𝑖,𝑗𝜇𝐵)2

(15)

244

IV. JOINT LATENCY MINIMIZATION IN CLOUD

We consider a joint latency minimization problem over 3
design degrees of freedom in managing datacenter traffic:
(i) placement of encoded file chunks {𝒮𝑟} that determines
datacenter traffic locality, (ii) allocation of bandwidth at aggre-
gate/TOR switches through weights {𝑤𝑖,𝑗} that affect chunk
service time for different data flows, and (iii) scheduling prob-
abilities {𝜋𝑟

𝑖,𝑗} for file retrievals that optimize load-balancing
under probabilistic scheduling policy. Let 𝜆all =

∑
𝑖

∑
𝑟 𝜆

𝑖
𝑟 be

the total file request rate in the datacenter. The optimization
objective is to minimize the upper bound on the average
service latency, which is defined by

𝑅∑
𝑟=1

𝑁∑
𝑖=1

𝜆𝑖
𝑟

𝜆all

⎡
⎣𝑧 + ∑

𝑗∈𝑆𝑟

𝜋𝑟
𝑖,𝑗

2
⋅ 𝑓(𝑧,Λ𝑖,𝑗 , 𝐵

eff
𝑖,𝑗)

⎤
⎦

= 𝑧 +
𝑅∑

𝑟=1

𝑁∑
𝑖=1

∑
𝑗∈𝑆𝑟

𝜆𝑖
𝑟𝜋

𝑟
𝑖,𝑗

2𝜆all
𝑓(𝑧,Λ𝑖,𝑗 , 𝐵

eff
𝑖,𝑗)

= 𝑧 +

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑅∑
𝑟=1

𝜆𝑖
𝑟𝜋

𝑟
𝑖,𝑗

2𝜆all
𝑓(𝑧,Λ𝑖,𝑗 , 𝐵

eff
𝑖,𝑗)

= 𝑧 +

𝑁∑
𝑖=1

𝑁∑
𝑗=1

Λ𝑖,𝑗

2𝜆all
𝑓(𝑧,Λ𝑖,𝑗 , 𝐵

eff
𝑖,𝑗). (16)

The second step follows from
∑

𝑟

∑
𝑖 𝜆

𝑖
𝑟 = 𝜆all. In the third

step, we use the condition that 𝜋𝑟
𝑖,𝑗 = 0 for all 𝑗 /∈ 𝑆𝑟 to

extend the limit of summation (because a rack not hosting a
desired file chunk should never be scheduled) and exchange
the order. The last step is due to

∑
𝑟 𝜆

𝑖
𝑟𝜋

𝑟
𝑖,𝑗 = Λ𝑖,𝑗 .

We now define the Joint Latency and Weights Optimization
(JLWO) problem as follows:

min. 𝑧 +

𝑁∑
𝑖=1

𝑁∑
𝑗=1

Λ𝑖,𝑗

2𝜆all
𝑓(𝑧,Λ𝑖,𝑗 , 𝐵

eff
𝑖,𝑗) (17)

s.t. Λ𝑖,𝑗 =

𝑅∑
𝑟=1

𝜆𝑖
𝑟𝜋

𝑟
𝑖,𝑗 ≤ 𝜇𝑖,𝑗

𝐵eff
𝑖,𝑗

𝐵
, ∀𝑖, 𝑗 (18)

𝑁∑
𝑗=1

𝜋𝑟
𝑖,𝑗 = 𝑘 and 𝜋𝑟

𝑖,𝑗 ∈ [0, 1], ∀𝑖, 𝑗, 𝑟 (19)

∣𝒮𝑟∣ = 𝑛 and 𝜋𝑟
𝑖,𝑗 = 0 ∀𝑗 /∈ 𝒮𝑖, ∀𝑖, 𝑟 (20)

𝑁∑
𝑖=1

∑
𝑗 ∕=𝑖

𝑤𝑖,𝑗 = 1. (21)

𝐵eff
𝑖,𝑗 = 𝑤𝑖,𝑗𝐵, ∀𝑖 ∕= 𝑗 (22)

𝐵eff
𝑖,𝑗 = 𝑏−

∑
𝑖:𝑖∕=𝑗

𝑤𝑖,𝑗𝐵 −
∑
𝑖:𝑖∕=𝑗

𝑤𝑗,𝑖𝐵, ∀𝑖 = 𝑗(23)

var. 𝑧, {𝒮𝑟
𝑖 }, {𝜋𝑟

𝑖,𝑗}, {𝑤𝑖,𝑗}.
Here we minimize service latency bound in Section III over
𝑧 ∈ ℝ to get a tighter upper bound. Feasibility of Problem
JLWO is ensured by (18), which requires arrival rate to be
no greater than chunk service rate received by each queue.
Encoded chunks of each file are placed on a set 𝒮𝑖 of servers
in (20), and each file request is mapped to 𝑘 chunk requests
and processed by 𝑘 servers in 𝒮𝑖 with probabilities 𝜋𝑟

𝑖,𝑗 in

(19). Finally, weights 𝑤𝑖,𝑗 should add up to 1 so there is no
bandwidth left unutilized. Bandwidth assigned to each queue
𝐵eff

𝑖,𝑗 is determined by our allocaiton policy in (2) and (3).
Problem JLWO is a mixed-integer optimization and hard

to compute in general. In this work, we develop an iterative
optimization algorithm that alternates among the 3 optimiza-
tion dimension of problem JLWO and solves each sub-problem
repeatedly to generate a sequence of monotonically decreasing
objective values. To introduce the proposed algorithm, we first
recognize that Problem JLWO is convex in either {𝜋𝑟

𝑖,𝑗} or
{𝑤𝑖,𝑗} when all other variables are fixed, respectively.

Lemma 3: (Convexity of the scheduling sub-problem [28].)
When {𝑧, 𝑤𝑖,𝑗 , 𝑆𝑟} are fixed, Problem JLWO is a convex
optimization over probabilities {𝜋𝑟

𝑖,𝑗}.
Proof: The proof is straightforward due to the convexity of
Λ𝑖,𝑗𝑓(𝑧,Λ𝑖,𝑗 , 𝐵

eff
𝑖,𝑗) over Λ𝑖,𝑗 (which is a linear combination

of {𝜋𝑟
𝑖,𝑗}) as shown in [28], and the fact that all constraints are

linear with respect to 𝜋𝑟
𝑖,𝑗 . □

Lemma 4: (Convexity of the bandwidth allocation sub-
problem.) When {𝑧, 𝜋𝑟

𝑖,𝑗 , 𝑆𝑟} are fixed, Problem JLWO is a
convex optimization over weights {𝑤𝑖,𝑗}.
Proof: Since all constraints in Problem JLWO are linear with
respect to weights {𝑤𝑖,𝑗}, we only need to show that the
optimization objective 𝑓(𝑧,Λ𝑖,𝑗 , 𝐵

eff
𝑖,𝑗) is convex in {𝑤𝑖,𝑗} with

other variables fixed. Notice that effective bandwidth 𝐵eff
𝑖,𝑗) is

a linear function of the bandwidth allocation weights {𝑤𝑖,𝑗}
for both inter-rack traffic queues (22) and intra-rack traffic
queues (23). Therefore, 𝑓(𝑧,Λ𝑖,𝑗 , 𝐵

eff
𝑖,𝑗) is convex in {𝑤𝑖,𝑗} if

it is convex in 𝐵eff
𝑖,𝑗).

Toward this end, we consider 𝑓(𝑧,Λ𝑖,𝑗 , 𝐵
eff
𝑖,𝑗) = 𝐻𝑖,𝑗 +√

𝐻2
𝑖,𝑗 +𝐺𝑖,𝑗 given in (13), (14) and (15). We find the second

order derivatives of 𝐻𝑖,𝑗 with respect to 𝐵eff
𝑖,𝑗):

∂2𝐻𝑖,𝑗

𝑑𝑤2
𝑖,𝑗

=
Λ𝑖,𝑗Γ2(3𝑤

2
𝑖,𝑗 − 3Λ𝑖,𝑗𝜇𝑤𝑖,𝑗 − 1)

𝑤3
𝑖,𝑗(𝑤𝑖,𝑗 − Λ𝑖,𝑗𝜇)3

(24)

which is positive as long as 1−Λ𝑖,𝑗𝜇/𝑤𝑖,𝑗 > 0. This is indeed
true because 𝜌 = Λ𝑖,𝑗𝜇/𝑤𝑖,𝑗 < 1 in M/G/1 queues. Thus, 𝐻𝑖,𝑗

is convex in 𝐵eff
𝑖,𝑗). Next, considering 𝐺𝑖,𝑗 we have

∂2𝐺𝑖,𝑗

𝑑𝑤2
𝑖,𝑗

=
𝑝𝑤3

𝑖,𝑗 + 𝑞𝑤2
𝑖,𝑗 + 𝑠𝑤𝑖,𝑗 + 𝑡

6𝑤4
𝑖,𝑗(𝑤𝑖,𝑗 − Λ𝑖,𝑗𝜇)4

(25)

where the auxiliary variables are given by where we have:

𝑝 = 24Λ𝑖,𝑗Γ3

𝑞 = 2Λ𝑖,𝑗(15Γ
2
2 − 28Λ𝑖,𝑗𝜇Γ3)

𝑠 = 2Λ2
𝑖,𝑗𝜇(22Λ𝑖,𝑗𝜇Γ3 − 15Γ2

2)

𝑡 = 3Λ3
𝑖,𝑗𝜇

2(3Γ2
2 − 4Λ𝑖,𝑗𝜇Γ3)

which give out the solution for 𝑝𝑤3
𝑖,𝑗 + 𝑞𝑤2

𝑖,𝑗 + 𝑠𝑤𝑖,𝑗 + 𝑡 as
𝑤𝑖,𝑗 > Λ𝑖,𝑗𝜇, which is equivalent to 1 − Λ𝑖,𝑗𝜇/𝑤𝑖,𝑗 > 0,
which has been approved earlier. Thus 𝐺𝑖,𝑗 is also convex in
𝐵eff

𝑖,𝑗).

245

Finally, to prove that 𝑓 = 𝐻𝑖,𝑗 +
√
𝐻2

𝑖,𝑗 +𝐺𝑖,𝑗 is convex

in 𝐵eff
𝑖,𝑗), we notice that 𝑓 is convex in 𝐻𝑖,𝑗 and 𝐺𝑖,𝑗 because

its Hessian matrix is positive semi-definite, i.e.,

∇2𝑓 =
1

2
(
𝐻2

𝑖,𝑗 +𝐺𝑖,𝑗

) 3
2

⋅
[
𝐻2

𝑖,𝑗 𝐻𝑖,𝑗

𝐻𝑖,𝑗 1

]
ર 0.

Since 𝑓 is increasing and convex in 𝐻𝑖,𝑗 and 𝐺𝑖,𝑗 , and 𝐻𝑖,𝑗

and 𝐺𝑖,𝑗 are both convex in 𝐵eff
𝑖,𝑗), we conclude that their

composition 𝑓(𝑧,Λ𝑖,𝑗 , 𝐵
eff
𝑖,𝑗) is also convex in 𝐵eff

𝑖,𝑗). This
completes the proof. □

Next, we consider the placement sub-problem that mini-
mizes average latency over {𝑆𝑟} for fixed {𝑧, 𝜋𝑟

𝑖,𝑗 , 𝑤𝑖,𝑗}. In
this problem, for each file 𝑟 we permute the set of racks that
contain each file 𝑟 to have a new placement 𝑆′𝑟 = {𝛽(𝑗). ∀𝑗 ∈
𝑆𝑟} where 𝛽(𝑗) ∈ 𝒩 is a permutation. The new probability
of accessing file 𝑟 from rack 𝛽(𝑗) when client is at rack 𝑖
becomes 𝜋𝑟

𝑖,𝛽𝑗 . Our objective is to find such a permutation that
minimizes the average service latency, which can be solved via
a matching problem between the set of scheduling probabilities
{𝜋𝑟

𝑖,𝑗 , ∀𝑖} and racks, with respect to their load excluding the
contribution of file 𝑟. Let Λ−𝑟

𝑖,𝑗 = Λ𝑖,𝑗 − 𝜆𝑖
𝑟𝜋

𝑟
𝑖,𝑗 be the total

request rate between racks 𝑖 and 𝑗 excluding the contribution
of file 𝑟. We define a complete bipartite graph 𝒢𝑟 = (𝒰 ,𝒱, ℰ)
with disjoint vertex sets 𝒰 ,𝒱 of equal size 𝑁 and edge weights
given by

𝐷𝑗𝑘 =

𝑁∑
𝑖=1

Λ−𝑟
𝑖,𝑗 + 𝜆𝑖

𝑟𝜋
𝑟
𝑖𝑘

𝜆all
𝑓(𝑧,Λ−𝑟

𝑖,𝑗 + 𝜆𝑖
𝑟𝜋

𝑟
𝑖𝑘, 𝑤𝑖,𝑗), ∀𝑗, 𝑘. (26)

It is easy to see that a minimum-weight matching on 𝒢𝑟 finds
𝛽(𝑗) ∀𝑗 to minimize

𝑁∑
𝑗=1

𝐷𝑗𝛽(𝑗) =

𝑁∑
𝑗=1

𝑁∑
𝑖=1

Λ−𝑟
𝑖,𝑗 + 𝜆𝑖

𝑟𝜋
𝑟
𝑖,𝛽(𝑗)

𝜆all
𝑓(𝑧,Λ−𝑟

𝑖,𝑗 + 𝜆𝑖
𝑟𝜋

𝑟
𝑖,𝛽(𝑗), 𝑤𝑖,𝑗),

which is exactly the optimization objective of Problem JLWO
if a chunk request is scheduled with probability 𝜋𝑟

𝑖,𝛽(𝑗) to a
rack with existing load Λ−𝑟

𝑖,𝑗 .

Lemma 5: (Bipartite matching equivalence of the placement
sub-problem.) When {𝑧, 𝜋𝑟

𝑖,𝑗 , 𝑤𝑖,𝑗} are fixed, the optimization
of Problem JLWO over placement variables 𝑆𝑟 is equivalent
to a balanced Bipartite matching problem of size 𝑁 .

Our proposed algorithm that solves the 3 sub-problems
interactively is summarized in Algorithm JLMO. It generates
a sequence of monotonically decreasing objective values and
therefore is guaranteed to converge. Notice that scheduling and
bandwidth allocation sub-problems as well as the minimization
over 𝑧 are convex and can be efficiently computed by any off-
the-shelf convex solvers, e.g., MOSEK [29]. The placement
sub-problem is a balanced bipartite matching that can be
solved by Hungarian algorithm [30] in polynomial time.

Theorem 2: The proposed algorithm generates a sequence of
monotonically decreasing objective values and is guaranteed
to converge to a fixed point of Problem JLMO.

Algorithm JLWO :

Initialize 𝑡 = 0, 𝜖 > 0.
Initialize feasible {𝑧(0), 𝜋𝑟

𝑖,𝑗(0), 𝑆𝑟(0)}.
while 𝑂(𝑡)−𝑂(𝑡− 1) > 𝜖

// Solve bandwidth allocation for given {𝑧(𝑡), 𝜋𝑟
𝑖,𝑗(𝑡), 𝑆𝑟(𝑡)}

𝑤𝑖,𝑗(𝑡 + 1) = argmin
𝑤𝑖,𝑗

(17) s.t. (18), (21), (22), (23).

// Solve scheduling for given {𝑧(𝑡), 𝑆𝑟(𝑡), 𝑤𝑖,𝑗(𝑡 + 1)}
𝜋𝑖,𝑗(𝑡 + 1) = argmin

𝜋𝑟
𝑖,𝑗

(17) s.t. (18), (19).

// Solve placement for given {𝑧(𝑡), 𝑤𝑖,𝑗(𝑡 + 1), 𝜋𝑟
𝑖,𝑗(𝑡 + 1)}

for 𝑟 = 1, . . . , 𝑅

Calculate Λ−𝑟
𝑖,𝑗 using {𝜋𝑟

𝑖,𝑗(𝑡 + 1)}.
Calculate 𝐷𝑗𝑘 from (26).
(𝛽(𝑗)∀𝑗 ∈ 𝒩)=𝐻𝑢𝑛𝑔𝑎𝑟𝑖𝑎𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚({𝐷𝑗𝑘}).
Update 𝜋𝑟

𝑖,𝛽(𝑗)
(𝑡 + 1) = 𝜋𝑟

𝑖,𝑗(𝑡) ∀𝑖, 𝑗.
Initialize 𝑆𝑟(𝑡 + 1) = {}.
for 𝑗 = 1, . . . , 𝑁

if ∃𝑖 s.t. 𝜋𝑟
𝑖,𝑗(𝑡 + 1) > 0

Update 𝑆𝑡(𝑡 + 1) = 𝑆𝑟(𝑡 + 1) ∪ {𝑗}.
end if

end for
end for max

𝑥
// Update bound for given {𝑤𝑖,𝑗(𝑡 + 1), 𝜋𝑟

𝑖,𝑗(𝑡 + 1), 𝑆𝑟(𝑡 + 1)}
𝑧(𝑡 + 1) = argmin

𝑧∈ℝ
. (17).

Update objective value 𝐵(𝑡+1)=(17).
Update 𝑡 = 𝑡 + 1.

end while
Output: {𝒮𝑟(𝑡), 𝜋𝑖,𝑗𝑟

(𝑡), 𝑤𝑖,𝑗(𝑡)}

V. IMPLEMENTATION AND EVALUATION

A. Tahoe Testbed

To validate the queuing model in our single data-center sys-
tem model and evaluate the performance, we implemented the
algorithms in Tahoe [37], which is an open-source, distributed
file-system based on the zfec erasure coding library. It provides
three special instances of a generic node: (a) Tahoe Introducer:
it keeps track of a collection of storage servers and clients and
introduces them to each other. (b) Tahoe Storage Server: it
exposes attached storage to external clients and stores erasure-
coded shares. (c) Tahoe Client: it processes upload/download
requests and connects to storage servers through a Web-based
REST API and the Tahoe-LAFS (Least-Authority File System)
storage protocol over SSL.

Our experiment is done on a Tahoe testbed that consists of
16 separate physical hosts in an Openstack cluster, 10 out of
which have been used by our experiment. We simulated each
host as a rack in the cluster. Each host has 4 VM instances,
and each instance runs 2 Tahoe service ports, i.e., simulated as
Tahoe storage servers in the racks. We effectively simulated an
Openstack cluster with 10 racks and 8 Tahoe storage servers
on each rack. The cluster uses a Cisco Catalyst 4948 switch,
which has 48 ports. Each port supports non-blocking, 1Gbps
bandwidth in the full duplex mode. The weighted-queuing
model is supposed to have 𝑁(𝑁 − 1) = 90 queues for
inter-rack traffic at the aggregate switch; however, bandwidth
reservation through ports of the switch is not possible since
the Cisco switch does not support the OpenFlow protocol, so
we made pairwise bandwidth reservations (using a bandwidth
control tool from our Cloud QoS platform) between different

246

Fig. 2: Our Tahoe testbed with ten racks and each has 8 Tahoe
storage servers

Tahoe Clients and Tahoe storage servers. The Tahoe introducer
node resides on rack 1 and each rack has a client node with
multiple tahoe ports to simulate multiple clients to initiate file
requests coming from rack 𝑖. Our Tahoe testbed is shown in
Fig 2.

Tahoe is an erasure-coded distributed storage system with
some unique properties that make it suitable for storage
system experiments. In Tahoe, each file is encrypted, and
is then broken into a set of segments, where each segment
consists of 𝑘 blocks. Each segment is then erasure-coded to
produce 𝑛 blocks (using an (𝑛, 𝑘) encoding scheme) and then
distributed to (ideally) 𝑛 storage servers regardless of their
server placement, whether in the same rack or not. The set of
blocks on each storage server constitute a chunk. Thus, the file
equivalently consists of 𝑘 chunks which are encoded into 𝑛
chunks and each chunk consists of multiple blocks3. For chunk
placement, the Tahoe client randomly selects a set of available
storage servers with enough storage space to store 𝑛 chunks.
For server selection during file retrievals, the client first asks
all known servers for the storage chunks they might have,
again regardless of which racks the servers reside in. Once it
knows where to find the needed k chunks (from among the
fastest servers with a pseudo-random algorithm), it downloads
at least the first segment from those servers. This means that
it tends to download chunks from the “fastest” servers purely
based on round-trip times (RTT). However, we consider RTT
plus expected queuing delay and transfer delay as a measure
of latency.

We had to make several changes in Tahoe in order to
conduct our experiments. First, we need to have the number
of racks 𝑁 ≥ 𝑛 in order to meet the system requirement that
each rack can have at most one chunk of the original file. In
addition, since Tahoe has its own rules for chunk placement
and request scheduling, while our experiment requires client-

3If there are not enough servers, Tahoe will store multiple chunks on one
sever. Also, the term “chunk” we used in this paper is equivalent to the
term “share” in Tahoe terminology. The number of blocks in each chunk is
equivalent to the number of segments in each file.

defined chunk placement in different racks, and also with
our server selection algorithms in order to minimize joint
latency, we modified the upload and download modules in
the Tahoe storage server and client to allow for customized
and explicit server selection for both chunk placement and
retrieval, which is specified in the configuration file that is
read by the client when it starts. Finally, Tahoe performance
suffers from its single-threaded design on the client side; we
had to use multiple clients (multiple threads on one client
node) in each rack with separate ports to improve parallelism
and bandwidth usage during our experiments.

B. Basic Experiment Setup

We use (7,4) erasure code in the Tahoe testbed we in-
troduced above throughout the experiments described in the
implementation section. The algorithm first calculates the
optimal chunk placement through different racks, which will
be set up in the client configuration file for each write request.
File retrieval request scheduling and weight assignment deci-
sions for inter-rack traffic also comes from Algorithm JLWO.
The system calls a bandwidth reservation tool to reserve the
assigned bandwidth 𝐵𝑤𝑖,𝑗 based on optimal weights of each
inter-rack pair, where total bandwidth capacity at the aggregate
switch is 96 Gbps, 48 ports with 1Gbps in each direction
since we are simulating host machines as racks and VM’s as
storage servers. Intra-rack bandwidth as measured from iPerf
measurement is 706Mbps, disk read bandwidth for sequential
workload is 386 Mbps, and write bandwidth is 118 Mbps.
Requests are generated based on arrival rates at each rack and
submited from client nodes at all racks.

C. Experiments and Evaluation

Convergence of Algorithm. We implemented Algorithm
JLWO using MOSEK, a commercial optimization solver. With
10 racks and 8 simulated distributed storage servers on each
rack, there are a total of 80 Tahoe servers in our testbed.
Figure 3 demonstrates the convergence of our algorithms,
which optimizes the latency of all requests coming from
different racks for the weighted queuing model at the aggregate
switch: chunk placement 𝒮𝑖, load balancing 𝜋𝑖,𝑗 and band-
width weights distribution 𝑤𝑖,𝑗 (for weighted queuing model).
The JLCM algorithm, which has been applied as part of our
JLWO algorithm, was proven to converge in Theorem 2 of
[28]. In this paper, we see the convergence of the proposed
optimized queuing algorithms in Fig. 3. By performing sim-
ilar speedup techniques as in [28], our algorithms for the
two models efficiently solve the optimization problem with
𝑟 = 500 files at each of the 10 racks. It is observed that
the normalized objective converges within 172 iterations for a
tolerance 𝜖 = 0.01, where each iteration has an average run
time of 1.38 sec, when running on an 8-core, 64-X86 machine,
therefore the algorithm converges within 3.89 min on average
from observation. To achieve dynamic file management, our
optimization algorithm can be executed repeatedly upon file
arrivals and departures.

Validate Experiment Setup. While our service delay bound
applies to arbitrary distribution and works for systems hosting

247

Fig. 3: Convergence of Algorithm JLWO with r=1000 requests
for heterogeneous files from each rack on our 80-node testbed.
Algorithm JLWO efficiently compute the solution in 172 iterations.

Fig. 4: Actual service time distribution of chunk retrieval
through intra-rack and inter-rack traffic for weighted queuing;
each of them has 1000 files of size 100𝑀𝐵 using erasure code
(7,4) with the aggregate request arrival rate set to 𝜆𝑖 = 0.25
/sec in each model

Fig. 5: Comparison of average latency with different access
patterns. Experiment is set up for 100 heterogeneous files, each
with 10 requests. The figure shows the percentage that these 1000
requests are concentrated on the same rack. Aggregate arrival
rate 0.25/sec, file size 200M. Latency improved significantly with
weighted queuing. Analytic bound for both cases tightly follows
actual latency as well.

Fig. 6: Evaluation of different file sizes in the weighted queuing
model. Aggregate rate 0.25/sec. Compared with Tahoe’s built-
in upload/download algorithm, our algorithm provides relatively
lower latency with heterogeneous file sizes. Latency increases as
file size increases. Our analytic latency bound taking both network
and queuing delay into account tightly follows actual service
latency.

any number of files, we first run an experiment to understand
actual service time distribution for both intra-rack and inter-
rack retrieval in weighted queuing models on our testbed,
(intra-rack traffic has a weight of 1, i.e., receives full intra-
rack bandwidth). We uploaded 𝑟 = 1000 files of size 100𝑀𝐵
file using a (7, 4) erasure code from the client at each rack
based on the algorithm output of 𝑆𝑖. Inter-rack bandwidth was
reserved based on the weights output from the algorithm. We
then initiated 1000 file retrieval requests (each request for a
unique file) from the clients distributed in the data center,
using the algorithm output 𝜋𝑖,𝑗 for retrieval request scheduling
with the same erasure code. The experiment has 1000 file
requests in total (for 10 racks), with an aggregate request
arrival rate of 0.25/sec for clients at all racks and requests
are evenly distributed across the racks. Based on the optimal
sets for retrieving chunks of each file request provided by our
algorithm, we get measurements of service time for the for
both inter-rack and intra-rack processes. The average inter-

rack bandwidth over all racks is 514 Mbps and the intra/inter-
rack bandwidth ratio is 840𝑀𝑏𝑝𝑠/514𝑀𝑏𝑝𝑠 = 1.635. Figure
4 depicts the Cumulative Distribution Function (CDF) of the
chunk service time for both intra-rack and inter-rack traffic.
We note that intra-rack requests have a mean chunk service
time of 26 sec and inter-rack chunk requests have a mean
chunk service time of 40 sec, which is a ratio of 1.538 which
is very close to the bandwidth ratio of 1.635. This means the
chunk service time is nearly proportional to the bandwidth
reservation on inter/intra-rack traffic.

Validate algorithms and joint optimization. In order
to validate that Algorithm JLWO works for our system
model (with weighted queuing model for inter-rack traffic at
the switch), we compare our weighted queuing model with
Tahoe’s native upload/download method without weighted
queuing in the cases of different access patterns. In this
experiment, we have 100 files of the same file size 200MB,
and aggregate arrival rate is 0.25/sec. Each file has 50 requests
coming from different racks, and we are measuring latency

248

Fig. 7: Evaluation of different request arrival rate in weighted queu-
ing. File size 200M. Compared with Tahoe’s built-in upload/download
algorithm, our algorithm provides relatively lower latency with het-
erogeneous request arrival rates. Latency increases as requests arrive
more frequently. Our analytic latency bound taking both network and
queuing delay into account tightly follows actual service latency for
both classes.

for the following access patterns: 100% concentration means
100% of the 50×100 requests concentrate on one of the racks.
Similarly, 80% or 50% concentration means 80% or 50% of
the total requests of each file come from one rack, the rest
of the requests spread uniformly among other racks. Uniform
access means that for each file, the 50×100 requests are
uniformly distributed across the racks. We compare average
latency for these requests for each case of the access pat-
terns when we applied the queuing model with and without
weighted queuing.

As shown in Fig 5, experimental results indicate that our
weighted queuing model can effectively mitigate the long la-
tency due to congestion at one rack as compared with Tahoe’s
native method. For example, when the request concentration
level is 100%, weighted queuing improves average latency by
32%, and when concentration level is 80%, the improvement
is 27%, as compared to the 24% improvement provided by
50% concentration and 21% by the uniform distribution. We
can see that this improvement in average latency increases as
the requests become more concentrated, while in this case with
our weighted queuing and the optimal chunk placement and re-
trieval scheduling, we see more weights allocated to the queues
that have much heavier traffic than others. Optimal weight
allocation allows us to utilize bandwidth more efficiently and
reduce overall latency. We also calculated our analytic bound
of average latency when the above access patterns are applied,
from the figure we can also see that our analytic bound is tight
enough to follow the actual average latency.

Evaluate the performance of our solution To demonstrate
the effectiveness of our algorithms, we vary file size in the
experiments from 50MB to 250MB with an aggregate request
arrival rate for all files at 0.25/sec. We assume uniform random
access, i.e., each file will be uniformly accessed from ten
racks in the data center with a certain request arrival rate.
Upload/download server selection is based on the algorithm

output 𝑆𝑖/𝜋𝑖,𝑗 , and bandwidth reserved according to output
𝑤𝑖,𝑗 from the optimization. Then we submit 𝑟 = 1000 requests
from the clients distributed among the racks. We also run
experiments with the same settings without weighted queuing,
i.e., using Tahoe’s upload/download policy we introduced in
the beginning of this section. Results in Fig 6 show that
although Tahoe is using load balancing for dispatching file
requests, our algorithm still improves the average latency of
requests over all racks significantly. For instance, weighted
queuing has a 22% improvement on average for the 5 sample
file sizes in this experiment. Latency increases as requested file
size increases when arrival rates are set to be the same. Since
larger file size means longer service time, it increases queuing
delay and thus average latency. We also observe that our
analytic latency bound follows actual average service latency
in this experiment. We note that the actual service latency
involves other aspects of delay beyond queuing delay, and the
results show that optimizing the metric of the proposed latency
upper bound improves the actual latency with the queuing
models.

Similarly, we vary the aggregate arrival rate at each rack
from 0.25/sec to 0.45/sec. This time we fix all file requests
for file size 200MB. In this experiment we also compare our
weighted queuing model with Tahoe’s built-in up/download
scheme without weights-reserved bandwidth allocation. We as-
sume uniform access as before. For weighted queuing model,
we use optimized server selection for upload and download for
each file request, and optimal bandwidth reservation from Al-
gorithm JLWO. Clients across the data center submit 𝑟 = 1000
requests with an aggregate arrival rate varying from 0.25/sec
to 0.45/sec. From Fig 7 we can see that our algorithm
outperforms Tahoe in terms of average latency in this case
as well. The proposed algorithm has an average improvement
of 24% in latency. Further, as the arrival rate increases and
there is more contention at the queues, this improvement
becomes more significant. Thus our algorithm can mitigate
traffic contention and reduce latency very efficiently compared
to Tahoe’s native access policy. In both the cases, the average
latency increases as the request arrival at each rack increases
since waiting time increases with the workload.

VI. CONCLUSIONS

This paper proposes an optimized erasure-coded single data
center storage solution. The mean latency of all file requests
is jointly optimized over the placement of erasure-coded file
chunks and the scheduling of file access requests, as well
as the bandwidth reservation at different switches. With the
knowledge of the file-access patterns, the proposed solution
significantly reduces average latency. In conclusion, this paper
demonstrates that knowing the access probabilities of different
files from different racks can lead to an efficient optimization
of erasure-coded storage, that works significantly better as
compared to a storage solution which ignores the file access
patterns.

VII. ACKNOWLEDGEMENT

The authors would like to thank Chao Tian from University
of Tennessee Knoxville (was at AT&T Labs-Research, Bed-

249

minster when the research was performed) for many helpful
discussions.

REFERENCES

[1] E. Schurman and J. Brutlag, “ The user and business impact of server
delays, additional bytes and http chunking in web search,” OReilly
Velocity Web performance and operations conference, June 2009.

[2] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and A. Greenberg, “Joinidle-
queue: A novel load balancing algorithm for dynamically scalable web
services,” in Proc. IFIP Perforamnce, 2010.

[3] Dell data center design, “Data Center Design Considerations with 40GbE
and 100GbE,”, Aug 2013.

[4] A. Fallahi and E. Hossain, “Distributed and energy-Aware MAC for
differentiated services wireless packet networks: a general queuing
analytical framework,” IEEE CS, CASS, ComSoc, IES, SPS, 2007.

[5] A.S. Alfa, “Matrix-geometric solution of discrete time MAP/PH/1
priority queue,” Naval research logistics, vol. 45, 00. 23-50, 1998.

[6] N.E. Taylor and Z.G. Ives, “Reliable storage and querying for collabo-
rative data sharing systems,” IEEE ICED Conference, 2010.

[7] J.H. Kim and J.K. Lee, “Performance of carrier sense multiple access
with collision avoidance in wireless LANs,” Proc. IEEE IPDS., 1998.

[8] E. Ziouva and T. Antoankopoulos, “CSMA/CA Performance under high
traffic conditions: throughput and delay analysis,” Computer Comm, vol.
25, pp. 313-321, 2002.

[9] S. Mochan and L. Xu, “Quantifying Benefit and Cost of Erasure
Code based File Systems.” Technical report available at ℎ𝑡𝑡𝑝 :
//𝑛𝑖𝑠𝑙.𝑤𝑎𝑦𝑛𝑒.𝑒𝑑𝑢/𝑃𝑎𝑝𝑒𝑟𝑠/𝑇𝑒𝑐ℎ/𝑐𝑏𝑒𝑓𝑠.𝑝𝑑𝑓 , 2010.

[10] H. Weatherspoon and J. D. Kubiatowicz, “Erasure Coding vs. Repli-
cation: A Quantitative Comparison.” In Proceedings of the First
IPTPS,2002

[11] C. Angllano, R. Gaeta and M. Grangetto, “Exploiting Rateless Codes in
Cloud Storage Systems,” IEEE Transactions on Parallel and Distributed
Systems, Pre-print 2014.

[12] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter,S. Rao and J. Kelly, “The
quantcast file system,” Proceedings of the VLDB Endowment, vol. 6, pp.
1092-1101, 2013.

[13] L. Huang, S. Pawar, H. Zhang and K. Ramchandran, “Codes Can Reduce
Queueing Delay in Data Centers,” Journals CORR, vol. 1202.1359,
2012.

[14] N. Shah, K. Lee, and K. Ramachandran, “The MDS queue: analyzing
latency performance of erasure codes,” Information Theory (ISIT), 2014
IEEE International Symposium on, July. 2014.

[15] F. Baccelli, A. Makowski, and A. Shwartz, “The fork-join queue and
related systems with synchronization constraints: stochastic ordering and
computable bounds, Advances in Applied Probability, pp. 629660, 1989.

[16] G. Joshi, Y. Liu, and E. Soljanin, “On the Delay-Storage Trade-
off in Content Download from Coded Distributed Storage Systems,”
arXiv:1305.3945v1, May 2013.

[17] B. Dekeris, T. Adomkus, A. Budnikas, “Analysis of qos assurance using
weighted fair queueing (WQF) scheduling discipline with low latency
queue (LLQ),” Information Technology Interfaces, 28th International
Conference on, 2006.

[18] M. Ashour, N. Le-Ngoc, “Performance Analysis of Weighted Fair
Queues with Variable Service Rates,” Digital Telecommunications, In-
ternational Conference on, 2006. ICDT ’06.

[19] M.L. Ma, J.Y.B. Lee, “,” Peer-to-Peer Computing (P2P), IEEE Tenth
International Conference on, 2010.

[20] P. Xie, J.H. Cui, “An FEC-based Reliable Data Transport Protocol for
Underwater Sensor Networks,” Computer Communications and Net-
works, Proceedings of 16th International Conference on, 2007. ICCCN
2007.

[21] Y. Yang, K.M.M. Aung, E.K.K. Tong, C.H. Foh, “Dynamic Load
Balancing Multipathing in Data Center Ethernet,” Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS),
IEEE International Symposium on,2010.

[22] Bu. Lee, R. Kanagavelu, K.M.M. Aung, “An efficient flow cache
algorithm with improved fairness in Software-Defined Data Center
Networks,” Cloud Networking (CloudNet), IEEE 2nd International Con-
ference on, 2013.

[23] S. Chen, Y. Sun, U.C. Kozat, L. Huang, P. Sinha, G. Liang, X. Liu and
N.B. Shroff, “ When Queuing Meets Coding: Optimal-Latency Data
Retrieving Scheme in Storage Clouds,” IEEE Infocom, April 2014.

[24] O. N. C. Yilmaz, C. Wijting, P. Lunden, J. Hamalainen, “Optimized
Mobile Connectivity for Bandwidth- Hungry, Delay-Tolerant Cloud
Services toward 5G,” Wireless Communications Systems (ISWCS), 11th
International Symposium on, 2014.

[25] D. Niu, C. Feng and B. Li, “Pricing cloud bandwidth reservations
under demand uncertainty,” Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE joint international conference on Measurement
and Modeling of Computer Systems, pp. 151-162, June 2012.

[26] S.Suganya and Dr.S.Palaniammal, “A Well-organized Dynamic Band-
width Allocation Algorithm for MANET,” International Journal of
Computer Applications, vol. 30(9), pp. 11-15, September 2011.

[27] A. Kumar, R. Tandon and T.C. Clancy, “On the Latency of Erasure-
Coded Cloud Storage Systems,” arXiv:1405.2833, May 2014.

[28] Y. Xiang, T. Lan, V. Aggarwal, and Y. R. Chen, “Joint Latency and
Cost Optimization for Erasure-coded Data Center Storage,” Proc. IFIP
Performance, Oct. 2014 (available at arXiv:1404.4975).

[29] MOSEK, “MOSEK: High performance software for large-scale LP, QP,
SOCP, SDP and MIP,” available online at http://www.mosek.com/.

[30] Hungarian Algorithm, available online at
http://www.hungarianalgorithm.com

[31] D. Bertsimas and K. Natarajan, “Tight bounds on Expected Order
Statistics,” Probability in the Engineering and Informational Sciences,
2006.

[32] A. Abdelkefi and J. Yuming, “A Structural Analysis of Network Delay,”
Ninth Annual CNSR, 2011.

[33] F. Paganini, A. Tang, A. Ferragut and L.L.H. Andrew, “Network
Stability Under Alpha Fair Bandwidth Allocation With General File
Size Distribution,” IEEE Transactions on Automatic Control, 2012.

[34] A.B. Downey, “The structural cause of file size distributions,” Proceed-
ings of Ninth International Symposium on MASCOTS, 2011.

[35] M. Bramson, Y. Lu, and B. Prabhakar, “Randomized load balancing
with general service time distributions,” Proceedings of ACM Sigmetrics,
2010.

[36] D. Bertsimas and K. Natarajan, “Tight bounds on Expected Order
Statistics,” Probability in the Engineering and Informational Sciences,
2006.

[37] B. Warner, Z. Wilcox-O’Hearn, and R. Kinninmont, “Tahoe-LAFS
docs,” available online at https://tahoe-lafs.org/trac/tahoe-lafs.

250

