
Joint Latency and Cost Optimization for Erasure-coded
Data Center Storage

Yu Xiang1, Tian Lan1, Vaneet Aggarwal2, and Yih-Farn R Chen2

1 Department of ECE, George Washington University, DC 20052, USA
2 AT&T Labs-Research, Bedminster, NJ 07921

{xy336699, tlan}@gwu.edu, {vaneet, chen}@research.att.com

ABSTRACT
Modern distributed storage systems offer large capacity to
satisfy the exponentially increasing need of storage space.
They often use erasure codes to protect against disk and
node failures to increase reliability, while trying to meet the
latency requirements of the applications and clients. This
paper provides an insightful upper bound on the average
service delay of such erasure-coded storage with arbitrary
service time distribution and consisting of multiple hetero-
geneous files. Not only does the result supersede known
delay bounds that only work for homogeneous files, it also
enables a novel problem of joint latency and storage cost
minimization over three dimensions: selecting the erasure
code, placement of encoded chunks, and optimizing schedul-
ing policy. The problem is efficiently solved via the compu-
tation of a sequence of convex approximations with provable
convergence. We further prototype our solution in an open-
source, cloud storage deployment over three geographically
distributed data centers. Experimental results validate our
theoretical delay analysis and show significant latency reduc-
tion, providing valuable insights into the proposed latency-
cost tradeoff in erasure-coded storage.

1. INTRODUCTION

1.1 Motivation
Consumers are engaged in more social networking and E-

commerce activities these days and are increasingly storing
their documents and media in the online storage. Businesses
are relying on Big Data analytics for business intelligence
and are migrating their traditional IT infrastructure to the
cloud. These trends cause the online data storage demand to
rise faster than Moore’s Law [1]. The increased storage de-
mands have led companies to launch cloud storage services
like Amazon’s S3 [2] and personal cloud storage services like
Amazon’s Cloud drive, Apple’s iCloud, DropBox, Google
Drive, Microsoft’s SkyDrive, and AT&T Locker. Storing
redundant information on distributed servers can increase
reliability for storage systems, since users can retrieve du-
plicated pieces in case of disk, node, or site failures.

Erasure coding has been widely studied for distributed
storage systems [5, and references therein] and used by com-
panies like Facebook [3] and Google [4] since it provides
space-optimal data redundancy to protect against data loss.

IFIP WG 7.3 Performance 2014, October 7-9, Turin, Italy. Copy-
right is held by author/owner(s).

There is, however, a critical factor that affects the service
quality that the user experiences, which is the delay in ac-
cessing the stored file. In distributed storage, the bandwidth
between different nodes is frequently limited and so is the
bandwidth from a user to different storage nodes, which can
cause a significant delay in data access and perceived as poor
quality of service. In this paper, we consider the problem
of jointly minimizing both service delay and storage cost for
the end users.

While a latency-cost tradeoff is demonstrated for the spe-
cial case of homogeneous files [33, 39, 41, 43], much less is
known about the latency performance of multiple files that
are coded with different parameters and share common stor-
age servers. The main goal of this paper can be illustrated
by an abstracted example shown in Fig. 1. We consider two
files, each partitioned into k = 2 blocks of equal size and
encoded using maximum distance separable (MDS) codes.
Under an (n, k) MDS code, a file is encoded and stored in n
storage nodes such that the chunks stored in any k of these n
nodes suffice to recover the entire file. There is a centralized
scheduler that buffers and schedules all incoming requests.
For instance, a request to retrieve file A can be completed
after it is successfully processed by 2 distinct nodes cho-
sen from {1, 2, 3, 4} where desired chunks of A are available.
Due to shared storage nodes and joint request scheduling,
delay performances of the files are highly correlated and
are collectively determined by control variables of both files
over three dimensions: (i) the scheduling policy that decides
what request in the buffer to process when a node becomes
available, (ii) the placement of file chunks over distributed
storage nodes, and (iii) erasure coding parameters that de-
cides how many chunks are created. A joint optimization
over these three dimensions is very challenging because the
latency performance of different files are tightly entangled.
While increasing erasure code length of file B allows it to be
placed on more storage nodes, potentially leading to smaller
latency (because of improved load-balancing) at the price of
higher storage cost, it inevitably affects service latency of
file A due to resulting contention and interference on more
shared nodes. In this paper, we present a quantification of
service latency for erasure-coded storage with multiple files
and propose an efficient solution to the joint optimization of
both latency and storage cost.

1.2 Related Work
Quantifying the exact service delay in an erasure-coded

storage is an open problem. Prior works focusing on asymp-
totic queuing delay behaviours [35, 37] are not applicable
because redundancy factor in practical data centers typi-

Performance Evaluation Review, Vol. 42, No. 2, September 2014 3

1
3

2

4

5

Requests

(4,2) coding
1: a1

2: a2

3: a1+a2

4: a1+2a2

(3,2) coding
5: b1

6: b2

7: b1+b2

Scheduler

……

File A
File B

Figure 1: An erasure-coded storage of 2 files, which
partitioned into 2 blocks and encoded using (4, 2)
and (3, 2) MDS codes, respectively. Resulting file
chunks are spread over 7 storage nodes. Any file
request must be processed by 2 distinct nodes that
have the desired chunks. Nodes 3, 4 are shared and
can process request for both files.

cally remain small due to storage cost concerns. Due to
the lack of analytical delay models for erasure-coded stor-
age, most of the literature is focused on reliable distributed
storage system design, and latency is only presented as a
performance metric when evaluating the proposed erasure
coding scheme, e.g., [14, 16, 19, 24, 22], which demonstrate
latency improvement due to erasure coding in different sys-
tem implementations, for example, in [11] the authors use
the LT erasure codes to adjust the system to meet user re-
quirements such as availability, integrity and confidentiality.
Related design can also be found in data access scheduling
[6, 8, 12, 13], access collision avoidance [9, 10], and encod-
ing/decoding time optimization [25, 26]. Restricting to the
special case of a single file, service delay bounds of erasure-
coded storage have been recently studied in [33, 39, 41, 43].

Queueing-theoretic analysis. For homogeneous files
and under an assumption of exponential service time distri-
bution, the authors in [33, 39] proposed a block-one-scheduling
policy that only allows the request at the head of the buffer
to move forward. An upper bound on the average latency of
the storage system is provided through queueing-theoretic
analysis for MDS codes with k = 2. Later, the approach
is extended in [43] to general (n, k) erasure codes, yet for
a single file. A family of MDS-Reservation(t) scheduling
policies that block all except the first t of file requests are
proposed and lead to numerical upper bounds on the av-
erage latency. It is shown that as t increases, the bound
becomes tighter while the number of states concerned in the
queueing-theoretic analysis grows exponentially.

Fork-join queue analysis. A queuing model closely
related to erasure-coded storage is the fork-join queue [7]
which has been extensively studied in the literature. Re-
cently, the authors in [41] proposed a (n, k) fork-join queue
where a file request is forked to all n storage nodes that host
the file chunks, and it exits the system when any k chunks
are processed. Using this (n, k) fork-join queue to model the
latency performance of erasure-coded storage, a closed-form
upper bound of service latency is derived for homogeneous
files and exponentially-distributed service time. However,

the approach cannot be applied to a heterogeneous-file stor-
age where each file has a separate folk-join queue and the
queues of different files are highly dependent due to shared
storage nodes and joint request scheduling. Further, under
a folk-join queue, each file request must be served by all n
nodes or a set of pre-specified nodes. It falls short to address
dynamic load-balancing of heterogeneous files.

1.3 Our Contributions
This paper aims to propose a systematic framework that

(i) quantifies the outer bound on the service latency of arbi-
trary erasure codes and for any number of files in distributed
data center storage with general service time distributions,
and (ii) enables a novel solution to a joint minimization of
latency and storage cost by optimizing the system over three
dimensions: erasure coding, chunk placement, and schedul-
ing policy.

The outer bound on the service latency is found using four
steps, (i) We present a novel probabilistic scheduling policy,
which dispatches each file request to k distinct storage nodes
who then manages their own local queues independently. A
file request exits the system when all the k chunk requests
are processed. We show that probabilistic scheduling pro-
vides an upper bound on average latency of erasure-coded
storage for arbitrary erasure codes, any number of files, and
general services time distributions. (ii) Since the latency for
probabilistic scheduling for all probabilities over

(
n
k

)
subsets

is hard to evaluate, we show that the probabilistic schedul-
ing is equivalent to accessing each of the n storage node with
certain probability. If there is a strategy that accesses each
storage node with certain probability, there exist a proba-
bilistic scheduling strategy over all

(
n
k

)
subsets. (iii) The

policy that selects each storage node with certain probabil-
ity generates memoryless requests at each of the node and
thus the delay at each storage node can be characterized by
the latency of M/G/1 queue. (iv) Knowing the exact de-
lay from each storage node, we find a tight bound on the
delay of the file by extending ordered statistic analysis in
[38]. Not only does our result supersede previous latency
analysis [33, 39, 41, 43] by incorporating multiple heteroge-
neous files and arbitrary service time distribution, it is also
shown to be tighter for a wide range of workloads even in
the homogeneous-file case.

The main application of our latency analysis is a joint
optimization of latency and storage cost for heterogeneous-
file storage over three dimensions: erasure coding, chunk
placement, and scheduling policy. To the best of our knowl-
edge, this is the first paper to explore all these three design
degrees of freedoms and to optimize an aggregate latency-
plus-cost objective for all end users in an erasure-coded stor-
age. Solving such a joint optimization is known to be hard
due to the integer property of storage cost, as well as the
coupling of control variables. While the length of erasure
code determines not only storage cost but also the num-
ber of file chunks to be created and placed, the placement
of file chunks over storage nodes further dictates the possi-
ble options of scheduling future file requests. To deal with
these challenges, we propose an algorithm that constructs
and computes a sequence of local, convex approximations of
the latency-plus-cost minimization that is a mixed integer
optimization. The sequence of approximations parametrized
by β > 0 can be efficiently computed using a standard pro-
jected gradient method and is shown to converge to the orig-

4 Performance Evaluation Review, Vol. 42, No. 2, September 2014

inal problem as β →∞.
To validate our theoretical analysis and joint latency-plus-

cost optimization, we provide a prototype of the proposed
algorithm in Tahoe [42], which is an open-source, distributed
filesystem based on the zfec erasure coding library for fault
tolerance. A Tahoe storage system consisting of 12 storage
nodes are deployed as virtual machines in an OpenStack-
based data center environment distributed in New Jersey
(NJ), Texas (TX), and California (CA). Each site has four
storage servers. One additional storage client was deployed
in the NJ data center to issue storage requests. First, we
validate our latency analysis via experiments with multiple
heterogenerous files and different request arrival rates on
the testbed. Our measurement of real service time distri-
bution falsifies the exponential assumption in [33, 39, 43].
Our analysis outperforms the upper bound in [41] even in
the homogeneous-file case. Second, we implement our algo-
rithm for joint latency-plus-cost minimization and demon-
strate significant improvement of both latency and cost over
oblivious design approaches. Our entire design is validated
in various scenarios on our testbed, including different files
sizes and arrival rates. The percentage improvement in-
creases as the file size increases because our algorithm re-
duces queuing delay which is more effective when file sizes
are larger. Finally, we quantify the tradeoff between latency
and storage cost. It is shown that the improved latency
shows a diminished return as storage cost/redundancy in-
crease, suggesting the importance of identifying a particular
tradeoff point.

2. SYSTEM MODEL
We consider a data center consisting of m heterogeneous

servers, denoted byM = {1, 2, . . . ,m}, called storage nodes.
To distributively store a set of r files, indexed by i = 1, . . . , r,
we partition each file i into ki fixed-size chunks1 and then
encode it using an (ni, ki) MDS erasure code to generate
ni distinct chunks of the same size for file i. The encoded
chunks are assigned to and stored on ni distinct storage
nodes, which leads to a chunk placement subproblem, i.e.,
to find a set Si of storage nodes, satisfying Si ⊆ M and
ni = |Si|, to store file i. Therefore, each chunk is placed on
a different node to provide high reliability in the event of
node or network failures. While data locality and network
delay have been one of the key issues studied in data center
scheduling algorithms [12, 13, 15], the prior work does not
apply to erasure-coded systems.

The use of (ni, ki) MDS erasure code allows the file to
be reconstructed from any subset of ki-out-of-ni chunks,
whereas it also introduces a redundancy factor of ni/ki.
To model storage cost, we assume that each storage node
j ∈ M charges a constant cost Vj per chunk. Since ki is
determined by file size and the choice of chunk size, we need
to choose an appropriate ni which not only introduces suffi-
cient redundancy for improving chunk availability, but also
achieves a cost-effective solution. We refer to the problem
of choosing ni to form a proper (ni, ki) erasure code as an
erasure coding subproblem.

1While we make the assumption of fixed chunk size here to
simplify the problem formulation, all results in this paper
can be easily extended to variable chunk sizes. Nevertheless,
fixed chunk sizes are indeed used by many existing storage
systems [14, 16, 18].

For known erasure coding and chunk placement, we shall
now describe a queueing model of the distributed storage
system. We assume that the arrival of client requests for
each file i form an independent Poisson process with a known
rate λi. We consider chunk service time Xj of node j with
arbitrary distributions, whose statistics can be obtained in-
ferred from existing work on network delay [27, 26] and file-
size distribution [28, 29]. Under MDS codes, each file i can
be retrieved from any ki distinct nodes that store the file
chunks. We model this by treating each file request as a
batch of ki chunk requests, so that a file request is served
when all ki chunk requests in the batch are processed by dis-
tinct storage nodes. All requests are buffered in a common
queue of infinite capacity.

Consider the 2-file storage example in Section 1, where
files A and B are encoded using (4, 2) and (3, 2) MDS codes,
respectively, file A will have chunks as A1, A2, A3 and
A4, and file B will have chunks B1, B2 and B3. As de-
picted in Fig.2 (a), each file request comes in as a batch of

ki = 2 chunk requests, e.g., (RA,11 , RA,21), (RA,12 , RA,22), and

(RB,11 , RB,21), where RA,ji , denotes the ith request of file A,
j = 1, 2 denotes the first or second chunk request of this file
request. Denote the five nodes (from left to right) as servers
1, 2, 3, 4, and 5, and we initial 4 file requests for file A and
3 file requests for file B, i.e., requests for the different files
have different arrival rates. The two chunks of one file re-
quest can be any two different chunks from A1, A2, A3 and
A4 for file A and B1, B2 and B3 for file B. Due to chunk
placement in the example, any 2 chunk requests in file A’s
batch must be processed by 2 distinct nodes from {1, 2, 3, 4},
while 2 chunk requests in file B’s batch must be served by
2 distinct nodes from {3, 4, 5}. Suppose that the system is
now in a state depicted by Fig.2 (a), wherein the chunk re-

quests RA,11 , RA,12 , RA,21 , RB,11 , and RB,22 are served by the 5
storage nodes, and there are 9 more chunk requests buffered
in the queue. Suppose that node 2 completes serving chunk
request RA,12 and is now free to server another request wait-
ing in the queue. Since node 2 has already served a chunk
request of batch (RA,12 , RA,22) and node 2 does not host any

chunk for file B, it is not allowed to serve either RA,22 or

RB,j2 , RB,j3 where j = 1, 2 in the queue. One of the valid

requests, RA,j3 and RA,j4 , will be selected by an scheduling
algorithm and assigned to node 2. We denote the schedul-
ing policy that minimizes average expected latency in such
a queuing model as optimal scheduling.

Definition 1. (Optimal scheduling) An optimal schedul-
ing policy (i) buffers all requests in a queue of infinite ca-
pacity; (ii) assigns at most 1 chunk request from a batch to
each appropriate node, and (iii) schedules requests to mini-
mize average latency if multiple choices are available.

An exact analysis of optimal scheduling is extremely dif-
ficult. Even for given erasure codes and chunk placement,
it is unclear what scheduling policy leads to minimum av-
erage latency of heterogeneous files. For example, when a
shared storage node becomes free, one could schedule either
the earliest valid request in the queue or the request with
scarcest availability, leading to different implications on av-
erage latency. A scheduling policy similar to [33, 39] that
blocks all but the first t batches does not apply to hetero-
geneous files because a Markov-chain representation of the
resulting queue is required to have each state encapsulating

Performance Evaluation Review, Vol. 42, No. 2, September 2014 5

(a) MDS scheduling (b) Probabilistic scheduling

……

Dispatch

A,1
2R

A,1
1R B,1

1R B,2
1R

A,1
2R

A,2
1R A,1

1R A,2
1R B,1

1R B,2
1R

A,2
2R

B,1
2R

B,2
2R

B,1
3R B,2

3R
A,1
3R

A,2
3R

A,1
4R A,2

4R

A,2
4R

A,2
2R

A,1
3R

A,1
4R

A,2
3R

B,1
2R

B,1
3R B,2

2R
B,2
3R

Figure 2: Functioning of (a) an optimal scheduling
policy and (b) a probabilistic scheduling policy.

not only the status of each batch in the queue, but also the
exact assignment of chunk requests to storage nodes, since
nodes are shared by multiple files and are no longer homoge-
neous. This leads to a Markov chain which has a huge state
space and is hard to quantify analytically even for small t.
On the other hand, the approach relying on (n, k) fork-join
queue in [41] also falls short because each file request must
be forked to ni servers, inevitably causing conflict at shared
servers.

3. UPPER BOUND: PROBABILISTIC
SCHEDULING

This section presents a class of scheduling policies (and
resulting latency analysis), which we call the probabilistic
scheduling, whose average latency upper bounds that of op-
timal scheduling.

3.1 Probabilistic scheduling
Under (ni, ki) MDS codes, each file i can be retrieved by

processing a batch of ki chunk requests at distinct nodes that
store the file chunks. Recall that each encoded file i is spread
over ni nodes, denoted by a set Si. Upon the arrival of a file
i request, in probabilistic scheduling we randomly dispatch
the batch of ki chunk requests to ki-out-of-ni storage nodes
in Si, denoted by a subset Ai ⊆ Si (satisfying |Ai| = ki)
with predetermined probabilities. Then, each storage node
manages its local queue independently and continues pro-
cessing requests in order. A file request is completed if all its
chunk requests exit the system. An example of probabilistic
scheduling is depicted in Fig.2 (b), wherein 5 chunk requests
are currently served by the 5 storage nodes, and there are
9 more chunk requests that are randomly dispatched to and
are buffered in 5 local queues according to chunk placement,
e.g., requests B2, B3 are only distributed to nodes {3, 4, 5}.
Suppose that node 2 completes serving chunk request A2.
The next request in the node’s local queue will move for-
ward.

Definition 2. (Probabilistic scheduling) An Probabilis-
tic scheduling policy (i) dispatches each batch of chunk re-
quests to appropriate nodes with predetermined probabilities;
(ii) each node buffers requests in a local queue and processes
in order.

It is easy to verify that such probabilistic scheduling en-
sures that at most 1 chunk request from a batch to each
appropriate node. It provides an upper bound on average
service latency for the optimal scheduling since rebalancing
and scheduling of local queues are not permitted. Let P(Ai)
for all Ai ⊆ Si be the probability of selecting a set of nodes
Ai to process the |Ai| = ki distinct chunk requests2.

Lemma 1. For given erasure codes and chunk placement,
average service latency of probabilistic scheduling with fea-
sible probabilities {P(Ai) : ∀i,Ai} upper bounds the latency
of optimal scheduling.

Proof: Any probabilistic scheduling with feasible probabil-
ities {P(Ai) : ∀i,Ai} can be viewed as an equivalent non-
optimal scheduling, where chunk requests are buffered in a
common queue and randomly assigned to appropriate servers.
It is easy to see that it satisfies Properties (i) and (ii) of opti-
mal scheduling. Since the optimal scheduling assigns chunk
requests in a way to minimize average latency, probabilistic
scheduling provides an upper bound.

Clearly, the tightest upper bound can be obtained by min-
imizing average latency of probabilistic scheduling over all
feasible probabilities P(Ai) ∀Ai ⊆ Si and ∀i, which involves∑
i(ni-choose-ki) decision variables. We refer to this opti-

mization as a scheduling subproblem. While it appears pro-
hibitive computationally, we will demonstrate next that the
optimization can be transformed into an equivalent form,
which only requires

∑
i ni variables. The key idea is to show

that it is sufficient to consider the conditional probability
(denoted by πi,j) of selecting a node j, given that a batch
of ki chunk requests of file i are dispatched. It is easy to see
that for given P(Ai), we can derive πi,j by

πi,j =
∑

Ai:Ai⊆Si

P(Ai) · 1{j∈Ai}, ∀i (1)

where 1{j∈Ai} is an indicator function which equals to 1 if
node j is selected by Ai and 0 otherwise.

Theorem 1. A probabilistic scheduling policy with feasi-
ble probabilities {P(Ai) : ∀i,Ai} exists if and only if there
exists conditional probabilities {πi,j ∈ [0, 1],∀i, j} satisfying

m∑
j=1

πi,j = ki ∀i and πi,j = 0 if j /∈ Si. (2)

The proof of Theorem 1 relying on Farkas-Minkowski The-
orem [46] is detailed in [36]. Intuitively,

∑m
j=1 πi,j = ki holds

because each batch of requests is dispatched to exact ki dis-
tinct nodes. Moreover, a node does not host file i chunks
should not be selected, meaning that πi,j = 0 if j /∈ Si. Us-
ing this result, it is sufficient to study probabilistic schedul-
ing via conditional probabilities πi,j , which greatly simplifies
our analysis. In particular, it is easy to verify that under
our model, the arrival of chunk requests at node j form a
Poisson Process with rate Λj

∑
i λiπi,j , which is the super-

position of r Poisson processes each with rate λiπi,j . The
resulting queueing system under probabilistic scheduling is
stable if all local queues are stable.

2It is easy to see that P(Ai) = 0 for all Ai * Si and |Ai| =
ki because such node selections do not recover ki distinct
chunks and thus are inadequate for successful decode.

6 Performance Evaluation Review, Vol. 42, No. 2, September 2014

Corollary 1. The queuing system governed can be sta-
bilized by a probabilistic scheduling policy under request ar-
rival rates λ1, λ2, . . . , λr if there exists {πi,j ∈ [0, 1],∀i, j}
satisfying:∑

Ai⊆Si

1{j∈Ai} · P(Ai) = πi,j , ∀j ∈ Si (3)

and also:

Λj =
∑
i

λiπi,j < µj , ∀j. (4)

Proof: The queuing system governed by a probabilistic schedul-
ing policy is stable if all the local queues are stable. If
{πi,j ∈ [0, 1],∀i, j} satisfies (3), due to Theorem 1, there
exists a feasible scheduling policy with appropriate proba-
bilities {P(Ai) such that πi,j =

∑
Ai:Ai⊆Si P(Ai) · 1{j∈Ai}

are the conditional probabilities of selecting node j for a file
i request. Therefore, each local queue seems a superposition
of r Poisson arrival processes, each with rate λiπi,j , which is
also a Poisson Process with rate Λj

∑
i λiπi,j . The process

is stable under traffic Λj =
∑
i λiπi,j < µj , ∀j.

3.2 Latency analysis and upper bound
An exact analysis of the queuing latency of probabilis-

tic scheduling is still hard because local queues at different
storage nodes are dependent of each other as each batch of
chunk requests are dispatched jointly. Let Qj be the (ran-
dom) waiting time a chunk request spends in the queue of
node j. The expected latency of a file i request is determined
by the maximum latency that ki chunk requests experience
on distinct servers, Ai ⊆ Si, which are randomly scheduled
with predetermined probabilities, i.e.,

T̄i = E
[
EAi

(
max
j∈Ai

{Qj}
)]

, (5)

where the first expectation is taken over system queuing
dynamics and the second expectation is taken over random
dispatch decisions Ai.

If the server scheduling decision Ai were deterministic, a
tight upper bound on the expected value of the highest order
statistic can be computed from marginal mean and variance
of these random variables [38], namely E[Qj] and Var[Qj].
Relying on Theorem 1, we first extend this bound to the
case of randomly selected servers with respect to conditional
probabilities {πi,j ∈ [0, 1],∀i, j} to quantify the latency of
probabilistic scheduling.

Lemma 2. The expected latency T̄i of file i under proba-
bilistic scheduling is upper bounded by

T̄i ≤ min
z∈R

z +
∑
j∈Si

πi,j
2

(E[Qj]− z)

+
∑
j∈Si

πi,j
2

[√
(E[Qj]− z)2 + Var[Qj]

] . (6)

The bound is tight in the sense that there exists a distribution
of Qj such that (6) is satisfied with exact equality.

Next, we realize that the arrival of chunk requests at
node j form a Poisson Process with superpositioned rate
Λj
∑
i λiπi,j . The marginal mean and variance of wait-

ing time Qj can be derived by analyzing them as separate

M/G/1 queues. We denote Xj as the service time per chunk
at node j, which has an arbitrary distribution satisfying fi-
nite mean E[Xj] = 1/µj , variance E[X2] − E[X]2 = σ2

j ,

second moment E[X2] = Γ2
j , and third moment E[X3] = Γ̂3

j .
These statistics can be readily inferred from existing work
on network delay [27, 26] and file-size distribution [28, 29].

Lemma 3. Using Pollaczek-Khinchin transform [39], ex-
pected delay and variance for total queueing and network
delay are given by

E[Qj] =
1

µj
+

ΛjΓ
2
j

2(1− ρj)
, (7)

Var[Qj] = σ2
j +

ΛjΓ̂
3
j

3(1− ρj)
+

Λ2
jΓ

4
j

4(1− ρj)2
, (8)

where ρj = Λj/µj is the request intensity at node j.

Combining Lemma 2 and Lemma 3, a tight upper bound
on expected latency of file i under probabilistic scheduling
can be obtained by solving a single-variable minimization
problem over real z ∈ R for given erasure codes ni, chunk
placement Si, and scheduling probabilities πij .

4. APPLICATION: JOINT LATENCY AND
COST OPTIMIZATION

In this section, we address the following questions: what
is the optimal tradeoff point between latency and storage
cost for a erasure-coded system? While any optimization
regarding exact latency is an open problem, the analytical
upper bound using probabilistic scheduling enables us to
formulate a novel optimization of joint latency and cost ob-
jectives. Its solution not only provides a theoretical bound
on the performance of optimal scheduling, but also leads
to implementable scheduling policies that can exploit such
tradeoff in practical systems.

4.1 Formulating the Joint Optimization
We showed that a probabilistic scheduling policy can be

optimization over three sets of control variables: erasure
coding ni, chunk placement Si, and scheduling probabilities
πij . However, a latency optimization without considering
storage cost is impractical and leads to a trivial solution
where every file ends up spreading over all nodes. To for-
mulate a joint latency and cost optimization, we assume
that storing a single chunk on node j requires cost Vj , re-
flecting the fact that nodes may have heterogeneous quality
of service and thus storage prices. Therefore, total storage
cost is determined by both the level of redundancy (i.e., era-
sure code length ni) and chunk placement Si. Under this
model, the cost of storing file i is given by Ci =

∑
j∈Si Vj .

In this paper, we only consider the storage cost of chunks
while network cost would be an interesting future direction.

Let λ̂ =
∑
i λi be the total arrival rate, so λi/λ̂ is the

fraction of file i requests, and average latency of all files
is given by

∑
i(λi/λ̂)T̄i. Our objective is to minimize an

aggregate latency-cost objective, i.e.,

min

r∑
i=1

λi

λ̂
T̄i + θ

r∑
i=1

∑
j∈S

Vj (9)

s.t. (1), (2), (4), (6), (7), (8).

var. ni, πi,j , Si ∈M, ∀i, j.

Performance Evaluation Review, Vol. 42, No. 2, September 2014 7

Here θ ∈ [0,∞) is a tradeoff factor that determines the rel-
ative importance of latency and cost in the minimization
problem. Varying from θ = 0 to θ → ∞, the optimization
solution to (9) ranges from those minimizing latency to ones
that achieve lowest cost.

The joint latency-cost optimization is carried out over
three sets of variables: erasure code ni, scheduling prob-
abilities πi,j , and chunk placement Si, subject to the con-
straints derived in Section 3. Varying θ, the optimization
problem allows service providers to exploit a latency-cost
tradeoff and to determine the optimal operating point for
different application demands. We plug into (9) the results
in Section 3 and obtain a Joint Latency-Cost Minimization
(JLCM) with respect to probabilistic scheduling3:

Problem JLCM:

min z +

m∑
j=1

Λj

2λ̂

[
Xj +

√
X2
j + Yj

]
+ θ

r∑
i=1

∑
j∈Si

Vj(10)

s.t. Xj =
1

µj
+

ΛjΓ
2
j

2(1− ρj)
− z, ∀j (11)

Yj = σ2
j +

ΛjΓ̂
3
j

3(1− ρj)
+

Λ2
jΓ

4
j

4(1− ρj)2
, ∀j (12)

ρj = Λj/µj < 1; Λj =

r∑
i=1

πi,jλi ∀j (13)

m∑
j=1

πi,j = ki; πi,j ∈ [0, 1]; πi,j = 0 ∀j /∈ Si (14)

|Si| = ni and Si ⊆M, ∀i (15)

var. z, ni, Si, πi,j , ∀i, j.

Problem JLCM is challenging due to two reasons. First,
all optimization variables are highly coupled, making it hard
to apply any greedy algorithm that iterative optimizes over
different sets of variables. The number of nodes selected
for chunk placement (i.e., Si) is determined by erasure code
length ni in (15), while changing chunk placement Si af-
fects the feasibility of probabilities πi,j due to (14). Second,
Problem JLCM is a mixed-integer optimization over Si and
ni, and storage cost Ci =

∑
j∈Si Vj depends on the integer

variables. Such a mixed-integer optimization is known to be
difficult in general

4.2 Constructing convex approximations
In the next, we develop an algorithmic solution to Problem

JLCM by iteratively constructing and solving a sequence of
convex approximations. This section shows the derivation
of such approximations for any given reference point, while
the algorithm and its convergence will be presented later.

Our first step is to replace chunk placement Si and erasure
coding ni by indicator functions of πi,j . It is easy to see
that any nodes receiving a zero probability πi,j = 0 should
be removed from Si, since any chunks placed on them do
not help reducing latency.

Lemma 4. The optimal chunk placement of Problem JLCM
must satisfy Si = {j : πi,j > 0} ∀i, which implies∑

j∈Si

Vj =

m∑
j=1

Vj1(πi,j>0), ni =

m∑
j=1

Vj1(πi,j>0) (16)

3The optimization is relaxed by applying the same axillary
variable z to all T̄i, which still satisfies the inequality (6).

Thus, Problem JLCM becomes to an optimization over
only (πi,j ∀i, j), constrained by

∑m
j=1 πi,j = ki and πi,j ∈

[0, 1] in (14), with respect to the following objective function:

z +

m∑
j=1

Λj

2λ̄

[
Xj +

√
X2
j + Yj

]
+ θ

r∑
i=1

m∑
j=1

Vj1(πi,j>0). (17)

However, the indicator functions above that are neither con-
tinuous nor convex. To deal with them, we select a fixed

reference point (π
(t)
i,j ∀i, j) and leverage a linear approxima-

tion of (17) with in a small neighbourhood of the reference
point. For all i, j, we have

Vj1(πi,j>0) ≈

[
Vj1(

π
(t)
i,j>0

) +
Vj(πi,j − π(t)

i,j)

(π
(t)
ı,j + 1/β) log β

]
, (18)

where β > 0 is a sufficiently large constant relating to the
approximation ratio. It is easy to see that the approx-
imation approaches the real cost function within a small

neighbourhood of (π
(t)
i,j ∀i, j) as β increases. More precisely,

when π
(t)
i,j = 0 the approximation reduces to πi,j(Vjβ/ log β),

whose gradient approaches infinity as β → ∞, whereas the

approximation converges to constant Vj for any π
(t)
i,j = 0 as

β →∞.
It is easy to verify that the approximation is linear and

differentiable. Therefore, we could iteratively construct and
solve a sequence of approximated version of Problem JLCM.
Next, we show that the rest of optimization objective in (10)
is convex in πi,j when all other variables are fixed.

Lemma 5. The following function, in which Xj and Yj
are functions of Λj defined by (11) and (12), is convex in
Λj:

F (Λj) =
Λj

2λ̂

[
Xj +

√
X2
j + Yj

]
. (19)

4.3 Algorithm JLCM and convergence analy-
sis

Leveraging the linear local approximation in (18) our idea

to solve Problem JLCM is to start with an initial (π
(0)
i,j ∀i, j),

solve its optimal solution, and iteratively improve the ap-
proximation by replacing the reference point with an opti-
mal solution computed from the previous step. Lemma 5
shows that such approximations of Problem JLCM are con-
vex and can be solved by off-the-shelf optimization tools,
e.g., Gradient Descent Method and Interior Point Method
[40].

The proposed algorithm is shown in Figure 4.1. For each
iteration t, we solve an approximated version of Problem

JLCM over (π
(0)
i,j ∀i, j) with respect to a given reference point

and a fixed parameter z. More precisely, for t = 1, 2, . . . we

8 Performance Evaluation Review, Vol. 42, No. 2, September 2014

Algorithm JLCM :

Choose sufficiently large β > 0

Initialize t = 0 and feasible (π
(0)
i,j ∀i, j)

Compute current objective value B(0)

while B(0) −B(1) > ε

Approximate cost function using (18) and (π
(t)
i,j ∀i, j)

Call projected gradient() to solve optimization (20)

(π
(t+1)
i,j ∀i, j) = arg min (20)

z = arg min (20)
Compute new objective value B(t+1)

Update t = t+ 1
end while
Find chunk placement Si and erasure code ni by (16)

Output: (ni,Si, π(t)
i,j) ∀i, j

Figure 3: Algorithm JLCM: Our proposed algo-
rithm for solving Problem JLCM.

Routine projected gradient() :

Choose proper stepsize δ1, δ2, δ3, . . .

Initialize s = 0 and π
(s)
i,j = π

(t)
i,j

while
∑
i,j |π

(s+1)
i,j − π(s)

i,j | > ε

Calculate gradient ∇(18) with respect to π
(s)
i,j

π
(s+1)
i,j = π

(s)
i,j + δs · ∇(18)

Project π
(s+1)
i,j onto feasibility set:

{π(s+1)
i,j :

∑
j π

s+1
i,j = ki, π

s+1
i,j ∈ [0, 1], ∀i, j}

Update s = s+ 1
end while

Output: (π
(s)
i,j , ∀i, j)

Figure 4: Projected Gradient Descent Routine,
used in each iteration of Algorithm JLCM.

solve

min θ

r∑
i=1

m∑
j=1

[
Vj1(

π
(t)
i,j>0

) +
Vj(πi,j − π(t)

i,j)

(π
(t)
ı,j + 1/β) log β

]

+z +

m∑
j=1

Λj

2λ̂

[
Xj +

√
X2
j + Yj

]
(20)

s.t. Constraints (11), (12), (13)
m∑
j=1

πi,j = ki and πi,j ∈ [0, 1]

var. πi,j ∀i, j.

Due to Lemma 5, the above minimization problem with re-
spect to a given reference point has a convex objective func-
tion and linear constraints. It is solved by a projected gra-
dient descent routine in Figure 4.1. Notice that the updated

probabilities (π
(t)
i,j ∀i, j) in each step are projected onto the

feasibility set {
∑
j πi,j = ki, πi,j ∈ [0, 1], ∀i, j} as required

by Problem JLCM using a standard Euclidean projection.
It is shown that such a projected gradient descent method
solves the optimal solution of Problem (20). Next, for fixed

probabilities (π
(t)
i,j ∀i, j), we improve our analytical latency

bound by minimizing it over z ∈ R. The convergence of our
proposed algorithm is proven in the following theorem.

Theorem 2. Algorithm JLCM generates a descent se-

quence of feasible points, π
(t)
i,j for t = 0, 1, . . ., which con-

verges to a local optimal solution of Problem JLCM as β
grows sufficiently large.

Remark: To prove Theorem 2, we show that Algorithm
JLCM generates a series of decreasing objective values z +∑
j F (Λj)+θĈ of Problem JLCM with a modified cost func-

tion:

Ĉ =

r∑
i=1

m∑
j=1

Vj
log(βπi,j + 1)

log β
. (21)

The key idea in our proof is that the linear approximation of
storage cost function in (18) can be seen as a sub-gradient of
Vj log(βπi,j + 1)/log β, which converges to the real storage

cost function as β →∞, i.e.,

lim
β→∞

Vj
log(βπi,j + 1)

log β
= Vj1(πi,j>0). (22)

Therefore, a converging sequence for the modified objec-
tive z+

∑
j F (Λj) +θĈ also minimizes Problem JLCM, and

the optimization gap becomes zero as β → ∞. Further,
it is shown that ĥ is a concave function. Thus, minimizing
z+
∑
j F (Λj)+θĥ can be viewed as optimizing the difference

between 2 convex objectives, namely z+
∑
j F (Λj) and −θĥ,

which can be also solved via a Difference-of-Convex Pro-
gramming (DCP). In this context, our linear approximation
of cost function in (18) can be viewed as an approximated
supper-gradient in DCP. Please refer to [44] for a compre-
hensive study of regularization techniques in DCP to speed
up the convergence of Algorithm JLCM.

5. IMPLEMENTATION AND EVALUATION

5.1 Tahoe Testbed
To validate our proposed algorithms for joint latency and

cost optimization (i.e., Algorithm JLCM) and evaluate their
performance, we implemented the algorithms in Tahoe [42],
which is an open-source, distributed filesystem based on the
zfec erasure coding library. It provides three special in-
stances of a generic node: (a) Tahoe Introducer: it keeps
track of a collection of storage servers and clients and in-
troduces them to each other. (b) Tahoe Storage Server:
it exposes attached storage to external clients and stores
erasure-coded shares. (c) Tahoe Client: it processes up-
load/download requests and connects to storage servers through
a Web-based REST API and the Tahoe-LAFS (Least-Authority
File System) storage protocol over SSL.

Our algorithm requires customized erasure code, chunk
placement, and server selection algorithms. While Tahoe
uses a default (10, 3) erasure code, it supports arbitrary era-
sure code specification statically through a configuration file.
In Tahoe, each file is encrypted, and is then broken into a set
of segments, where each segment consists of k blocks. Each
segment is then erasure-coded to produce n blocks (using a
(n, k) encoding scheme) and then distributed to (ideally) n
distinct storage servers. The set of blocks on each storage

Performance Evaluation Review, Vol. 42, No. 2, September 2014 9

Figure 5: Our Tahoe testbed with average ping
(RTT) and bandwidth measurements among three
data centers in New Jersey, Texas, and California

server constitute a chunk. Thus, the file equivalently con-
sists of k chunks which are encoded into n chunks and each
chunk consists of multiple blocks4. For chunk placement,
the Tahoe client randomly selects a set of available storage
servers with enough storage space to store n chunks. For
server selection during file retrievals, the client first asks
all known servers for the storage chunks they might have.
Once it knows where to find the needed k chunks (from the k
servers that responds the fastest), it downloads at least the
first segment from those servers. This means that it tends to
download chunks from the “fastest” servers purely based on
round-trip times (RTT). In our proposed JLCM algorithm,
we consider RTT plus expected queuing delay and transfer
delay as a measure of latency.

In our experiment, we modified the upload and down-
load modules in the Tahoe storage server and client to allow
for customized and explicit server selection, which is speci-
fied in the configuration file that is read by the client when
it starts. In addition, Tahoe performance suffers from its
single-threaded design on the client side for which we had
to use multiple clients with separate ports to improve par-
allelism and bandwidth usage during our experiments.

We deployed 12 Tahoe storage servers as virtual machines
in an OpenStack-based data center environment distributed
in New Jersey (NJ), Texas (TX), and California (CA). Each
site has four storage servers. One additional storage client
was deployed in the NJ data center to issue storage re-
quests. The deployment is shown in Figure 5 with average
ping (round-trip time) and bandwidth measurements listed
among the three data centers. We note that while the dis-
tance between CA and NJ is greater than that of TX and
NJ, the maximum bandwidth is higher in the former case.
The RTT time measured by ping does not necessarily corre-
late to the bandwidth number. Further, the current imple-
mentation of Tahoe does not use up the maximum available
bandwidth, even with our multi-port revision.

5.2 Experiments and Evaluation

4If there are not enough servers, Tahoe will store multiple
chunks on one sever. Also, the term “chunk” we used in this
paper is equivalent to the term “share” in Tahoe terminol-
ogy. The number of blocks in each chunk is equivalent to
the number of segments in each file.

Validate our latency analysis. While our service de-
lay bound applies to arbitrary distribution and works for
systems hosting any number of files, we first run an experi-
ment to understand actual service time distribution on our
testbed. We upload a 50MB file using a (7, 4) erasure code
and measure the chunk service time. Figure 6 depicts the
Cumulative Distribution Function (CDF) of the chunk ser-
vice time. Using the measured results, we get the mean
service time of 13.9 seconds with a standard deviation of 4.3
seconds, second moment of 211.8 s2 and the third moment of
3476.8 s3. We compare the distribution to the exponential
distribution(with the same mean and the same variance,
respectively) and note that the two do not match. It veri-
fies that actual service time does not follow an exponential
distribution, and therefore, the assumption of exponential
service time in [33, 39] is falsified by empirical data. The
observation is also evident because a distribution never has
positive probability for very small service time. Further,
the mean and the standard deviation are very different from
each other and cannot be matched by any exponential dis-
tribution.

Using the service time distribution obtained above, we
compare the upper bound on latency that we propose in this
paper with the outer bound in [41]. Even though our upper
bound holds for multiple heterogeneous files, and includes
connection delay, we restrict our comparison to the case for
homogeneous files without any connection delay for a fair
comparison (since the upper bound in [41] only works for a
single file). We plot the latency upper bound that we give
in this paper and the upper bound in [Theorem 3, [41]] in
Figure 7. In our probabilistic scheduling, access requests
are dispatched uniformly to all storage nodes. We find that
our bound significantly outperforms the upper bound in [41]
for a wide range of 1/λ < 32, which represents medium
to high traffic regime. In particular, our bound works fine
in high traffic regime with 1/λ < 18, whereas the upper
bound in [41] goes to infinity and thus fail to offer any useful
information. Under low traffic, the two bounds get very close
to each other with a less than 4% gap.

Validate Algorithm JLCM and joint optimization.
We implemented Algorithm JLCM and used MOSEK [45],
a commercial optimization solver, to realize the projected
gradient routine. For 12 distributed storage nodes in our
testbed, Figure 8 demonstrates the convergence of Algo-
rithm JLCM, which optimizes latency-plus-cost over three
dimensions: erasure code length ni, chunk placement Si,
and load balancing πi,j . Convergence of Algorithm JLCM
is guaranteed by Theorem 2. To speed up its calculation, in
this experiment we merge different updates, including the
linear approximation, the latency bound minimization, and
the projected gradient update, into one single loop. By
performing these updates on the same time-scale, our Al-
gorithm JLCM efficiently solves the joint optimization of
problem size r = 1000 files. It is observed that the nor-
malized objective (i.e., latency-plus-cost normalized by the
minimum) converges within 250 iterations for a tolerance
ε = 0.01. To achieve dynamic file management, our op-
timization algorithm can be executed repeatedly upon file
arrivals and departures.

To demonstrate the joint latency-plus-cost optimization
of Algorithm JLCM, we compare its solution with three
oblivious schemes, each of which minimize latency-plus-cost
over only a subset of the 3 dimensions: load-balancing (LB),

10 Performance Evaluation Review, Vol. 42, No. 2, September 2014

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Latency (sec)

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Service Time Distribution
Exponential Distribution with same Mean
Exponential Distribution with same Variance

Figure 6: Comparison of actual service time distribu-
tion and an exponential distribution with the same
mean. It verifies that actual service time does not
follow an exponential distribution, falsifying the as-
sumption in previous work [34, 40].

10 15 20 25 30 35 40
0

50

100

150

1/λ

La
te

nc
y

(s
ec

)

Our Upper Bound
Upper Bound of [42]

Figure 7: Comparison of our latency upper bound
with previous work [42]. Our bound significantly im-
proves previous result under medium to high traffic
and comes very close to that of [42] under low traffic
(with less than 4% gap).

0 50 100 150 200 250
0

500

1000

1500

2000

Number of Iterations

No
ma

liz
ed

 O
bje

cti
ve

Figure 8: Convergence of Algorithm JLCM for dif-
ferent problem size with r = 1000 files for our 12-node
testbed. The algorithm efficiently computes a solu-
tion in less than 250 iterations.

Algorithm
JLCM

Oblivious LB
Optimal CP,EC

Random CP
Optimal EC

Maximum EC
0

2

4

6

8

10

12

14

16

18

20

0

100

200

300

400

500

600

700

800

900

1000

St
o

ra
ge

 C
o

st

La
te

n
cy

 C
o

st

Latency Cost Storage Cost

Figure 9: Comparison of Algorithm JLCM with
some oblivious approaches. Algorithm JLCM min-
imizes latency-plus-cost over 3 dimensions: load-
balancing (LB), chunk placement (CP), and erasure
code (EC), while any optimizations over a subset of
the dimensions is non-optimal.

chunk placement (CP), and erasure code (EC). We run Al-
gorithm JLCM for r = 1000 files of size 150MB on our
testbed, with Vj = $1 for every 25MB storage and a trade-
off factor of θ = 2 sec/dollar. The result is shown in Fig-
ure. 9. First, even with the optimal erasure code and chunk
placement (which means the same storage cost as the op-
timal solution from Algorithm JLCM), higher latency is
observed in Oblivious LB, which schedules chunk requests
according to a load-balancing heuristic that selects storage
nodes with probabilities proportional to their service rates.
Second, we keep optimal erasure codes and employ a ran-
dom chunk placement algorithm, referred to as Random CP,
which adopts the best outcome of 100 random runs. Large
latency increment resulted by Random CP highlights the
importance of joint chunk placement and load balancing in
reducing service latency. Finally, Maximum EC uses maxi-
mum possible erasure code n = m and selects all nodes for

chunk placement. Although its latency is comparable to the
optimal solution from Algorithm JLCM, higher storage cost
is observed. We verify that minimum latency-plus-cost can
only be achieved by jointly optimizing over all 3 dimensions.

Evaluate the performance of our solution. First, we
choose r = 1000 files of size 150MB and the same storage
cost and tradeoff factor as in the previous experiment. Re-
quest arrival rates are set to λi = 1.25/(10000sec), for i =
1, 4, 7, · · · 997, λi = 1.25/(10000sec), for i = 2, 5, 8, · · · 998
and λi = 1.25/(12000sec), for i = 3, 6, 9, · · · 999, 1000 re-
spectively, which leads to an aggregate file request arrival
rate of λ = 0.118 /sec. We obtain the service time statistics
(including mean, variance, second and third moment) at all
storage nodes and run Algorithm JLCM to generate an opti-
mal latency-plus-cost solution, which results in four different
sets of optimal erasure code (11,6), (10,7), (10,6) and (9,4)
for each quarter of the 1000 files respectively, as well as as-

Performance Evaluation Review, Vol. 42, No. 2, September 2014 11

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

Latency(Sec)

C
u
m

u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

 F
u
n

ct
io

n
Empirical CDF

(11,6)

(10,7)

(10,6)

(8,4)

Figure 10: Actual service latency distribution of
an optimal solution from Algorithm JLCM for 1000
files of size 150MB using erasure code (11,6), (10,7),
(10,6) and (8,4) for each quarter with aggregate re-
quest arrival rates are set to λi = 0.118 /sec

0

20

40

60

80

100

120

140

50M 100M 150M 200M

La
te

n
cy

 (
se

c)

File Size(MB)

(11,6) (10,7) (10,6) (8,4) Average Latency Analytical Bound

Figure 11: Evaluation of different chunk sizes. La-
tency increases super-linearly as file size grows due
to queuing delay. Our analytical latency bound tak-
ing both network and queuing delay into account
tightly follows actual service latency.

6

7

8

9

10

11

12

13

0

50

100

150

200

250

r=0.125 r=0.12 r=0.115 r=0.11 r=0.1

St
o

ra
ge

 C
o

st
 P

e
r

U
se

r
(U

S
D

o
lla

rs
)

A
ve

ra
ge

 L
at

e
n

cy
 (

Se
c)

Request Arrival Rate (/Sec)

Average Latency Analytical Bound Storage Cost

Figure 12: Evaluation of different request arrival
rates. As arrival rates increase, latency increases
and becomes more dominating in the latency-plus-
cost objective than storage cost. The optimal so-
lution from Algorithm JLCM allows higher storage
cost, resulting in a nearly-linear growth of average
latency.

100

105

110

115

120

125

130

135

140

6.667 8.002 9.001 9.75 12

La
te

n
cy

 (
Se

c)

Average Storage Cost Per User (US Dollar)

Average Latency Analytical Bound

Figure 13: Visualization of latency and cost trade-
off for varying θ = 0.5 second/dollar to θ = 200 sec-
ond/dollar. As θ increases, higher weight is placed
on the storage cost component of the latency-plus-
cost objective, leading to less file chunks and higher
latency.

sociated chunk placement and load-balancing probabilities.
Implementing this solution on our testbed, we retrieve the
1000 files at the designated request arrival rate and plot the
CDF of download latency for each file in Figure 10. We note
that 95% of download requests for files with erasure code
(10,7) complete within 100 seconds, while the same percent-
age of requests for files using (11,6) erasure code complete
within 32 seconds due to higher level of redundancy. In this
experiment erasure code (10,6) outperforms (8,4) in latency
though they have the same level of redundancy because the

latter has larger chunk size when file size are set to be the
same.

To demonstrate the effectiveness of our joint optimization,
we vary file size in the experiment from 50MB to 200MB
and plot the average download latency of the 1000 individ-
ual files, out of which each quarter is using a distinct era-
sure code (11,6), (10,7), (10,6) and (9,4), and our analytical
latency upper bound in Figure 11 . We see that latency
increases super-linearly as file size grows, since it generates
higher load on the storage system, causing larger queuing

12 Performance Evaluation Review, Vol. 42, No. 2, September 2014

latency (which is super-linear according to our analysis).
Further, smaller files always have lower latency because it
is less costly to achieve higher redundancy for these files.
We also observe that our analytical latency bound tightly
follows actual average service latency.

Next, we varied aggregate file request arrival rate from
λi = 0.125 /sec to λi = 0.1 /sec (with individual arrival
rates also varies accordingly), while keeping tradeoff factor
at θ = 2 sec/dollar and file size at 200MB. Actual service
delay and our analytical bound for each scenario is shown by
a bar plot in Figure 12 and associated storage cost by a curve
plot. Our analytical bound provides a close estimate of ser-
vice latency. As arrival rates increase, latency increases and
becomes more dominating in the latency-plus-cost objective
than storage cost. Thus, the marginal benefit of adding
more chunks (i.e., redundancy) eventually outweighs higher
storage cost introduced at the same time. Figure 12 shows
that to achieve a minimization of the latency-plus-cost ob-
jective, the optimal solution from Algorithm JLCM allows
higher storage cost for larger arrival rates, resulting in a
nearly-linear growth of average latency as the request ar-
rival rates increase. For instance, Algorithm JLCM chooses
(12,6), (12,7), (11,6) and (11,4) erasure codes at the largest
arrival rates, while (10,6), (10,7), (8,6) and (8,4) codes are
selected at the smallest arrival rates in this experiment. We
believe that this ability to autonomously manage latency
and storage cost for latency-plus-cost minimization under
different workload is crucial for practical distributed stor-
age systems relying on erasure coding.

Visualize latency and cost tradeoff. Finally, we demon-
strate the tradeoff between latency and storage cost in our
joint optimization framework. Varying the tradeoff factor
in Algorithm JLCM from θ = 0.5 sec/dollar to θ = 200
sec/dollar for fixed file size of 200MB and aggregate arrival
rates λi = 0.125 /sec, we obtain a sequence of solutions,
minimizing different latency-plus-cost objectives. As θ in-
creases, higher weight is placed on the storage cost com-
ponent of the latency-plus-cost objective, leading to less file
chunks in the storage system and higher latency. This trade-
off is visualized in Figure 13. When θ = 0.5, the optimal
solution from Algorithm JLCM chooses three sets of erasure
codes (12,6), (12,7), and (12,4) erasure codes, which is the
maximum erasure code length in our framework and leads to
highest storage cost (i.e., 12 dollars for each user), yet lowest
latency (i.e., 110 sec). On the other hand, θ = 200 results
in the choice of (6,6), (8,7), and (6,4) erasure code, which
is almost the minimum possible cost for storing the three
file, with the highest latency of 128 seconds. Further, the
theoretical tradeoff calculated by our analytical bound and
Algorithm JLCM is very close to the actual measurement
on our testbed. To the best our our knowledge, this is the
first work proposing a joint optimization algorithm to ex-
ploit such tradeoff in an erasure-coded, distributed storage
system.

6. CONCLUSION
Relying on a novel probabilistic scheduling policy, this

paper develops an analytical upper bound on average ser-
vice delay of erasure-coded storage with arbitrary number of
files and any service time distribution. A joint latency and
cost minimization is formulated by collectively optimizing
over erasure code, chunk placement, and scheduling policy.
The minimization is solved using an efficient algorithm with

proven convergence. Even though only local optimality can
be guaranteed due to the non-convex nature of the mixed-
integer optimization problem, the proposed algorithm sig-
nificantly reduces a latency-plus-cost objective. Both our
theoretical analysis and algorithm design are validated via a
prototype in Tahoe, an open-source, distributed file system.
Several practical design issues in erasure-coded, distributed
storage, such as incorporating network latency and dynamic
data management have been ignored in this paper and open
up avenues for future work.

7. REFERENCES
[1] A.D. Luca and M. Bhide, “Storage virtualization for

dummies, Hitachi Data Systems Edition,” John and
Wiley Publishing, 2009.

[2] Amazon S3, “Amazon Simple Storage Service,”
available online at http://aws.amazon.com/s3/.

[3] Sathiamoorthy, Maheswaran, et al. “Xoring
elephants: Novel erasure codes for big data.”
Proceedings of the 39th international conference on
Very Large Data Bases. VLDB Endowment, 2013.

[4] Fikes, Andrew. “Storage architecture and
challenges.” Talk at the Google Faculty
Summit,available online at http://bit.ly/nUylRW,
2010.

[5] A. G. Dimakis, K. Ramchandran, Y. Wu, C. Suh, “A
Survey on Network Codes for Distributed Storage,”
arXiv:1004.4438, Apr. 2010

[6] A. Fallahi and E. Hossain, “Distributed and
energy-Aware MAC for differentiated services
wireless packet networks: a general queuing
analytical framework,” IEEE CS, CASS, ComSoc,
IES, SPS, 2007.

[7] F.Baccelli, A.Makowski, and A.Shwartz, “The
fork-join queue and related systems with
synchronization constraints: stochastic ordering and
computable bounds, Advances in Applied Probability,
pp. 629660, 1989.

[8] A.S. Alfa, “Matrix-geometric solution of discrete
time MAP/PH/1 priority queue,” Naval research
logistics, vol. 45, 00. 23-50, 1998.

[9] J.H. Kim and J.K. Lee, “Performance of carrier sense
multiple access with collision avoidance in wireless
LANs,” Proc. IEEE IPDS., 1998.

[10] E. Ziouva and T. Antoankopoulos, “CSMA/CA
Performance under high traffic conditions:
throughput and delay analysis,” Computer Comm,
vol. 25, pp. 313-321, 2002.

[11] C. Angllano, R. Gaeta and M. Grangetto,
“Exploiting Rateless Codes in Cloud Storage
Systems,” IEEE Transactions on Parallel and
Distributed Systems, Pre-print 2014.

[12] N.E. Taylor and Z.G. Ives, “Reliable storage and
querying for collaborative data sharing systems,”
IEEE ICED Conference, 2010.

[13] R. Rosemark and W.C. Lee, “Decentralizing query
processing in sensor networks,” Proceedings of the
second MobiQuitous: networking and services, 2005

[14] Dimakis, Alexandros D G , “Distributed data storage
in sensor networks using decentralized erasure codes,”
Signals, Systems and Computers, 2004. Conference
Record of the Thirty-Eighth Asilomar., 2004.

Performance Evaluation Review, Vol. 42, No. 2, September 2014 13

[15] R. Rojas-Cessa, L. Cai and T. Kijkanjanarat,
“Scheduling memory access on a distributed cloud
storage network,” IEEE 21st annual WOCC, 2012.

[16] M.K. Aguilera, R. Janakiraman, L. Xu, “Using
Erasure Codes Efficiently for Storage in a
Distributed System,” Proceedings of the 2005
International Conference on DSN, pp. 336-345, 2005.

[17] S. Chen, K.R. Joshi and M.A. Hiltunem, “Link
Gradients: Predicting the Impact of Network
Latency on Multi-Tier Applications,” Proc. IEEE
INFOCOM, 2009.

[18] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker,
“Search and replication in unstructured peer-to-peer
networks,” Proceedings of the 16th ICS, 2002.

[19] H. Kameyam and Y. Sato, “Erasure Codes with
Small Overhead Factor and Their Distributed
Storage Applications,” CISS ’07. 41st Annual
Conference, 2007.

[20] H.Y. Lin, and W.G. Tzeng, “A Secure Decentralized
Erasure Code for Distributed Networked Storage,”
Parallel and Distributed Systems, IEEE
Transactions, 2010.

[21] W. Luo, Y. Wang and Z. Shen, “On the impact of
erasure coding parameters to the reliability of
distributed brick storage systems,” Cyber-Enabled
Distributed Computing and Knowledge Discovery,
International Conference, 2009.

[22] J. Li, “Adaptive Erasure Resilient Coding in
Distributed Storage,” Multimedia and Expo, 2006
IEEE International Conference, 2006.

[23] K. V. Rashmi, N. Shah, and V. Kumar, “Enabling
node repair in any erasure code for distributed
storage,” Proceedings of IEEE ISIT, 2011.

[24] X. Wang, Z. Xiao, J. Han and C. Han, “Reliable
Multicast Based on Erasure Resilient Codes over
InfiniBand,” Communications and Networking in
China, First International Conference, 2006.

[25] S. Mochan and L. Xu, “Quantifying Benefit and Cost
of Erasure Code based File Systems.” Technical
report available at
http : //nisl.wayne.edu/Papers/Tech/cbefs.pdf ,
2010.

[26] H. Weatherspoon and J. D. Kubiatowicz, “Erasure
Coding vs. Replication: A Quantitative
Comparison.” In Proceedings of the First IPTPS,2002

[27] A. Abdelkefi and J. Yuming, “A Structural Analysis
of Network Delay,” Ninth Annual CNSR, 2011.

[28] A.B. Downey, “The structural cause of file size
distributions,” Proceedings of Ninth International
Symposium on MASCOTS, 2011.

[29] F. Paganini, A. Tang, A. Ferragut and L.L.H.
Andrew, “Network Stability Under Alpha Fair
Bandwidth Allocation With General File Size
Distribution,” IEEE Transactions on Automatic
Control, 2012.

[30] P. Corbett, B. English, A. Goel, T. Grcanac, S.
Kleiman, J. Leong and S. Sankar, “Row-diagonal
parity for double disk failure correction,” In
Proceedings of the 3rd USENIX FAST’, pp. 1-14,
2004.

[31] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A.

Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu,
H. Simitci, et al., “ Windows azure storage: A highly
available cloud storage service with strong
consistency,” In Proceedings of the Twenty-Third
ACM SOSP, pages 143–157, 2011.

[32] O. Khan, R. Burns, J. Plank, W. Pierce, and C.
Huang, “Rethinking erasure codes for cloud file
systems: Minimizing I/O for recovery and degraded
reads,” In Proceedings of FAST, 2012.

[33] L. Huang, S. Pawar, H. Zhang, and K.
Ramchandran, “Codes can reduce queueing delay in
data centers,” in Proc. IEEE ISIT, 2012.

[34] G. Ananthanarayanan, S. Agarwal, S. Kandula, A
Greenberg, and I. Stoica, “Scarlett: Coping with
skewed content popularity in MapReduce,”
Proceedings of ACM EuroSys, 2011.

[35] M. Bramson, Y. Lu, and B. Prabhakar, “Randomized
load balancing with general service time
distributions,” Proceedings of ACM Sigmetrics, 2010.

[36] Y. Xiang, T. Lan, V. Aggarwal, Y. Chen, “Joint
Latency and Cost Optimization for Erasure-coded
Data Center Storage,” Full paper available at
http : //arxiv.org/pdf/1404.4975.pdf , 2014.

[37] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, and A.
Greenberg, “Joinidle-queue: A novel load balancing
algorithm for dynamically scalable web services,”
29th IFIPPERFORMANCE, 2010.

[38] D. Bertsimas and K. Natarajan, “Tight bounds on
Expected Order Statistics,” Probability in the
Engineering and Informational Sciences, 2006.

[39] L. Huang, S. Pawar, H. Zhang and K. Ramchandran,
“Codes Can Reduce Queueing Delay in Data
Centers,” Journals CORR, vol. 1202.1359, 2012.

[40] S. Boyd and L. Vandenberghe, “Convex
Optimization,” Cambridge University Press, 2005.

[41] G. Joshi, Y. Liu, and E. Soljanin, “On the
Delay-Storage Trade-off in Content Download from
Coded Distributed Storage Systems,”
arXiv:1305.3945v1, May 2013.

[42] B. Warner, Z. Wilcox-O’Hearn and R. Kinninmont,
“Tahoe-LAFS docs,” available online at
https://tahoe-lafs.org/trac/tahoe-lafs.

[43] N. Shah, K. Lee, and K. Ramachandran, “The MDS
queue: analyzing latency performance of codes and
redundant requests,” arXiv:1211.5405, Nov. 2012.

[44] L.T. Hoai An and P.D. Tao,“The DC (Difference of
Convex Functions) Programming and DCA Revisited
with DC Models of Real World Non-convex
Optimization Problems,” Annals of Operations
Research, vol. 133, Issue 1-4, pp. 23-46, Jan 2005.

[45] MOSEK, “MOSEK: High performance software for
large-scale LP, QP, SOCP, SDP and MIP,” available
online at http://www.mosek.com/.

[46] T. Angell, “The Farkas-Minkowski Theorem”.
Lecture nodes available online at
www.math.udel.edu/∼angell/Opt/farkas.pdf, 2002.

14 Performance Evaluation Review, Vol. 42, No. 2, September 2014

	141311p3-14_003_Final
	141311p3-14_004_Final
	141311p3-14_005_Final
	141311p3-14_006_Final
	141311p3-14_007_Final
	141311p3-14_008_Final
	141311p3-14_009_Final
	141311p3-14_010_Final
	141311p3-14_011_Final
	141311p3-14_012_Final
	141311p3-14_013_Final
	141311p3-14_014_Final

