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Abstract—Meeting desired application deadlines is crucial as
the nature of cloud applications is becoming increasingly mission-
critical and deadline-sensitive. Empirical studies on large-scale
clusters reveal that a few slow tasks, known as stragglers, could
significantly stretch job execution times. A number of strategies
are proposed to mitigate stragglers by launching speculative or
clone (task) attempts. These strategies often rely on a model-
based approach to optimize key operating parameters and are
prone to inaccuracy/incompleteness in the underlying models. In
this paper, we present LASER, a deep learning approach for
speculative execution and replication of deadline-critical jobs.
Machine learning has been successfully used to solve a large
variety of classification and prediction problems. In particular,
the deep neural network (DNN), consisting of multiple hidden
layers of units between input and output layers, can provide
more accurate regression (prediction) than traditional machine
learning algorithms. We compare LASER with SRQuant, a
speculative-resume strategy that is based on quantitative analysis.
Both these scheduling algorithms aim to improve Probability of
Completion before Deadlines (PoCD), i.e., the probability that
MapReduce jobs meet their desired deadlines, and reduce the
cost of speculative execution, measured by the total (virtual)
machine time. We evaluate and compare the two strategies
through testbed experiments. The results show that our two
strategies outperform Hadoop without speculation (Hadoop-NS)
and Hadoop with speculation (Hadoop-S) by up to 89% in PoCD
and 13% in cost.

Index Terms—MapReduce, Straggler, Speculative Strategy,
Deep Neural Network

I. INTRODUCTION

Distributed cloud computing frameworks, such as MapRe-
duce, have been widely employed by companies such as
Facebook, Google, and Yahoo due to their ability to exploit
inherent parallelism in cloud jobs by breaking them into
smaller, parallel tasks. Such frameworks are susceptible to
heavy tails in response times, and job execution times could be
greatly prolonged by just a few slow tasks, called stragglers.
Prior work shows that slow tasks can run up to 8 times
slower than the median task [?], [?], [?], [?]. These stragglers
could significantly impact the overall performance of deadline-
sensitive cloud applications and result in the violation of
Service Level Agreements (SLAs).

Stragglers could occur due to various reasons. First, the het-
erogeneity of computing infrastructure in a datacenter causes

nodes to perform differently. Second, hardware/software errors
in large-scale datacenters lead to node failures, and interrupt
the task execution on failed nodes. Third, resource contention
among tasks running on virtual machines hosted on the same
physical machine can slow down processing rates of tasks [?],
[?], [?].

Existing straggler mitigation techniques could be catego-
rized into proactive and reactive. For example, Dolly [?]
is a proactive cloning approach. It launches extra attempts
along with the original attempt for each task, and the task
completes when the earliest attempt finishes. Wrangler [?]
employs a statistical learning technique to detect if a straggler
is likely to occur on a node, and schedules tasks on nodes
that are likely to not cause stragglers. LATE [?] proposes a
scheduling algorithm to launch speculative attempts based on
the progress score of a task. The progress score equals the
fraction of data processed. Mantri [?] analyzes reasons for
stragglers and presents an algorithm to launch extra speculative
attempts based on available resources. These strategies often
employ model-based optimization to determine the optimal
operating parameters, e.g., the number of speculative attempts,
but provide little guarantee on meeting individual application
deadlines.

Meeting desired deadlines is crucial as the nature of
cloud applications is becoming increasingly mission-critical
and deadline-sensitive. Yet, extending existing solutions with
deadline-awareness is difficult, since the model-based ap-
proach is prone to inaccuracy/incompleteness in the underlying
models and analysis, limiting their applicability in real-world
cloud platforms. In this paper, we present LASER, a deep
learning approach for speculative execution and replication
of deadline-critical jobs. Machine learning has been used to
solve a large variety of classification and prediction problems.
We use a deep neural network (DNN), a specific machine
learning tool, to solve the straggler mitigation problem in
this paper. Deep neural network, modeled loosely after the
human brain, consists of an input layer, hidden layers, and an
output layer (see Fig. 1). The input layer takes inputs from a
dataset, and passes data to the following hidden layer. Each
hidden layer, which is not directly exposed to the input data,
consists of multiple neurons. A neuron is a computational unit



Activation 
function

Weighted 
inputs

Output

Input layer

Hidden 
layers

Output layer

Neuron

Fig. 1. A deep neural network.

that takes weighted inputs and generates an output using an
activation function which is non-linear. In this paper, we use
a state-of-the-art activation function, i.e., parametric rectified
linear unit (parametric ReLU) [?]. The parametric ReLU learns
parameters and adjusts them through gradient descent, and
has been shown to achieve superhuman performance in some
cases [?]. The output layer takes results from hidden layers,
and produces a value or a vector of values. Mathematically,
the output of the lth layer, yl, is given by:

yl = fact(Wl·xl + βl), (1)

where fact, Wl, and βl denote the activation function, the
weight of layer l, and the bias of layer l, respectively. Here,
xl is the input of layer l, which is also the output of layer
l − 1, i.e., xl = yl−1.

DNN is known to outperform traditional machine learning
algorithms, and is widely used for processing images, videos,
speech, etc. [?]. To the best of our knowledge, there is no ex-
isting work combining DNN with cloud computing framework
to mitigate stragglers.

Given a job with a deadline, we propose a metric called the
Probability of Completion before Deadline (PoCD) to quantify
the likelihood of a straggler mitigation strategy to meet job
deadlines. In this paper, we present two scheduling strategies,
Speculative-Resume with Quantitative Analysis (SRQuant)
and Speculative-Resume with DNN (LASER) to jointly im-
prove PoCD and reduce the cost resulting from speculative
task executions, and find the number of speculative attempts
for each straggler. In SRQuant, we provide a quantitative
analysis for PoCD and cost. In LASER, we combine DNN
with cloud computing framework to predict the task execution
time and determine the number of speculative attempts to
launch for each straggler based on features collected. Results
show that our two strategies outperform Hadoop with no

speculation (Hadoop-NS) and Hadoop with default speculative
strategy (Hadoop-S) by up to 89% in PoCD and 13% in cost.

The rest of this paper is organized as follows. Sec-
tion II summarizes related work. Section III presents some
background on the Speculative-Resume strategy. Section IV
presents SRQuant and the DNN for LASER, and some ac-
companying analysis. Section V describes the implementation
details of the strategies, and Section VI presents results from
our experiments. We finally conclude the paper in Section ??.

II. RELATED WORK

While a large variety of techniques have been proposed for
improving the performance of MapReduce-like systems, little
research has been conducted to mitigate stragglers with the
goal of meeting desired deadlines. In this section, we provide a
review of closely related works on task scheduling techniques,
and straggler mitigation strategies.

To improve the performance of MapReduce-like systems,
the design of job schedulers has become an active research
topic [?], [?], [?], [?], [?]. Natjam [?] brings a scheduling
scheme with support for priorities under deadline constraints.
FLEX [?] presents a flexible allocation scheme for MapReduce
workloads. [?] introduces a job scheduler to dynamically
determine resource allocation of jobs based on estimations of
the job completion time and the future resource availability.
[?] employs a machine learning algorithm to predict available
resources to minimize job deadline misses. However, these
works do not consider stragglers which might severely prolong
the job execution time.

Both proactive and reactive strategies have been proposed
for mitigating stragglers [?], [?], [?], [?], [?], [?], [?]. All
of these works aim to reduce execution time of jobs without
considering job deadlines. Different from these works, we
jointly improve the PoCD and reduce the cost resulting from
speculative/duplicate task execution, and find the appropriate
number of speculative attempts for each straggler.

In addition, a number of works present techniques to avoid
re-executing the work done by the original attempts (strag-
glers) [?], [?], [?], [?]. The basic idea is to checkpoint running
tasks periodically and make speculative tasks start from the
checkpoints. Our proposed Speculative-Resume strategy uses
a similar idea. However, SRQuant uses an analytical model to
determine the number of extra attempts to launch, and LASER
combines DNN with MapReduce to estimate task execution
times and determine the number of extra attempts to launch.

Due to the strong power of non-linear classification and
regression, DNN has attracted a great deal of attention [?], [?],
[?], [?], [?]. [?] and [?] present methods for utilizing MapRe-
duce parallel processing framework to accelerate training for
neural networks. To the best of our knowledge, this paper is
the first to use DNN for straggler mitigation in MapReduce
jobs.

III. BACKGROUND

Consider M jobs submitted to a datacenter, denoted by
i = 1, 2, . . . , N . Each job i is associated with a deadline Di



and consists of Ni independent tasks. Job i successfully meets
its deadline if all its Ni tasks are completed before time Di.
The tasks with completion times exceeding Di are known as
the stragglers. Existing approaches mitigating stragglers often
involve speculative execution, i.e., launching multiple parallel
attempts of each straggler. Let ri be the number of speculative
attempts that are launched for each job i task. Thus, the
task is completed if one of its ri + 1 attempts (one original
attempt plus ri speculative attempts) is finished. We denote
the execution time of attempt k of job i’s task j as Ti,j,k.
Thus, job completion time Ti and task completion time Ti,j
equal:

Ti = max
j=1,...,Ni

Ti,j , where Ti,j = min
k=1,...,ri+1

Ti,j,k, ∀j. (2)

To optimize the speculative execution strategies using a
model-based approach, Pareto distribution is often selected to
model the execution times of tasks [?], and is used in [?],
[?], [?] to analyze the straggler problem. Following these
papers, we consider the execution time Ti,j,k of each attempt
follows a Pareto distribution with parameters (tmin, β), where
tmin is the minimum execution time and β is the exponent.
Different attempts are assumed to have independent execution
time distributions.
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Fig. 2. Speculative-Resume Strategy.

The Speculative-Resume strategy launches one attempt of
each task at the beginning. The attempt execution time is
estimated at time τest. If the estimated execution time exceeds
D, the original attempt is identified as a straggler. It is then
terminated, and r+1 new (speculative) attempts are launched
to replace the straggler. These speculative attempts resume
data processing from the point left by the original attempt
and do not repeat the work that has been completed. The
progress scores of all attempts are then checked at time
τkill, and the attempt with the smallest estimated completion
time (or equivalently, highest progress score) is kept running
while other attempts are terminated. Figure 2 illustrates the
Speculative-Resume strategy [?] when a task is detected as a
straggler. The processed byte offset of the original attempt at
τest is b. Thus, speculative attempts are launched at τest start
to continue processing data from byte offset b.

IV. PROPOSED STRATEGIES

In this section, we present two strategies, Speculative-
Resume with Quantitative Analysis (SRQuant), and

Speculative-Resume with DNN (LASER).

A. SRQuant

We start with the Speculative-Resume with Quantitative
Analysis (SRQuant) strategy. We first define PoCD and quan-
tify PoCD for arbitrary jobs based on our analytical model (and
assumptions) for job execution and the Speculative-Resume
strategy. Finally, we present an iterative search algorithm for
determining the appropriate number of extra attempts to launch
for each straggler. In the following, the average progress of
the original attempts at time τest is denoted as ϕest.

Definition We define PoCD as the probability that a job
completes before its deadline.

We derive PoCD in closed-form in Theorem 1, and present
execution time analysis in Theorem 2. We present only the
basic ideas of the proofs here, and refer the reader to [?] for
more details.

Theorem 1. Under Speculative-Resume strategy, the PoCD
for a job with N tasks and r speculative copies per task is
given by:

R(r) =

[
1− (1− ϕest)β·(r+1)·tβ·(r+2)

min

Dβ ·(D − τest)β·(r+1)

]N
. (3)

Proof. The basic idea is that we first derive the probability of a
task completing before the deadline, and then derive PoCD by
finding the probability of N tasks finishing before the deadline.

Theorem 2. Under Speculative-Resume strategy, the expected
execution time of a job is Er(T ), which equals N ·E(Tj). The
E(Tj) is the expected execution time of a task, and it equals

E(Tj |Tj,1≤D)·P (Tj,1≤D) + E(Tj |Tj,1>D)·P (Tj,1>D),
(4)

where

P (Tj,1>D) = 1− P (Tj,1≤D) =

(
tmin
D

)β
(5)

E(Tj |Tj,1≤D) =
tmin·D·β·(tβ−1

min −Dβ−1)

(1− β)·(Dβ − tβmin)
(6)

E(Tj |Tj,1>D) = τest + r·(τkill − τest) (7)

+
tmin·(1− ϕest)β·(r+1)

β·(r + 1)− 1
+ tmin. (8)

Proof. The basic idea is that we derive machine running time
of a task by considering if the execution time of the original
attempt is larger than D or not. If execution time is no
more than D, there is no need to launch extra attempt, and
the machine running time equals the execution time of the
original attempt. If the execution time is larger than D, the task
machine time is the summation of the machine running times
of extra attempts killed at τkill and the machine running time
of the attempt that successfully finishes. The job’s machine
running time is obtained by adding the machine running times
of N tasks.



To exploit the tradeoff between Rr and Er(T ), we jointly
consider PoCD and machine running time. More precisely, we
would like to maximize the following utility function U(r).

max U(r) = log(R(r)−Rmin)− θ·C·Er(T ), (9)
s.t. r ≥ 0, (10)
var. r ∈ Z, (11)

where C is the usage-based VM price per unit time, and θ is
a tradeoff factor to balance the PoCD R(r) and execution cost
C·Er(T ). Here, Rmin is a minimum PoCD that all jobs must
achieve.

Algorithm 1 SRQUANT SCHEDULING ALGORITHM

Umax = −∞
rm = 0
for r = 0; r≤rmax; r ++ do

if U(r) > Umax then
Umax = U(r)
rm = r

end if
end for
for task : Tasks do

if Tj > D then
Launch rm + 1 attempts for task

end if
end for

In the SRQUANT SCHEDULING ALGORITHM, we first iter-
atively search for r from 0 to rmax to get the maximum value
of U(r), where rmax is the maximum number of extra attempts
that can be launched. Given U(rm)≥U(r), ∀r = 0, ..., rmax,
the algorithm launches rm+1 attempts for each straggler, and
kills the original task (straggler). The pseudocode is shown in
Algorithm 1.

B. LASER
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Fig. 3. An illustration figure of LASER.

In this subsection, we present the Speculative-Resume with
DNN (LASER) strategy. LASER consists of two deep neural

networks, i.e., a deep neural network for the task execution
time estimation, and a deep neural network for determining
the number of extra attempts to launch for each straggler.

At τest, instead of using the linear estimation as in SRQuant,
LASER estimates the execution time of each task using a
DNN. If the task execution time is larger than the job deadline,
extra r + 1 attempts are launched. LASER determines the
number of extra attempts to launch for a straggler through
the DNN based on the job execution time, cost, and tradeoff
factor (θ) between the job execution time and the cost. Figure 3
illustrates the LASER strategy.

In the LASER SCHEDULING ALGORITHM, we first iter-
atively search for r. If the estimated job execution time Ti
is no more than D, then U(r) = 1 − θ·C·Mi, where the 1
represents the fact that the job is estimated to complete before
D, and Mi is the estimated machine running time. If Ti is
larger than D, then U(r) = 0−θ·C·Mi, where the 0 represents
the fact that the job is estimated not to complete before D.
Given U(rm)≥U(r), ∀r = 0, ..., rmax, the algorithm launches
rm+1 extra attempts for each straggler, and kills the original
task (straggler). The pseudocode is shown in Algorithm 2.

Algorithm 2 LASER SCHEDULING ALGORITHM

Umax = −∞
rm = 0
for r = 0; r≤rmax; r ++ do

if Ti≤D then
U(r) = 1− θ·C·Mi

else
U(r) = 0− θ·C·Mi

end if
if U(r) > Umax then
Umax = U(r)
rm = r

end if
end for
for task : Tasks do

if Tj > D then
Launch rm + 1 extra attempts for task

end if
end for

V. IMPLEMENTATION

We implement SRQuant and LASER on Hadoop, which
consists of a central Resource Manager (RM), Application
Masters (AMs) for each application, and Node Manager (NM)
for each node in the system. For each application, its AM
negotiates resources from the RM and works with the NMs
to execute and monitor the application’s tasks. Our scheduling
algorithms are implemented in the AM to calculate r at time
τest.

A. Implementing SRQuant

At τest, AM estimates the execution time of each task.
The estimation strategy of Hadoop assumes a task starts



TABLE I
DNN WITH DIFFERENT NUMBER OF HIDDEN LAYERS.

Task execution time Job execution time Machine running time
Number of hidden layers 1 3 5 1 3 5 1 3 5
Mean of test losses (sec) 47 34 33 37 49 50 117 253 249

STD of Test losses 78 66 67 64 65 65 94 197 195
Mean of true values(sec) 226 226 226 249 249 249 1640 1640 1640

Mean of test losses/Mean of true values (×100%) 20.8% 15.0% 14.6% 14.8% 19.7% 20.0% 7.1% 15.4% 15.2%
Elapsed time per iteration (msec) 1.3 4.8 7.3 1.2 4.4 6.4 1.1 4.4 6.9
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Fig. 4. Implementation of the SRQuant strategy, where Aj,r is the rth attempt
of the task j.

running right after it is launched, and asserts that the task
execution time equals τest dividing by the progress score (ϕj).
However, according to our observations, this is not strictly
true, especially in environments with high resource contention
wherein JVM startup time is significant and cannot be ignored.
We consider the task execution time is the sum of the amount
of time used for launching the JVM (tjvm) and the amount
of time used for processing data. At τest, tjvm is known,
and the amount of time for processing data is estimated by
(τest − tjvm)/ϕj .

Considering that a task sends its progress score to the AM
every 3 seconds, a task reports the number of bytes processed
along with its progress score to the AM at time τest − δ,
where δ is a user-selectable parameter with a default value
of 3 seconds. The AM then estimates the execution time of
each task. If the estimated execution time is no more than D,
no extra attempt will be launched, as shown in Figure 4(a).
Otherwise, the original attempt is killed after processing b
bytes, where b is the number of bytes processed during the
amount of time required to launch the JVM. r + 1 attempts
will be launched, and these attempts start to process data from
byte offset b, as shown in Figure 4(b).

B. Implementing LASER

As mentioned earlier, LASER uses two DNNs: one for
estimating the (remaining) task execution time, and one for
estimating the job execution time and the machine running
time. In following, we describe details from three steps, i.e.,
features collected, pre-processing, and combining DNNs with
Hadoop.

TABLE II
FEATURES DIRECTLY COLLECTED FROM HADOOP JOBS.

Feature Description
location Location host
taskID Identifier of task
ϕj Task progress score
recread Amount of records read
recwrite Amount of records written
Byteread Amount of bytes read from HDFS
Bytewrite Amount of bytes written to HDFS
tcpu Amount of CPU consumed time
tjvm Amount of time for launching JVM
tgc Amount of time for garbage collection
τest The time of estimating the task execution time

1) Features collected: To collect features for training the
DNN used for estimating the task execution time, we run 2000
jobs, and collect 10 features of each task at τest. The features
collected are shown in Table II.

To estimate the job execution time and machine running
time, we run Speculative-Resume with different r values, and
collect the 10 features of each task at τest (shown in Table II).
Also, we need three more features, i.e., τkill, D, and ϕi, where
ϕi represents the job progress score.

2) Preprocessing: If the task has not started to process data
at τest, features: ϕj , recread, recwrite, Byteread, Bytewrite,
tcpu, tgc, are all zeros. In order to avoid NaNs in weights and
bias and let imputed values close to 0, we generate random
numbers uniformly between 0 and 1 to replace the zeros.

3) Combining DNNs with Hadoop: After training the
DNNs, we add DNNs with values for weights and biases, the
parameters of the parametric ReLU functions from training,
into the AM. As in SRQuant, a task reports the number of
bytes processed along with its progress score to AM at time
τest−δ. Different from SRQuant, LASER computes the r and
estimates the execution time of each task using DNNs. If the
task execution time is larger than D, the original attempt is
killed after processing b bytes. Extra r + 1 attempts will be
launched, and these start to process data from byte offset b.

VI. EXPERIMENT RESULTS

A. Setup

We prototype the SRQuant and LASER on a cloud testbed
consisting of 80 nodes. Each node has 8 vCPUs and 2GB
memory. The physical servers are connected to a Gigabit
Ethernet switch and the link bandwidth is 1Gbps. We evaluate
two strategies by using Map phases of the classic benchmark
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WordCount with a 1.2GB workload for WordCount from
Wikipedia. To emulate a realistic cloud infrastructure with
resource contentions, background applications are run in the
host OS of the physical servers; these execute computation
tasks at random times and inject background noise. We observe
that the task execution time measured on our testbed follows
a Pareto distribution with an exponent β = 1.7 < 2.

B. Tune the DNNs

In this subsection, we show the results of tuning DNNs by
changing the number of hidden layers, and present the results
of comparing DNNs with a classic regression algorithm called
Random Forests (RF) [?]. RF constructs a number of decisions
trees, with each tree being a weak learner. The final output
is the average prediction over all trees. The loss function
of DNNs is the least absolute deviations. Table I shows the
statistics when employing different numbers of hidden layers
for DNNs. The test loss is the absolute difference between
the estimated value and the true value. Based on results, the
mean of test losses of the task execution time decreases as
the number of hidden layers increases, and the means of tests
losses of the job execution time and machine running time
increase as the number of hidden layers increases. Also, the
table shows that the lowest mean of test losses is achieved
when the number of hidden layers are 5, 1, and 1 for the
task execution time, the job execution time, and the machine
running time estimations, respectively. For the task execution
time estimation, as the number of hidden layers changes from
3 to 5, the elapsed time per iteration increases by 50%, and the
estimation accuracy increases only by 1%. So, in the following
experiments, we employ 3 hidden layers for the task execution
time, and one hidden layer each for the job execution time and
the machine running time estimations, respectively.

Figure ?? shows the comparisons between the DNN and
the Random Forests regression algorithm. For RF, we set the
number of trees in the forest to be 1000, and the criterion
of regression to be the mean squared error. The results show
that the DNN outperforms RF by 42%, 52%, and 44% for the
task execution time, the job execution time, and the machine
running time estimations, respectively.

C. Comparison of different strategies

In following, we compare Hadoop without Specula-
tion (Hadoop-NS), Hadoop with Speculation (Hadoop-S),
SRQuant, and LASER with respect to PoCD, cost and total
utility. We execute 100 MapReduce jobs on our testbed with
each job consisting of 10 tasks. The PoCD is measured by
calculating the percentage of jobs completed before their
deadlines, and the cost by the average job running time (i.e.,
VM time required), assuming a fixed price per unit VM time
that is obtained by Amazon EC2 average spot price (C). In
all experiments, we set θ·C = 0.0001.

Figure ?? and Figure ?? show the effect of changing
deadlines on PoCD and cost, respectively. We set τest = 120,
τkill = 200, and Rmin = 0.1. As deadline increases, more
jobs can finish before the deadline, and thus PoCDs increase.
Also, as deadline increases, the cost of Hadoop-NS and
Hadoop-S remain the same, since those strategies are deadline
oblivious, in the sense that they are not adaptive to jobs with
different deadlines. Our results show that the two strategies
considered in this paper have higher PoCD compared with
Hadoop-NS and Hadoop-S. In terms of PoCD, LASER can
outperform Hadoop-NS and Hadoop-S by up to 40% and
7%, respectively. In terms of cost, LASER can outperform
Hadoop-S and SRQuant by up to 18% and 13%, respectively.
The cost saving of LASER, relative to SRQuant, results from
launching fewer extra attempts. Figure ?? shows the impact
of changing deadlines on net utility. Our results show that our
two strategies outperform Hadoop-NS and Hadoop-S by up to
43%.

Comparing Figure ?? and Figure ?? shows the effect of
decreasing τest, τkill, and D on PoCD and cost. To obtain
Figure ??, we set τest = 80, τkill = 160, and Rmin = 0.1. A
comparison of Figure ?? with Figure ?? shows that SRQuant
could achieve higher PoCD by decreasing τest. Also, Figure ??
shows the PoCD of LASER is lower than SRQuant’s. The
reason is that the DNN estimation cares little about the
outliers, which are the values that are far away from the
average, and those outliers are important for highly deadline-
critical jobs to meet desired deadlines. Figure ?? uses data
from the test set. The test set is a set of data used to
assess the strength of the prediction. Figure ?? shows that
when the true value is around the mean (249), the difference
between the estimated value and the true value is small. As the
difference between the mean and the true value increases, the
DNN estimation becomes more inaccurate. In terms of PoCD,
SRQuant outperforms Hadoop-NS, Hadoop-S, and LASER by
up to 89%, 31%, and 30%, respectively. In terms of cost,
SRQuant and LASER can outperform Hadoop-NS by up to
13%. Figure ?? shows SRQuant has the largest utility, and it
outperforms other strategies by up to 50%.

Remark. Compared to the DNN-based method (LASER),
the model-based optimization method (SRQuant) can achieve
better performance in mitigating stragglers. This is because
DNN is not able to accurately estimate the execution time of a
straggler, and the predicted r is smaller than needed. However,
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Fig. 6. Comparisons of different strategies with large τest, τkill, and D.
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Fig. 7. Comparisons of different strategies with small τest, τkill, and D.
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LASER is better than Hadoop-NS and Hadoop-S, in terms
of PoCD and Cost, and it can be easily adapted to various
cluster environments. LASER does involve training overhead,
but such overhead can be mitigated by training with history
logs before the application is submitted.

VII. CONCLUSION

In this paper, we consider a Speculative-Resume strategy for
mitigating stragglers and meeting application deadlines in a
MapReduce framework. Two distinct strategies, SRQuant and
LASER, are proposed to identify stragglers and to optimize

the Speculative-Resume strategy. While SRQuant relies on a
model-based optimization approach to find optimal operating
parameters, LASER provides an refreshing perspective by
making use of Deep Learning algorithms for strategy optimiza-
tion. The two strategies are implemented on Hadoop MapRe-
duce and compared side-by-side in a number of experiments
on an 80-node cloud testbed. Our experiment results validate
the effectiveness of both strategies in meeting application
deadlines in a cost-effective fashion. The results show that
our two strategies outperform Hadoop without speculation
(Hadoop-NS) and with speculation (Hadoop-S) by up to 89%
in PoCD and 13% in cost.
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