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ABSTRACT
Covering option discovery has been developed to improve the ex-

ploration of reinforcement learning in single-agent scenarios with

sparse reward signals, through connecting the most distant states

in the embedding space provided by the Fiedler vector of the state

transition graph. However, due to exponentially-large state space

resulted from multi-agent scenarios, existing researches on adopt-

ing options in multi-agent scenarios still rely on single-agent option

discovery and fail to directly discover the joint options that can

improve the connectivity of the joint state space of agents. In this

paper, we show that it is indeed possible to directly compute multi-

agent options with collaborative exploratory behavior while still

enjoying the ease of decomposition. Our key idea is to approximate

the joint state space as a kronecker graph – the kronecker product

of individual agents’ state transition graphs, based on which we can

directly estimate the Fiedler vector of the joint state space using the

Laplacian spectrum of individual agents’ transition graphs. This

decomposition enables us to efficiently construct multi-agent joint

options by encouraging agents to connect the sub-goal joint states

which are corresponding to the minimum ormaximum values of the

estimated joint Fiedler vector. The evaluation based on multi-agent

collaborative tasks shows that the proposed algorithm can success-

fully identify multi-agent options, and significantly outperforms

prior works using single-agent options or no options, in terms of

both faster exploration and higher cumulative rewards.
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1 INTRODUCTION
Option discovery [22] enables temporally-abstract actions to be

constructed and utilized in the reinforcement learning (RL) pro-

cess, which can significantly improve the performance of RL agents.

Among recent developments on the topic, Covering Option Discov-
ery [8, 9] has been shown to be an effective approach to improve
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the exploration in environments with sparse reward signals. In

particular, it first computes the second smallest eigenvalue and the

corresponding eigenvector (i.e., Fiedler vector [5]) of the Laplacian

matrix extracted from the state transition process in RL. Then, op-

tions are built to connect the states corresponding to the minimum

or maximum values in the Fiedler vector, which has been proved

to greedily improve the algebraic connectivity of the state space

[6] and thus accelerate exploration in the state space.

In this paper, we consider the problem of constructing and utiliz-

ing covering options in multi-agent reinforcement learning (MARL).

Due to the exponentially-large state space in multi-agent scenarios,

a commonly-adopted way to solve this problem [1, 2, 4, 11, 17] is to

construct the single-agent options as if in a single-agent environ-

ment first, and then learn to collectively leverage these individual

options to tackle multi-agent tasks. This method fails to consider

the coordination among agents in the option discovery process, and

thus can suffer from very poor behavior in multi-agent collabora-

tive tasks. To this end, in our work, we propose a framework that

makes novel use of kronecker product of factor graphs to directly

construct the multi-agent options in the joint state space, and adopt

them to accelerate the joint exploration of agents in MARL. We

show through experiments that agents leveraging our multi-agent

options significantly outperform agents with single-agent options

or no options in MARL tasks. For some challenging tasks, the adop-

tion of multi-agent options can improve the convergence speed

by two orders of magnitude and the episodic cumulative reward

by ∼ 100%. Also, instead of directly adopting the covering option

discovery to the joint state space since its size grows exponentially

with the number of agents, we build multi-agent options based on

the individual state transition graphs, making our method much

more scalable.

Specifically, the main contributions are as follows: (1) We pro-

pose Multi-agent Covering Option Discovery – it approximates the

joint state transition graph as a kronecker product of the individ-

ual ones, so that we can estimate the Fiedler vector of the joint

state space based on the Laplacian spectrum of the individual state

spaces to enjoy the ease of decomposition. Then, the joint options

composed of multiple agents’ temporal action sequences can be

directly constructed to connect the joint states corresponding to the

minimum or maximum in the Fiedler vector, resulting in a greedy

improvement of the joint state space’s algebraic connectivity. (2)

We propose that the multi-agent options can be adopted to MARL



in either a decentralized or centralized manner. For the centralized

manner, different agents jointly decide on their options. In contrast,

for the decentralized manner, agents can choose their options inde-

pendently and select different options to execute simultaneously.

Further, we compare the decentralized or centralized approaches

through experiments. (3) We propose group-based multi-agent op-

tion discovery that first groups the agents based on their sub-tasks,

and then discover the multi-agent options within each sub-group.

This sub-group division not only makes our approach more scalable

but also makes the option discovery more accurate.

2 RELATEDWORK
Option Discovery: The option framework was proposed in [22],

which extends the usual notion of actions to include options — the

closed-loop policies for taking actions over a period of time. In the

literature, lots of option discovery algorithms have been proposed.

Some of them are based on task-related reward signals, such as

[7, 14–16]. Specifically, they directly define or learn through gra-

dient descent the options that can lead the agent to the rewarding

states in the environments, and then utilize these trajectory seg-

ments (options) to compose the completed trajectory toward the

goal state. These methods rely on dense reward signals, which are

usually hard to acquire in real-life tasks. Other works define the

sub-goal states (termination states of the options) based on the

visitation frequency of the states. For example, in [18–20], they

discover the options by recognizing the bottleneck states in the

environment, through which the agent can transfer between the

sub-areas that are loosely connected in the state space, and they de-

fine these options as betweenness options. Recently, there are some

state-of-the-art option generation methods based on the Laplacian

spectrum of the state-transition graph, such as [8, 9, 12, 13], since

the eigenvectors of the Laplacian of the state space can provide

embeddings in lower-dimensional space, based on which we can

obtain good measurements of the accessibility from one state to

another. Especially, in [9], they propose covering options and prove

that their option generation method has higher exploration speed

and better performance compared with other Laplacian-based ap-

proaches and the betweenness options mentioned above.

Note that all the approaches mentioned above are for single-

agent scenarios, and in this paper we will extend the construction

and adoption of covering options to MARL.

Adopting options in multi-agent scenarios:Most of the resear-

ches about adopting options in MARL, such as [1, 2, 4, 11, 17], tried

to first learn the options for each individual agent with the option

discovery methods we mentioned above, and then learn to collabo-

ratively utilize these individual options. Therefore, the coordination

in the multi-agent system can only be shown/utilized in the option-

choosing process while not the option discovery process. In this

paper, we propose constructing multi-agent covering options based

on the aforementioned Laplacian-based framework to encourage

efficient exploration in the joint state space and explore how to

utilize the multi-agent options in MARL tasks effectively.

3 BACKGROUND
3.1 Basic Conceptions and Notations
In this section, we will introduce the necessary conceptions and

corresponding notations used in this paper.

Markov Decision Process (MDP): The RL problem can be de-

scribed with an MDP, denoted byM = (S,A,P,R, 𝛾), where S is

the state space,A is the action space, P : S×A×S → [0, 1] is the
state transition function, R : S × A → 𝑅1 is the reward function,

and 𝛾 ∈ (0, 1] is the discount factor.
State transition graph in an MDP: The state transitions inM
can be modelled as a state transition graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 ), where
𝑉𝐺 is a set of vertices representing the states in S, and 𝐸𝐺 is a set of

undirected edges representing state adjacency inM. We note that

there is an edge between state 𝑠 and 𝑠 ′ (i.e., 𝑠 and 𝑠 ′ are adjacent) if
and only if ∃ 𝑎 ∈ A, 𝑠 .𝑡 . P(𝑠, 𝑎, 𝑠 ′) > 0 ∨ P(𝑠 ′, 𝑎, 𝑠) > 0.

The adjacency matrix 𝐴 of 𝐺 is an |S| × |S| matrix whose (𝑖, 𝑗)
entry is 1 when 𝑠𝑖 and 𝑠 𝑗 are adjacent, and 0 otherwise. The degree

matrix 𝐷 is a diagonal matrix whose entry (𝑖, 𝑖) equals the number

of edges incident to 𝑠𝑖 . The Laplacian matrix of 𝐺 is defined as 𝐿 =

𝐷 −𝐴. Its second smallest eigenvalue 𝜆2 (𝐿) is called the algebraic

connectivity of the graph 𝐺 , and the corresponding normalized

eigenvector is called the Fiedler vector [5]. Last, the normalized

Laplacian matrix is defined as L = 𝐷−
1

2 𝐿𝐷−
1

2 .

Kronecker product of graphs [24]: Let 𝐺1 = (𝑉𝐺1
, 𝐸𝐺1
) and

𝐺2 = (𝑉𝐺2
, 𝐸𝐺2
) be two state transition graphs, corresponding to

the individual state space S1 and S2 respectively. The kronecker
product of them denoted by 𝐺1 ⊗ 𝐺2 is a graph defined on the set

of vertices 𝑉𝐺1
×𝑉𝐺2

, such that: 𝐴1 ⊗ 𝐴2 is an |S1 | |S2 | × |S1 | |S2 |
matrix with elements defined by (𝐴1 ⊗ 𝐴2) (𝐼 , 𝐽 ) = 𝐴1 (𝑖, 𝑗)𝐴2 (𝑘, 𝑙)
with Equation (1), where 𝐴1 and 𝐴2 are the adjacency matrices

of 𝐺1 and 𝐺2, 𝐴1 (𝑖, 𝑗) is the element lies on the 𝑖-th row and 𝑗-th

column of 𝐴1 (indexed from 1).

𝐼 = (𝑖 − 1) × |S2 | + 𝑘, 𝐽 = ( 𝑗 − 1) × |S2 | + 𝑙 (1)

3.2 Covering Option Discovery
As defined in [22], an option 𝜔 consists of three components: an

intra-option policy 𝜋𝜔 : S x A → [0, 1], a termination condition

𝛽𝜔 : S → {0, 1}, and an initiation set 𝐼𝜔 ⊆ S. An option <

𝐼𝜔 , 𝜋𝜔 , 𝛽𝜔 > is available in state 𝑠 if and only if 𝑠 ∈ 𝐼𝜔 . If the

option 𝜔 is taken, actions are selected according to 𝜋𝜔 until 𝜔

terminates stochastically according to 𝛽𝜔 . Therefore, in order to

get an option, we need to train/define the intra-option policy, define

the termination condition and initiation set.

The authors of [9] propose covering option discovery – dis-

covering options by minimizing the upper bound of the expected

cover time of the state space. First, they compute the Fiedler vec-

tor 𝐹 of the Laplacian matrix of the state transition graph. Then,

they collect the states 𝑠𝑖 and 𝑠 𝑗 with the largest (𝐹𝑖 − 𝐹 𝑗 )2 (𝐹𝑖 is
the 𝑖-th element in 𝐹 ), based on which they construct two sym-

metric options: 𝜔𝑖 𝑗 = < 𝐼𝜔𝑖 𝑗
= {𝑠𝑖 }, 𝜋𝜔𝑖 𝑗

, 𝛽𝜔𝑖 𝑗
= {𝑠 𝑗 } > and

𝜔 𝑗𝑖 = < 𝐼𝜔 𝑗𝑖
= {𝑠 𝑗 }, 𝜋𝜔 𝑗𝑖

, 𝛽𝜔 𝑗𝑖
= {𝑠𝑖 } > to connect these two sub-

goal states bidirectionally, where 𝜋𝜔 is defined as the optimal path

between the initiation and termination state. This whole process is

repeated until they get the required number of options.

The intuition of this method is as follows. The authors of [6]

prove that (𝐹𝑖 − 𝐹 𝑗 )2 gives the first order approximation of the

increase in 𝜆2 (𝐿) (i.e., algebraic connectivity) by connecting (𝑠𝑖 , 𝑠 𝑗 ).
Then, they propose a greedy heuristic to improve the algebraic

connectivity of a graph: each time connecting (𝑠𝑖 , 𝑠 𝑗 ) corresponding
to the largest (𝐹𝑖 − 𝐹 𝑗 )2. Further, in [9], they prove that the larger



the algebraic connectivity of a graph is, the smaller upper bound of

the expected cover time is and the easier the exploration tends to

be. Therefore, applying this greedy heuristic to the state transition

graph can improve the exploration in the state space.

4 PROPOSED ALGORITHM
4.1 System Model
In this paper, we consider to compute covering options in multi-

agent scenarios, with 𝑛 being the number of agents, S̃ = S1 ×S2 ×
· · · × S𝑛 being the set of joint states, Ã = A1 × A2 × · · · × A𝑛
being the set of joint actions. Note that S𝑖 andA𝑖 are the individual
state space and action space of agent 𝑖 . Apparently, the size of the

joint state space, i.e., |S̃ | = ∏𝑛
𝑖=1 |S𝑖 |, grows exponentially with the

number of agents. Thus, it is prohibitive to directly compute the

covering options based on the joint state transition graph using the

approach introduced in Section 3.2 for a large 𝑛.

A natural method to tackle this challenging problem is to com-

pute the options for each individual agent by considering only its

own state transitions, and then learn to collaboratively leverage

these individual options. However, it fails to directly recognize joint

options (i.e., multi-agent options) composed of multiple agents’ tem-

poral action sequences for encouraging the joint exploration of all

the agents. In this case, the algebraic connectivity of the joint state

space may not be improved with these single-agent options. We

will illustrate this with a simple example.

Illustrative example: Figure 1(a) shows a joint state transition
graph 𝐺 of two agents, where agent 1 has two states denoted by

S1 = {1, 2} and agent 2 has four states denoted by S2 = {1, 2, 3, 4}.
In order to compute the individual options, we can restrict our

attention to the state transition graph of each agent, namely 𝐺1

and 𝐺2, with Laplacian given by 𝐿1 and 𝐿2, respectively:

𝐿1 =

[
1 −1
−1 1

]
, 𝐿2 =


1 −1 0 0

−1 2 −1 0

0 −1 2 −1
0 0 −1 1

 . (2)

To compute the options for each agent, we first compute the

Fiedler vectors of 𝐺1 and 𝐺2 as:

𝑣𝐺1 =
1

√
2

[
−1
1

]
, 𝑣𝐺2 =

1√
8 − 4
√
2


−1

−
√
2 + 1√
2 − 1
1

 . (3)

Then, according to the option discovery approach described in Sec-

tion 3.2, we can get the individual options for agent 1 to connect its

state 1 (minimum) and state 2 (maximum), and individual options

for agent 2 to connect its state 1 (minimum) and state 4 (maximum).

With these options, the updated joint state space would be like Fig-

ure 1(b). Apparently, the straightforward decomposition of option

discovery for MARL fails to create a connected graph. It implies

that for the purpose of encouraging efficient exploration, utilizing

the single-agent options alone is not sufficient.

Therefore, we propose to build Multi-agent Covering Options

to enhance the connectivity of the joint state space and accelerate

the joint exploration of the agents within the scenario. Again, we

can represent it as a tuple: < 𝐼𝜔 , 𝜋𝜔 , 𝛽𝜔 >, where 𝐼𝜔 ⊆ S̃ is the

set of initiation joint states, 𝛽𝜔 : S̃ → {0, 1} indicates the joint
states to terminate, 𝜋𝜔 = (𝜋1𝜔 , · · · , 𝜋𝑛𝜔 ) (𝜋𝑖𝜔 : S𝑖 × A𝑖 → [0, 1]),
is the joint intra-option policy that can lead the agents from the

initiation states to the termination states. The key challenge is to

calculate the Fiedler vector of the joint state space according to

which we can define < 𝐼𝜔 , 𝜋𝜔 , 𝛽𝜔 > like Section 3.2. Given that

|S̃ | grows exponentially with 𝑛, we propose to estimate the joint

Fiedler vector based on individual state spaces in the next section.

4.2 Theory results
This section shows the theoretical foundations of our approach –

computing multi-agent options directly based on the individual

state transition graphs. The key idea is to approximate the joint

state transition graph𝐺 as a kronecker graph ⊗𝑛
𝑖=1
𝐺𝑖 = 𝐺1⊗· · ·⊗𝐺𝑛

and then estimate the Fiedler Vector of ⊗𝑛
𝑖=1
𝐺𝑖 based on which we

can build the multi-agent options.

First, we note that the kronecker product of individual state

transition graphs ⊗𝑛
𝑖=1
𝐺𝑖 can be used as a simple yet powerful

approximation of the joint state transition graph 𝐺 for the purpose

of computing multi-agent options. This approximation becomes

exact (i.e., 𝐺 = ⊗𝑛
𝑖=1
𝐺𝑖 ) if the state transitions of an agent would

not be influenced by the other agents. Also, we show through

experiments in Section 5.2 that even if in conditions where agents

can influence each other, such kronecker product approximation

can still result in an effective representation of the original graph

𝐺 .

Next, we show how to effectively approximate the Fiedler vector

of ⊗𝑛
𝑖=1
𝐺𝑖 based on the Laplacian spectrum of the factor graphs,

which enables an effective decomposition of multi-agent option

discovery. Inspired by [3] which proposed an estimation of the

Laplacian spectrum of the kronecker product of two factor graphs,

we have the following THEOREM 4.1.

Theorem 4.1. For graph 𝐺 = ⊗𝑛
𝑖=1
𝐺𝑖 , we can approximate the

eigenvalues 𝜇 and eigenvectors 𝑣 of its Laplacian 𝐿 by:

𝜇𝑘1,...,𝑘𝑛 =

{[
1 −

𝑛∏
𝑖=1

(1 − 𝜆𝐺𝑖

𝑘𝑖
)
]
𝑛∏
𝑖=1

𝑑
𝐺𝑖

𝑘𝑖

}
(4)

𝑣𝑘1,...,𝑘𝑛 = ⊗𝑛𝑖=1𝑣
𝐺𝑖

𝑘𝑖
(5)

where 𝜆𝐺𝑖

𝑘𝑖
and 𝑣𝐺𝑖

𝑘𝑖
are the𝑘𝑖 -th smallest eigenvalue and corresponding

eigenvector of L𝐺𝑖
(normalized Laplacian matrix of 𝐺𝑖 ), and 𝑑

𝐺𝑖

𝑘𝑖
is

the 𝑘𝑖 -th smallest diagonal entry of 𝐷𝐺𝑖
(degree matrix of 𝐺𝑖 ).

The proof of THEOREM 4.1 is provided in Appendix A.1, which

also contains the proof that the estimated eigenvalues through this

theorem are non-negative. Note that if 𝐺𝑖 has 𝐾𝑖 (𝑖 = 1, · · · , 𝑛)
eigenvalues, there would be

∏𝑛
𝑖=1 𝐾𝑖 eigenvalues for 𝐺 . Through

enumerating (𝑘1, · · · , 𝑘𝑛), we can collect the eigenvalues of ⊗𝑛
𝑖=1
𝐺𝑖

by Equation (4) and the corresponding eigenvectors by Equation

(5), where the eigenvector 𝑣
ˆ𝑘1, · · · , ˆ𝑘𝑛 corresponding to the second

smallest eigenvalue 𝜇
ˆ𝑘1, · · · , ˆ𝑘𝑛 is the estimated Fiedler vector of the

joint state transition graph, namely 𝐹
𝐺
. Then, we can define the

joint states corresponding to themaximum orminimum in 𝐹
𝐺
as the

initiation or termination joint states, which can be connected with

joint options. As discussed in Section 3.2, connecting these two joint

states with options can greedily improve the algebraic connectivity



(a) The joint state transition graph of agent 1 and agent 2 (b) The joint state transition graph after adding individual options

Figure 1: An illustrative example showing the limitations of utilizing single-agent options alone for MARL.

(a) The joint state transition graph updated with option 𝜔1 (b) The joint state transition graph updated with option 𝜔2

Figure 2: The joint state transition graph updated with the detected multi-agent options

of the joint state space and accelerate the joint exploration within

it.

Illustrative example: Now we consider again the example in

Figure 1(a), where 𝐺 = 𝐺1 ⊗ 𝐺2. We can approximate the Fiedler

vector of 𝐺 using THEOREM 4.1. As a result, we get two approxi-

mations of the Fiedler vector (The computing details are shown in

Appendix A.2):

𝑣11 =
1

√
6

[
1

√
2

, 1, 1,
1

√
2

,
1

√
2

, 1, 1,
1

√
2

]𝑇
(6)

𝑣24 =
1

√
6

[
− 1

√
2

, 1, −1, 1

√
2

,
1

√
2

, −1, 1, − 1

√
2

]𝑇
(7)

Based on the two approximations and the indexing relationship

between𝐺 and its factor graphs (Equation (1)), we can get two sets

of multi-agent options: {𝐼𝜔1
= {(1, 2), (1, 3), (2, 2), (2, 3)},

𝛽𝜔1
= {(1, 1), (1, 4), (2, 1), (2, 4)}} and {𝐼𝜔2

= {(1, 2), (2, 3)}, 𝛽𝜔2
=

{(1, 3), (2, 2)}}, where we set the joint states corresponding to the

maximum and minimum as the initiation states and termination

states respectively. For example, in 𝑣11 (6), the 7-th element (indexed

from 1) is a maximum, so the 7-th joint state is within the initiation

set 𝐼𝜔1
and denoted as (2, 3) according to Equation (1). As shown

in Figure 2, both of the two options can lead to a connected graph

when applied to 𝐺 . Thus, the adoption of multi-agent options can

encourage efficient exploration of the joint state space by improving

its algebraic connectivity, and we can discover multi-agent options

based on individual agents’ state space, so that we can enjoy the

ease of decomposition.

In the following sections, wewill formalize our algorithm–Multi-

agent Covering Option Discovery through Kronecker Product of

Factor Graphs, and show empirically the significant performance

improvement brought by integrating multi-agent options in MARL.

4.3 Multi-agent Covering Option Discovery
In this paper, we adopt Algorithm 1 to constructmulti-agent options,

based on the individual state transition graphs of each agent which

is represented as a list of adjacency matrices 𝐴1:𝑛 . First, in Line 5-9

of Algorithm 1, we acquire the estimation of the Fielder vector 𝐹 of

the joint state space through THEOREM 4.1 based on 𝐴1:𝑛 , so that

we can collect the joint states corresponding to the minimum or

maximum of 𝐹 . Then, in Line 10 of Algorithm 1, we split each joint

state into a list of individual states. For example, after getting a pair

of joint states (𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥 ), we convert them into ((𝑠1
𝑚𝑖𝑛

, · · · , 𝑠𝑛
𝑚𝑖𝑛
),

(𝑠1𝑚𝑎𝑥 , · · · , 𝑠𝑛𝑚𝑎𝑥 )), so that we can connect (𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥 ) in the joint

state space by connecting each (𝑠𝑖
𝑚𝑖𝑛

, 𝑠𝑖𝑚𝑎𝑥 ) in the corresponding

individual state space. According to THEOREM 4.1, we estimate 𝐹

as the kronecker product of 𝑛 eigenvectors, where the 𝑖-th vector is

an eigenvector of agent 𝑖’s normalized laplacian matrix. Therefore,

we can get the relationship between the index of the joint state

and the indexes of its corresponding individual states based on the

definition of kronecker product, which is shown in Line 10.

After decentralizing the joint states, we can generate the multi-

agent options through Algorithm 2. For each option 𝜔 , we define

its initiation set 𝐼𝜔 as the explored joint states, and its termination

set 𝛽𝜔 as a joint state in 𝑀𝐼𝑁 ∪ 𝑀𝐴𝑋 or the unexplored area.

As mentioned in Section 3.2, an option 𝜔 is available in state 𝑠

if and only if 𝑠 ∈ 𝐼𝜔 . Therefore, instead of constructing a point

option between (𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥 ), i.e., setting {𝑠𝑚𝑖𝑛} ({𝑠𝑚𝑎𝑥 }) as 𝐼𝜔 and

{𝑠𝑚𝑎𝑥 } ({𝑠𝑚𝑖𝑛}) as 𝛽𝜔 , we extend 𝐼𝜔 to the known area to increase

the accessibility of 𝜔 without loss of the connectivity of the joint

state space. As for the multi-agent intra-option policy 𝜋𝜔 used for

connecting the initiation joint state and termination joint state, we

divide it into a list of single-agent policies, where 𝜋𝑖𝜔 can be trained

with any single-agent RL algorithm aiming at leading agent 𝑖 from

its own initiation state to the termination state 𝑠𝑖
𝑚𝑖𝑛

(𝑠𝑖𝑚𝑎𝑥 ). At last,

before entering the next loop, we adopt Algorithm 3 to update

the individual state transition graphs with the newly-discovered

options. This whole process (Line 5-13 in Algorithm 1) is repeated

until we get a certain number of options.

To sum up, the proposed algorithm first discovers the joint states

that need to be explored most, and then build multi-agent options



to encourage agents to visit these sub-goals. More precisely, we

project each sub-goal joint state into its corresponding individual

state spaces and train the intra-option policy for each agent to visit

the projection of the sub-goal state in its individual state space.

4.4 Adopting Multi-agent Options in MARL
In order to take advantage of options in the learning process, we

adopt a hierarchical algorithm framework, shown in Figure 3.When

making decisions, the RL agent first decides on which option 𝜔 to

use according to the high-level policy (the primitive actions can be

viewed as one-step options), and then decides on the action to take

based on the corresponding intra-option policy 𝜋𝜔 . Note that the

agent does not decide on a new option with the high-level policy

until the current option terminates.

For a multi-agent option𝜔 : < 𝐼𝜔 = {𝑡ℎ𝑒 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 𝑗𝑜𝑖𝑛𝑡 𝑠𝑡𝑎𝑡𝑒𝑠},
𝜋𝜔 = (𝜋1𝜔 , · · · , 𝜋𝑛𝜔 ), 𝛽𝜔 = {(𝑠1, · · · , 𝑠𝑛)} >, it can be adopted ei-

ther in a decentralized or centralized way. As shown by the purple

arrows in Figure 3, the agents choose their own options indepen-

dently, and they may choose different options to execute in the

meantime. In this case, if agent 𝑖 selects option 𝜔 , it will execute 𝜋𝑖𝜔
until it reaches its termination state 𝑠𝑖 or an unknown individual

state. On the other hand, we can force the agents to execute the

same multi-agent option simultaneously. To realize this, as shown

by the blue arrows in Figure 3, we view the 𝑛 agents as a whole,

which takes the joint state as the input and chooses primitive ac-

tions or the same multi-agent option to execute at a time. Once a

multi-agent option 𝜔 is chosen, agent 1 : 𝑛 will execute 𝜋1:𝑛𝜔 until

they reach the termination joint state (𝑠1, · · · , 𝑠𝑛) or an unexplored

joint state. We note that if there are𝑚 primitive actions and 𝑘 multi-

agent options, the size of the search space would be (𝑚 + 𝑘)𝑛 for

the decentralized approach and𝑚𝑛 +𝑘 for the centralized approach.

Therefore, the decentralized way is more flexible but has a larger

search space. While, the centralized way fails to consider all the

possible solutions but makes it easier for the agents to visit the

sub-goal joint states, since the agents simultaneously select the

same joint option which will not terminate until the agents arrive

at a sub-goal state. In this paper, we use Independent Q-Learning

(adopting Q-Learning to each individual agent) [23] to train the

decentralized high-level policy, and Centralised Q-Learning (view-

ing the 𝑛 agents as a whole and adopting Q-Learning to this joint

agent) to train the centralised high-level policy. We will present the

comparisons between these two ways in Section 5.

Further, we note that the centralized high-level policy may not

be applicable when the number of agents 𝑛 is large, since both

the input space and output space will grow exponentially with 𝑛.

However, in practice, a multi-agent task can usually be divided into

some sub-tasks, each of which can be completed by a sub-group of

the agents. For each sub-group, we can learn a list of multi-agent

options, and then the agents within this group can make use of

these options in a decentralized or centralized way as mentioned

above. If there is no way to divide the (identical) agents based on

sub-tasks, we can still group them randomly to a list of two-agent

or three-agent sub-groups. Agents within the same sub-group will

co-explore their joint state space using the algorithm framework

shown as Figure 3. In Section 5, we show that the adoption of

Figure 3: Hierarchical algorithm framework: When making
decisions, the agent first decides on which option 𝜔 to use
according to the high-level policy, and then decides on the
primitive action to take based on the corresponding intra-
option policy 𝜋𝜔 . The agents can decide on their options in-
dependently (the left side) or jointly (the right side).

(a) two-room (b) four-room

(c) four-room with grouping

Figure 4: Simulators for Evaluation

grouping techniques can not only accelerate the exploration but

also can greatly improve the scalability of our algorithm.

5 EVALUATION AND RESULTS
5.1 Simulation Setup
As shown in Figure 4, the proposed approach is evaluated using

three different settings. (1) Two-room task: two agents (the trian-

gles) must reach the goal area (the circles) at the same time to com-

plete this task, and they can’t get through the walls (the squares). (2)

Four-room task: 𝑛 (2∼8) agents must reach the goal area at the same

time to complete this task. (3) Four-room with grouping task: there

are𝑚 groups of agents, and each group contains 𝑛 agents. Each

group of agents has a special goal area. As shown in Figure 4(c), the

agents and their related goal area are labeled with the same color.

Note that all the𝑚×𝑛 agents should get to their related areas at the
same time to complete this task, and the agents don’t know which

goal area is related to them at first. For all the three tasks, different

agents can share the same grid, and only when the agents complete



Algorithm 1Multi-agent Covering Option Discovery

1: Input: number of agents 𝑛, list of adjacency matrices 𝐴1:𝑛 , number of options to generate 𝑡𝑜𝑡_𝑛𝑢𝑚

2: Output: list of multi-agent options Ω
3: Ω ← ∅, 𝑐𝑢𝑟_𝑛𝑢𝑚 ← 0

4: while 𝑐𝑢𝑟_𝑛𝑢𝑚 < 𝑡𝑜𝑡_𝑛𝑢𝑚 do
5: Collect the degree list of each individual state transition graph 𝐷1:𝑛 according to 𝐴1:𝑛

6: Obtain the list of normalized laplacian matrices L1:𝑛 corresponding to 𝐴1:𝑛

7: Calculate the eigenvalues𝑈𝑖 and corresponding eigenvectors 𝑉𝑖 for each L𝑖 and collect them as𝑈1:𝑛 and 𝑉1:𝑛
8: Obtain the Fielder vector 𝐹 of the joint state space using THEOREM 4.1 based on 𝐷1:𝑛 ,𝑈1:𝑛 and 𝑉1:𝑛
9: Collect the list of joint states corresponding to the minimum or maximum in 𝐹 , named𝑀𝐼𝑁 and𝑀𝐴𝑋 respectively

10: Convert each joint state 𝑠 𝑗𝑜𝑖𝑛𝑡 in𝑀𝐼𝑁 and𝑀𝐴𝑋 to (𝑠1, · · · , 𝑠𝑛), where 𝑠𝑖 is the corresponding individual state of agent 𝑖 , based on

the equation:𝑖𝑛𝑑 (𝑠 𝑗𝑜𝑖𝑛𝑡 ) = ((𝑖𝑛𝑑 (𝑠1) ∗ 𝑑𝑖𝑚(𝐴2) + 𝑖𝑛𝑑 (𝑠2)) ∗ 𝑑𝑖𝑚𝐴3
+ · · · + 𝑖𝑛𝑑 (𝑠𝑛−1)) ∗ 𝑑𝑖𝑚(𝐴𝑛) + 𝑖𝑛𝑑 (𝑠𝑛), where 𝑑𝑖𝑚(𝐴𝑖 ) is the

dimension of 𝐴𝑖 , 𝑖𝑛𝑑 (𝑠𝑖 ) is the index of 𝑠𝑖 (indexed from 0) in the individual state space of agent 𝑖

11: Generate a new list of options Ω′ through Algorithm 2

12: Ω ← Ω ∪ Ω′, 𝑐𝑢𝑟_𝑛𝑢𝑚 ← 𝑐𝑢𝑟_𝑛𝑢𝑚 + 𝑙𝑒𝑛(Ω′)
13: Update 𝐴1:𝑛 through Algorithm 3

14: end while
15: Return Ω

Algorithm 2 Generate Multi-agent Options

1: Input:𝑀𝐼𝑁,𝑀𝐴𝑋 : list of joint states corresponding to the minimum or maximum in the Fielder vector

2: Output: list of multi-agent options Ω′

3: Ω′ ← ∅
4: for 𝑠 = (𝑠1, · · · , 𝑠𝑛) in (𝑀𝐼𝑁 ∪𝑀𝐴𝑋 ) do
5: Define the initiation set 𝐼𝜔 as the joint states in the known region of the joint state space

6: Define the termination condition: 𝛽𝜔 (𝑠𝑐𝑢𝑟 ) ←
{
1 𝑖 𝑓 (𝑠𝑐𝑢𝑟 == 𝑠) 𝑜𝑟 (𝑠𝑐𝑢𝑟 𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, where 𝑠𝑐𝑢𝑟 is the current joint state

7: Train the intra-option policy 𝜋𝜔 = (𝜋1𝜔 , · · · , 𝜋𝑛𝜔 ), where 𝜋𝑖𝜔 maps the individual state of agent 𝑖 to its action aiming at leading

agent 𝑖 from any state in its initiation set to its termination state 𝑠𝑖
8: Ω′ ← Ω′ ∪ {< 𝐼𝜔 , 𝜋𝜔 , 𝛽𝜔 >}
9: end for
10: Return Ω′

Algorithm 3 Update Adjacency Matrices

1: Given: list of adjacency matrices 𝐴1:𝑛 , list of joint states corre-

sponding to the minimum or maximum in the Fielder vector

𝑀𝐼𝑁,𝑀𝐴𝑋

2: for 𝑠𝑚𝑖𝑛 = (𝑠1
𝑚𝑖𝑛

, · · · , 𝑠𝑛
𝑚𝑖𝑛
) in𝑀𝐼𝑁 do

3: for 𝑠𝑚𝑎𝑥 = (𝑠1𝑚𝑎𝑥 , · · · , 𝑠𝑛𝑚𝑎𝑥 ) in𝑀𝐴𝑋 do
4: for 𝑖 = 1 to 𝑛 do
5: 𝐴𝑖 [𝑖𝑛𝑑 (𝑠𝑖𝑚𝑖𝑛)] [𝑖𝑛𝑑 (𝑠

𝑖
𝑚𝑎𝑥 )] = 1

6: 𝐴𝑖 [𝑖𝑛𝑑 (𝑠𝑖𝑚𝑎𝑥 )] [𝑖𝑛𝑑 (𝑠𝑖𝑚𝑖𝑛)] = 1

7: end for
8: end for
9: end for

the task can they receive a reward signal 𝑟 = 1.0, which is shared

by all the agents; otherwise, they will receive 𝑟 = 0.0. Hence, the

joint reward function is very sparse, and will become more sparse

as the number of agents grows. We use the episodic cumulative

reward as the metric, which is defined as:

∑𝑙
𝑖=0 𝜆

𝑖𝑟 , where 𝜆 = 0.99,

and 𝑙 ≤ 200 is the length of each episode.

We compare our approach – agents with multi-agent options,

with two baselines: (1) Agents with single-agent options: we con-

struct covering options for each agent based on their individual

state spaces, and then utilize these options in MARL with the frame-

work shown as Figure 3. We use the SOTA option discovery method

proposed in [9]. Also, we extend the initiation set of each single-

agent option to the known area to increase their accessibility, like

what we do with multi-agent options. (2) Agents without options:

we adopt MARL algorithms directly on the evaluation tasks. The

multi-agent options are constructed to improve the joint explo-

ration of all the agents within the scenario (or a sub-group), which

is expected to have superior performance than the baselines. To

confirm the fairness, we set the number of single-agent options and

multi-agent options for each agent to select as the same.

There are two kinds of policies in Figure 3: the high-level policy

for selecting among options, and the low-level policy for selecting

among primitive actions. We evaluate the performance of agents

with multi-agent options using five different algorithms as the high-

level policy: random policy, Independent Q-Learning, Distributed

Q-Learning [10] (each agent decides on their own option based on

the joint state), Centralized Q-Learning and Centralized Q-Learning



Algorithm Input Output How to utilize multi-agent options

Random – Individual action Decentralized

Independent Q-Learning [23] Individual state Individual action Decentralized

Distributed Q-Learning [10] Joint state Individual action Decentralized

Centralized Q-Learning Joint state Joint action Decentralized

Centralized Q-Learning + Force Joint state Joint action Centralized

Table 1: Comparisons among different high-level policy algorithms

(a) four-room with 2 agents (b) four-room with 3 agents

(c) four-room with 4 agents (d) four-room with 5 agents

Figure 5: Evaluation on 𝑛-agent four-room tasks, using In-
dependent Q-Learning as the high-level policy. The perfor-
mance improvement of our approach aremore andmore sig-
nificant as the number of agents increases.

+ Force, to make sure that the performance improvement is not spe-

cific to a certain algorithm. Table 1 shows the comparisons among

these algorithms. For “Centralized Q-Learning", agents can choose

different options to execute simultaneously, while for “Centralized

Q-Learning + Force" agents are forced to choose the same multi-

agent option at a time. As for the low-level policy, we adopt Value

Iteration [21] to find the optimal path between each pair of initia-

tion and termination state for each agent 𝑖 as 𝜋𝑖𝜔 . Compared with

Baseline (1), our approach does not require extra cost for learning

the low-level policy, since the number of single-agent options and

multi-agent options are the same for each agent.

5.2 Main Results
For each experiment in this section, we present comparisons among

the performance of agents with multi-agent options (the blue line),

agents with single-agent options (the red line) and agents without

options (the orange line). We run each experiment for five times

and plot the change of the mean value and standard deviation of

the cumulative reward during the training process (1000 episodes).

Two-room task & Two-agent four-room task: As shown in

Appendix B.1 and B.2, we present comparisons on two simpler tasks:

two-room task and two-agent four-room task respectively. It can be

(a) four-room with 2×2 agents (b) four-room with 3×2 agents

(c) four-room with 2×2 agents (d) four-room with 3×2 agents

Figure 6: Comparisons on the 𝑚 × 𝑛 four-room tasks: (a)-
(b) Independent Q-Learning; (c)-(d) Centralized Q-Learning
+ Force. Agents with pairwise options can learn these
tasks much faster than the baselines, even when both the
baselines fail on the 3 × 2 four-room task. Also, agents
trainedwith CentralizedQ-Learning + Force have faster con-
vergence speed and higher convergence value than those
trained with Independent Q-Learning.

observed that for both tasks, no matter which algorithm we adopt

as the high-level policy, agents with multi-agent options can con-

verge faster than the baselines. However, when using Independent

Q-Learning to train the high-level policy, the performance of our

approach and the baselines are very close. Thus, in the follow-up

experiments, we compare these approaches on more challenging

tasks with Independent Q-Learning as the high-level policy to see

if there will be more significant performance increase for our pro-

posed method. Also, we will adopt Centralized Q-Learning + Force

to train the high-level policy in the following experiments, to com-

pare the two manners (decentralized or centralized) to utilize the

multi-agent options.

𝑁 -agent four-room task: In Figure 5, we test these methods on

𝑛-agent four-room tasks (𝑛 = 2 ∼ 5), using Independent Q-learning

as the high-level policy. We can observe that the performance im-

provement brought by our approach are more and more significant

as the number of agents increases. When 𝑛 = 5, both the baselines

fail to complete the task, while agents with five-agent options can



converge within ∼ 200 episodes. On the other hand, in Appendix

B.3, we show the results of using Centralized Q-Learning + Force as

the high-level policy on the same tasks. We can see that the central-

ized way to utilize the 𝑛-agent options leads to faster convergence,

since the joint output space of the agents is pruned.

Four-room taskwith sub-task grouping: The size of the joint
state space and output space grows exponentially with the number

of agents, making it infeasible to directly construct 𝑛-agent options

and adopt Centralized Q-Learning for a large𝑛. However, in real-life

scenarios, a multi-agent task can usually be divided into sub-tasks,

and the agents can be divided into sub-groups based on the sub-

tasks they are responsible for. Thus, we test our proposed method

on the𝑚×𝑛 four-room tasks shown as Figure 4(c), where we divide

the agents into 𝑚 sub-groups, each of which contains 𝑛 agents

with the same goal area. Figure 6 shows comparisons between our

method and the baselines on 𝑚 × 𝑛 four-room tasks. Note that,

in the 2 × 2 (3 × 2) four-room task, we use two-agent (pairwise)

options rather than four-agent (six-agent) options, and when using

Centralized Q-Learning + Force, we only use the joint state space

of the two agents as input to decide on their joint option choice. We

can see that agents with pairwise options can learn to complete the

tasks much faster than the baselines (e.g., improved by about two

orders of magnitude in the 2 × 2 four-room task), even when both

the baselines fail to complete the 3× 2 four-room task. Also, we see

that agents trained with Centralized Q-Learning + Force (Figure

6(c)-6(d)) have faster convergence speed and higher convergence

value compared to training with Independent Q-Learning (Figure

6(a)-6(b)).

Four-room task with random grouping: Further, we note

that our method also works with random grouping when sub-task

grouping may not work. The intuition is that adopting two-agent

or three-agent options can encourage the joint exploration of the

agents in small sub-groups, which can increase the overall perfor-

mance compared with only utilizing single-agent explorations. As

shown in Figure 7, we compare the performance of agents with pair-

wise options, single-agent options and no options on the 𝑛-agent

four-room tasks (𝑛 = 4, 6, 8). We can observe that when 𝑛 = 6 𝑜𝑟 8,

agents with single-agent options or no options can’t complete this

task, while we can get a significant performance improvement with

only pairwise options. On the other hand, agents with pairwise

options can’t complete the most challenging eight-agent four-room

task, if we use Independent Q-Learning to train the high-level policy,

shown as Figure 7(c). However, if we adopt Centralized Q-Learning

+ Force, agents with pairwise options can still complete this chal-

lenging task with satisfaction, shown as Figure 7(f). Further, in

Appendix B.4, we show how the performance of agents with pair-

wise options would change with the number of options, based on

the six-agent and eight-agent four-room tasks.

Four-room task with random grouping and dynamic in-
fluences among agents: Finally, we show that even if in environ-

ments where an agent’s state transitions can be strongly influenced

by the others, we can still obtain good approximations of the multi-

agent options to encourage joint exploration using THEOREM 4.1.

For this new setting, we make some modifications based on the

𝑛-agent four-room task – different agents cannot share the same

grid so that an agent may be blocked by others when moving ahead,

and this influence is dynamic. We use the Centralized Q-Learning

+ Force as the high-level policy, of which the results are shown as

Figure 8. We can see that although this modification affects the

performance of agents with single-agent options, we can still get

significant performance improvement using the pairwise options.

We present the numeric results of all the experiments in tabular

in Appendix B.5, which show that agents with multi-agent options

outperform the baselines in ALL the multi-agent tasks in terms of

faster exploration and higher cumulative rewards.

6 CONCLUSION
In this paper, we propose to approximate the joint state space in

MARL as a kronecker graph and estimate its Fiedler vector using

the Laplacian spectrum of the individual agents’ state transition

graphs. Based on the approximation of the Fiedler vector, multi-

agent covering options are constructed, containing multiple agents’

temporal action sequence towards the sub-goal joint states which

are usually infrequently visited, so as to accelerate the joint explo-

ration in the environment. Further, we propose algorithms to adopt

these multi-agent options in MARL, using centralized, decentral-

ized, and group-based strategies, respectively. We show through

evaluation results that agents with multi-agent options have supe-

rior performance than agents relying on single-agent options or

no options in three different multi-agent tasks. Future works will

focus on scaling our algorithm for real-life applications with SOTA

representation learning and deep learning techniques.



(a) four-room with 4 agents (b) four-room with 6 agents (c) four-room with 8 agents

(d) four-room with 4 agents (e) four-room with 6 agents (f) four-room with 8 agents

Figure 7: Comparisons on the 𝑛-agent four-room tasks: (a)-(c) Independent Q-Learning; (d)-(f) Centralized Q-Learning + Force.
When 𝑛-agent options are not available, we can still get a significant performance improvement with only pairwise options.
Adopting Centralized Q-Learning + Force within these sub-groups can further improve the convergence speed and value, com-
pared with adopting Independent Q-Learning, e.g., when 𝑛 = 6, the cumulative reward is improved by ∼ 100%.

(a) four-room with 4 agents (b) four-room with 6 agents (c) four-room with 8 agents

Figure 8: Comparisons on the 𝑛-agent four-room tasks where agent’s state transitions can be influenced by the others, using
Centralized Q-Learning + Force as the high-level policy. On this setting, we can still obtain good approximations of the multi-
agent options based on the theory introduced in Section 4.2 and use them to get superior performance.
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A SUPPLEMENT MATERIALS FOR THE PROPOSED ALGORITHM
A.1 Proof of THEOREM 4.1
For convenience, we use 𝐺𝑖 to represent the 𝑖-th factor graph and its adjacency matrix. Also, we denote the number of nodes in 𝐺𝑖 as 𝐾𝑖 and

an identity matrix with 𝐾𝑖 diagonal elements as 𝐼𝐾𝑖
.

Proof. The normalized laplacian matrix of the kronecker product of 𝑛 factor graphs ⊗𝑛
𝑖=1
𝐺𝑖 can be written as:

L⊗𝑛
𝑖=1
𝐺𝑖

= ⊗𝑛
𝑖=1
𝐼𝐾𝑖
− (⊗𝑛

𝑖=1
𝐷
− 1

2

𝐺𝑖
) (⊗𝑛

𝑖=1
𝐺𝑖 ) (⊗𝑛𝑖=1𝐷

− 1

2

𝐺𝑖
) . (8)

Using the property of the kronecker product of matrices, (𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷 , we can obtain that:

L⊗𝑛
𝑖=1
𝐺𝑖

= ⊗𝑛𝑖=1𝐼𝐾𝑖
− ⊗𝑛𝑖=1 (𝐷

− 1

2

𝐺𝑖
𝐺𝑖𝐷

− 1

2

𝐺𝑖
)

= ⊗𝑛𝑖=1𝐼𝐾𝑖
− ⊗𝑛𝑖=1 (𝐼𝐾𝑖

− L𝐺𝑖
) .

(9)

Let {𝜆𝐺1

𝑘1
}, {𝜆𝐺2

𝑘2
}, . . . , {𝜆𝐺𝑛

𝑘𝑛
} be the eigenvalues of matrices L𝐺1

,L𝐺2
, . . . ,L𝐺𝑛

, with the corresponding orthonormal eigenvectors {𝑣𝐺1

𝑘1
},

{𝑣𝐺2

𝑘2
}, . . . , {𝑣𝐺𝑛

𝑘𝑛
}, where 𝑘𝑖 = 1, 2, . . . , 𝐾𝑖 . Also, denote the diagonal matrices, whose diagonal elements are the values {1 − 𝜆𝐺1

𝑘1
}, {1 −

𝜆
𝐺2

𝑘2
}, . . . , {1 − 𝜆𝐺𝑛

𝑘𝑛
}, as Λ𝐺1

,Λ𝐺2
, . . . ,Λ𝐺𝑛

, and the square matrices containing the eigenvectors {𝑣𝐺1

𝑘1
}, {𝑣𝐺2

𝑘2
}, . . . , {𝑣𝐺𝑛

𝑘𝑛
} as the column

vectors as 𝑉𝐺1
,𝑉𝐺2

, . . . ,𝑉𝐺𝑛
. Using the spectral decomposition of the matrix 𝐼𝐾𝑖

− L𝐺𝑖
(𝑖 = 1, . . . , 𝑛), we can obtain that:

L⊗𝑛
𝑖=1
𝐺𝑖

= ⊗𝑛𝑖=1𝐼𝐾𝑖
− ⊗𝑛𝑖=1 (𝑉𝐺𝑖

Λ𝐺𝑖
𝑉𝑇𝐺𝑖
)

= ⊗𝑛𝑖=1𝐼𝐾𝑖
− (⊗𝑛𝑖=1𝑉𝐺𝑖

) (⊗𝑛𝑖=1Λ𝐺𝑖
) (⊗𝑛𝑖=1𝑉𝐺𝑖

)𝑇

= (⊗𝑛𝑖=1𝑉𝐺𝑖
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− ⊗𝑛𝑖=1Λ𝐺𝑖
) (⊗𝑛𝑖=1𝑉𝐺𝑖

)𝑇 ,

(10)

since ⊗𝑛
𝑖=1
𝐼𝐾𝑖

= ⊗𝑛
𝑖=1
[(𝑉𝐺𝑖

) (𝑉𝐺𝑖
)𝑇 ] = (⊗𝑛

𝑖=1
𝑉𝐺𝑖
) (⊗𝑛

𝑖=1
𝑉𝐺𝑖
)𝑇 . This implies that L⊗𝑛

𝑖=1
𝐺𝑖

has eigenvalues {[1 −∏𝑛
𝑖=1 (1 − 𝜆

𝐺𝑖

𝑘𝑖
)]} and corre-

sponding eigenvectors {⊗𝑛
𝑖=1
𝑣
𝐺𝑖

𝑘𝑖
}.

Then, we let Λ = ⊗𝑛
𝑖=1
𝐼𝐾𝑖
− ⊗𝑛

𝑖=1
Λ𝐺𝑖

and 𝐷 = ⊗𝑛
𝑖=1
𝐷𝐺𝑖

. Since the normalized Laplacian could be expressed in terms of Laplacian matrix as

L = 𝐷−
1

2 𝐿𝐷−
1
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𝑖=1
𝐺𝑖
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2 (⊗𝑛
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2
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𝑉𝐺𝑖
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𝐷
1

2

𝐺𝑖
, for

𝑖 = 1, 2, . . . , 𝑛, we can derive that:
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After applying the same assumption again, we finally obtain that:

𝐿⊗𝑛
𝑖=1
𝐺𝑖
(⊗𝑛𝑖=1𝑉𝐺𝑖

) ≈ (𝐷Λ) (⊗𝑛𝑖=1𝑉𝐺𝑖
) . (12)

Based on Equation (12), we can get an approximation of the Laplacian spectrum, including the eigenvalues and corresponding eigenvectors,

of the kronecker product of 𝑛 factor graphs, shown as THEOREM 4.1.

Next, we will prove that the estimated eigenvalues 𝜇𝑘1𝑘2,...,𝑘𝑛 in THEOREM 4.1 are non-negative. It is obvious that 𝑑
𝐺𝑖

𝑘𝑖
and

∏𝑛
𝑖=1 𝑑

𝐺𝑖

𝑘𝑖
are

non-negative. Then, we need to prove [1 −∏𝑛
𝑖=1 (1 − 𝜆

𝐺𝑖

𝑘𝑖
)] is non-negative. We know that if 𝜆 is an eigenvalue of a normalized Laplacian

matrix, we can get 0 ≤ 𝜆 ≤ 2. Hence, −1 ≤ 1 − 𝜆𝐺𝑖

𝑘𝑖
≤ 1, for 𝑖 = 1, 2, . . . , 𝑛. Based on this, we can get that

���∏𝑛
𝑖=1 (1 − 𝜆

𝐺𝑖

𝑘𝑖
)
��� ≤ 1 and thus

[1 −∏𝑛
𝑖=1 (1 − 𝜆

𝐺𝑖

𝑘𝑖
)] is non-negative. □



A.2 Finding the Fiedler vector for the illustrative example shown in Figure 1(a)
(1) Compute the normalized Laplacian matrix of 𝐺1 and 𝐺2, namely L1 and L2:

L1 =

[
1 −1
−1 1

]
, L2 =


1 − 1√

2

0 0

− 1√
2

1 − 1

2
0

0 − 1

2
1 − 1√

2

0 0 − 1√
2

1


. (13)

(2) Compute the eigenvalues and eigenvectors of L1 and L2:

𝜆
𝐺1

1
= 0, 𝜆

𝐺1

2
= 2, 𝑣

𝐺1

1:2
=

1

√
2

[ [
1

1

]
,

[
−1
1

] ]
. (14)

𝜆
𝐺2

1
= 0, 𝜆

𝐺2

2
= 0.5, 𝜆

𝐺2

3
= 1.5, 𝜆

𝐺2

4
= 2, 𝑣

𝐺2

1:4
=

1

√
3




1√
2

1

1

1√
2


,


−1
− 1√

2

1√
2

1


,


1

− 1√
2

− 1√
2

1


,


1√
2

−1
1

− 1√
2



. (15)

(3) Compute the degree list of 𝐺1 and 𝐺2 (sorted in ascending order), namely 𝑑𝐺1
and 𝑑𝐺2

:

𝑑𝐺1 = [1, 1]𝑇 , 𝑑𝐺2 = [1, 1, 2, 2]𝑇 . (16)

(4) According to THEOREM 4.1, we can get two approximations of the Fiedler vector:

𝑣11 = 𝑣
𝐺1

1
⊗ 𝑣𝐺2

2
=

1

√
6

[
1

√
2

, 1, 1,
1

√
2

,
1

√
2

, 1, 1,
1

√
2

]𝑇
, (17)

𝑣24 = 𝑣
𝐺1

2
⊗ 𝑣𝐺2

4
=

1

√
6

[
− 1

√
2

, 1, −1, 1

√
2

,
1

√
2

, −1, 1, − 1

√
2

]𝑇
. (18)

B SUPPLEMENT MATERIALS FOR THE EVALUATION PART
B.1 Evaluation results on the two-room task

(a) Random (b) Independent Q-Learning (c) Distributed Q-Learning

(d) Centralized Q-Learning (e) Centralized Q-Learning + Force

Figure 9: Comparisons on the two-room task: (a)-(e) show the results of using different algorithms as the high-level policy. No
matter which algorithm we adopt, the agents with multi-agent options can converge faster than the baselines.



B.2 Evaluation results on the two-agent four-room task

(a) Random (b) Independent Q-Learning (c) Distributed Q-Learning

(d) Centralized Q-Learning (e) Centralized Q-Learning + Force

Figure 10: Comparisons on the two-agent four-room task: (a)-(e) show the results of using different algorithms as the high-
level policy. No matter which algorithm we adopt, agents with multi-agent options can converge faster than the baselines.
Also, shown as (a)(d)(e), our approach converges to a higher cumulative reward.

B.3 Comparisons on n-agent four-room tasks using Centralized Q-Learning + Force

(a) four-room with 3 agents (b) four-room with 4 agents (c) four-room with 5 agents

Figure 11: Comparisons on a serious of four-room tasks: (a)-(c) show the results of using Centralized Q-Learning + Force as
the high-level policy. Agents with single-agent options start to fail since the 3-agent case. Compared with the results of using
decentralized way shown in Figure 5, the centralized way to utilize the 𝑛-agent options leads to faster convergence.

Note that when the number of agents is three, the agents with single-agent options already fail to complete the four-room task. We

don’t include the results of agents with single-agent options in Figure 11(b)-11(c), because it takes a tremendously long time to run those

experiments and it can be predicted that the results will be the same as Figure 11(a).

B.4 Performance change with the number of options on six-agent and eight-agent four-room tasks
As shown in Figure 12 (the orange line: number of steps to complete the task; the blue line: episodic cumulative reward), if we increase the

number of options, the performance of agents with pairwise options and using Centralized Q-Learning + Force as the high-level policy can

be improved further. While, if using the Independent Q-Learning as the high-level policy, the agents’ performance would go worse as the

number of options increase. The reason is that, as mentioned in Section 4.4, the joint output space of the agents will grow exponentially with

the number of options if we utilize the multi-agent options in a decentralized way. In contrast, the size of the joint output space is linear

with the number of options when we use the multi-agent options in a centralized manner.



(a) Independent Q-Learning (b) Centralized Q-Learning + Force

(c) Independent Q-Learning (d) Centralized Q-Learning + Force

Figure 12: Performance change of the agents with pairwise options as the number of options increase: (a)-(b) six-agent four-
room task; (c)-(d): eight-agent four-room task.

B.5 Numeric results of the experiments
In this section, we show the numeric results of our experiments in tabular with the following notations. IQL: Independent Q-Learning, DistQ:

Distributed Q-Learning, CentQ: Centralized Q-Learning, CentQ+Force: Centralized Q-Learning + Force, Value: the mean of the episodic

cumulative reward during the training process, Step: the mean of the number of steps to complete the task during the training process,

Multiple: multi-agent options, Single: single-agent options.

Three-agent four-room task Four-agent four-room task Five-agent four-room task

IQL Value Step IQL Value Step IQL Value Step

Multiple 0.790 27.96 Multiple 0.716 42.95 Multiple 0.674 50.83
Single 0.705 43.94 Single 0.386 115.1 Single 0.002 199.6

No options 0.038 191.7 No options 0.0 200.0 No options 0.0 200.0

CentQ+Force Value Step CentQ+Force Value Step CentQ+Force Value Step

Multiple 0.852 16.73 Multiple 0.829 20.25 Multiple 0.769 32.47
Single 0.0 200.0 Single – – Single – –

No options 0.0 200.0 No options 0.0 200.0 No options 0.0 200.0

Table 2: Numeric results on the 𝑛-agent four-room tasks

2 × 2 four-room task 3 × 2 four-room task

IQL Value Step IQL Value Step

Multiple 0.782 28.66 Multiple 0.504 89.34
Single 0.398 111.2 Single 0.0 200.0

No options 0.0 200.0 No options 0.0 200.0

CentQ+Force Value Step CentQ+Force Value Step

Multiple 0.853 16.17 Multiple 0.809 23.25
Single 0.614 67.33 Single 0.0 200.0

No options 0.0 200.0 No options 0.0 200.0

Table 3: Numeric results on the𝑚 × 𝑛 four-room tasks



Two-agent two-room task Two-agent four-room task

Random Value Step Random Value Step

Multiple 0.609 57.58 Multiple 0.496 83.98
Single 0.344 119.1 Single 0.045 189.5

No options 0.004 199.3 No options 0.010 197.9

IQL Value Step IQL Value Step

Multiple 0.828 18.90 Multiple 0.842 17.66
Single 0.783 25.51 Single 0.685 44.48

No options 0.693 49.18 No options 0.827 23.46

DistQ Value Step DistQ Value Step

Multiple 0.844 16.89 Multiple 0.883 12.58
Single 0.832 19.57 Single 0.686 52.92

No options 0.0 200.0 No options 0.174 162.7

CentQ Value Step CentQ Value Step

Multiple 0.800 25.29 Multiple 0.627 66.05
Single 0.589 70.81 Single 0.402 113.7

No options 0.0 200.0 No options 0.0 200.0

CentQ+Force Value Step CentQ+Force Value Step

Multiple 0.811 21.06 Multiple 0.867 14.37
Single 0.757 32.80 Single 0.743 36.81

No options 0.0 200.0 No options 0.0 200.0

Table 4: Numeric results on the two-room task and two-agent four-room task

Four-agent four-room task Six-agent four-room task Eight-agent four-room task

IQL Value Step IQL Value Step IQL Value Step

Multiple 0.774 30.82 Multiple 0.329 126.0 Multiple 0.0 200.0

Single 0.427 105.5 Single 0.0 200.0 Single 0.0 200.0

No options 0.095 179.0 No options 0.0 200.0 No options 0.0 200.0

CentQ+Force Value Step CentQ+Force Value Step CentQ+Force Value Step

Multiple 0.842 17.96 Multiple 0.753 31.82 Multiple 0.605 64.90
Single 0.447 102.3 Single 0.0 200.0 Single 0.0 200.0

No options 0.0 200.0 No options 0.0 200.0 No options 0.0 200.0

Table 5: Numeric results on the 𝑛-agent four-room tasks with random grouping

Four-agent four-room task Six-agent four-room task Eight-agent four-room task

CentQ+Force Value Step CentQ+Force Value Step CentQ+Force Value Step

Multiple 0.835 18.90 Multiple 0.784 27.40 Multiple 0.717 39.52
Single 0.351 122.3 Single 0.0 200.0 Single 0.0 200.0

No options 0.0 200.0 No options 0.0 200.0 No options 0.0 200.0

Table 6: Numeric results on the 𝑛-agent four-room tasks with random grouping and dynamic influence among the agents
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