Hecate: Automated Customization of Program and
Communication Features to Reduce Attack Surfaces

Hongfa Xue, Yurong Chen, Guru Venkataramani, and Tian Lan

The George Washington University
{hongfaxue, gabrielchen, guruv, tlan}@gwu.edu

Abstract. Customizing program and communication features is a com-
monly adopted strategy to counter security threats that arise from rapid
inflation of software features. In this paper, we propose Hecate, a novel
framework that leverages dynamic execution and trace to create cus-
tomized, self-contained programs, in order to minimize potential attack
surface. It automatically identifies program features (i.e., independent,
well-contained operations, utilities, or capabilities) relating to applica-
tion binaries and their communication functions, tailors and eliminates
the features to create customized program binaries in accordance with
user needs, in a fully unsupervised fashion. Hecate makes novel use of
deep learning to identify program features and their constituent functions
by mapping dynamic instruction trace to functions in the binaries. It en-
ables us to modularize program features and efficiently create customized
program binaries at large scale. We implement a prototype of Hecate
using a number of open source tools such as DynInst and TensorFlow.
Evaluation using real-world executables including OpenSSL and Libre-
Office demonstrates that Hecate can create a wide range of customized
binaries for diverse feature requirements, with the highest accuracy up
to 96.28% for feature/function identification and up to 67% reduction of
program attack surface.

Keywords: Program customization- Deep learning - Binary analysis.

1 Introduction

Feature creep, referring to the ongoing expansion and addition of new features
(e.g., excessive capabilities and utilities) in communication protocols and pro-
grams [8], leads to not only software system bloat, but also an increased attack
surface with higher possibility of vulnerabilities and exploitation. A number of
proposals have been made to identify redundant features and to enable cus-
tomization through static code analysis techniques such as [32, 26, 15].

In this paper, we propose Hecate, a framework that leverages dynamic exe-
cution and trace to create customized, self-contained programs to minimize the
corresponding attack surface. A key feature of Hecate is that it makes novel
use of deep learning to identify program and communication-related features in
binary in an automated fashion. It employs the test-cases to invoke different
program features, applies trace splicing to extract dynamic execution paths (of
invoked features) from the complete instruction trace, maps the paths to owner
functions in the binary code, finally identifies program features (as targets for

2 Xue et al.

customization) through their constituent functions. We note that this is a chal-
lenging problem, since full symbol or debug information is often not available
in optimized and obfuscated binaries, while static analysis techniques such as
execution path alignment [14] cannot easily achieve scalability and accuracy.
Hecate addresses the challenge by leveraging deep learning. In particular, we
consider this mapping from execution path trace to their onwer funcsions as a
multi-class classification problem, where each function is considered as a class
label, the function’s binary code as samples of the class, and an execution path
extracted from dynamic instruction trace as the testing sample. Thus, we em-
ploy Recursive Neural Network (RNN) to obtain binary code vector embeddings
at lexical level and train a multi-class Convolutional Neural Network (CNN)
classifier to identify the feature-constituent functions. Instead of extracting the
instructions of a limited code fragment, our approach automatically identify var-
ious features in large-scale program binaries with accuracy up to 96.28%, in a
fully unsupervised fashion.

Identifying the feature-constituent functions enables us to modularize and
tailor program features, in accordance with user needs. We propose program
customization techniques to tailor program binaries using union, intersection,
and subtraction operations if a target feature combination is not readily available
in the test-cases. The customized program can be viewed as a sub-graph of the
original CFG.

We implement a prototype of Hecate using two major modules: feature
identification and feature tailoring. It leverages several open-source tools and
deep learning algorithms to identify function boundaries and bodies from binary
executable. Evaluation using real-world applications, e.g., OpenSSL [22] and
LibreOffice [17], shows that Hecate achieves an average 92.76 % accuracy for
function mapping and feature identification. It is able to create a wide range
of customized executables and significantly reduces the program size and attack
surface up to 85% and 67.6% respectively.

The main contributions of our work are as follows:

— We propose Hecate, an automated framework for software mass customiza-
tion using only binaries. Provided with test-cases for different features, Hecate
automatically identifies program features and customizes them in accordance
with user needs.

— Hecate leverages deep learning to identify program features in an unsu-
pervised fashion. In particular, it maps dynamic execution paths from the
instruction trace to feature-constituent functions in the executable using a
multi-class CNN classifier, achieving an average 92.76% accuracy.

— We implement a prototype of Hecate using open-source tools, including
ByteWeight [3], RNNLM Toolkit [13], and Tensor-Flow [2]. Evaluation using
real-world applications, such as OpenSSL, shows that Hecate can efficiently
customize large-scale software, and significantly reduce the attack surface by
up to 67%.

2 Hecate Design Overview

Software customization comprises two tasks: (i) identifying program features
from a binary executable by analyzing and mapping dynamic instruction trace

Hecate: Automated Customization of Program and Communication ... 3

|
Dynamic function trace ! Static code segments

Fig.1: An illustrative example of feature identification by mapping dynamic
instruction trace to functions in static code from OpenSSL.

that invokes different features, and (ii) tailoring and rewriting the binary, in
accordance with user needs, to create customized, self-contained programs.

2.1 Challenges

The goal of Hecate’s feature identification is to map dynamic instruction trace
(relating to different features) to feature-constituent functions in binary. Ideally,
it is possible to log the virtual addresses of each executed instruction. Then we
can get the memory layout of each binary module (e.g., through /proc/pid/ma
ps on Linux). With these two pieces of information, we could uniquely map a
dynamic trace back to static code. However, there are some scenarios in practice
where the address is not available. For example, commercial software and op-
erating system are usually slightly obfuscated to deter reverse engineering and
unlicensed use. Further, system and kernel libraries are often optimized to re-
duce disk space requirements[6]. It may be difficult to even locate function entry
points (FEPs) since the full symbol or debug information is usually not avail-
able in optimized binaries [3]. Thus, we have to utilize code patterns to match
dynamic traces. This is a challenging problem because dynamic trace and static
code often have different patterns and cannot be accurately matched through
techniques such as execution path alignment [14]. Consider the example shown in
Figure 1 with dynamic instruction trace and binary code snippet from OpenSSL.
First, as Arrows 1 and 2 indicate, the same basic block from dynamic instruction
trace could have multiple matches in the binary, and cannot be uniquely mapped
to a single function. Second, the same binary instruction can be interpreted into
different verbal presentations, in which case different disassemblers will give dif-
ferent outputs. As Arrow 3 indicates, the binary value 77H can be translated
to the opcode either “ja” (jump above) or “jnbe” (jump not below), causing
direct pattern matching to fail. Further, when loops and recursive function calls
exist in the binary, it is difficult to correctly identify these structures in dynamic
instruction trace. We conducted an experiment using a substring matching ap-
proach to map the opcode pattern between instruction traces and binary code.

4 Xue et al.

] Disassembly | Function | _
[. —]]
l Code I List 1 Binary N Customizef
1 Rewriting Binary "
i
R |
Execution i _
uzzing
Trace — |
User’s race I
: Seg- -
requiremen|
ments
Feature Identification Feature Tailoring

Fig.2: Hecate System Diagram

Examining two applications, bzip2 and OpenSSL, function mapping techbniques
only achieves an average accuracy of 76.31% and 73.02%, respectively.

2.2 Problem Statement

To introduce our problem of software customization, we first need a definition
of what a feature is in binary code.

Definition 1. Function. The term function in this paper particularly refers
to the function identified in static binary code, which is a collection of basic
blocks with one entry point (i.e., the next instruction after a call instruction)
and possibly multiple exit points (i.e., a return or interrupt instruction). All
code reachable from the entry point before reaching any exit point constitutes the
body of the assembly function. For a given program, we use F = {fr, Vk} to
denote the set of all functions existing in the static binary code.

Definition 2. Feature. A program feature is defined as a set of constituent
functions — denoted by F; = {f}, 2, ..., f*} C F — which uniquely represent an
independent, well-contained operation, utility, or capability of the program. A
feature at the binary level may not always correspond to a software module at
the source level. We use T = {F;, Vi} to denote the set of all available features

in the program.

The goal of Hecate is that, given a program binary, test cases invoking
program features, and user’s customization requirement (i.e., a set of desire
features T C T), it will produce a modified binary that contains the minimum
set of functions to satisfy the user’s requirement and to support all desired

features in 7. We perform the customization after abstracting the program into
Control Flow Graph (CFG). From the perspective of CFG, the customized binary
is composed of a CFG that is a subgraph of the original program CFG.

2.3 Approach and System Architecture

Hecate consists of two major modules: feature identification and feature tai-
loring. Its system architecture is illustrated in Figure 2. Users provide their

Hecate: Automated Customization of Program and Communication ... 5

requirements (i.e., a list of features that are needed) as well as test-cases to
reach different features. Hecate takes the program binary and customization
requirement as inputs and generate a customized binary consisting of only the
desired features. For feature identification, Hecate first builds a function library
based on static analysis of program binary, including dynamically linked libraries.
Byteweight, a learning-based binary analysis tool, is employed to identify func-
tion body directly from static program binaries. Next, execute the program using
the test-cases provided, analyze the dynamic instruction trace, extract execution
paths relating to different features (or feature combinations), and maps them to
constituent-functions in the program binary.

The feature tailoring module is explained in section 4. It modularizes program
features through their constituent functions and modifies the program binary in
accordance with user’s customization requirements. The CFG of the customized
program can be viewed as a sub-graph of that of the original program, which is
able to retain the behavior of only the desired features. At last, a fuzzing engine
can be employed to generate inputs and further test the customized binary.

3 Feature Identification

1
JAL 1]
nov xat, rap [a1] !
call 0x7feeb9£d1930 !

1

1

iBL
push rbp e
mov rbp, rsp
push r15

jz 0x7feeb9fdlal2

iB2
mov ptr[rdi+0x2£0], esi
lea rsi, [rip+0x2216d4]

ret

ﬂ

iA2 1
movzx eax,ptr([r8] :
movzx esi, ptr[rbx]

1
lea rex, ptr[r8+0x1] A2 h
sub rax, rsi '
jnz 0x7feebdfeas5d2

Fig. 3: Extracting dynamic execution paths of each individual function through
trace splicing. Boxes stand for basic blocks. A; and A, belong to function A
while By and Bs belong to function B.

Feature Identification uses trace splicing to extract dynamic execution paths
and maps them to owner functions in the binary code, enabling us to identify
program features through their constituent functions. In this paper, we define
an execution path as a sequence of instructions that are executed from a function
entry point to an exit point. The function containing the execution path is known
as the owner function. Our approach leverages deep learning and works in a fully
unsupervised, autonomous fashion.

6 Xue et al.

3.1 Function Recognition

We first construct the pre-image and image of our function mapping, using trace
splicing and deep-learning tools, respectively. The pre-image is defined as the set
of execution paths obtained from dynamic instruction trace, while the image is
defined as the set of functions recognized in static program binaries.

We run the target executable with provided test cases to invoke different
(combinations of) program features, and collect instruction trace to capture the
dynamic execution of the program. The trace is then spliced to extract execution
paths belonging to different functions, which serves as the pre-image of our
function mapping. Consider the illustrative example shown in Figure 3, where a
sequence of 4 basic blocks, Ay, By, Bs, As, are captured in dynamic trace, when
function fp is called inside function f,. Clearly, we cannot directly map the
entire sequence to functions in binary code, because it contains two separate
execution path, belonging to functions f4 and fg, respectively. We employ two
different methods to splice dynamic trace and extract different execution paths:
(1) We track call stack changes together with instruction trace. By recognizing
push and pop operations on the call stack, we can infer function call events, and
slice and associate basic blocks that belong to the same function. (2) From the
instruction trace, instructions that perform function calls and returns will be
recognized and put embedded function calls into different layers.

We remove duplicate basic blocks in execution traces to improve the accuracy
of function mapping. Furthermore, every time a function is invoked, a different
execution path may be traversed inside the function. These execution paths will
be separated and mapped to their owner functions independently, minimizing
the probability of false negative in function mapping. In this paper, we unitize
ByteWeight [3], a learning-based tool that identifies function bodies from binary.

3.2 Function Mapping

In this paper, we leverage deep learning to propose a solution to enable au-
tomated function mapping. model binary instruction sequences using Recursive
Neural Network (RNN). The framework is constructed with two key components.
First, to obtain vector embedding for a given execution path (that consists of
an instruction sequence), we use RNN to map each term in the binary instruc-
tions (e.g., opcodes and operands) to a vector embedding at the lexical level,
resulting in a signature vector for the entire execution path. Second, we consider
the mapping problem as a multi-class classification problem, where each func-
tion is considered as a class label, different execution paths obtained from the
function’s binary code as samples of that class, and an execution path extracted
from dynamic instruction trace as the testing sample. We employ a multi-class
Convolutional Neural Network (CNN) classifier to identify the owner functions
of an arbitrary dynamic instruction trace. Our deep learning approach is inspired
by the related work on source code analysis [24, 30, 25]

Embedding binary code at the lexical level. Consider a disassembly
code corpus from a target program, with m distinct terms (e.g., different opcodes
and operands) across the whole corpus. We use an RNN with n hidden nodes to
convert each term in the code corpus into an embedding vector U € R™*"™. RNN

Hecate: Automated Customization of Program and Communication ... 7

1 push %rbp push
Ot—1 Ot Oty1 Oty Opg3 2 mov %rsp,%rbp
3 sub $0x10,%rsp Yorbp
[[1% [I I 4 lea -0x4(%rbp),%rax -
St—l 5 mov %rax,%rsi
W 6 mov $0x601060,%cdi)
7 callg 400710
U %rbp
8. mov -0x4(%rbp),%eax
mov eax 0x40203f pUSh rbp Instruction Sequence

Fig.4: An illustration of RNN. Fig.5: An Illustration of RAE.

is known as an effective approach for modeling sequential information, such as
sentences in texts or program code. Figure 4 presents the training process of our
RNN model for binary code. The input z; € R™*" at time step t is a one-hot
vector representation corresponding to the current term, e.g., ’eaz’. The hidden
layer state vector, s; € R™, stores the current state of the network at step ¢ and
captures the information that has already been calculated. Specifically, it can be
obtained using the previous hidden state s;_1 at time step t — 1 and the current
input z; at time step t:

St = f(U.’Et + WStfl) (1)

Function f is a nonlinear function, e.g., tanh [12]. U € R™*™ and W € R™*"
are the shared parameters in all time steps.

The output, O; € R™, is a vector of probabilities predicting the distribution
of the next term in the code corpus. It is calculated based on current state vector
along with another shared parameter V € R™*" i.e., :

O = softmax(Vsy) (2)

The parameters {U,V, W} are trained using backpropagation through time
(BPTT) method in our RNN network (We skip the technical details here and
refer readers to [4]). Once RNN training is complete, each term in the code
corpus will have a unique embeddings U from Equation (1), which comprises its
semantic representation cross the corpus. We compute such embeddings U to
represent the terms of binary instructions at lexical level.

Generating signature at the syntax level. We use Autoencoder to com-
bine embeddings U € R™ of the terms from multiple instructions and to obtain
a signature vector for a given execution path. Autoencoder is widely used to
generate vector space representations for a pairwise composed term with two
phases: encode phase and decode phase. It is a simple neural network with one
input layer, one hidden layer, and one output layer. As shown in Figure 5, we
apply Autoencoder recursively to a sequence of terms, which is known as the
Recursive Autoencoder (RAE). Let 1,22 € R™ be the vector embeddings of
two different terms, computed using RNN. During encode phase, the composed
vector embeddings Z(z1,z2) is calculated by:

Z(x1,m2) = f(Whlw1;22] + b1), (3)

8 Xue et al.

where [z1; 73] € R*™™ is the concatenation of z1 and za, W € R"™*2n™ ig the
parameter matrix in encode phase, and b € R™" is the offset. Similar to RNN,
f again is a nonlinear function, e.g., tanh. In decode phase, we need to assess if
Z(x1,x2) is well learned by the network to represent the composed terms. Thus,
we reconstruct the the term embeddings by:

Olz1; z2] = g(Walz1; z2] + ba), (4)

where O[r1; 23] is the reconstructed term embeddings , Wy € R"™*X2%™ ig the
parameter matrix for decode phase, and by € R®"™*! is the offset for decode
phase and the function ¢ is another nonlinear function. For training purpose,
the reconstruction error is used to measure how well we learned term vector
embeddings. Let 6 = {Wy; Wa;b1;b2}. We use the Euclidean distance between
the inputs and reconstructed inputs to measure reconstruction error, i.e.,

E([z1;22];0) = ||[x1; 22] — Ola1; 22][3 (5)

For a given execution path with multiple terms and instructions, we adopt
a greedy method [23] to train our RAE and recursively combine pairwise vector
embeddings. The greedy method uses a hierarchical approach — it first combines
vector embeddings of adjacent terms in each instruction, and then combines the
results from a sequence of instructions in an execution path. Figure 5 shows
an example of how to combine the vector embeddings to generate a signature
vector. It shows a (binary) execution path with a sequence of 8 instructions. The
greedy method is illustrated as a binary tree. Node 1 gives the vector embedding
for the first instruction Inst; = (push %rbp) encoded from terms [push; %rbp).
Then, we continue to process the remaining instructions, e.g., Nodes 2 and 3,
until we derive the final vector embedding (i.e., the signature vector) for the
instruction sequences of the given execution path.

Multi-class classification for function mapping. Function mapping aims
to recognize the owner function (in static binary) of a given execution path ob-
tained from the dynamic trace. We consider each function as a class label, differ-
ent execution paths obtained from the function binary code as samples of that
class, and an execution path extracted from dynamic instruction trace as the
testing sample. Then, the mapping becomes a multi-class classification problem,
which is solved using Convolutional Neural Networks (CNN) in this paper. We
adopt the sentence classification model proposed in [9, 33] for natural language
processing and train a multi-class classifier using CNN for function mapping.
Note that another line of work, such as tainting [31, 19], can be used for feature
identification. We consider this as future work.

To obtain training samples for each class, we use CFG analysis to construct
different execution paths for each function identified in the binary code. More
precisely, once the function boundaries and bodies are recognized, we use a Depth
First Search (DFS) to traverse the static CFG of each function and construct
related execution path using a random walk.

4 Feature Tailoring

Feature tailoring creates customized software that consists of the desired features
and their constituent functions in accordance with user needs. It has to address

Hecate: Automated Customization of Program and Communication ... 9

a number of challenges. First, a single execution trace may not reach all desired
features, requiring us to merge multiple outputs from feature identification. Sec-
ond, different features often share some common constituent functions. If the
goal of tailoring is to remove certain features, we need to identify and retain the
shared functions in the customized binary.

4.1 Feature Tailoring

Let F be a set of target program features for tailoring. If the constituent func-
tions of each feature F; € F can be successfully identified, we can simply create
a superset of their constituent functions, i.e., F = UF,. Two techniques are de-
veloped next to (i) create a customized program by retaining only the features
in I (e.g., if user only needs these features) and (ii) remove the features in F
from the binary (e.g., if they are deemed as unnecessary or vulnerable). When
F cannot be directly identified, we leverage set operations, including union, in-
tersection, and subtraction, to construct F from available feature combinations,
in order to fulfill feature tailoring.

Tailoring via set operations. When the target features’ constituent func-
tions £ are not directly identifiable, Hecate employs set operations including
union, intersection, and subtraction to compute F from known feature combi-
nations. Union: A feature may contain multiple execution paths that cannot
be dumped and identified in a single execution. Hecate will collect traces from
different program executions to identify and compute the union of the related
feature-constituent functions. Intersection: A program may contain concurrent
features that cannot be identified separately from the available execution trace.
For instance, OpenSSL’s choosing cipher suite feature is always coupled with the
execution of encryption/hash functions in dynamic trace. To identify the con-
stituent functions of choosing cipher suite feature, we can take the intersection
of multiple executions with different choices of encryption/hash functions. Sub-
traction: This operation allows us to identify the unique constituent functions
of given features. So, we can safely remove them without affecting the soundness
of other features due to shared functions.

4.2 Binary Rewriting

We use feature tailoring to derive a set of functions to eliminate in program
binary. Simply replacing these function bodies with “NOP”s would not generate
a valid executable, because (i) some code segments in the eliminated function
body may be shared with other functions, and (ii) there may exist data segments
that are inserted into the eliminated functions and must be preserved.

To address these issues, Hecate utilizes a static binary rewriter, DynlInst,
to modify the program binary by rewriting the binaries in basic blocks level
in the CFG. As Dynlnst is capable to abstract the program basic blocks in
the form of CFG. To remove the features in the programs, there are two steps
in HecateFirst, Hecate removes the functions that should not be called. The
call site of the eliminated functions will be replaced to redirect the program to
exit point. Second, for those functions cannot be removed from the first step

10 Xue et al.

= Classifier-O Classifier-L. ® Classifier-S

9628087 74%

o ” 6.89%
100% 9336%501% 04280 90.88%

193.14%
9113 88.75%
83.39% o
8122% s 70% $0.01%
80%
63.46%
60%
40%
20%
0%
man

bzip2 thttpd openssl

Accuracy

polymorph

Fig. 6: Accuracy of function mapping during feature identification

(e.g., For indirect function calls, the address of the callee function cannot be
decided beforehand and can potentially lead to any other addresses), we replace
the rest of the function body with “NOP”. Furthermore, a verification process
is performed using program fuzzing approaches [32] by Hecate to validate the
effectiveness and correctness of feature tailoring.

5 Evaluation

5.1 Experiment Setup

Our experiments are conducted on a 2.80 GHz Intel Xeon(R) CPU E5-2680 20-
core server with 16 GByte of main memory. The operating system is Ubuntu
14.04 LTS.

Benchmarks. In our evaluation, we select three sets of real-world appli-
cations: (i) Non-interactive applications including two applications from SPEC
2006 Benchmark suite [1], bzip2 and hmmer; two applications from a bug bench-
mark suite bugbench [11], polymorph and man and (ii) Interactive applications
including a light-weight web server thttpd, version beta 2.23, an open source of-
fice suite LibreOffice and a web browser links. (iii) An implementation of Trans-
port Layer Security (TLS) & Secure Sockets Layer (SSL) protocol, OpenSSL.

Dataset and Training. In our function mapping module, we collect static
execution paths as training dataset and dynamic execution paths as testing
dataset for evaluating the accuracy of the pre-trained models. We selected the
highest quality model and extracted the matrix of embeddings. We have observed
that a well trained function mapping model is with the hidden node size as 500 in
RNN and 200 maximum iterations for RAE, which is chosen as the parameters
of deep neural network in function mapping module.

5.2 Accuracy of function mapping

In this section, we evaluate the accuracy of the pre-trained function mapping
module in Hecate and presents the accuracy of five representative applications.
We construct the testing dataset as follows: We collect the dynamic instruction

Hecate: Automated Customization of Program and Communication ... 11

traces for each identified function in the binary and perform the same random
walk process to generate execution paths as mentioned in Section 3.2. The test-
ing dataset size is controlled to be 30% as big as the training dataset We also
observed that due to the different amount of training data we can obtain from
different functions, the mapping accuracy will be higher if we split functions
into large and small categories, by using the median number of training data
sample size. We trained three CNN classifiers for each application, one is trained
cross all the functions as an overall classifier (Classifier-O), and the other two
are trained for large functions (Classifier-L) and small functions (Classifier-S)
respectively.

The function mapping accuracy is plotted in Figure 6. We achieve an overall
average accuracy of 92.76%, with the highest up to 96.28% in man from bugbench.
In general, the mapping accuracy of larger programs, such as bzip2 and thttpd, is
higher than smaller programs like polymorph. Because the number of execution
traces used for training our CNN classifiers in those programs is much larger
than that in polymorph, there are 189,855 training execution paths in bzip2
comparing to 10,806 in polymorph). For the applications with more functions,
such as OpenSSL that has 4,023 functions, the overall accuracy can be as low
as 88.75% since there are more classes for classification. We also note that all
of the Classifier-Ls outperforms the Classifier-Os. For instance, in polymorph,
the accuracy of Classifier-L is 93.14% whereas the accuracy of Classifier-O is
91.13%. However, we observe that the accuracy for Classifier-S is lower than
Classifier-L. The reason is that functions trained in Classifier-Ss are relatively
small, with limited training data samples for classification. In particular, the
accuracy of Classifier-S is 63.46% for polymorph, which is the worst among all
the applications. We further analyzed and found that the median number of
training data size is 7 for polymorph, which means almost half of the functions
have only less than 7 training data samples. The lack of training data leads to a
bad performance for classification.

5.3 Impact on program security

We evaluate the impact of feature customization on program security here. As
shown previously, the reduction of code size also shrink the attack surface and
eliminate possible vulnerabilities in programs. We survey the known CVEs of
different programs that can be removed by feature customization. For instance, in
OpenSSL, i) the CVE-2014-0160, known as Heartbleed bug, can be eliminated by
removing the heartbeat extension; ii) the CVE-2016-7054, which can lead to DoS
attack can be neutralized by removing *~CHACHAZ20-POLY1305 ciphersuites;
iii) the CVE-2016-0701, which can cause information leakage, can be negated by
avoiding using DH ciphersuites; The CVE-2015-5212 in LibreOffice (an integer
underflow bug) can be removed by disabling the printer functionality when users
don’t need it.

In total. we found 101 CVEs in OpenSSL distributions during 2014-2017,
34 CVEs in LibreOffice, 13 CVEs in Thttpd and 9 CVEs in Bzip2. Not all
vulnerabilities can be disabled by our feature customization. Some vulnerabilities
are in the functions that are necessary for program execution. CVE-2010-0405
in Bzip2 is an integer overflow bug in function BZ2_decompress. In most of the

12 Xue et al.

Program # Removed CVEs|% Features removed
OpenSSLL(2014-2017) 45 44.6
LibreOffice 23 67.6
Thttpd 5 38.5
Bzip2 2 22.2

Table 1: Impact on Application and Communication security

cases, decompression is a feature that users will not remove. The number and
ratio of program features that can be removed are shown in Table 1. We evaluate
the security impact of Hecate using the ratio of CVEs that can be removed by
feature customization.

6 Related Work

Code analysis and De-bloating: Several prior works have proposed program
customization frameworks only based one methods like de-bloating [7], cross-host
tainting [5] and so on. In terms of binary reuse, it has been studied by several
works [27,28]. The main challenge of reusing binary code is it only focuses on
reusing partial code in the program high-level assembly code. Some existing
works try to find memory-related vulnerabilities in source code or IR by direct
static analysis [29, 20, 21]. As such, the two approaches are quite complementary
and when combined together, can present an improved framework for eliminating
attack surfaces in programs.

Learning-based approach for vulnerability removal: Prior work has
studied bug/vulnerabilities removal using learning-based approaches. StatSym
[30] and SARRE [10] propose frameworks combining statistical and formal anal-
ysis for vulnerable path discovery. SIMBER [25] proposes a statistical inference
framework to eliminate redundant bound checks and improve the performance
of applications without sacrificing security.

7 Conclusion, Future work and Opportunities

In this paper, we design and evaluate a binary customization framework Hecate,
that aims to generate customized program binaries with just-enough features
and can satisfy a broad array of customization demands. Feature identification
and feature tailoring are two major modules in Hecate, with the former one
discovering the target features using both static code and execution traces, and
the latter one modifying the features to reconstruct a customized program. Our
experiment results demonstrate that Hecate is able to identify features with
the highest accuracy up to 96.28% and reduce the attack surface by up to 67%.

Generating test cases to cover all corner cases of a feature is a challenging
problem in general. To deal with this problem, we note that some approaches,
such as fuzzing techniques [18], can be useful. As reported in Section 5, our
deep learning-based function mapping model achieves an average accuracy of

Hecate: Automated Customization of Program and Communication ... 13

92.7%. However, we could increase the training data size by collecting the dy-
namic execution paths and use related machine learning optimization like cross-
validation to split small data set [16] for further performance improvements.
Moreover, more complex deep learning algorithms can be further tested, such
as bi-directional RNN and long-short-term memory (LSTM), which have been
proven a better performance for modeling longer sequential information. We will
consider the above concerns as our future work.

Acknowledgments

This work was supported by the US Office of Naval Research (ONR) under
Awards N00014-15-1-2210 and N00014-17-1-2786. Any opinions, findings, con-
clusions, or recommendations expressed in this article are those of the authors,
and do not necessarily reflect those of ONR.

References

1. Spec cpu 2006. https://www.spec.org/cpu2006/

2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine
learning. In: OSDI (2016)

3. Bao, T., Burket, J., Woo, M., Turner, R., Brumley, D.: Byteweight: Learning to
recognize functions in binary code. USENIX (2014)

4. Bishop, C.M.: Machine learning and pattern recognition. Information Science and
Statistics. Springer, Heidelberg (2006)

5. Chen, Y., Sun, S., Lan, T., Venkataramani, G.: Toss: Tailoring online server systems
through binary feature customization. In: FEAST workshop (2018)

6. Harris, L.C., Miller, B.P.: Practical analysis of stripped binary code. ACM
SIGARCH Computer Architecture News (2005)

7. Jiang, Y., Wu, D., Liu, P.: Jred: Program customization and bloatware mitigation
based on static analysis. In: IEEE Computer Software and Applications Conference
(2016)

8. Jiang, Y., Zhang, C., Wu, D., Liu, P.: Feature-based software customization: Pre-
liminary analysis, formalization, and methods. In: High Assurance Systems Engi-
neering (2016)

9. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

10. Li, Y., Yao, F., Lan, T., Venkataramani, G.: Sarre: semantics-aware rule recom-
mendation and enforcement for event paths on android. IEEE Transactions on
Information Forensics and Security (2016)

11. Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., Zhou, Y.: Bugbench: Benchmarks for
evaluating bug detection tools. In: Workshop on the evaluation of software defect
detection tools (2005)

12. Mikolov, T., Karafist, M., Burget, L., Cernocky, J., Khudanpur, S.: Recurrent
neural network based language model. In: Annual Conference of the International
Speech Communication Association (2010)

13. Mikolov, T., Kombrink, S., Deoras, A., Burget, L., Cernocky, J.: Rnnlm-recurrent
neural network language modeling toolkit. In: ASRU Workshop (2011)

14. Ming, J., Xu, D., Jiang, Y., Wu, D.: Binsim: Trace-based semantic binary diffing
via system call sliced segment equivalence checking. In: USENIX Security (2017)

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

Xue et al.

Oh, J., Hughes, C.J., Venkataramani, G., Prvulovic, M.: Lime: A framework for
debugging load imbalance in multi-threaded execution. In: Proceedings of the 33rd
International Conference on Software Engineering. ACM (2011)

Smith, G.C., Seaman, S.R., Wood, A.M., Royston, P., White, I.R.: Correcting for
optimistic prediction in small data sets. American journal of epidemiology (2014)
Source, O.: Libreoffice

Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting fuzzing through selective
symbolic execution. In: NDSS (2016)

Venkataramani, G., Doudalis, I., Solihin, Y., Prvulovic, M.: Flexitaint: A pro-
grammable accelerator for dynamic taint propagation. In: IEEE International Sym-
posium on High Performance Computer Architecture (2008)

Venkataramani, G., Doudalis, 1., Solihin, Y., Prvulovic, M.: Memtracker: An accel-
erator for memory debugging and monitoring. ACM Transactions on Architecture
and Code Optimization (TACO) (2009)

Venkataramani, G., Hughes, C.J., Kumar, S., Prvulovic, M.: Deft: Design space
exploration for on-the-fly detection of coherence misses. ACM Transactions on
Architecture and Code Optimization (TACO) (2011)

Viega, J., Messier, M., Chandra, P.: Network Security with OpenSSL: Cryptogra-
phy for Secure Communications. ” O’Reilly Media, Inc.” (2002)

White, M., Tufano, M., Vendome, C., Poshyvanyk, D.: Deep learning code frag-
ments for code clone detection. In: IEEE/ACM Intl Conference on Automated
Software Engineering (2016)

Xue, H., Chen, Y., Venkataramani, G., Lan, T., Jin, G., Li, J.: Morph: Enhancing
system security through interactive customization of application and communica-
tion protocol features. In: Poster in ACM Conference on Computer and Commu-
nications Security (2018)

Xue, H., Chen, Y., Yao, F., Li, Y., Lan, T., Venkataramani, G.: Simber: Eliminating
redundant memory bound checks via statistical inference. In: IFIP SEC (2017)
Xue, H., Sun, S., Venkataramani, G., Lan, T.: Machine learning-based analysis of
program binaries: A comprehensive study. IEEE Access (2019)

Xue, H., Venkataramani, G., Lan, T.: Clone-hunter: accelerated bound checks elim-
ination via binary code clone detection. In: ACM SIGPLAN International Work-
shop on Machine Learning and Programming Languages (2018)

Xue, H., Venkataramani, G., Lan, T.: Clone-slicer: Detecting domain specific bi-
nary code clones through program slicing. In: FEAST workshop. ACM (2018)
Yao, F., Chen, J., Venkataramani, G.: Jop-alarm: Detecting jump-oriented
programming-based anomalies in applications. In: 2013 TEEE 31st International
Conference on Computer Design (ICCD). IEEE

Yao, F., Li, Y., Chen, Y., Xue, H., Lan, T., Venkataramani, G.: Statsym: vulner-
able path discovery through statistics-guided symbolic execution. In: Dependable
Systems and Networks (DSN) (2017)

Yao, F., Venkataramani, G., Doroslovacki, M.: Covert timing channels exploiting
non-uniform memory access based architectures. In: Great Lakes Symposium on
VLSI. ACM (2017)

Zalewski, M.: American fuzzy lop (2007)

Zhang, K., Wang, M., Cong, X., Huang, F., Xue, H., Li, L., Gao, Z.: Personal
attributes extraction based on the combination of trigger words, dictionary and
rules. In: Proceedings of The Third CIPS-SIGHAN Joint Conference on Chinese
Language Processing. pp. 114-119 (2014)

