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Federated learning (FL) has attracted tremendous attentions in recent years due to its privacy preserving mea-

sures and great potentials in some distributed but privacy-sensitive applications like finance and health. How-

ever, high communication overloads for transmitting high-dimensional networks and extra security masks

remains a bottleneck of FL. This paper proposes a communication-efficient FL framework with Adaptive

Quantized Gradient (AQG) which adaptively adjusts the quantization level based on local gradient’s update

to fully utilize the heterogeneousness of local data distribution for reducing unnecessary transmissions. Be-

sides, the client dropout issues are taken into account and the Augmented AQG is developed, which could

limit the dropout noise with an appropriate amplification mechanism for transmitted gradients. Theoretical

analysis and experiment results show that the proposed AQG leads to 25%-50% of additional transmission

reduction as compared to existing popular methods including Quantized Gradient Descent (QGD) and Lazily

Aggregated Quantized (LAQ) gradient-based method without deteriorating convergence properties. Particu-

larly, experiments with heterogenous data distributions corroborate amore significant transmission reduction

compared with independent identical data distributions. Meanwhile, the proposed AQG is robust to a client

dropping rate up to 90% empirically, and the Augmented AQG manages to further improve the FL system’s

communication efficiency with the presence of moderate-scale client dropouts commonly seen in practical

FL scenarios.
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1 INTRODUCTION

The deployment of Internet of things (IoT), ubiquitous sensing, edge computing and many other

distributed systems have enabled the fast development of distributed learning techniques in recent

years[10, 12, 17]. The distributed learning could fully utilize the low-cost computing resources

throughout the network and achieve comparable performance with the centralized learning. Nev-

ertheless, the leakage of the data, gradient, and even model during the updating and transmitting

process in distributed learning has raised the concerns of user privacy and security, which greatly

limit its applications in some specific fields, such as finance, health, and etc. To this end, the feder-

ated learning (FL) which prevents privacy leakage by avoiding data exposition has been proposed

by Google and other researchers, and attracted tremendous attentions from both academia and

industry[19].

Many approaches like differential privacy[1], secret sharing techniques[5] and homomorphic

encryption[18] have been developed to mask the transmitted gradients and can almost well ad-

dress the security issues in FL. However, high-dimensional neural networks and extra security

masks[8, 14, 28] may lead to high communication overhead, which becomes a main bottleneck

of FL systems. In this context, the communication-efficient learning algorithms have been pro-

posed mainly to reduce the transmission bits based on gradient quantization, which maps a real-

valued vector to a constant number of bits. Representative gradient quantization algorithms for

distributed systems include the Quantized Stochastic Gradient Descent (QSGD)[3], 1-bit SGD[21]

and SignSGD[4], etc. However, these methods communicate at all iterations (transmit all com-

puted gradients) with a fixed number of quantization bits, which is not efficient enough for FL

where non-IID (Independently Identically Distributed) data distribution is common. To address

this problem, Sun et al. proposed a gradient innovation-based Lazily Aggregated Quantized (LAQ)

gradient method, which utilizes the differences between local loss functions and skips the trans-

mission of slowly-varying quantized gradients[25]. Although LAQ reduces transmission overload

by skipping unnecessary communication rounds, it still fixes the number of bits for all transmitted

gradients, which remains to be improved.

In order to further reduce overall transmitted bits, this paper proposes a communication efficient

FL framework with Adaptive Quantized Gradient (AQG), where the quantization level is adjusted

according to the local gradient’s updates adaptively. Specifically, gradients with larger amount of

updates are quantized and transmitted with more bits, and vice versa. Besides, this paper takes

client dropouts into account, which is another main challenge faced by FL system due to limited

device reliability[5]. In order to improve the performance of AQG with the presence of the noise

introduced by client dropouts, the proposed FL framework with AQG is augmented by a variance-

reduced method, where transmitted gradients are appropriately amplified to keep the unbiased

estimators.

Theoretical analysis and experiment results show that the proposed AQG outperforms existing

methods in terms of overall transmitted bits without deteriorating convergence properties. Mean-

while, AQG is robust to a client dropping rate up to 90% empirically, and the Augmented AQG

with gradient amplification does act as a competitive solution to achieve an even more signifi-

cant transmission reduction with moderate clients dropping scale commonly seen in practical FL

scenarios.

The remainder of the paper is organized as follows. Section 2 provides the FL system overviews

and discusses our motivations. The proposed Adaptive Quantized Gradient method is elaborated

in section 3. Theoretical analysis and convergence guarantee of AQG are provided in section 4.

We evaluate the performance of AQG with extensive experiments in section 5 and conclude this

paper in section 6.
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Notation. The notations involved in this paper are listed in Table 1.

Table 1. Notations

g:< gradient computed by client< at iteratoin :

ĝ:< gradient used for aggregation from client< at iteration :

1<0G upper bound for the number of bits after quantization

1:< the quantization bit number chosen by client< at iteration :

1̂:< the quantization bit number chosen by client< for ĝ:<

&1 (g
:
<) g:< quantized with 1 bits

): the aggregated global model broadcasted at iteration :

Y1 (g
:
<) quantization error (&1 (g

:
<) − g:<)

M clients set

M
:
1

subset of clients uploading gradients with 1 bits at iteration :

? clients dropping rate

⌈0⌉ the ceil of 0

‖x‖2 ;2-norm of x

‖x‖∞ ;∞-norm of x

2 SYSTEM OVERVIEW AND MOTIVATIONS

2.1 Federated Learning System

FL is designed to collaboratively train a global machine learning model with heterogeneous local

data distribution across multiple privacy-sensitive clients. A typical architecture for a FL system

with " distributed clients and a server is shown in Fig. 1. Similar to most distributed learning

systems, FL system uses a server to receive locally-computed gradients and update global model by

aggregation. However, in order to prevent privacy leakage from raw gradients, distributed clients

have to mask or encrypt the local gradients before transmission. Therefore, the communication

burden in FL systems tends to be heavier compared with other distributed learning systems[5].

Besides, distributed clients in FL systems, such as mobile devices in wireless networks, usually

have limited computation and communication resources, which may lead to the dropout of the

participants in each iteration, like the client " shown in Fig. 1. Thus, the robustness to client

dropout is another practical requirement for FL systems[5].

2.2 Motivations

FL is bottlenecked by the high communication overheads and limited device reliability. The lack of

efficient transmission and robustness to client dropouts may lead to slow, expensive and unstable

learning. In this paper, the FL framework with the proposed AQG method provides opportunities

for communication-efficient FL with large-scale of client dropouts.

Firstly, AQG focuses on reducing unnecessary transmission by fully utilizing the heterogeneous

property of FL. Due to the heterogeneousness of local data distribution, local optimization objec-

tives descend at different rates. Therefore, adaptively adjusting the quantization level according

to gradient’s update amount provides a more efficient way to communicate with the server by

quantizing slowly-varying gradients with less amount of bits.
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Client 1

Server

Client 2 Client M

(a)

(b)

(c)

(d)

(a) (c)

(d)

(a)  Clients send the masked gradients

(b)  Gradient aggregation and model update

(c)   Server broadcasts new global model

(d)   Clients update local models

(a)

(c)

(d)

Fig. 1. Typical architecture for a FL system.

Secondly, AQG aims to address the noise induced by client dropouts. When a client dropout

occurs, all coordinates of transmitted gradient are lost, which can be regarded as an extreme ex-

ample of gradient sparsification[2, 16, 24, 26]. In order to limit the variance increase of a sparsified

gradient, Wangni et al. proposed to keep the unbiasedness of the sparsified gradient by appropri-

ately amplifying the remaining coordinates[27]. Inspired by this idea, AQG tries to stay robust to

client dropouts or even further improve the communication efficiency of FL with client dropouts

by further adjusting the transmitted gradients and suppressing the noise.

3 AQG: ADAPTIVE QUANTIZED GRADIENT

To reduce the transmission overheads, a multilevel adaptive quantization scheme is proposed in

this section. As illustrated in Fig. 2, the FL system with AQG can be implemented as follows. At

iteration : , the server broadcasts global model ): to all clients. Each client computes gradient g:<
by taking all its local data X< as a full batch:

g:< = ∇5< (X<;)
: ) (1)

After the gradient computation, each client needs to make two decisions: (1) is it necessary to

send its quantized gradient? (2) how many bits 1:< should be used to quantize and send its newly-

computed gradient? In particular, the first decision is the key idea in LAQ[25]. In this paper, it is

considered as a special case of the second decision, where 1:< is chosen as zero if the client decides

to send nothing.

=

Client 2 Client M

=

Client 1

= =

Fig. 2. FL with AQG.

If client < chooses a non-zero 1:< and updates its newly-quantized gradient, then &1:<
(g:<) is

one of the quantized gradients that actually participate in gradient aggregation on the server side
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at iteration : . Otherwise, the server reuses the old quantized-gradient &1̂:−1<
(ĝ:−1< ) from the last

iteration to represent client< in the aggregation. In summary, an iteration step of proposed AQG

is as follows:

Gradients Update &
1̂:<

(ĝ:<) =

{
&1:<

(g:<), < ∈ M \M:
0

&
1̂:−1<

(ĝ:−1< ), < ∈ M:
0

(2)

Gradients Aggregation ):+1
= ): −U

∑

<∈M

&
1̂:<

(ĝ:<) (3)

where M:
0
denotes the subset of clients that sets 1:< = 0 and uploads nothing at iteration : . For

client<, &1̂:<
(ĝ:<) represents the quantized gradient actually used for aggregation at iteration : ,

which may be outdated if< ∈ M:
0
.

The target problems of AQG is that:

1) For clients belonging to M \M:
0
, the precision levels (quantization levels) of their new up-

dates &1:<
(g:<) are not fixed, but adaptively adjusted depending on g:< ’s innovations——the

difference between the newly-quantized gradient and the last quantized gradient sent to the

server. It motivates a need for not only a quantization scheme as previous work, but also

a precision selection criterion to decide the quantization level of each newly-computed

gradient;

2) For FL scenario where client dropouts is relatively frequent, methods to limit the noise in-

troduced by gradients lossing are also in great need.

The following part of this section presents the precision selection criterion developed in this

paper and the quantization scheme applied in the proposed AQG.At last, an optional augmentation

of AQG is proposed to address potential client dropouts.

3.1 Precision Selection Criterion

As mentioned before, the LAQ algorithm proposed by Sun et al. skips the uploads of quantized

gradients with small innovations——the difference between &1 (g
:
<) and the last upload &1 (ĝ

:−1
< ),

where1 is the fixed number of bits after quantization[25]. In order to decide whether client< needs

to upload its newly-quantized gradient &1 (g
:
<) at iteration : , LAQ develops a communication

selection criterion as follows:




&1 (ĝ
:−1
< ) −&1 (g

:
<)





2

2
≥

1

U2"2

�∑

3=1

b3




):+1−3 − ):−3




2

2
+ 3(




Y1 (ĝ:−1< )





2

2
+




Y1 (g:<)




2

2
) (4)

where Y1 (ĝ
:−1
< ) and Y1 (g

:
<) denote quantization errors, and {b3 }

�
3=1 are predetermined constant

weights used to balance the impact of global model updates from previous � steps. In LAQ, client

< sends its newly-quantized local gradient&1 (g
:
<) at iteration : onlywhen the difference between

&1 (g
:
<) and the last upload&1 (ĝ

:−1
< ) is larger than a threshold, which takes the quantization error

and global model’s innovation into account[25].

This paper extends the single precision level LAQ with communication selection criterion (4) to

multilevel adaptive quantization for transmitted gradients. The key idea of AQG is that under a pre-

set upper bound 1<0G for the number of bits after quantization, gradients with smaller innovations

can be quantized with less number of bits, since the negative impact of their precision losses on

convergence is limited.
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In order to decide how many bits 1:< should be used to quantize and send client <’s newly-

computed gradient g:< , we develop the following precision selection criterion:




&1̂:−1<
(ĝ:−1< ) −&1<0G

(g:<)




2

2
≥

1

U2"2

�∑

3=1

b3




):+1−3 − ):−3




2

2
+ 3(




Y1<0G−1+1(ĝ
:−1
< )





2

2
+




Y1<0G−1+1(g
:
<)





2

2
) (5)

As illustrated in Fig. 3, the proposed precision selection criterion (5) works in the following

ways:

1) For any 1̄ ∈ [1, ..., 1<0G−1], satisfying (5) with 1 = 1̄+1will necessarily satisfy (5) with 1 = 1̄,

but not vice versa. The reason is that for a given g:< , there is always Y1<0G−(1̄+1)+1
(g:<) =

Y1<0G−1̄
(g:<) ≥ Y1<0G−1̄+1

(g:<) due to more error brought by more aggressive quantization.

2) Precision selection criterion (5) with 1 = 1 acts as communication selection criterion in AQG.

Specifically, if (5) with 1 = 1 does not hold for client<, then its gradient update at iteration

: is skipped.

Therefore, client subsets devided by the proposed precision criterion form the client setMwith-

out overlaps:

M
:
0 ∪M

:
1 ∪M

:
2 ∪ ... ∪M

:
1<0G

= M (6)

whereM:
1
denotes the subset of clients which send gradients quantized by 1 bits at iteration : . In

particular,M:
0
denotes the subset of clients which skip the update.

0

+ 3 +

+ 3 +

=
1

+ 3 +

Fig. 3. The principle of the precision selection criterion.

The FL with AQG is summarized in Algorithm 1. At iteration : , each client checks where its

innovation locates in Fig. 3, and then re-quantizes its gradient with corresponding number of bits

for update. Theoretical analysis of multilevel AQG with (5) is provided in section 4.

For computation simplicity, a two-level variant of AQG is also proposed in this paper. At each

iteration:

Two-level AQG. there are only two precision-levels to be selected for each client. In other words,

1 in criterion (5) only has two options: ⌈1<0G

2
⌉ and 1<0G .
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Algorithm 1 AQG

Input: stepsize U > 0, 1<0G , � , and {b3 }
�
3=1

.

Initialize: )1.

1: for : = 1, 2, ...,  do

2: Server broadcasts ): to all workers.

3: for each client< ∈ M in parallel do

4: Worker< computes g:< and &1<0G
(g:<).

5: if (5) with 1 = 1 holds for worker< then

6: for 1 = 1<0G , 1<0G − 1, ..., 1 do

7: if (5) with 1 holds for worker< then

8: Worker< computes and sends &1 (g
:
<).

9: Set 1:< = 1.

10: Set ĝ:< = g:< and 1̂:< = 1 on both sides.

11: Break.

12: end if

13: end for

14: else

15: Worker< sends nothing.

16: Set 1:< = 0,

17: Set ĝ:< = ĝ:−1< and 1̂:< = 1̂:−1< on both sides.

18: end if

19: end for

20: Server updates ):+1 by ): − U
∑"

<=1&1̂:<
(ĝ:<).

21: end for

3.2 �antization Scheme

For better comparison, we adapt the quantization scheme used in LAQ algorithm[25]. The scheme

quantizes the difference between the new gradient g:< and the last quantized upload &1̂:−1<
(ĝ:−1< ):

Δ = g:< −&
1̂:−1<

(ĝ:−1< ) (7)

With 1 bits used for quantization, the value range of Δ’s elements can be represented by a

uniformly discretized grid with 21 − 1 quantized values, as shown in Fig. 4. By projecting every

real number in this range to the closest quantized value, g:< can be represented by&1 (g
:
<) with 1

bits for each element instead of 32/64 bits by default.

... . . . . .. . . . . . . .
=

Fig. 4. �antization scheme in AQG.
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3.3 Augmented AQG for Client Dropouts

This paper also considers random client dropout in FL, and uses I:< to control the participation of

client< at iteration : . With a client dropping rate ? :

I:< ∼ �4A=>D;;8 (?)

If I:< = 1, client < drops out and fails to perform gradient computation at iteration : . It is

obvious that with a dropping rate ? , the percentage of active clients is approximately 1−? at each

iteration.

With such setting, the expectation of client<’s upload is as follows:

� [&1:<
(g:<)] = (1 − ?) ·&1:<

(g:<) + ? · 0 (8)

where 0 is a zero vector of the same shape as &1:<
(g:<).

In order to get the unbaised expectation, the upload is adjusted to &1:<
(g:<)/(1 − ?), and then:

� [&1:<
(g:<)] = (1 − ?) · (&1:<

(g:<)/(1 − ?)) + ? · 0 = &1:<
(g:<) (9)

The Augmented AQG is summarized in Algorithm 2. The intuitive explanation for gradient

amplification is that the loss function 5< is smooth, which means the new update &1:<
(g:<) tends

to be approximate to recent previous updates that may have been lost due to client dropouts.

Algorithm 2 Augmented AQG

Input: stepsize U > 0, 1<0G , � , and {b3 }
�
3=1

.

Initialize: )1.

1: for : = 1, 2, ...,  do

2: Server broadcasts ): to all workers.

3: for each client< ∈ M in parallel do

4: if I:< = 1 then

5: Worker< computes g:< and &1<0G
(g:<).

6: if (5) with 1 = 1 holds for worker< then

7: for 1 = 1<0G , 1<0G − 1, ..., 1 do

8: if (5) with 1 holds for worker< then

9: Worker< computes and sends &1 (g
:
<).

10: Set 1:< = 1.

11: Set ĝ:< = g:< and 1̂:< = 1 on both sides.

12: Break.

13: end if

14: end for

15: end if

16: else

17: Worker< sends nothing.

18: Set 1:< = 0,

19: Set ĝ:< = ĝ:−1< and 1̂:< = 1̂:−1< on both sides.

20: end if

21: end for

22: Server updates ):+1 by ): − U
∑"

<=1&1̂:<
(ĝ:<).

23: end for
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Compared to the existing LAQ method, the proposed AQG method adjusts the number of quan-

tization bits based on local gradient innovation adaptively. The rationale of AQG is that the pro-

posed precision selection criterion utilizes the inherent heterogeneousness of local optimization

objectives to reduce unnecessary transmission cost. Theoretical analysis in the next section will

prove that AQG maintains the desired convergence properties of LAQ. Experiments show that

AQG advances and fits FL better with following contributions:

1) AQGoutperforms existing popularmethods in terms of overall transmission bits, and achieves

a more significant transmission reduction with heterogeneous data distribution compared

to IID data distribution;

2) AQG is robust to a clients dropping rate up to 90%, and the Augmented AQG manages to

further reduce transmission overload with the presence of moderate-scale of client dropouts.

4 CONVERGENCE ANALYSIS

In this section, the proposed AQG is analyzed theoretically and a convergence guarantee is pro-

vided. The theoretical analysis of AQG is based on following assumption:

Assumption 1. Loss function 5 () ) =
∑

<∈M 5< () ) is L-smooth.

The Lyapunov function of AQG is defined in the same way as LAQ:

V(): ) = 5 (): ) − 5 () ∗) +

�∑

3=1

�∑

9=3

b 9

U




):+1−3 − ):−3




2

2
(10)

where ) ∗ is the optimal solution of min) 5 () ).

With the quantization errors in precision selection criterion (5) being ignored, the parameter dif-

ferences term in Lyapunov function helps guarantee that the error induced by skipping gradients

decreases with the objective residual in the training process.

4.1 Convergence Guarantee

To ensure convergence, the following inequality should always hold:

V():+1) − V(): ) ≤ 0 (11)

Lemma 1. Under Assumption 1, (11) holds if the following three inequalities are satisfied simultane-

ously:

−
U

2
+
1

2
Ud1 + (! + 2V1) (1 + d2)U

2 ≤ 0 (12a)

[
U

2
+ (

!

2
+ V1) (1 + d2

−1)U2]
b�

U2
− V� ≤ 0 (12b)

[
U

2
+ (

!

2
+ V1) (1 + d2

−1)U2]
b3

U2
+ V3+1 − V3 ≤ 0 (12c)

where d1 and d2 are constants. V3 =
1

U

∑�
9=3 b 9 ,∀3 ∈ {1, ..., �}. See the appendix for proof details.

It indicates that if the stepsize U and constants {b3 }
�
3=1 satisfy the three inequalities above, the

convergence of the Lyapunov function (10) is guaranteed theoretically.

4.2 Linear Convergence With Strongly-Convex Loss

The theoretical analysis under strongly-convex loss function is based on the following assumption:

Assumption 2. Loss function 5 () ) =
∑

<∈M 5< () ) is µ-strongly convex.
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Under Assumption 2, there is:

‖) − ) ∗‖
2

2 ≤
2

`
[5 () ) − 5 () ∗)] (13)

Lemma 2. Under Assumption 1 and 2, the following inequality holds:

V():+1) ≤ (1 − 2)V(): )

+ �








"∑

<=1

Y1<0G
(ĝ:<)








2

2

+ �
∑

<∈M:
0

(




Y1<0G
(ĝ:−1< )





2

2
+




Y1<0G
(g:<)





2

2
)

+ �(

1<0G∑

1=1

∑

<∈M:
1




Y1̂:< (ĝ:<)




2

2
+

1<0G∑

1=1

∑

<∈M:
1




Y1<0G
(ĝ:<)





2

2
) (14)

where 2 and � are constants depending on `, d1, d2 and parameters involved in selection criterion (5).

See the appendix for proof details.

Theorem 1. Under Assumption 1, Assumption 2 and Lemma 2, Lyapunov function and the quanti-

zation errors all converge at a linear rate:



Y1 (g:<)





2

∞
≤ %g1

2f:V() 1) (15a)

V():+1) ≤ f:V()1) (15b)

where f ∈ (0, 1) and g1 is the quantization granularity with 21 quantization levels. % is a constant

based on parameters in Lemma 1. See the appendix for proof details.

Table 2. Performance comparison of gradient-based algorithms.

Experiment setting Iteration # Communication # Bit # Transmission Reduction

Logistic Regression

IID

Two Level AQG 500 3933 7952 41%

Multilevel AQG 500 4372 8372 38%

4-bit LAQ 500 3354 1.34 × 104 0

4-bit QGD 500 9000 3.6 × 104 − *

non-IID

Two Level AQG 500 4870 1.54 × 104 51%

Multilevel AQG 500 8273 1.78 × 104 43%

4-bit LAQ 500 7842 3.14 × 104 0

32-bit GD 1 500 9000 2.88 × 105 −

Neural Network

IID

Two Level AQG 2713 854 1708 34%

Multilevel AQG 2881 974 1928 25%

4-bit LAQ 2784 643 2572 0

4-bit QGD 2890 28900 1.16 × 105 −

non-IID

Two Level AQG 1319 1030 2060 44%

Multilevel AQG 1702 977 1845 49%

4-bit LAQ 2219 921 3684 0

4-bit QGD 1251 12510 50040 −

1 Since 4-bit QGD fails to converge with logistic regression and non-IID data distribution, the 32-bit vanilla GD is imple-

mented for comparison.
* 4-bit QGD definitely costs more bits compared against the baseline 4-bit LAQ.
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(a) Loss v.s. iteration (b) Loss v.s. communication round (c) Loss v.s. bit

Fig. 5. Convergence of loss function with logistic regression and IID data distribution

(a) Loss v.s. iteration (b) Loss v.s. communication round (c) Loss v.s. bit

Fig. 6. Convergence of loss function with neural network and IID data distribution

5 EXPERIMENT RESULTS

In this section, the performance of FL with the proposed AQG is evaluated with regularized lo-

gistic regression and neural network, respectively representing strongly convex and non-convex

loss function. Experiment results demonstrate that AQG outperforms state-of-the-art quantization

algorithms including QGD and LAQ in terms of reducing transmission bits and resisting client

dropouts.

5.1 Experimental Se�ings

For experiment simplicity, logistic regression is implemented with binary classification, and a fully

connected network is built for non-convex optimization. The input and output dimension of the

fully connected network is 784 and 10, respectively. For both Multi-level AQG and Tow-level AQG,

the quantization bit number’s upper bound 1<0G is 4, the constant parameter � is 10, and the

weights {b3 }
�
3=1 = 1/� . Stepsize U is 0.008 for logistic regression and 0.02 for neural network.

In terms of datasets, both non-IID data distribution and IID data distribution are considered as

follows:

non-IID Data Distribution: To simulate non-IID data distribution, a heterogeneous simula-

tion dataset including 18 distributed data slices is used for logistic regression, and MNIST Dataset

is used for multi-classification with the fully connected network by assigning each client with

only one class of samples. The detailed description of the adopted dataset is provided in appendix.

Obviously, the total client number" is set as 18 for logistic regression and 10 for fully connected

network with these two datasets.
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IID Data Distribution: For better comparison, the same binary classification dataset used to

simulate non-IID data distribution is applied to simulate IID data distribution by uniformly dis-

tributing the samples across 18 clients. For the task with fully connected network, the MNIST

dataset is distributed uniformly across 10 clients. Other parameters keep the same as in non-IID

data distribution.

The experiment results are shown in Table. 2. For logistic regression, all algorithms run 500

iterations. For neural network, all algorithms run 4000 iterations, and we calculate the number of

iteration, communication round and transmission bit when the loss residual decreases to less than

1 × 10−6. For both tasks, the amount of bits counted for each algorithm in Table. 2 is the number

of bits used to transmit one dimension of the uploaded gradient. Thus, the higher the dimension

of gradient is, the more significant transmission reduction AQG brings.

5.2 Performance of AQG with IID Data Distribution

With IID data distribution, training samples are distributed uniformly among clients. Fig. 5a shows

that Multi-level AQG and the two-level variant of AQG both reach linear convergence rate as LAQ

and QGD in strongly convex condition. Meanwhile, AQG significantly saves transmission bits

compared against 4-bit LAQ and 4-bit QGD, as shown in Fig. 5c. It can be observed from Fig. 5b

that the reduction of transmission bits is at the cost of a slight increase in communication rounds

compared with LAQ, but it is worthy due to the significant reduction in overall transmission load.

Fig. 6 shows the results with non-convex loss function. Similar to the results with logistic regres-

sion, Multi-level AQG and two-level AQG both require fewer amount of bits to reach convergence

without sacrificing the convergence properties of 4-bit LAQ and 4-bit QGD, as depicted in Fig. 6a

and Fig. 6c. Meanwhile, compared with 4-bit QGD, AQG significantly reduces communication

rounds to the same order of magnitude as 4-bit LAQ, as shown in Fig. 6b.

(a) Loss v.s. iteration (b) Loss v.s. communication round (c) Loss v.s. bit

Fig. 7. Convergence of loss function with logistic regression and non-IID data distribution

5.3 Performance of AQG with non-IID Data Distribution

Fig. 7 and Fig. 8 verify that AQGworks well with heterogeneous data distribution. Both variants of

AQGmanage to reduce the number of transmitted bits compared against other alternatives in both

strongly convex and non-convex optimization. Meanwhile, it is obvious that experiments in non-

IID data distribution benefitmorewithAQG compared against IID data distribution. The results are

consistent with our expectation, since the idea of AQG is to utilize the inherent heterogeneousness

of local optimization objectives.
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(a) Loss v.s. iteration (b) Loss v.s. communication round (c) Loss v.s. bit

Fig. 8. Convergence of loss function with neural network and non-IID data distribution

(a) Loss v.s. iteration (b) Loss v.s. communication round (c) Loss v.s. bit

Fig. 9. Convergence of loss function with neural network (p=0.2, 0.5 and 0.7).

(a) Loss v.s. iteration (b) Loss v.s. communication round (c) Loss v.s. bit

Fig. 10. Convergence of loss function with neural network (p=0.8 and 0.9).

5.4 Performance of AQG with client dropouts

In this part, we particularly focus on the setting of wireless network with mobile devices, where

computation and communication are both extremely expensive, and client dropouts are frequent.

Given these constraints, the Two-level AQG is applied in experiments with client dropouts as an

adaptive solution for both communication and computation efficiency. Fig. 9 shows the perfor-

mance of AQG with client dropping rate ? as 0.2, 0.5 and 0.7. Experiment results demonstrate that

both AQG and Augmented AQG require fewer transmission bits compared against LAQ. Mean-

while, Augmented AQG has a stronger ability to reduce transmission bits with the presence of

such moderate client dropouts.
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Fig. 10 shows the performance of AQG with client dropping rate ? as 0.8 and 0.9. Experiments

show that AQG manages to achieve stable convergence with ideal rates, and at the same time

significantly reduces transmission bits even when there are only about 10% clients participating

in gradient computation at each iteration. However, we notice that the augmented version of AQG

fails to converge with a dropping rate higher than 0.8. It may be because when the dropping rate is

too high, the unbiased estimation inAugmentedAQGno longer remains accurate and even induces

more noise into the training. Thus, the Augmented AQG is recommended to be applied in FL

systems where the client dropping scale is moderate. Given the fact that the clients dropping rate

is not likely to be so high in most practical systems, the augmented adaptive quantized gradient-

based method is sufficient to address the dropping problem faced by FL.

6 CONCLUSION

This paper focuses on communication efficiency and the client dropout issue in FL, and proposes

AQGwhich not only adaptively adjusts the quantization level depending on local gradient’s update

before transmission, but also appropriately amplifies transmitted gradients to limit the dropout

noise. For communication efficiency, the key idea is to quantize less informative gradient with

less amount of bits, and vice versa. Since AQG fully utilize the heterogeneousness of local data

distribution to reduce unnecessary transmission, it achieves a larger transmission reduction with

non-IID data distribution as expected. Compared against existing popular methods, AQG leads to

25%-50% of transmission reduction while keeping the desired convergence properties, and shows

robustness to large-scale client dropouts with a dropping rate up to 90%. Meanwhile, the Aug-

mented AQG brings extra transmission reduction with moderate-scale client dropouts commonly

seen in practical scenarios, which indicates gradient amplification’s effectiveness in suppressing

the noise introduced by client dropouts.

Due to the aforementioned superiorities, AQG can be used jointly with some other communi-

cation efficient methods for FL architectures, such as gradient sparsification[23], client selection

based on local resources[13, 20, 29] and adaptively distributing subnetworks for heterogeneous

clients [6, 9]. Such superiorities and flexibility endow great potentials for the proposed FL frame-

work with AQG. Future works include deploying AQG jointly with such techniques in practical

FL systems.
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A MATHEMATICAL PROOF

A.1 Proof of Lemma 1

In AQG:
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(ĝ:−1< ) −&1<0G
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The Lyapunov function of AQG is defined as:
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(ĝ:<) −&1<0G
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(ĝ:<)

〉

+
U

2




∇5 (): )





2

2
+

�−1∑

3=1

(V3+1 − V3 )



):+1−3 − ):−3





2

2
− V�




):+1−� − ):−�




2

2

+ (
!

2
+ V1)








U




"∑

<=1

&1<0G
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(ĝ:<) −&1<0G
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(ĝ:<)





2

2
+"

∑

<∈M:
0




&1̂:−1<
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2

2
+

1<0G∑

1=1

∑

<∈M:
1




Y1<0G
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With the precision selection criterion (5):
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Thus,
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Ignoring the quantization errors, the following three inequalities should hold simultaneously

for ∀3 ∈ {1, ..., �} in order to ensure V():+1) − V(): ) ≤ 0:
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(33) provides the choice of range in terms of stepsize U and weights {b3 }
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The above analysis indicates that there is no need to modify these two parameters involved in

LAQ[25].

A.2 Proof of Lemma 2

Under Assumption 2:
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A.3 Proof of Theorem 1

This part proves that (15) holds for any : ≥ 0 if the following inequalities are satisfied:
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It is assumed that for any : ≥ 1, (15) holds for : − 1. Let f1 = 1 − 2 , there is:
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Under Assumption 1 andAssumption 2, the following inequality holds for any)1 and) 2 because

of convexity:
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Under Assumption 2 with (13),
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B SIMULATION DATASETS

Three binary classification datasets listed in Table. 3 are used together in order to simulate non-IID

data distribution as Chen et al. do in the evaluation of LAQ [7]. Specifically, The number of features

is preprocessed to be equal to the minimal number of features among the total three datasets, and

each dataset is uniformly distributed across six clients.
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Table 3. The heterogeneous simulation datasets used for logistic regression.

Dataset # features # samples client index

Adult fat[15] 113 1605 1,2,3,4,5,6

Ionosphere[22] 34 351 7,8,9,10,11,12

Derm[11] 34 358 13,14,15,16,17,18
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