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Abstract—Fairness is a crucial design objective in virtually all
network optimization problems, where limited system resources
are shared by multiple agents. Recently, reinforcement learning
has been successfully applied to autonomous online decision mak-
ing in many network design and optimization problems. However,
most of them try to maximize the long-term (discounted) reward
of all agents, without taking fairness into account. In this paper,
we propose a family of algorithms that bring fairness to actor-
critic reinforcement learning for optimizing general fairness
utility functions. In particular, we present a novel method for
adjusting the rewards in standard reinforcement learning by a
multiplicative weight depending on both the shape of fairness
utility and some statistics of past rewards. It is shown that
for proper choice of the adjusted rewards, a policy gradient
update converges to at least a stationary point of general α-
fairness utility optimization. It inspires the design of fairness
optimization algorithms in actor-critic reinforcement learning.
Evaluations show that the proposed algorithm can be easily
deployed in real-world network optimization problems, such
as wireless scheduling and video QoE optimization, and can
significantly improve the fairness utility value over previous
heuristics and learning algorithms.

I. INTRODUCTION

Fairness is essential for many network optimization prob-
lems, e.g., congestion control, routing, power control, spec-
trum management, load balancing, and flow scheduling [1],
[2], [3]. It is well-known that different notions of fairness,
including proportional and max-min fairness [4], [5], can
be achieved through the maximization of α-fair or isoelas-
tic utility functions (for different choices of α values). An
axiomatic framework of fairness for network optimization has
been developed in [6], [7], [8].

Many algorithms have been proposed for network opti-
mization to maximize fairness utility objectives. While certain
properties, such as convergence and optimality gap, are often
obtained in static settings, online optimization of fairness
utility in dynamic environments is, in general, a challenging
problem [9], [10], [11]. Recently, reinforcement learning (RL)
has been successfully applied to autonomous online decision
making in many network design and optimization problems,
e.g., [12], [13], [14], [15], [16], [17]. However, most of them
try to maximize the long-term (discounted) reward of all
agents, without taking fairness utilities into account. Only
a few proposals consider fairness, but either focus on the
heuristic reward function design [18] (thus not able to optimize
general fairness utilities) or rely on the Monte Carlo method to

Figure 1: An illustration of our actor-critic reinforcement
learning framework, which employs (multiplicative) adjusted-
rewards for fairness utility optimization.

sample a large number of paths for estimating policy gradient
[19] (thus resulting in extremely slow convergence).

This paper aims to develop a family of algorithms that bring
fairness to actor-critic reinforcement learning for optimizing
general fairness utility functions. Actor-critic reinforcement
learning [20] are Temporal Difference (TD) methods that have
a separate structure to explicitly represent the policy indepen-
dent of the value function. In particular, the critic evaluates
the current TD error and typically uses a deep neural network
to learn a value function. The value function is then used to
update the actor’s policy parameters in a direction improving
the objective value. Actor-critic algorithms leveraging deep
neural networks can solve online network optimization with
large state/action space, and have fast convergence due to
variance reduction. In this paper, we introduce a multiplicative-
adjusted reward as shown in Figure 1 and analyze the resulting
policy gradient for optimizing general fairness utility func-
tions. We prove that the policy gradient update converges to
at least a stationary point of α-fairness utility optimization for
proper choice of adjusted rewards. It inspires the design of an
actor-critic algorithm to learn a stochastic policy for fairness
optimization using the adjusted rewards. To the best of our
knowledge, this is the first proposal to achieve fairness utility
optimization in actor-critic reinforcement learning.

To illustrate the challenge in taking fairness into reinforce-
ment learning, we consider a network optimization problem
that intends to maximize the utility of agents’ average data
rates. Let rk,t be the reward (i.e., data rate) for agent k in
epoch t. It is not hard to see that optimizing the average reward
1/T

∑
t,k rk,t by reinforcement learning would not maximize

the α-fair utility
∑
k U(1/T

∑
t rk,t) when the utility function



is non-linear (i.e., for any α > 0). In fact, the Markovian
property required for formulating the problem as an MDP
is no longer satisfied. To overcome this, we propose a new
method that adjusts the rewards in reinforcement learning with
a multiplicative weight, φ(hπ,t), which is defined through a
uniformly-continuous function φ based on the shape of fairness
utility and some statistics of past rewards hπ,t up to epoch
t under policy π. By analyzing an underlying MDP (that
is obtained through a partially observable MPD [21]) and
proving an alternative policy gradient theorem, we show that
for proper choice of the function φ and statistics hπ,t, the
new learning problem with adjusted rewards is guaranteed to
converge to at least a stationary point of the α-fair utility
optimization. The result naturally leads to a new class of actor-
critic reinforcement learning algorithms, which can be applied
to a wide range of network utility optimization problems.
Unlike previous work [18], [19], the proposed algorithm does
not rely on the Monte Carlo method for calculating gradient
and has very fast convergence.

We note that many network optimization problems with
fairness utilities can be solved efficiently using the proposed
framework. It can learn an explicitly stochastic policy by
generating the optimal probabilities of selecting various ac-
tions. This ability turns out to be useful especially when
online optimization and non-convex problem structures are
involved. We implement and validate the proposed learning
framework in two real-world network optimization problems –
wireless network scheduling and Quality-of-Experience (QoE)
optimization in video streaming – both of which require
online decision making in a dynamic network environment.
We show that the proposed algorithm can achieve the optimal
policy when the problem is convex (e.g., in wireless network
scheduling) and significantly outperform several heuristic and
learning algorithms when the problem is non-convex (e.g., in
QoE optimization).

The main contributions of the paper are as follows:
• We propose a family of algorithms that introduce adjusted

rewards and bring fairness to actor-critic reinforcement
learning for optimizing general fairness utilities.

• A policy gradient theorem proven in this paper guarantees
convergence to at least a stationary point of the α-fair
utility optimization and inspires the design of actor-critic
algorithms.

• Significantly improve the fairness utility value over base-
line heuristics and learning algorithms.

II. RELATED WORK

Network Optimization and Fairness. Fair resource allocation
has been extensively studied in the past in network optimiza-
tion [1], [2], [3]. Many well-known fairness measures have
been proposed, including [22], [23], [24], [25], [26], [27],
ranging from simple ratios to more sophisticated functions
such as Jain’s index [24] and entropy function [28]. A family
of α-fair utility functions are developed to balance the fairness
problem and the total throughput in network optimization. This
includes the max-min fairness [4] and proportional fairness [5]
as special cases when α =∞ and α = 1, respectively. Later,

a systematic framework of fairness measures in network opti-
mization is developed in [6]. It proposes a set of five axioms
for fairness measures and is shown to unify many existing
notions of fairness. Fairness utilities have also been used in
the context of federated training, i.e., [29], to reduce variance
while maintaining the average accuracy during training.
Reinforcement Learning for Network Optimization. Deep
Reinforcement Learning (RL) algorithms have become in-
creasingly popular in solving network optimization problems,
especially when online decision making in a dynamic envi-
ronment is involved. For wireless networks, a multi-objective
fully distributed strategy based on RL is proposed for LTE
femtocell self-configuration and optimization [12], while a cell
outage management framework for heterogeneous networks
is developed in [13]. For traffic engineering problems, an
RL based control framework is developed in [14], and
an RL-based algorithm for link utilization optimization un-
der different traffic matrices is proposed in [15]. Related
work also include RL algorithms for Adaptive Bitrate video
streaming [16], QoS-aware adaptive routing [30], [31], packet
scheduling [17], and software-defined networks [32]. However,
these algorithms relying on standard RL mainly focusing on
maximizing the long-term (discounted) reward of all agents,
without taking fairness into account.

Learning for Fairness. However, they either focus on
heuristic reward function design [18] (thus not able to optimize
general fairness utilities or guarantee convergence) or rely on
the Monte Carlo method to collect a large number of sam-
pling paths for evaluating policy gradient [19] (thus resulting
in extremely slow convergence). In particular, different RL
algorithms have been developed for fair resource allocation
on multi-core systems [33], maximizing reward distribution
among Unmanned Aerial Vehicles [34], and balancing re-
source allocation in complex logistics networks [35]. Yet,
these algorithms rely on heuristic design to improve fairness
and cannot be used for general fairness utilities in network
optimization. Recently, model-based and model-free RL algo-
rithms for optimizing fairness objective is proposed in [19].
But it relies on the Monte Carlo method for gradient evaluation
and thus suffers from extremely slow convergence. To the best
of our knowledge, this work is the first proposal to achieve
fairness utility optimization in actor-critic RL with provable
convergence.

III. PROBLEM FORMULATION

We consider a network utility optimization, where the
network is modeled as an environment and users as learning
agents. Agents interact with the environment and learn a
policy to optimize an aggregate utility of the individual agents’
reward (e.g., data rates). This is considered as an infinite
horizon discounted Markov Decision Process (MDP) M that
is defined by the tuple (S,A, P,K, r1, r2, . . . , rK , γ). Here S
denotes a set of states, A a set of actions, and P : S×A → S
the transition probability distribution. There are K agents,
each associated with a reward rk : S × A → [0, 1] for
k = 1, . . . ,K. When distributed execution is employed, each
agent k maintains its own state space Sk and action space



Ak. Then, the joint state space and action space become
S = S1 × . . .× SK and A = A1 × . . .×AK , respectively.

We use a stochastic policy π(a|s) to determine the proba-
bility of selecting action a ∈ A in each state s ∈ S . Let xπ,k
denote the average reward of agent k under policy π. Then,
we have

xπ,k = lim
T→∞

1

T
Eπ

[
T∑
t=1

rk,t

]
, (1)

where rk,t ∼ rk(at, st) is the reward, and we use the notation
Eπ[·] to denote the expectation Es0,a0,s1,...[·] with at ∼ π(·|st)
and st ∼ P (·|st−1, at−1) under policy π.

In this paper, we consider the optimization of a class of
α-fair utility functions, which are widely used in network
optimization [6]. For some constant α ≥ 0, the α-fair utility
is defined as:

U(x) =

{
x1−α/(1− α) for α 6= 1,

log(x) for α = 1.
(2)

Our goal is to find the optimal policy π that maximizes the
aggregate utility f =

∑
k Uk over the average per-step rewards

xπ,k of the K agents, i.e.,

maxπ
∑
k

U(xπ,k). (3)

s.t. xπ,k = lim
T→∞

1

T
Eπ

[
T∑
t=1

rk,t

]
(4)

It has been shown that the use of α-fair utility functions
captures a wide range of notions of fairness including the
well-known proportional fairness f =

∑
k log(xk) for α = 1,

throughput maximization f =
∑
k xk for α = 0, and max-min

fairness f = mink xk for α → ∞. A unifying framework on
fairness optimization is proposed in [6].

When it comes to online decision making using RL,
however, maximizing general fairness functions is a chal-
lenging problem. RL algorithms typically are intended to
maximize the discounted long-term reward of all agents -
i.e., Eπ[

∑
t

∑
k γ

trk,t] - and fail to consider fairness among
different agents. It is easy to see that for non-linear utility
functions such as the α-fair utility, maximizing the discounted
long-term reward of all agents cannot optimize the network
utility in Eq.(3).

IV. LEARNING ALGORITHM AND ANALYSIS

We propose a family of reinforcement learning algo-
rithms that enable fairness utility optimization by introducing
multiplicative-adjusted rewards to obtain an actor-critic imple-
mentation. We will first propose the RL algorithm concerning
the adjusted rewards and characterize its policy gradient.
Then, for proper choice of multiplicative-adjusted rewards, the
derived policy is shown to be at least a stationary point for the
network utility optimization under α-fair utility functions and
inspires the design of an actor-critic algorithm. We assume
that the Markov chain induced by any policy is irreducible
and aperiodic.

A. Learning with Multiplicative-Adjusted Rewards

To optimize fairness utilities, it is easy to see that we need
a mechanism to track past reward history in the learning
algorithm. To demonstrate this, consider a simple example
distributing a single unit of reward between two agents to
achieve max-min fairness (which would assign an equal
amount of reward to each agent at optimum). Under some
policy π, if up to epoch t agent 1 receives more accumulative
reward than agent 2, then we need to update policy π using
a policy gradient that favors agent 2 over agent 1. Thus, the
policy updates must depend on past reward history to optimize
fairness utilities. To this end, we consider a new MDP, in
which the rewards received by different agents are adjusted
based on the shape of fairness utility and some statistics of
past rewards.

Let hπ,t be some statistics obtained from the current sample
paths up to epoch t, under a policy π. We consider a uniformly-
continuous function φ(hπ,t) that depends on hπ,t. We define
multiplicative-adjusted rewards for each time t by multiplying
(actual) reward rk,t with a weight φ(hπ,t), i.e.,

r̂k,t = rk,t · φ(hπ,t). (5)

Let ρ̂π be the average per-step (multiplicative-adjusted) reward
associated with policy π for this irreducible and aperiodic
MDP [36]. With respect to the adjusted rewards r̂k,t, we
denote the relative state- and action-value functions [37]
associated with policy π by V̂π : S → R and Q̂π : S×A → R,
which are defined respectively as:

V̂π(s) = lim
T→∞

Eπ

[
T∑
t=1

K∑
k=1

r̂k,t − ρ̂π
∣∣
s0=s

]
(6)

Q̂π(s, a) = lim
T→∞

Eπ

[
T∑
t=1

K∑
k=1

r̂k,t − ρ̂π
∣∣
s0=s,a0=a

]
(7)

We note that V̂π and Q̂π are both bounded due to the
subtraction of the average reward [37], [38]. Using the Laurent
Series Expansion, it is easy to show that a state/action value
in standard discounted reinforcement learning (with discount
factor γ) can be decomposed into its average reward ρ̂π , the
relative state/action value, and an additional error term that
vanishes as γ → 1 [38]. Further, we define the advantage
function of policy π as the difference between Q̂π and V̂π:

Âπ(s, a) = Q̂π(s, a)− V̂π(s). (8)

We note that the multiplicative-adjusted rewards r̂k,t depend
on past statistics hπ,t under policy π. Thus, the Markovian
property that is required by the Policy Gradient Theorem (in
its unrolling step) of standard RL is no longer satisfied with
the adjusted rewards. The Policy Gradient Theorem cannot be
directly applied to guarantee convergence in the actor-critic
RL algorithm. To this end, we prove an alternative policy
improvement theorem. Suppose the policy πθ is approximated
by a neural network with parameter θ. Let ρ̂πθ be the average
per-step adjusted reward under policy πθ. We characterize the
improvement in average per-step adjusted reward resulted by
a small change in the current policy parameters by analyz-



ing an underlying MDP. It effectively establishes the a new
policy gradient descent algorithm with multiplicative-adjusted
rewards, which converges to at least a local maximum. We use
||ε||2 to denote the L-2 norm of a vector ε..

Lemma 1. By changing the current policy parameters from θ
to θ + ε for some small vector ε, the resulting change in the
average reward is given by

ρ̂πθ+ε − ρ̂πθ = Eπ
[
εÂπ(s, a)∇θ lnπθ(a|s)

]
+O(||ε||22). (9)

Proof. Since multiplicative-adjusted rewards r̂k,t depend on
past statistics hπ,t, the Markovian property that is needed to
analyze average reward ρ̂πθ no longer holds. To deal with
this, we define a new state zt = [st, hπ,t], ∀t and show that an
underlying chain with states zt, action at, and rewards r̂k,t
is an MDP. This approach was first introduced to analyze
partially observable MDPs [21]. To this end, it is easy to
see that the multiplicative-adjusted rewards r̂k,t = rk,tφ(hπ,t)
only depends on states zt and actions at. Further, the tran-
sitions between the new states zt are also Markovian, since
hπ,t depends only on past history hπ,t−1 and the state/action
at time t− 1.

We will prove the result in this lemma by analyzing this
underlying MDP. We use pazz′ to denote the state transition
probability of this underlying MDP, and Vπ(z) and Qπ(z, a)
its state- and action-value functions, respectively. Let Pπ(z|s)
define the limit occupancy probabilities over the underlying
states z for each given s (since hπ,t and st are not necessary
independent). For the state- and action-value functions in
Eq.(7) and Eq.(6), we have

Q̂π(s, a) =
∑
z∈s

Qπ(z, a) and V̂π(s) =
∑
z∈s

Vπ(z), (10)

where z ∈ s denotes the states z that are consistent with s.

Next, we consider an auxiliary function defined on the
underlying MDP, i.e.,

Gθ+ε,θ+ε,θ =
∑
a

πθ+ε(a|s)
∑
z∈s

Pπθ+ε(z|s)Aπθ (z, a), (11)

where Aπ(z, a) = Qπ(z, a)− Vπ(z, a) is the advantage value
for the underlying MDP, and we have used the notation that
the policy parameters on the left hand side (in Gθ+ε,θ+ε,θ)
correspond to the policy parameters on the right, respectively.

We show that

Gθ+ε,θ+ε,θ −Gθ+ε,θ+ε,θ+ε
=
∑
a

πθ+ε(a|s)
∑
z∈s

Pπθ+ε(z|s)[Qπθ (z, a)−Qπθ+ε(z, a)]

−
∑
a

πθ+ε(a|s)
∑
z∈s

Pπθ+ε(z|s)[Vπθ (z)− Vπθ+ε(z)]

=
∑
z∈s

Pπθ+ε(z|s)
∑
a,z′

πθ+ε(a|s)
∑
z′

pazz′ [Vπθ (z
′)− Vπθ+ε(z′)]

+ρ̂πθ+ε − ρ̂πθ −
∑
z∈s

Pπθ+ε(z|s)[Vπθ (z)− Vπθ+ε(z)]

=
∑
z∈s

Pπθ+ε(z|s)
∑
z′

p
πθ+ε
zz′ [Vπθ (z

′)− Vπθ+ε(z′)]

+ρ̂πθ+ε − ρ̂πθ −
∑
z∈s

Pπθ+ε(z|s)[Vπθ (z)− Vπθ+ε(z)] (12)

where we used Aπ(z, a) = Qπ(z, a)−Vπ(z, a) in step 1 above,∑
a πθ+ε(a|s)pazz′ = p

πθ+ε
zz′ for the state transition probabilities

in step 3, the fact that
∑
a πθ+ε(a|s) = 1 for the last term in

step 2, and the Bellman’s equation of the underlying MDP in
step 2, i.e.,

Qπ(z, a) = r̂(s, a)− ρ̂π +
∑
z′

pazz′Vπ(z′). (13)

We note that by weighting both sides of Eq.(12) for each
state s with the limit occupancy probabilities Pπθ+ε(s) and
by summing over all states, the first and the third term in the
last step of Eq.(12) become exactly the same, thus canceling
out. Furthermore, it is easy to verify that Gθ+ε,θ+ε,θ+ε = 0
since

∑
a π(a|s)Qπ(z, a) = Vπ(z) for any policy π. Thus, by

re-arranging the terms and plugging in these results, Eq.(12)
implies

ρ̂πθ+ε − ρ̂πθ =
∑
s

Pπθ+ε(s)Gθ+ε,θ+ε,θ. (14)

This does not yet allow us to derive the change in average
reward because Gθ+ε,θ+ε,θ still contains terms that are only
available in the underlying MDP. However, when the change ε
in the policy parameters is small, it can be shown [21] that the
change in Pπθ (z|s) and Pπθ (s) can both be bounded by C ·
||ε||2 for some constant C. Similarly, the corresponding change
in the policy πθ can be bounded by ε∇πθ(a|s) + O(||ε||22).
Using these results on the right hand side of Eq.(14), we have

ρ̂πθ+ε − ρ̂πθ
=
∑
s

Pπθ+ε(s)
∑
a

[πθ(a|s) + ε∇θπθ(a|s) +O(||ε||22)]

·
∑
z∈s

Pπθ+ε(z|s)Aπθ (z, a)

=
∑
s,a

Pπθ+ε(s)ε∇θπθ(z|s)
∑
z∈s

Pπθ+ε(z|s)Aπθ (z, a)

+O(||ε||22)

=
∑
s,a

Pπθ (s)ε∇θπθ(a|s)Âπθ (s, a) +O(||ε||22)

=
∑
s,a

Pπθ (s)πθ(a|s)ε∇θ lnπθ(a|s)Âπθ (s, a) (15)



where the second step uses
∑
a π(a|s)Qπ(z, a) = Vπ(z), or

equivalently
∑
a π(a|s)Aπ(z, a) = 0, the third step uses the

bound on Pπθ (z|s) and Pπθ (s) for a small change in policy
parameters. We note that the last step is exactly Eq.(9) since∑
s,a P

πθ (s)πθ(a|s)[·] gives the desired expectation.

The lemma effectively establishes a policy gradient for
optimizing average per-step adjusted reward ρ̂πtheta. We can
leverage it to develop a policy gradient algorithm, whose
convergence follows directly from the standard analysis of RL
with proper estimates of advantage value Âπ(s, a) [20] and is
summarized in the lemma below. The algorithm continues to
improve average per-step adjusted reward until∇θρ̂πtheta = 0,
which constitutes a stationary point of the policy update.

Lemma 2. Policy gradient algorithm using
Âπ(s, a)∇θ lnπθ(a|s) and sufficiently small learning
rate η converges to a stationary point with respect to the
multiplicative-adjusted rewards.

B. Solving Fairness Utility Optimization

Now we show that for proper choice of statistics hπ,t and
function φ(·) that define the adjusted reward, the gradient
policy algorithm indeed converges to a stationary point of the
α-fair utility optimization problem in Eq.(2). Lemma 2 shows
that the policy gradient algorithm converges to a stationary
point of the adjusted MDP (with adjusted rewards). We denote
the optimal policy parameter as θ∗, and thus optimal policy as
πθ∗ . Then, the average per-step reward in terms of the original
rewards rk,t (as defined in our α-fair utility optimization
problem) is given by

xπθ∗ ,k = lim
T→∞

1

T
Eπ

[
T∑
t=1

rk,t

]
. (16)

The above limit exists because the Markov Chain is irreducible
and aperiodic (and thus ergodic) under policy πθ∗ [36]. We
need to show that θ∗ (and the optimal policy πθ∗ ) is also a
stationary point for the optimization of

∑
k U(xπθ,k).

Algorithm 1 Fairness Policy Gradient Algorithm

1: Initialize: Learning rate η, policy parameter θ.
2: for each episode do
3: Generate one trajectory on policy πθ:

s0, a0, r1, s1, a1, r2, . . . , sT .

4: Adjust reward r̂k,t,∀k, t using Eq.(5)
5: for t = 1, 2, . . . , T do
6: Estimate advantage Âπ(st, at) using Eq.(8).
7: Update θ ← θ + ηγtÂπ(st, at)∇θ lnπθ(at|st).
8: end for
9: end for

10: Output: Policy πθ

We choose φ(·) to be the first order derivative of the fairness
utility function, i.e., U ′(·). It is easy to see that the function
is bounded and Lipschitz, as long as the per-step rewards
xπθ∗ ,k are bounded away from 0 and also upper-bounded, i.e.,
|U ′(x) − U ′(y)| ≤ L|x − y| for some constant L > 0. Next,

we consider an estimate of the per-step reward (in terms of
the original rewards rk,t) using the history up to time t, i.e.,
hπθ∗ ,t =

∑t
τ=1 rk,τ/t. The adjusted rewards are then defined

by

r̂k,t = rk,tφ(hπθ∗ ,t) = rk,tU
′

(
1

t

t∑
τ=1

rk,τ

)
. (17)

We show that with this choice of adjusted rewards, the gradient
policy algorithm converges to a stationary point of the α-fair
utility optimization problem.

Theorem 1. For the adjusted reward in Eq.(17), the gradient
policy algorithm converges to a stationary point of the α-fair
utility optimization.

Proof. We need to prove that the policy parameter θ∗ (and
thus policy πθ∗ ) is a stationary point for the α-fair utility∑
k U(xπθ,k). To this end, we note that due to Lemma 2,

θ∗ is a stationary point for the adjusted MDP, which implies
that ∇θρ̂πθ |θ=θ∗ = 0 due to Lemma 1. We need to analyze the
relationship between per-step adjusted reward ρ̂πθ and per-step
reward xπθ,k.

Using the adjusted rewards in Eq.(17), we have

ρ̂πθ = lim
T→∞

1

T
· πθ

[
T∑
t=1

K∑
k=1

rk,tU
′

(
1

t

t∑
τ=1

rk,τ

)]
(18)

where the expectation πθ denotes Es0,a0,s1,...[·] with at ∼
π(·|st) and st ∼ P (·|st−1, at−1) under policy πθ. Since the
Markov Chain is irreducible and aperiodic (and thus ergodic)
under policy πθ, we have xπθ,k = limT→∞ 1/T

∑T
t=1 rk,t. It

implies that for any ε > 0, there exists a sufficient large T ,
such that |1/T

∑T
t=1 rk,t − xπθ,k| < ε. Combining this and

the Lipschitz continuity of U ′(·), we have∣∣∣∣∣ 1

T

T∑
t=1

∑
k

rk,tU
′

(
1

t

t∑
τ=1

rk,τ

)
−
∑
k

xπθ,kU
′(xπθ,k)

∣∣∣∣∣
≤
∑
k

∣∣∣∣∣ 1

T

T∑
t=1

rk,tU
′

(
1

t

t∑
τ=1

rk,τ

)
− xπθ,kU ′(xπθ,k)

∣∣∣∣∣
≤
∑
k

∣∣∣∣∣ 1

T

T∑
t=1

rk,tU
′ (xπθ,k)− xπθ,kU ′(xπθ,k)

∣∣∣∣∣+ εC2L

≤
∑
k

∣∣∣∣∣ 1

T

T∑
t=1

rk,t − xπθ,k

∣∣∣∣∣ · |U ′ (xπθ,k)|+ εC2L

≤ εC1 + εC2L (19)

where C1 is a bound for |U ′ (xπθ,k)| and C2 is a bound
for the average reward 1/T

∑T
t=1 rk,t. We used bound C2

in the second step above, as well as the Lipschitz continuity,
i.e., |U ′(1/t

∑t
τ=1 rk,τ ) − U ′(xπθ,k)| ≤ L|1/t

∑t
τ=1 rk,τ −

xπθ,k| ≤ Lε.
As T grows to infinity, Eq.(18) and Eq.(19) imply

that ρ̂πθ =
∑
k xπθ,kU

′(xπθ,k). It is easy to see that
(1 − α)U(x) = xU ′(x) for α-fair utility functions1.

1For α = 1, optimization of the proportional fair utility log(x) can be
considered as the limit of (x1−α − 1)/(1− α) as α→ 1.



Thus, θ∗ being a stationary point in the underlying
MDP (i.e., ∇θ [xπθ,kU

′(xπθ,k)] |θ=θ∗ = 0) implies that
∇θ [

∑
k U(xπθ,k)] |θ=θ∗ = 0. We conclude that θ∗ is also a

stationary point for the α-fair utility optimization.

The result inspires a new actor-critic algorithm to solve
the α-fair utility optimization. In particular, to compute the
adjusted rewards r̂k,t in Eq.(17), we can leverage an estimate
of the average of original rewards rk,t on the existing trajectory
up to epoch t (instead of the true average under the current
policy). Let V̂ω(st) be a neural network approximate of the
state-value function parameterized by ω. We can train V̂ω(st)
using the standard Temporal Different (TD) error with respect
to adjusted rewards, i.e., δt =

∑
k r̂k,t+γV̂ω(st+1)−V̂ω(st), as

in standard actor-critic algorithms. By calculating the average
of past original rewards, the algorithm obtains an estimate
of the adjustment weights φ and updates the state-value as
well as the policy parameters based on this estimate. Our
proposed Fairness Actor-Critic (FAC) algorithm is summarized
in Algorithm 2.

Algorithm 2 Fairness Actor-Critic (FAC) Algorithm

1: Initialize: Learning rate ηθ, ηω , policy parameter θ, ω.
2: for t = 1, 2, . . . , T do
3: Sample action at ∼ πθ(·|st).
4: Sample reward rt ∼ rk(st, at).
5: Generate next state st+1 ∼ P (·|st, at).
6: Adjust reward r̂k,t,∀k using Eq.(17).
7: Compute Â(at, st) =

∑
k r̂k,t + γV̂ω(st+1)− V̂ω(st).

8: Update θ ← θ + ηθÂπ(st, at)∇θ lnπθ(at|st).
9: Compute TD error: δt = Â(at, st).

10: Update: ω ← ω + ηωδt∇ωV̂ω(st).
11: end for
12: Output: Policy πθ.

Remark 1: We note that when actor-critic algorithms are
concerned, due to the error of policy evaluation steps and its
impact on policy improvement steps, the convergence has only
been established in special cases, e.g., if linear action-value
function approximators or two-layer neural-network param-
eterization are used [39]. The convergence proof in general
remains an open problem. Existing convergence results apply
to our proposed fairness actor-critic algorithm

V. EVALUATIONS

We implement the proposed Fairness Actor-Critic (FAC)
algorithm and evaluate its performance in two real-world
network optimization problems that require online decision
making, i.e., wireless network scheduling and QoE optimiza-
tion in video streaming. We show that the FAC algorithm can
achieve the optimal policy when the problem is convex (e.g.,
in wireless network scheduling) and significantly outperform
many heuristic and learning algorithms when the problem is
non-convex (e.g., in QoE optimization).

A. Wireless Network Scheduling

Problem formulation. Fairness among different users’ trans-
mission rates is a very important design objective for oppor-
tunistic schedulers in wireless networks. This is often achieved
by maximizing various α-fair utility functions [40], [41], [42],
[43]. Consider a wireless network with a single base station
and K users, , similar to [19]. Suppose that the wireless
channel of each agent could only be in one of two states:
{good, bad}. When its channel is in good state, the agent has
a higher transmission rate than in bad state. An example of
data rates received by K = 4 agents (denoted by ri(t) for the
agent i) in different channel states is shown in Table 1. We
consider a dynamic channel model, where the state transition
of each agent’s channel is independent, and at each time step,
the probability of remaining in the same state is p0 = 0.8
while the probability of moving into a random state with equal
probability is p1 = 0.2. Let si(t) denote the the channel state
of agent i at time t. The state transitions are described by

si(t+ 1) =

{
si(t) w.p. 0.8
s ∼ Uniform({good, bad}) w.p. 0.2

(20)

User state r1(t) r2(t) r3(t) r4(t)

good 1.50 2.25 1.25 1.50
bad 0.768 1.00 0.384 1.12

Table I: Transmission rates of K=4 agents (obtained from a
practical LTE network, in Mbps) under different channel states
in our evaluation.

In our opportunistic scheduler, a single agent is selected to
transmit at each time slot T . The problem of maximizing an
α-fair utility over agent selection strategies can be formally
defined as

max

K∑
i=1

U(xi), s.t. xi = lim
T→∞

1

T

T∑
t=1

ri(t) (21)

where ri(t) is the transmission rate of agent i at time t, xi
the average transmission rate of agent i, and U the utility
function defined in Eq.(2) with some choice of parameter α
corresponding to certain notion of fairness.

To recast this into a RL problem, we define the state space
as S(t) = {s1(t), . . . , sK(t)}, where si(t) is the channel state
of agent i at time t. Thus, there are |S| = 2K possible states
for the learning problem. Since our opportunistic scheduler
selects one agent to transmit at each t, the action at each time
step t is a one-hot vector with one entry set at 1, corresponding
to the agent selected for transmission. The action space A has
size |A| = K. Finally, the reward corresponding to each state
and action is the transmission rate of the active agent at time
t, while remain agents receive zero rewards.
Evaluation results. We evaluate our FAC algorithm along
with two learning algorithm baselines, which are denoted by
“SARSA” and “FEN” policies. We also compute the optimal
solution “OPT”, which leverages convex optimization (which
yet has exponential number of variables and constraints in
general) to provide ground truth for our evaluation.



Figure 2: Comparing the convergence of
different algorithms for proportional-fair
utility

∑
i log(xi). FAC converges to the

optimal utility value.

Figure 3: Comparing the convergence of
different algorithms for fairness utility∑
i−1/xi with α = 2. FAC converges

to the optimal utility value.

Figure 4: The convergence of indi-
vidual (average) transmission rates un-
der the proposed FAC algorithm for
proportional-fair utility.

• Algorithm “FAC”: This is the Fairness Actor-Critic algo-
rithm we proposed in this paper. It maximizes the fairness
utility concerning adjusted rewards over a finite horizon.

• Algorithm “OPT”: This is the optimal utility that is
computed through a convex optimization to provide the
ground truth for our evaluation (shown as a horizontal
line). More precisely, We denote yi,s as the probability
of selecting agent i for transmission in state s, satisfying∑
s yi,s = 1. It is not hard to see that optimization is

convex, albeit having K · 2K optimization variables and
2K constraints in general.

• Algorithm “SARSA”: We implement the SARSA RL
algorithm to optimize the long-term reward as a baseline
without considering fairness. It uses a standard Policy
Gradient method with

∑
i ri(t) as the aggregate step

reward and a single Actor neural network for learning.
• Algorithm “FEN”: This implements the RL algorithm in

[18] for fair-efficient reward optimization. In particular,
it leverages a hueristic method to construct an adjusted
reward r̂i(t) = R̄(t)/[c(ε + |R̄i(t)/R̄(t) − 1|)], where
R̄i(t) is the average reward of agent i over elapsed
timesteps and R̄(t) the average sum reward of all agents.
The term R̄(t)/c could be seen as the resource utilization
of the whole system, while |R̄i(t)/R̄(t)−1| measures an
agent’s utility deviation from the average.

In our experiments, the actor and critic neural networks
consist of one hidden layer with 250 neurons and the ReLu
activation function. We use Adam optimizer to train the
network for 30,000 steps for the learning algorithms. We
choose the learning rate of the actor-network as 0.001, while
the critic network has a learning rate of 0.01. This small
difference makes the critic network learn faster than the actor-
network. A slower learning rate of the actor could allow it
to obtain feedback from the critic in each step, making the
learning process more robust. Finally, we use γ = 0.9 in
the critic network to discount the reward and calculate the
advantage functions.

We first compare FAC with the baseline algorithms using
proportional-fair utility function

∑
i log(xi), which is a special

case of the α-fair utility for α = 1. We trained SARSA,

FEN, and FAC algorithms for 30,000 steps and K = 4
agents and plot the convergence of the proportional fair utility
value in Figure 2. We note that the SARSA algorithm has
the worst performance because it aims to optimize the long-
term (discounted) reward

∑
i xi (i.e., the overall throughput)

without taking fairness into account. The proportional-fair
utility value eventually goes to minus infinity for SARSA,
since some agents would receive a zero transmission rate in
this throughput optimal solution. The performance of FEN is
slightly better than SARSA. This is because FEN leverages
a heuristic design to balance the throughput efficiency and
the variance of different agents’ transmission rates. More
precisely, in the adjusted reward of FEN algorithm, the term
R̄(t)/c could be seen as the resource utilization of the whole
system, encouraging agents to become more efficient, while
|R̄i(t)/R̄(t) − 1| measures an agent’s utility deviation from
the average, punishing any agent if its average reward moves
above or below the average. Our proposed FAC algorithm can
converge within 10,000 steps and is shown to achieve the opti-
mal proportional-fair utility value (as obtained by OPT despite
having an exponential number of variables and constraints in
general) in this convex wireless network scheduling problem.

Next, to demonstrate FAC algorithm’s ability to optimize
different utility functions, we consider the α-fair utility with
α = −1, i.e,

∑
i−1/xi. Since xi is the average transmission

rate of agent i, maximizing the utility max
∑
i−1/xi can be

regarded as minimizing the aggregate latency of all agents i.e.,
min

∑
i 1/xi assuming a single unit of data to transmit. The

convergence of different algorithms is shown in Figure 3. The
α-fair utility value for SARSA and FEN drops more quickly,
while FAC again can converge to the optimal solution.

Finally, Figure 4 shows the convergences of individual
agents’ average transmission rates R̄i(t) in the FAC algorithm
for the proportional fair utility function. We note that the
adjusted reward in FAC is given by ri(t)/R̄i(t), where R̄i(t)
is the average reward of agent i up to current time t. Thus,
FAC is encouraged to choose an agent with a smaller R̄i(t)
to transmit. After that, the agent’s adjusted reward would rise,
until it becomes more favorable to select other agents. As we
have proven in this paper, the FAC algorithm converges to an



optimal policy of the α-fair utility optimization for arbitrary
α.

B. QoE Optimization in Video Streaming

Problem Formulation. We now consider a QoE optimization
problem in video streaming. The streaming stall time, which
is defined as the accumulated waiting time between a video
chunk is played and the time the next chunk is downloaded
is used as our metric for QoE [44], [45]. We note that the
optimization of stall time over dynamic bandwidth allocation
among multiple agents leads to a non-convex online problem
that is very difficult to solve.

Consider a video streaming server connected with a set of
K agents, who continuously request various video clips on
the server through a shared link with bandwidth B. Let tk(v)
denote the stall time ratio (i.e., stall time normalized by video
play time) experienced by user k when watching video v. We
consider the optimization of bandwidth allocation among the
K agents – denoted by π = (π1, . . . , πK) (such that πkB
is the bandwidth assigned to agent k) – with QoE rewards
defined by f(tk(v)) = 2 − tk(v). Thus a smaller stall time
ratio correspond to a higher reward.

Our goal is to optimize a proportional-fair utility of the
per-step average QoE rewards over bandwidth allocation π =
(π1, . . . , πK), i.e.,

max

K∑
k=1

log(xk), s.t. xk = lim
T→∞

1

T

T∑
l=1

rk(l) (22)

where rk(l) = f(tk(v)) = 2 − tk(v) is the QoE value
received by agent k at time slot l (over video v). The choice
of proportional-fair utility(and QoE reward) ensures that (i)
Videos with lower stall time are given higher rewards, while
all agents’ stall time are bounded by 2; and (ii) Reducing
the stall time for heavily stalled users achieves higher reward
improvement than for lightly stalled users due to the shape of
logarithm function.

We implement a network with K=5 agents and both high-
and low-resolution videos. Three agents prefer to watch high-
resolution videos with bitrates of 8Mbps (1080p) and 5Mbps
(720p) (similar to Youtube videos), while the other two agents
consume 2.5Mbps (480p) and 1Mbps (360p) videos randomly.
The exact setup of different agents’ video bitrates and proba-
bilities are shown in Table II. We divide the timeline into slots
according to the agents’ video switches, i.e, each time slot ends
when an agent switches its video/bitrate selection, and a new
time slot starts right after. Similar to [45], we assume that the
duration of time slots follow an i.i.d. exponential distribution
and that agents independently select the next video according
to the probabilities specified in Table II. When a new time
slot l is detected, a new bandwidth allocation decision π is
generated to allocate the shared bandwidth of B to agents.

To recast this into a learning problem, we define the system
state at time slot l by s = (v(l), d(l), z(l), c(l)), in which the
four K-dimension vectors represent the video bitrates (v(l)),
assigned download speeds (d(l)), accumulated stall time for
current videos (z(l)), and the number of residue video chunks
for all users (c(l)). To adjust bandwidth allocation decisions on

Table II: User preferences in our experiment.

User Resolutions Bitrates Probabilities

1
1080p
720p

8Mbps
5Mbps

0.5
0.5

2
1080p
720p

8Mbps
5Mbps

0.5
0.5

3
1080p
720p

8Mbps
5Mbps

0.5
0.5

4
480p
360p

2.5Mbps
1Mbps

0.5
0.5

5
480p
360p

2.5Mbps
1Mbps

0.5
0.5

the fly while maintaining a small action space, we introduce
two reinforcement learning modules, one of which selects
an agent with a “down” action (a−) to reduce its assigned
bandwidth by one unit, and the other selects an agent with an
“up” action (a+) to increase its assigned bandwidth by one
unit. Thus the total bandwidth consumption remains equal
to B. By iteratively running these two RL modules until
a− = a+ is detected, a new bandwidth allocation policy π
can be obtained. The action space for each RL module is kept
at |A| = K, i.e., linear to the number of agents.
Evaluation Results. We develop a simulation testbed similar
to [44], [45] to generate the stall time in video streaming. The
following algorithms, including both heuristic and learning
methods, are compared:
• “FAC”: The proposed FAC algorithm with adjusted re-

wards for optimizing proportional fair utilities.
• “Even”: A heuristic policy that evenly distributes the

shared bandwidth to all agents.
• “Adaptive”: A heuristic policy that dynamically splits the

bandwidth in proportion to agents’ video bitrates.
• “NMPG”: The NMPG reinforcement learning algorithm

in [19] for optimizing fairness utilities. It leverages the
Monte Carlo method for policy gradient evaluation and
thus has slow convergence.

First, we show the convergence of total QoE reward on
2500KB/S download link in Figure 5. Since NMPG uses
the Monte Carlo method to evaluate policy gradient in each
episode, it takes 10,000 steps per episode for each Monte
Carlo evaluation and 5,000 episodes of gradient updates –
thus 50 million steps in total – to converge to an optimal
policy. On the other hand, the FAC algorithm that leverages
an actor-critic structure converges in only 6,000 steps. Further,
because FAC adjusts the bandwidth distribution after each
step, its achieved utility quicks ramp up, while NMPG only
makes incremental utility improvement after each episode. The
convergence of FAC is plotted almost as a vertical line(with
barely visible transient to optimal) in Figure 5 and quickly
arrives at the optimal utility value. Several orders of magnitude
improvement in convergence speed are observed in this video
streaming application.

Figures 6 and 7 show the performance comparison of differ-
ent algorithms with a Constant Bitrate (CBR) streaming policy,
for 2000 KB/S and 2500 KB/S download links, respectively. In
particular, we run the NMPG algorithm with a training time



Figure 5: Convergence of the fairness
utility using FAC and NMPG algorithms.
FAC converges much faster(with barely
visible transient to optimal) than that of
NMPG.

Figure 6: FAC achieves the highest fair-
ness utility for download bandwidth of
2500 KB/s. Note that y-axis is in log due
to the use of proportional fairness.

Figure 7: The benefit of FAC becomes
more significant for download bandwidth
of 2000 KB/s. Note that y-axis is in log
due to the use of proportional fairness.

Table III: Reward breakdown for fairness function on
2500KB/s download link.

Policy Total Reward Agent Average
Agent Stall Ratio Reward

“Even” 5188.13
1, 2, 3 (HD)

4, 5 (LD)
0.3959
0.0761

1.6041
1.9239

“Adaptive” 5343.36
1, 2, 3 (HD)

4, 5 (LD)
0.1789
0.2808

1.8210
1.7191

“FAC” 5632.58
1, 2, 3 (HD)

4, 5 (LD)
0.2257
0.2672

1.8943
1.8528

“NMPG” 5161.22
1, 2, 3 (HD)

4, 5 (LD)
0.3396
0.2409

1.6604
1.7591

limit of 1000 episodes and 3000 steps per episode (i.e., 3
million steps in total). Our proposed FAC algorithm performs
better than all other baselines in terms of achieved fairness
objective

∑K
k=1 log(R(tk(v))). On the 2000 KB/S download

link, FAC outperforms the static “Even”, dynamic “Adaptive”
and NMPG algorithms by 6.29%, 7.16%, and 5.40% in terms
of the fairness utility value, respectively. On the 2500 KB/S
download link, FAC outperforms the static “Even”, dynamic
“Adaptive” and NMPG policies by 7.93%, 5.15%, and 8.23%
respectively. We note that these improvements in the fairness
utility should be interpreted in the “decibel” sense due to
the use of the logarithm utility function. For instance, as the
fairness utility improves from -5.63(achieved by “Adaptive”)
to -5.22(achieved by “FAC”), the 7.16% improvement in utility
corresponds to 10(−5.22+5.63)/5 − 1 = 21% improvement in
the geometric-mean reward.

Table III shows the breakdown of stall time tk(v) and the
original reward without normalization for different algorithms
on 2500KB/S download link. Again, we run the NMPG
algorithm with a training time limit of 1000 episodes and 3000
steps per episode. We note that the “Adaptive” policy achieves
similar stall time for both HD and LD users, while the ”Even”
policy tends to slightly reduce the stall time of LD users at the
cost of the performance loss of HD users. Since the reward
loss of HD users is lower than the gain of LD users, the “Even”
policy could have a higher overall reward than ”Adaptive”. We

also note that due to the use of the Monte Carlo method, the
NMPG algorithm has very slow convergence and suffers much
lower utility if the training time budget further decreases. FAC
can achieve the highest performance compared to all three
baselines since it dynamically makes bandwidth adjustment
decisions based on the current network states and with respect
to the fairness utility objective. When a user in FAC has
enough chunks loaded ready for future playing, its bandwidth
can be temporarily hand over to another user who is just
switching to a new video or is already waiting too long for
its current video. The stall time of both HD and LD users
is optimized jointly concerning the proportional fair utility
objective.

VI. CONCLUSIONS

For optimizing general fairness utility functions, we propose
a family of algorithms that bring fairness to actor-critic rein-
forcement learning. By proving an alternative policy gradient
theorem, it is shown that RL with adjusted rewards (obtained
through a uniformly-continuous function depending on the
shape of fairness utility and some statistics of past rewards)
can converge to at least a stationary point of general α-
fairness utility optimization. Our analysis inspires the design
of an actor-critic algorithm for α-fair utility optimization. We
implement and evaluate the proposed algorithm on two real-
world applications, i.e., wireless scheduling and video QoE
optimization. It is shown to substantially outperform existing
heuristic and learning algorithms in terms of the optimal
fairness utility value. For future work, we plan to extend our
framework to consider off-policy training and to investigate
fully distributed multi-agent algorithms.
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