
EF-dedup: Enabling Collaborative Data
Deduplication at the Network Edge

Shijing Li∗, Tian Lan∗, Bharath Balasubramanian∗∗, Moo-Ryong Ra∗∗, Hee Won Lee∗∗,Rajesh Panta∗∗
∗George Washington University, ∗∗AT&T Research Lab

{shijing, tlan}@gwu.edu, {bharathb, mra, knowpd, rpanta}@research.att.com

Abstract—The advent of IoT and edge computing will
lead to massive amounts of data that need to be collected
and transmitted to online storage systems. To address this
problem, we push data deduplication to the network edge.
Specifically, we propose a new technique for collabora-
tive edge-facilitated deduplication (EF-dedup), wherein we
partition the resource-constrained edge nodes into disjoint
clusters, maintain a deduplication index structure for each
cluster using a distributed key-value store and perform
decentralized deduplication within those clusters. This is
a challenging partitioning problem that addresses a novel
tradeoff: edge nodes with highly correlated data may not
always be within the same edge cloud, with non-trivial
network cost among them. We address this challenge by
first formulating an optimization problem to partition the
edge nodes, considering both the data similarities across the
nodes and the inter-node network cost. We prove that the
problem is NP-Hard, provide bounded heuristics to solve it
and build a prototype EF-dedup system. Our experiments
on EF-dedup, performed on edge nodes in AT&T research
lab and a central cloud at AWS, demonstrate that EF-dedup
achieves 38.3∼118.5% better deduplication throughput
than sole cloud-based techniques and achieves 43.4-60.2%
lesser aggregate cost in terms of the network-storage trade-
off as compared to approaches that solely favor one over
the other.

Index Terms—Deduplication, Edge Computing, Edge
Networks, Distributed Storage, Cloud Storage

I. INTRODUCTION

The emergence of IoT and edge computing will result
in smart mobile devices, connected cars, sensors etc.
generating large volumes of data. Large telecommuni-
cation companies are building edge cloud infrastruc-
tures [1], [2], [3] to support IoT data management
applications, virtualized RAN for 5G, augmented/virtual
reality applications and virtual networks like consumer
provider edge routers (CPE). According to recent market
analysis results, the data stored in the edge-facing IoT
devices is expected to reach 5.9 ZB by 2021 [4] and
crucially, only 43% of such data will be processed in
edge clouds [5]. The remaining data will be sent to
the central cloud for further storage and processing. In
Fig. 1, for example, nodes in edge clouds receive data
from IoT devices (smart phones/sensors) and these edge

Fig. 1: An example of collaborative, edge-centric dedu-
plication and the associated network-storage trade-off.

nodes in turn send these massive amounts of data to the
central cloud.

Data deduplication, which is a well studied [6], com-
mercially applied technique [7], [8], has been adopted to
optimize storage space in modern datacenters. Dedupli-
cation is the process of splitting files into smaller chunks
and storing only unique chunks. It has been shown to
significantly reduce storage space not only for traditional
cloud work loads like VM images, but also for IoT data
such as traffic video image sequences and car multimedia
system images (by up to 76-84%) [9][10][11]. In this
paper, we make the novel observation that to minimize
the data sent from the edge to the central cloud, dedu-
plication should be pushed to the network edge.

This approach has several advantages. First, dedu-
plicating close to data sources eliminates duplicates at
an earlier stage, thereby significantly reducing both the
wide-are-network (WAN) bandwidth needed to transmit
data to the cloud and the burden for expensive cloud
uplink provisioning. Second, by leveraging the network
and computing power on “everything” at the edge we



can achieve much higher deduplication throughput1 than
approaches in which we maintain the deduplication
index structure (hashes of commonly appearing chunks)
solely at the central cloud and perform remote lookups
which could incur hundreds of milliseconds. In our
experiments, cloud assisted approaches have 56% less
throughput than our approach due to WAN latencies.
Third, data flows generated by IoT devices are often
geographically correlated, e.g., sensors operating in the
same environment or cameras located in close vicinity
and therefore edge deduplication provides the promise
of significant space efficiency.

Typical implementations of deduplication, however,
require operators to allocate dedicated hardware in the
form of appliances with a carefully engineered network
and non-trivial system resources (e.g., cpu, memory).
Clearly, for the resource-constrained edge nodes (e.g.,
a half rack deployed in a central office of a city), this
is not possible. Hence, the main technical problem we
solve in this paper is: How can the decentralized edge
nodes collaborate to perform distributed deduplication,
with the objective of optimizing both required storage
space and network cost?

This is a hard problem for three major reasons. First,
an intuitive approach to perform collaborative dedu-
plication is to partition the edge nodes into smaller
clusters and perform deduplication within those clusters.
However, this leads to a non-trivial trade-off between
network cost and deduplication ratio (we refer to it as
storage efficiency). Consider the five edge nodes of Fig. 1
that are connected by two links with different network
costs (based on latency), with data flows comprised of
sequences of data chunks that possess different levels
of similarity. Clearly, partitioning nodes {1, 3, 5} and
{2, 4} maximizes the deduplication ratio with a total
of 16 unique chunks from the two clusters. However, it
causes high network cost, in particular, between nodes 1
and 5. On the other hand, deduplicating each edge cloud
separately achieves minimum network cost, yet it is not
storage efficient with 21 unique chunks. An optimal
partitioning (Cluster 1 and 2 in Fig. 1) of edge nodes
must account for both network cost and data similarity.

Second, to partition optimally we need to con-
struct efficient models to estimate and track the time-
varying similarity across different data sources. Naive
approaches that exhaustively search across all the sources
will be very time consuming as well as computationally
expensive, especially for the edge environment. In this
paper, we propose an estimation model to predict the
deduplication ratio among files by using periodic sam-

1Here, the deduplication throughput, as experienced by the clients
uploading data, is the amount of input data deduplicated within a
certain timeframe.

ples from the data sets to form characteristic vectors
that best represent the statistics of the input data flows.
By regularly adjusting the estimation of characteristic
vectors across time with new samples, we can restrict the
estimation error to less than 4%. Note that this estimation
is an offline process that takes less than ∼4 minutes.
Once we have an accurate characteristic vector, we can
perform efficient online edge deduplication.

Finally, we need to identify the design techniques
and data-structures that will enable distributed edge
deduplication. For example, the edge nodes within a
partition may have scarce resources and the networks
connecting them may be unreliable, especially when
they go across edge clouds, as in the first cluster (i.e.,
Cluster/D2-ring 1) in Fig. 1. Therefore, existing solutions
such as a shared network file system across such nodes
maybe impractical.

In this paper, we address these challenges and pro-
pose a novel technique for collaborative Edge-Facilitated
Deduplication (EF-dedup) wherein we partition edge
nodes into disjoint clusters (henceforth, D2-rings2) and
perform decentralized deduplication within each D2-
ring, such that the solution is optimal according to the
network-storage trade-off described above. We maintain
an index structure across the edge nodes of each D2-
ring in a fault-tolerant distributed key-value store, which
consumes very little resources per node and is robust
to unreliable nodes and networks. Specifically, we make
the following contributions:

• We motivate the need to push deduplication to the
network edge, identify a novel tradeoff in the prob-
lem space and formulate an optimization problem
to partition edge nodes considering both storage
efficiency and network cost (Sec. II). We propose
a new time-varying hierarchical estimation model
to capture similarity across correlated data sources,
using chunk pools and characteristic vectors. Our
model is validated using real-world datasets with
an average estimation error less than 4% and offline
prediction time less than ∼4 minutes (Sec. III-A).

• We prove that the formulated problem is NP-Hard
and provide efficient heuristics to the problem with
bounded approximate performance ratio (Sec. III) .

• We present a system for edge-facilitated deduplica-
tion, EF-dedup, where we maintain the index struc-
ture of each deduplication D2-ring in a key-value
store across the nodes of the ring. We implement
EF-dedup by modifying duperemove [12] to use
Cassandra [13] for its index structure (Sec. IV).

2Distributed-Deduplication-rings. In this paper, “cluster”, “parti-
tion”, and “D2-ring” refer to the same entity.

2



• We perform experiments and simulations on AWS
and OpenStack using both IoT and edge-related
real-world datasets (Sec. V), which confirm both the
high throughput and deduplication ratio achieved
by EF-dedup. Specifically, EF-dedup achieves
67.4∼133.7% better deduplication throughput than
sole cloud-based techniques, and also achieves
20.0-62.6% lesser aggregate cost in terms of
the network-storage trade-off as compared to ap-
proaches that solely favor one over the other.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a set of N distributed edge nodes, e.g.,
VMs in cloudlets/fog/edge clouds, denoted by N =
{1, 2, . . . , N}. The edge nodes generate data flows, such
as VM/system backup, smartphone images and sensing
data, which need to be stored in the central cloud. By
deduplicating the data at these nodes, the amount of
data that must be transferred to the cloud can be greatly
reduced, given that the same data chunks may occur
frequently in spatially/temporally correlated data flows.

We propose a novel approach to enable distributed
deduplication where we partition the edge nodes into
disjoint clusters (called D2-rings), that may traverse
different edge clouds, based on their network conditions
and data correlation. Each D2-ring independently per-
forms deduplication, where unique chunks generated by
the nodes in the D2-ring are identified and transfered
to the central cloud for data storage. Each D2-ring
maintains the deduplication index structure containing
hashes of chunks that have been sent to the central cloud.
As the process continues, hash values of the unique
chunks are stored locally and distributed across all the
edge nodes associated with the ring, so that any incoming
chunks are compared to the hash values to determine if
a redundant chunk has occurred.

It is easy to see that large D2-rings consisting of many
edge nodes can effectively eliminate all duplicate chunks
from their data flows, thus achieving high storage space
efficiency. Since edge nodes are often geo-distributed,
however, the network cost resulting from large D2-rings
can be significant; i.e., larger network resources are spent
to access the distributed hash values stored on peer
nodes which may be located in other edge clouds. To
jointly minimize the storage space and network cost in
distributed deduplication, we consider each edge node i
as a data source that generates equal-size data chunks
at a rate of Ri chunks per second. Note that, since we
send the data chunks to the central cloud, on the D2 rings
(which are at the edge), we are only concerned with the
transient storage space for a certain time window, which
serves as a proxy for the WAN bandwidth usage to send
chunks to the central cloud.

To model the spatial and temporal correlation both
within each data source and between different data
sources, we assume that each chunk generated by source
i is randomly drawn from K disjoint chunk pools, which
is denoted by C1, C2, . . . , CK , with known probabilities
pi1, pi2, . . . , piK . For example, C1 represents chunks
typical for Windows OS, C2 for Linux, and C3 for chunks
shared by the two systems due to common applications.
We further assume that each chunk of source i is inde-
pendently generated by randomly selecting a chunk pool
with probabilities {pik, ∀k} and then choosing a chunk
within the selected pool with a uniform distribution. We
denote the probability vector Pi = [pi1, pi2, . . . , pik] as
the characteristic vector of source i, which quantifies the
statistics of its data flow.

In our model, data generated by correlated sources
have the same probability of selecting chunks from the
K chunk pools, resulting in higher redundancy. These
probabilities can be obtained by data source profiling
and/or estimated through meta data (Sec. III-A). If a set
of data sources (i.e., edge nodes) are clustered into a
single D2-ring, which is denoted by P where P ⊆ N ,
their data flows are jointly deduplicated. Let Ω(P) be
the expected overall deduplication ratio of all sources in
P , i.e., the original data size divided by the deduplicated
storage size. The expected storage space required for D2-
ring P during an interval of T seconds is given by

U(P) =
1

Ω(P)
·
∑
i∈P

RiT (1)

where Ri is the data rate of source i.
While more edge nodes in a single D2-ring increases

the chance of finding redundant chunks, it also incurs
higher network cost during deduplication, because as the
D2-ring size increases, a higher fraction of chunk hash
values are stored on non-local edge nodes, resulting in
higher network cost for hash lookup when new data
chunks arrive. Let γ be the (chunk hash) replication
factor in the D2-ring, i.e., each unique chunk hash is
stored on γ distinct edge nodes. We consider a D2-ring
P that has size |P|. When chunk hashes are uniformly
distributed on edge nodes in the D2-ring P (e.g., using
a distributed hash table), the probability of a non-local
hash lookup for any incoming data chunk is 1− γ/|P|.
Let vij be the network cost of a non-local hash lookup
from node i to node j; e.g., it can be measured by the
necessary bandwidth or network delay of the non-local
hash lookup. The total network cost for deduplication in
the D2-ring P in an interval of T seconds is thus

V (P) =
∑
i:i∈P

∑
j:j 6=i,j∈P

vij
RiT (1− γ/|P|)
|P| − 1

, (2)

3



where each non-local hash lookup has equal proba-
bility 1/(|P| − 1) to be processed by peer edge nodes
{j : j 6= i, j ∈ P} in the D2-ring.

Our goal is to partition the edge nodes N into
M disjoint D2-rings, i.e., P1,P2, . . . ,PM satisfying
∪sPs = N , to jointly minimize the total storage space∑
s U(Ps) and network cost

∑
s V (Ps). Let α be a

tradeoff factor quantifying the relative importance of
network cost to storage space, i.e., each unit network
cost is equivalent to the cost of α units of storage space
increment. The joint Storage and Network Optimization
in Distributed Deduplication (SNOD2) is as follows:

minimize
∑
s

U(Ps) + α
∑
s

V (Ps) (3)

s.t. U(Ps) =
1

Ω(P)
·
∑
i∈Ps

RiT,

V (Ps) =
∑
i∈Ps

∑
j 6=i,j∈Ps

vijRiT (1− γ/|Ps|)
|Ps| − 1

var. Ps, ∀s, (4)

where Ps, ∀s forms a disjoint partition of the edge
nodes.

III. EF-DEDUP SOLUTION

In this section, we first quantify storage space ef-
ficiency (i.e., deduplication ratio function Ω(Ps)) for
a given partition P1,P2, . . . ,PM . Then, we present a
novel technique to estimate the characteristic vector of
data sources, which is required to formulate and solve
SNOD2. The technique has significant implications even
outside the realm of this paper because it provides an
analytical model to estimate chunk distribution functions
of arbitrary data sources by sampling just a few files.

Then, we show that SNOD2 under our system model
is NP hard and propose a greedy algorithm to solve
SNOD2 where all partitions (i.e., D2-rings) have equal
sizes (for better load-balancing). The algorithm can be
proven optimal when the number of disjoint chunk pools
K = 2, and has a guaranteed competitive ratio when
K > 2. Then, we also develop arbitrary-partitioning al-
gorithms for SNOD2 without any constraints on partition
sizes, by leveraging matching heuristics.

A. Estimating Source Characteristic Vectors

To solve SNOD2, we first need to quantify the dedu-
plication ratio of any given partition based on the chunk
pools and characteristic vectors (Pi = [pi1, pi2, . . . , pik]
for source i) that best represent the sources.

Theorem 1. For a set of data sources in Ps, which
are generated from K disjoint chunk pools {Ck} with

characteristic vectors {Pi, ∀i}, the deduplication ratio
of D2-ring Ps is given by

Ω(Ps) =

∑
i∈Ps

RiT∑K
k=1 sk

(
1−

∏
i∈Ps

gik
) ,

where gik = (1− pik/sk)RiT . (5)

Proof. It is easy to see that the original data flow size
is
∑
i∈Ps

RiT for an interval of T seconds. Without
loss of generality, we consider a data chunk in pool Ck.
Based on our data flow construction model in Sec. II,
this chunk is selected when source i generates a new
chunk, with probability pik/sk where sk is the size of
chunk pool k. The probability that the chunk is never
selected by source i during an interval T is given by
gik = (1 − pik/sk)RiT , since a total of RiT chunks
are generated. Then,

∏
i∈Ps

gik is the probability that
a chunk in Ck is never selected by any source during
T . Since all chunks in pool Ck are selected with the
same probability, the expected number of distinct chunks
drawn from Ck by all sources is thus sk

(
1−

∏
i∈Ps

gik
)
,

whose summation over all chunk pools C1, C2, . . . , CK
yield the total required storage space after deduplica-
tion.

Algorithm 1 Estimating Source Characteristic Vectors

Input: (i) A set of source files Rt periodically
sampled across points of time (t = 1, 2, . . . ) and
randomly from each source i ∀i, and (ii) an error
threshold.
foreach time point t = 1, 2, . . .

foreach subset A ⊆ Rt
Measure ground truth: real-dedup-ratio Ω̂ (A);

end
do

foreach subset A ⊆ Rt
Calculate model-dedup-ratio Ω (A) in Theo-

rem 1, using characteristic vectors for previous time
slot t− 1;

end
MSE = (

∑
A |Ω(A)− Ω̂(A)|2)/2|N |;

Update K, sk, and pik by predefined stepsize;
while (MSE > error threshold);
Output the number of chunk pools: Kt; the size

of chunk pools: {skt, ∀k}, and characteristic vectors:
{Pit = [pi1t, . . . , piKt], ∀i};
end

A key problem that we need to address is that for
an unknown set of sources, how do we know the chunk
pools and the characteristic vectors that best represent
the sources? In algorithm 1, we address this problem by
tracking the similarity of random samples of each source

4



over time where for each time point we exhaustively
search across all possible values of parameters that we
need for our model, viz. the number of chunk pools, the
size of each chunk pool and the chunk distribution or
characteristic vector of each source.

To find the parameters that best fit our model to a
given set of data sources, we first obtain ground truth
using a small set files that are sampled from the sources.
For each possible partition of the files, we measure the
total deduplication ratio using standard deduplication
tools (e.g., duperemove) and compare these empirical
values to the analytical deduplication ratio given in
Theorem 1. Then, the optimal modeling parameters are
obtained by minimizing the difference between analyti-
cal results and ground truth. In Algorithm 1, this search
terminates once the mean square distance is smaller than
a given error threshold.

Fig. 2: The difference on real dedup ratio and the
estimated one is less than 4%.

Fig. 3: The difference between the real and estimated
dedup ratio (less than 4%) generally decreases across
time as the estimation improves.

To validate the feasibility of our model, we sample
files across the real-world accelerometer IoT data sets,
estimate their characteristic vectors using Algorithm 1

and compute the deduplication ratio using our analytic
model described in Theorem 1. Specifically, we sample
3 times within a day’s data, and begin with the first
and second samples of files as source 1 and 2 (datasets
described in Sec.V). We show the real deduplication
ratios in blue bars and the estimated deduplication ratios
in red bars in Fig.2.

The 0th, 2nd, . . . , 10th files from source 1 and
0th, 2nd, . . . , 10th files from source 2 will form 6 × 6
combinations. For each combination, we measure the
real deduplication ratio. Next, we set up our model
for three chunk pools (K = 3) whose sizes sk for
k = 1, 2, 3, and probabilities pi1, pi2, pi3 for source
i = 1, 2 of the two sources, are to be determined through
model fitting. To search for the optimal parameters, we
increase each si to 200,000 with a step size of 100, and
search each probability value pik from 0 to 1 with a
step size of 0.01. Larger chunk pools and smaller step
size can further improve the performance but will also
extend the search space. For all of the 36 combination
of samples, we calculate the MSE (Mean Square Error)
between estimated deduplication ratios and the real ones.

In Fig.2, the MSE is less than 0.3, and the average
estimation error across combinations is less than 4%.
We will use the model if the mean square error is small
enough. Then, we use the second and third sample files
of the first day as the input sources 1 and 2, but this
time we begin with previous characteristic vectors when
searching, and the searching ends extremely quickly in
several seconds with even smaller errors. Figure 3 shows
that our algorithm can yield a set of feasible modeling
parameters and the mean error is less than 4%, which
means on average the estimated deduplication ratio is
only 4% less than the real one. In fact, for successive
time slots, the search will have much smaller errors and
will get faster.

Designing better heuristics for this estimation (e.g.,
through intelligent sampling) and proving their accuracy
is an exciting avenue for future research, with wide
applicability. For example, it can help guide how the
chunk sizes should be selected for deduplication (e.g.,
to pick the chunk size that minimizes estimation error)
or what should be maintained in the dedupication cache
(e.g., to maintain the chunks that appear with higher
probability in the chunk pools).

B. SNOD2 is NP-Hard

To show that the SNOD2 is NP-Hard, we first apply
Theorem 1 and rewrite SNOD2 as follows:

5



minimize
∑
s

U(Ps) + α
∑
s

V (Ps) (6)

s.t. U(Ps) =

K∑
k=1

sk

(
1−

∏
i∈Ps

gik

)
, (7)

gik = (1− pik/sk)RiT , ∀i, k (8)

V (Ps) =
∑

i:i∈Ps

∑
j:j 6=i,j∈P

vij
RiT (1− γ/|Ps|)
|Ps| − 1

(9)
var. Ps, ∀s.

Theorem 2. SNOD2 is NP hard.

Proof. We show that the minimum k-cut problem (which
is known to be NP hard when k is an input variable [14])
can be transformed into a version of SNOD2 with zero
network cost.

Consider an undirected graph G = (V, E) with
an assignment of weights to the edges, denoted by
w(v1, v2) for any edge (v1, v2) ∈ E . The minimum k-
cut problem partitions vertices in V into k disjoint sets,
P1,P2, . . . ,Pk, while minimizing the sum of removed
edge weights:∑

(v1,v2)∈E

w(v1, v2) · 1{@Ps:v1∈Ps,v2∈Ps}, (10)

where 1{@Ps:v1∈Ps,v2∈Ps} is an indicator function that
is equal to 0 if vertices v1, v2 are in the same partition,
and 1 otherwise.

We construct a version of SNOD2 where each vertex
in V is considered as a data source and each edge in E
corresponds to a chunk pool. Let N = |V| be the number
of sources/vertices. Then, for each edge (v1, v2) ∈ E , we
construct a separate chunk pool for the two data sources
v1 and v2. The chunk pool is labeled by k = v1N + v2
(for v1 < v2) and is assigned a size sk = w(v1, v2)/(1−
c)2, for some constant c ∈ (0, 1). Thus, there is a one-
to-one correspondence between the edges and the chunk
pools. Next, let d(v1) be the degree of a vertex v1 ∈ V .
We construct a characteristic vector for data source v1
by setting pv1,k = 1/d(v1) if vertex v1 is an endpoint
of edge k (i.e., satisfying k = v1N + v2), and pv1,k = 0
otherwise. For each source v1, we choose a data rate
Rv1 = log(c)/[T · log(1− pik/sk)] for some positive T
and the same constant c. Finally, all network costs are
assumed to be zero.

Now we prove that SNOD2 finds a disjoint partition
of V to minimize the same objective function in (10).
Using (6) and (7), the optimization objective of SNOD2
becomes

∑
s

∑
k

sk

(
1−

∏
i∈Ps

gik

)

=
∑
k

sk
∑
s

(
1−

∏
i∈Ps

gik

)

=
∑
k

sk

(
N −

∑
s

∏
i∈Ps

gik

)
(11)

Next, according to SNOD2, if the edge corresponding to
chunk pool k does not contain source/vertex i, we have
pik = 0, which means gik = 1 due to (8). Therefore,
for a given k in the last summation of (11), gik 6= 1 if
and only if i = v1 or i = v2 for edge (v1, v2) satisfying
k = v1N + v2. In this case, it is easy to see that gv1k =
(1 − pv1k/sk)Rv1

T = c by plugging Rv1 = log(c)/[T ·
log(1−pik/sk)] into (8). Thus, for any vertex set Px, if
it contains both vertex v1 and v2, we have

∏
i∈Px

gik =
gv1kgv2k = c2. If it contains only vertex v1 or vertex v2,
we have

∏
i∈Px

gik = c; and if it does not contain v1 or
v2,

∏
i∈Px

gik = 1.Then, for edge k, we consider two
cases:∑

s

∏
i∈Ps

gik = (
∑

i6=v1,v2

∏
i 6=v1,v2

gik) + gv1k + gv2k

= N − 2 + 2c, if @Ps : v1 ∈ Ps, v2 ∈ Ps,∑
s

∏
i∈Ps

gik = (
∑

i6=v1,v2

∏
i 6=v1,v2

gik) + gv1kgv2k

= N − 1 + c2, otherwise, (12)

which is consolidated using indicator function
1{∃Ps:v1∈Ps,v2∈Ps}, i.e.,∑

s

∏
i∈Ps

gik = N − 1 + c2 − (1− c)2 · 1{@Ps:v1∈Ps,v2∈Ps}

Plugging this into the last step of (11), we have∑
s

∑
k

sk

(
1−

∏
i∈Ps

gik

)
=
∑
k

sk(1− c2) +
∑
k

sk(1− c)21{∃Ps:v1∈Ps,v2∈Ps}

=
∑
k

sk(1− c2) +
∑
k

w(v1, v2)1{∃Ps:v1∈Ps,v2∈Ps}

where we used sk = w(v1, v2)/(1 − c)2 in the last
step, and v1, v2 are the two vertices belonging the edge
corresponding to chunk pool k = v1N + v2. Notice
that

∑
k sk(1 − c2) is a constant not affected by the

partitioning, and that the summation over index k is
the same as v1, v2 (due to one-to-one correspondence
between chunk pools and edges in our construction).
We conclude that any solution to SNOD2 solves the
minimum k-cut problem, which implies that SNOD2 is
also NP hard.

6



C. Our Proposed Solution to SNOD2

In algorithm 2, we present a smart, efficient heuris-
tic for SNOD2 with no constraints on D2-ring size,
that iteratively selects a remaining edge node with the
smallest cost increment and places it into one of M
existing D2-rings. It begins with M empty D2-rings,
P1,P2, . . . ,PM , and iteratively places a remaining node
v ∈ V into ring Ps, if

{v, s} = arg min
v∈V,s

[U(Ps ∪ {v}) + αV (Ps ∪ {v})

−U(Ps)− αV (Ps)] . (13)

In other words, placing node v in D2-ring Ps re-
sults in the minimum cost increment. Then, we update
V/{v} → V and Ps∪{v} → Ps. The process continues
until all nodes are placed. It is easy to see that the greedy
algorithm has a computation complexity o(N2 ·M).

We note that the greedy algorithm can be computed
efficiently via a sequence of minimum-weight matching.
Starting with N nodes, we define the weight between
two nodes v1, v2 as the aggregate cost U({v1, v2}) +
αV ({v1, v2}) (a dummy node can be added if N is an
odd number), and perform a minimum-weight matching.
If we preserve the first θN matches that have the
lowest weights, this step produces N−L partitions, each
containing 1 or 2 nodes. Next, the same minimum-weight
matching is carried out on the remaining partitions (with
the weight between P1,P2 defined again as the aggregate
cost U({P1 ∪ P2}) + αU({P1 ∪ P2})), and the first
θ matches with minimum weights are preserved. This
procedure reduces the number of partitions by a factor
of θ in each step. The proposed algorithm converges in
o(log1−θ(N/M)) rounds.

Algorithm 2 Smart Partitioning (SMART) Algorithm for
EF-dedup

foreach node i
foreach cluster j

Calculate cluster aggregate cost U(Pj ∪ {v}) +
αV (Pj ∪ {v})− U(Pj)− αV (Pj) ;

Find the cluster Pmin with the smallest cluster
aggregate cost;
end
Pmin = Pmin ∪ i;
Remove node i from remaining nodes;

end

IV. DESIGN AND IMPLEMENTATION

Fig. 4 (a) shows our novel system architecture, with
an example of five edge nodes E1 ∼ E5 that are clustered
into two independent D2-rings, one across E1, E2, E3

D2-ring
(replication	factor	=	2)

(data	chunks)ABCDEYZ…

b c	d	
z…

a b	c	
e	y…

a d	e	
y	z	…

E1
E3

E2

CDPQRS…

E4 E5

Dedup	
Agent

Dedup	
Agent

Central	Cloud

ABCDPQRSEYZ…

Dedup	
Agent

(a)

Files	(from	IoT/edge	data)

1)	Chunking

2)	Hashing

3)	Lookup

B C Y EB Y

b	c	b	y	e	y … (c,C)(e,E)…

4)	Removing	duplicates

Dedup	Agent

a b	y

b d	z
a d	y	z

D2-ring C,	Ec,	e
(data	chunks)

Central	Cloud

(hashes)

...

5)	Storing

(b)

Fig. 4: EF-dedup system architecture with D2-rings
traversing edge nodes that could belong to different edge
clouds. Each D2-ring is implemented as a Cassandra
cluster storing the hashes evenly across the D2-ring
nodes.

and the other across E4 and E5. In a D2-ring, each edge
node runs our Dedup Agent. The Dedup Agent is a ver-
sion of duperemove [12], a commonly used open source
deduplication tool, that we modified (approximately
1200 lines of additional code) to store chunk hashes in
Cassandra, a popular key-value store, which is deployed
across all the nodes in a ring. Each Cassandra ring
maintains multiple copies of chunk hashes depending
on their replication factor, to make hashes available in
multiple edge nodes. This use of Cassandra enables us to
spread the storage load of multiple hashes across all the
nodes in a ring; a crucial consideration given the resource
constraints of the edge nodes. The other advantage of
using Cassandra is its resilience against failures – even
if an edge node is completely disconnected from others,
it can still perform deduplication by consulting its local
Cassandra node. Further, adding and removing nodes to
the cluster is a seamless operation.

As seen in Fig. 4 (b), after splitting files into smaller
chunks in each edge node, the Dedup Agent first com-
putes the hash value of each chunk, then performs a
lookup to determine if this hash value is present in
the Cassandra cluster (i.e., D2-ring) and only if it is
not present it adds this new hash to the cluster and
sends the data chunk corresponding to this hash to the
central cloud. In Fig. 4 (b), for example, only unique

7



chunks (i.e., C, E) across the files are sent to the
central cloud. As we have mentioned previously, in this
paper, we are concerned with the edge data that is sent
to the cloud. The question of whether some of this
data is also maintained locally at the edge nodes for
locality/availability for the clients is orthogonal.

V. EVALUATION

In this section, we present the results of extensive ex-
periments and simulations that show the efficacy of EF-
dudup over other approaches. Our edge testbed consists
of 20 VMs (edge nodes) created on a local OpenStack
cluster, where each VM has 4 VCPUs, 8 GB RAM and
20 GB virtual disk drive.

Our experimental deployment accurately reflects the
description in section IV. We install our Dedup Agent
on each of the 20 VMs. In different experiments, the
SMART algorithm will divide these VMs into indepen-
dent clusters or D2-rings that achieve the best network-
storage trade-off. For each D2-ring, we deploy an inde-
pendent Cassandra cluster traversing the nodes of the
D2-ring. As shown in the D2-ring in Fig. 4 (b), the
Cassandra cluster stores the hashes or the index data
(e.g. a,b,y) across its nodes. Cassandra automatically
partitions and replicates this data evenly across nodes
based on its internal sharding algorithm. We use the ran-
dom partitioning strategy of Cassandra with a replication
factor of two to ensure resiliency and availability.

To compare EF-dedup with cloud-based approaches,
we also set up a 4 VM cluster on Amazon EC2 (central
cloud), where each VM has 8 VCPUs, 15GB RAM, 20
GB storage. We use NetEm [15] to control traffic latency
among the edge clusters and the edge-central cloud
clusters. The measured bandwidth among the edge nodes
is 1.726 Gbps with average latency of 0.85 ms. The
measured average bandwidth between the edge nodes
and the central cloud is 0.377 Gbps with average latency
of 12.2 ms. All results are averaged over 20 runs with
the deduplication performed in parallel at all VMs in the
system.

We use 2 real IoT data sets: (1) consisting of 200 hours
of accelerometer information recorded over 25 days from
5 participants [16], with each data point in the size range
of 80-187MB. The dominant motion frequency of all
collected traces ran in the range of 1.92-2.8 Hz, which
corresponds to human walking; (2) a series of continuous
frames extracted from a traffic video sequence recorded
by stationary cameras [9][17].

A. Comparison with Other Cloud-based Approaches

We compare SMART with a Cloud-only approach,
where raw data is sent from edge nodes to the central
cloud for deduplication and a Cloud-assisted approach

where the index structure for deduplication is maintained
in the central cloud and the edge nodes after splitting
the files into chunks, look up the hash of the chunks
remotely and only send those chunks that are not already
present in the central cloud. In Fig. 5(a), we run SMART
with 5 D2-rings, and each of ring needs not have a
fixed D2-ring size. In terms of dedup throughput (data
processed per second by each edge node), SMART
outperforms Cloud-assisted and Cloud-only approaches
by 38.3% and 59.8% (on average) for the first dataset,
and 67.4% and 118.5% better for the second dataset,
respectively. The Cloud-only strategy has low dedup
throughput since all data is forwarded to the cloud
for deduplication, thus bottlenecked by the constrained
upload bandwidth. The dedup throughput of the Cloud-
assisted strategy is also limited by the need for frequent
message passing between edge nodes and the central
cloud for hash look-ups. As the number of edge nodes
increase, the throughput of SMART increases due to
parallel deduplication done by more edge nodes.

In Fig. 5(b), we perform a similar experiment but
vary the latency between the edge and the cloud with
the first IoT dataset. While all strategies are impacted
by additional latency, SMART still achieves significant
throughput improvement, and its relative lead over the
cloud-based strategies becomes more substantial (from
24.2% improvement of SMART vs. cloud-assisted under
30ms latency to 67.1% under 100ms latency). This
is because in SMART hash look-ups for distributed
deduplication only generate network traffic between edge
nodes, making it more resilient to adverse network
conditions between the edge and the central cloud. The
results for the second IoT dataset are similar, where
SMART has 28.1% higher throughput than the cloud-
assisted algorithm and 69.8% higher throughput than the
cloud-only algorithm on average. In Fig. 5(c), we see
that despite the fact that SMART is upper-bounded by
the cloud-based approaches in terms of space savings
or dedup ratio, as we create fewer D2-rings across
the twenty edge nodes (more nodes per ring) SMART
quickly approaches the dedup ratio of cloud-based strate-
gies, due to increased chances of finding chunk hashes.
The trend for the second IoT dataset is similar as well.

As seen above, although cloud algorithms have larger
deduplication ratio they have low throughput and incur
large bandwidth. In fact, with the resources at their
disposal, cloud algorithms can user variable chunk sizes
and other sophisticated algorithms to improve the dedu-
plication ratio. But the main point we make is that, by
using smart cluster partitioning and proper cluster size,
SMART can approach acceptably high deduplication
ratio with high throughput as shown in the following
network-storage trade-off section.

8



(a) (b) (c)

Fig. 5: Experiments confirming how EF-dedup with SMART partitioning achieves much better dedup throughput
than Cloud-assisted and Cloud-only algorithms, especially for larger network size or higher latency environments
without compromising too much on dedup ratio.

(a) (b) (c)

Fig. 6: Experiments illustrating how EF-dedup achieves the best network-storage trade-off. This is further emphasized
by the comparison in (c) with variants that totally ignore one of these aspects for the other.

(a) (b)

Fig. 7: Simulations on larger network size and varying values of the trade-off factor α confirm that EF-dedup
outperforms other algorithms in the aggregate cost that captures the network storage trade-off.

B. Network/Storage Trade-off
In this section, we highlight the trade-off between net-

work cost and storage cost in EF-dedup for the SMART
algorithm using the IoT dataset with α = 0.1. To
capture the notion of edge-clouds, we group the twenty
edge nodes into 10 geographical groups, each group
representing an edge-cloud, and increase the inter-node
latency across the edge-clouds using NetEm (default
5ms), while the latency among edge nodes within an
edge-cloud is left unchanged 0.85 ms. Here we show the
results for the first IoT dataset and the trend is similar
for the second dataset.

In Fig. 6(a) we show how the storage cost increases
with increasing number of rings (fewer edge nodes per

ring) due to decreased opportunities to find redundant
chunks. But the network cost increases with larger
rings, since there will be more chances that edge nodes
belonging to the same D2-ring will traverse edge-clouds,
leading to higher latency for hash look-ups. In Fig. 6(b),
we illustrate the subtle effect of the same experiment
on the dedup throughput (dedup ratio behaves in the
expected inverse manner to storage cost). When inter
edge-cloud latency is less than or equal to 15ms, with
larger ring size, the higher chance for redundant chunks
cancel out the negative influence of larger network cost
and hence results in good throughput. But above 15ms,
the network cost outweighs the gains in redundancy and
the throughput decreases with increasing ring size.

9



In Fig. 6(c) we compare the total cost incurred by
SMART as defined in Equation 3 with a flavor of EF-
dedup in which we completely ignore the storage cost
factor U(Pj ∪ {v}) (referred to as Network-only) in
algorithm 2 and a flavor in which we completely ignore
the network cost factor αV (Pj∪{v})−αV (Pj) (referred
to as Dedup-only). The Network-Only and Dedup-Only
algorithm have 1.26- and 1.31-time aggregate cost as
compared to SMART, which is able to intelligently trade-
off network and storage cost. This result is reflected in
the storage savings and throughput (figure not shown due
to space constraints) wherein SMART saves 1604.36 MB
storage space compared to Network-Only but has only
6.72MB/s less dedup throughput. Similarly, SMART
achieves 29.16MB/s more dedup throughput than Dedup-
Only, but occupies only 248.54MB more storage.

C. Simulations

Here, we present simulation results for 0 to 500 edge
nodes with inter node latency drawn from a uniform dis-
tribution between 0 to 100 ms for the second dataset. The
results for the first dataset are similar. Fig. 7(a) shows
the aggregate, network and storage cost (as defined in
SNOD2) of the algorithms with increasing number of
edge nodes and α = 0.001. SMART uses 20 unbalanced
D2 rings. SMART outperforms other solutions in the
trade off performance as captured by the aggregate cost
especially for larger number of edge nodes since there
are more options to find optimal partitions. For 500
nodes SMART has 43.35% & 45.49% less aggregate
costs than Network-Only and Dedup-Only algorithms
respectively. Fig. 7(b) confirms that as α increases, the
network cost of SMART increases and storage cost
decreases. For α = 0.001, SMART outperforms other
algorithms by 60.2% & 45.1% smaller aggregate cost,
respectively. By tuning α we can choose the appropriate
network-storage trade-off.

VI. RELATED WORK

Prior work has considered the notion of clustered
deduplication [18], [19], [20], [21], where systems like
HYDRAstor [18] first perform coarse-grained dedupli-
cation with larger chunk size, and then distribute the
data using DHTs or load balancers to multiple servers
that perform more fine-grained deduplication. These
works focus on deduplication for secondary storage in
a powerful data center environment, while EF-dedup’s
focuses on how to best utilize edge space and network
resources. These techniques are complementary to our
work since we can apply more advanced and computa-
tionally expensive deduplication once the data arrives at
the central cloud.

The idea of client- or source-side deduplication has
been studied before [6]. For instance, AA-Dedupe [22]
performs source deduplication by clustering incoming
data per application type while SAFE [23] utilizes both
global file level redundancy and local chunk-level redun-
dancy at the source to achieve better deduplication ratio.
Unlike EF-dedup, work in this category do not enable
multiple sources (edge nodes in our case) collaborate
with one another to perform distributed deduplication.

Similarity-aware deduplication has been studied in
several works [24], [25], [21], [26]. SAP [24] explores
trade-offs between throughput and space efficiency to
partition data across nodes by computing pair-wise sim-
ilarities across files. Aronovich [26], focuses on effi-
cient techniques to finding similar chunks using smaller
signatures representative of the chunk. SiLo [25] and∑

-dedup leverage data similarity for coarse-grained
deduplication and then apply a data mining technique to
identify data locality. SiLo’s focus is to optimize local
memory utilization and

∑
-dedup optimizes dedicated

backup infrastructure in a single datacenter. EF-dedup
uses a novel technique to model similarity, based on
estimating the probability distribution of the sources, by
sampling a few of their chunks and uses this analysis to
balance network-storage cost of edge deduplication.

VII. CONCLUSION

Data deduplication at the edge can exploit the geo-
graphical correlation of massive amounts of data closer
to the sources, thereby suppressing duplicated data that
will otherwise be sent to the central cloud. We present
an edge-facilitated deduplication technique, EF-dedup,
to partition edge nodes into independent deduplication
clusters, carefully balancing the deduplication ratio and
the deduplication throughput. We formulate a joint stor-
age and network optimization problem with a novel data
model to capture data similarities across sources. Further,
we implement EF-dedup based on an efficient heuristic
with bounded approximate ratio to this NP-Hard problem
and validate its effectiveness with extensive experiments
on real-world datasets. For future work, we wish to
improve the performance of our source estimation al-
gorithm through techniques like locality sensitive hash-
ing [27] and provide a library of common chunk pools
by profiling publicly available datasets. To make the data
more reliable and save more storage space, we intend to
apply erasure code to store data replicas[28], [29]. We
also wish to improve the edge deduplication ratio, by
using more sophisticated deduplication techniques like
variable-size chunking. Finally, we wish to study some
of the clustering ideas of solutions like AA-Dedupe or
SAFE and adapt them intelligently and appropriately for
EF-dedup in our edge environments.

10



REFERENCES

[1] “ATT is Reinventing the Cloud Through Edge Comput-
ing,” http://about.att.com/story/reinventing_the_cloud_through_
edge_computing.html.

[2] “Verizon’s cloud-in-a-box pushes the edge with
OpenStack,” https://siliconangle.com/blog/2017/07/17/
verizons-cloud-box-pushes-edges-openstack-openstacksummit.

[3] Y. Li, Y. Chen, T. Lan, and G. Venkataramani, “Mobiqor: Pushing
the envelope of mobile edge computing via quality-of-result
optimization,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017, pp.
1261–1270.

[4] “Cisco Global Cloud Index: Forecast and Methodology,
2016-2021 White Paper,” https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/global-cloud-index-gci/
white-paper-c11-738085.html, 2018.

[5] “IDC Directions 2017: IoT Forecast, 5G & Related
Sessions,” http://techblog.comsoc.org/2017/03/04/
idc-directions-2017-iot-forecast-related-sessions/, 2017.

[6] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y. Hua, M. Fu,
Y. Zhang, and Y. Zhou, “A comprehensive study of the past,
present, and future of data deduplication,” Proceedings of the
IEEE, vol. 104, no. 9, pp. 1681–1710, 2016.

[7] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system.” in Fast, vol. 8,
2008, pp. 1–14.

[8] “Avamar: Deduplication Backup Software and System,” https:
//www.emc.com/data-protection/avamar.htm.

[9] H. Yan, X. Li, Y. Wang, and C. Jia, “Centralized duplicate
removal video storage system with privacy preservation in iot,”
Sensors, vol. 18, no. 6, p. 1814, 2018.

[10] Y. Zhang, Y. Wu, and G. Yang, “Droplet: A distributed solution of
data deduplication,” in Proceedings of the 2012 ACM/IEEE 13th
International Conference on Grid Computing. IEEE Computer
Society, 2012, pp. 114–121.

[11] T. Süß, T. Kaya, M. Mäsker, and A. Brinkmann, “Deduplication
analyses of multimedia system images,” in {USENIX} Workshop
on Hot Topics in Edge Computing (HotEdge 18), 2018.

[12] “Duperemove,” https://github.com/markfasheh/duperemove.
[13] A. Lakshman and P. Malik, “Cassandra: structured storage

system on a p2p network,” in Proceedings of the 28th ACM
symposium on Principles of distributed computing, ser. PODC
’09. New York, NY, USA: ACM, 2009, pp. 5–5. [Online].
Available: http://doi.acm.org/10.1145/1582716.1582722

[14] P. Manurangsi, “Inapproximability of maximum edge biclique,
maximum balanced biclique and minimum k-cut from the small
set expansion hypothesis,” in LIPIcs-Leibniz International Pro-
ceedings in Informatics, vol. 80. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[15] S. Hemminger et al., “Network emulation with netem,” in Linux
conf au, 2005, pp. 18–23.

[16] M. Cong, K. Kim, M. Gorlatova, J. Sarik, J. Kymissis, and
G. Zussman, “CRAWDAD dataset columbia/kinetic (v. 2014-
05-13),” Downloaded from https://crawdad.org/columbia/kinetic/
20140513/kinetic-energy, May 2014, traceset: kinetic-energy.

[17] M. Wang, W. Li, and X. Wang, “Transferring a generic pedestrian
detector towards specific scenes,” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 3274–3281.

[18] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,
“Hydrastor: A scalable secondary storage.” in FAST, vol. 9, 2009,
pp. 197–210.

[19] T. Yang, H. Jiang, D. Feng, Z. Niu, K. Zhou, and Y. Wan, “Debar:
A scalable high-performance de-duplication storage system for
backup and archiving,” in Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on. IEEE, 2010,
pp. 1–12.

[20] W. Dong, F. Douglis, K. Li, R. H. Patterson, S. Reddy, and
P. Shilane, “Tradeoffs in scalable data routing for deduplication
clusters.” in FAST, vol. 11, 2011, pp. 15–29.

[21] Y. Fu, H. Jiang, and N. Xiao, “A scalable inline cluster dedu-
plication framework for big data protection,” in Proceedings of
the 13th international middleware conference. Springer-Verlag
New York, Inc., 2012, pp. 354–373.

[22] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu, “Aa-dedupe:
An application-aware source deduplication approach for cloud
backup services in the personal computing environment,” in Clus-
ter Computing (CLUSTER), 2011 IEEE International Conference
on. IEEE, 2011, pp. 112–120.

[23] Y. Tan, H. Jiang, E. H.-M. Sha, Z. Yan, and D. Feng, “Safe:
A source deduplication framework for efficient cloud backup
services,” Journal of Signal Processing Systems, vol. 72, no. 3,
pp. 209–228, 2013.

[24] B. Balasubramanian, T. Lan, and M. Chiang, “Sap: Similarity-
aware partitioning for efficient cloud storage,” in INFOCOM,
2014 Proceedings IEEE. IEEE, 2014, pp. 592–600.

[25] W. Xia, H. Jiang, D. Feng, and Y. Hua, “Silo: A similarity-locality
based near-exact deduplication scheme with low ram overhead
and high throughput.” in USENIX annual technical conference,
2011, pp. 26–30.

[26] L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and
S. T. Klein, “The design of a similarity based deduplication sys-
tem,” in Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference. ACM, 2009, p. 6.

[27] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in
high dimensions via hashing,” in Proceedings of the 25th
International Conference on Very Large Data Bases, ser.
VLDB ’99. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1999, pp. 518–529. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645925.671516

[28] S. Li, T. Lan, M.-R. Ra, and R. Panta, “Joint scheduling and
source selection for background traffic in erasure-coded storage,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 12, pp. 2826–2837, 2018.

[29] ——, “Background traffic optimization for meeting deadlines in
data center storage,” in 2016 Annual Conference on Information
Science and Systems (CISS). IEEE, 2016, pp. 372–377.

11


