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Abstract—With the proliferation of the Internet of Things (IoT), 

the current “cloud-only” architectures cannot efficiently handle 

IoT’s data processing and communications needs, while 

providing satisfactory service latency to support emerging 

mobile applications on the horizon that require almost real-time 

responses. fog computing is introduced as a new computing 

paradigm that distributes computation, communication, control, 

and storage closer to the end users along the “cloud-to-things” 

continuum. In this paper, we present a deadline-aware task 

scheduling mechanism for fog computing in a tiered IoT 

infrastructure, where service providers exploit the collaboration 

between their own fog nodes and the rented cloud resources to 

efficiently execute users’ offloaded tasks, at large geographical 

scale. We first formulate the task-scheduling problem in such a 

cloud-fog environment as a multi-dimensional 0-1 knapsack 

problem that is NP-hard, and then propose an efficient 

algorithmic solution based on ant colony optimization heuristic. 

The main objective is to maximize the profits of fog service 

provider while meeting the tasks’ deadline constraint. Extensive 

experimental results show that our proposed optimization and 

solution significantly improves the system performance 

compared with existing heuristics. 

Keywords—Fog Computing, Task Scheduling, Deadline 

Constrained, Internet of Things, Ant Colony System  

I.  INTRODUCTION 

As smart cities, smart transportation, and smart homes are 
transitioning toward the real world, cloud computing, which 
employs computation resources located far away from the end 
users and relies on robust network infrastructure, falls short on 
providing low-latency guarantees to deadline-sensitive 
applications that are very common in Internet of Things (IoT) 
scenarios [1].  

To address this issue, fog computing (also known as Edge 
Computing) extends the cloud computing paradigm to the 
edge of the network, in close proximity to end devices that 
serve as both data generator and consumer. Many 
characteristics of fog computing make it the appropriate 
platform to support critical IoT services and applications. By 
placing fog resources (i.e., local computing infrastructures) 
within one-hop of the IoT devices, fog computing can bring a 
number of key advantages including: a) Low service latency 
and location awareness; b) Wide-spread geographical 
distribution and coverage; c) Mobility; d) Scalability with 

respect to system/network scale, e) Ubiquitous wireless access, 
f) Strong support for real-time and ultra-low- latency 
applications, g) Heterogeneity and diversity [2]. A typical 
architecture of fog computing is shown in Fig. 1. The cloudlet 
entities act as the local fog computing platforms, connecting 
to the remote datacenters through the Internet. IoT devices, 
residing on the network edge, connect to the cloudlet through 
a wireless network (e.g., cellular or WiFi) and can offload 
their computation tasks to the cloudlet or the datacenters, if 
the desired application deadlines can be met. 

IoT Devices

Cloudlet
Cloudlet

IoT Devices IoT Devices

Cloudlet

Datacenter

 
Figure 1.  Architecture of a tiered IoT system including cloudlets for edge 

computing, datacenters for cloud computing, and IoT devices. 

Harnessing both fog and cloud computing can enable more 
agile and context-aware services since the cloudlet entities and 
the datacenter usually have much more resources than IoT 
devices and are able to more rapidly execute computation-
intensive tasks. Moreover, placing computing resources at the 
edge of the network allows fog nodes to efficiently process 
latency-sensitive tasks in a timely manner, while large-scale 
and latency-tolerant tasks can still be efficiently processed by 
the cloud that is equipped with more computing power. Many 
IoT applications such as big data analytics [3] require the 
interplay and cooperation between the edge (fog) and the core 
(cloud), calling for a joint optimization of both fog and cloud 
resources in the network. 

In this paper, we present a deadline-constrained task 
scheduling framework for IoT systems with a joint fog and 
cloud computing architecture. Our goal is to maximize the 
total net profit received by service providers through task 
scheduling and placement, while meeting application deadline 
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requirements and satisfying resource capacity constraints in 
both fog and cloud networks. A fog service provider can 
exploit the collaboration between its own fog nodes (including 
cloudlet and participating mobile user devices) and the rented 
cloud resources for efficiently executing tasks offloaded by 
end users’ IoT devices. We show that the proposed task 
scheduling problem in fog system can be formulated as a 
multi-dimensional 0-1 knapsack problem, which is known to 
be NP-hard. Then, a scheduling algorithm based on Ant 
Colony Optimization (ACO) is presented to maximize the 
total net profit for the fog service provider, which is defined 
as total revenue minus execution cost. Finally, we conduct 
extensive simulations to evaluate the performance of the 
proposed algorithm. Significant improvement over existing 
heuristic solutions is demonstrated. 

II. RELATED WORK 

Fog computing is a newly introduced paradigm, therefore, 
the number of task scheduling mechanisms specifically 
aiming at fog computing is quite limited so far [4]. Although 
there has been a lot of work on task scheduling for cloud 
computing, we are moving from a centralized cloud model to 
a distributed heterogeneous fog model, and it will be 
significantly more complex from the IoT application 
developer’s perspective [3].  

In [5], the authors consider task scheduling in a cloud-fog 
computing system, and propose a heuristic-based algorithm, 
whose major objective is achieving balance between the 
makespan and the monetary cost of cloud resources. 

In [6], a novel mobile task offloading framework based on 
network-assisted D2D collaboration is presented, where 
mobile users can dynamically and beneficially share the 
computation and communication resources among each other 
via the control assistance by the network operators. The 
optimization problem formulationaims to minimize the time-
average energy consumption for task executions of all users. 

In [7], a fog computing-supported software-defined 
embedded system is considered. The objective is to balance 
the workload on a client device and computation servers.  

The above papers on task scheduling for fog computing do 
not consider job deadlines, which are becoming increasingly 
more important and impact the Quality of Service (QoS).   

In [8-16], various deadline-constrained task scheduling 
mechanisms are studied by some prominent researchers. 
However, they only focus on cloud computing.  

In [17], some comparative analysis and experiments of the 
fog computing paradigm and the conventional cloud 
computing paradigm in the context of the tiered IoT system 
have been conducted. The work shows that in the context of 
IoT with a large number of latency-sensitive applications, fog 
computing outperforms cloud computing. 

 

III. PROBLEM FORMULATION 

A. Task Offloading 

In the architecture shown in Fig. 1, the IoT devices can 
offload their tasks to the cloudlet entities or the datacenter. We 

consider a joint scheduling of all tasks at a given time over 
five different scheduling choices: 

 Execute it locally, i.e. in the cloudlet; 

 Transfer and execute it in remote datacenter; 

 Execute it in some suitable IoT device; 

 Buffer the task in a queue until the next scheduling 
interval, in which a new optimization is performed; 

 Reject the task, so it will no longer be executed by the 
fog system. 

The optimization jointly schedules all arrived and buffered 
tasks and also determines their placement in the fog and cloud 
network, i.e., the cloudlet or datacenter executing the task. The 
scheduling process is illustrated in Fig. 2, where newly arrived 
tasks submitted by IoT end-users in an optimization interval 
are jointly optimized together with tasks kept in the buffer. 
Some of the tasks that are not scheduled for the next interval 
will be placed in the buffer. The optimization is performed 
repeatedly to enable online task scheduling and processing. 
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Figure 2.  The scheduling process of a tiered IoT system 

B. Assumptions and Notations 

We make several assumptions in our system model. First, 
while located far away from IoT end-devices (i.e., incurring high 

network latency), the datacenter has sufficient resources to 
process any tasks it is assigned. On the other hand, the 
cloudlets are only one hop away from the IoT end-devices (i.e., 
incurring low network latency), but have limited resources for 
computation. Second, IoT end-devices with underutilized 
computation, storage, and communication resources can also 
behave as edge servers to process tasks offloaded by other devices. 

Each edge or cloud server, i.e., an IoT device (or fog node), the 
datacenter or the cloudlet, can run multiple tasks concurrently, 
for example, through resource virtualization. These edge or 
cloud entities are collectively referred to as hosts in this paper. 
Next, we assume that each task submitted by IoT end-devices 
has known resource requirements. In practice, the information 
can be estimated from previous execution traces or via task 
profiling.  Further, each task has a time-dependent profit 
function and a hard deadline, meaning that the revenue 
received by service provider decreases over time and drops 
down to zero at the deadline. Thus, a task is kept in the buffer 
until it is rejected by the system after missing the deadline. 
Finally, for tractability, we consider a time-slotted system 



 

model and focus on scheduling of indivisible tasks. The key 
notations used in this paper are summarized in Table I. 

TABLE I.  SUMMARY OF NOTATIONS FOR PROBLEM FORMULATION 

Notation Description 

T 
Tp the pending tasks set 

Th the current running task set on host h 

h 

huser IoT device in the fog system 

hcloudlet cloudlet hosts in the fog system 

hcloud Hosts in the datacenter 

H Hosts set, H={huser } {hcloudlet } {hcloud} 

R(h) 
The amount of resources of the host h, including 
computation, communication and storage resources, 

R(h) =(Rc(h),Rb(h),Rs(h)) 

t A task 

M-2 

# of IoT devices in the fog system.The total number of 

hosts is M, including one cloudlet and one cloud 
datacenter. 

r(t) 

Resource required by task t, including computation, 

communication and storage resources, 
r(t)=(rc(t),rb(t),rs(t)) 

DS(t) Task t’s dataset size 

T0 
The execution time for processing one unit of data based 

on one unit of computing resource. 

BC The bandwidth between an IoT device and the cloudlet 

BD The bandwidth between the datacenter and the cloudlet 

DT  
The delay on the path between the datacenter and the 
cloudlet 

CT  
The delay on the path between an IoT device and the 

cloudlet 

DT'  
The delay jitter on the path between the datacenter and 

the cloudlet 

CT'  
The delay jitter on the path between an IoT device and 

the cloudlet 

x(t,h) 
It indicates whether task t is scheduled on host h or not 

and can be 0 or 1 

TS The current time of scheduling  

a(t) The arrival time of task t 

d(t) The deadline of task t 

l(t) The estimated execution time of task t 

e(t, h) The estimated ending time of task t on host h 

m(t,h) 
The estimated transmission time interval of task t from 
and to host h 

d  
A reward factor of IoT device d which offloads a task to 

the fog system 

p(t,h) The profit of running task t on host h 

b(h) 
The benefit of consuming one unit resource while running 

a task on host h  

c(h) 
The cost of consuming one unit resource while running a 

task on host h 

C. Profits and Execution Time Estimation 

Task t’s profit running on host h can be calculated as:. 
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where b(h) is the basic benefit of running a task on host h, and 

c(h) the basic cost of running a task on host h, and
d  is a 

reward factor to stimulate the fog system to finish the task as 

soon as possible, since the smaller ( , )e t h  is, the higher 

 ,p t h  will be. ( , )e t h  is decided by three factors, i.e. task t’s 

start time at, task t’s execution time l(t) and the transmission 

time m(t,h), expressed as (2). l(t) and  ,m t h
 
are defined in  

(3) and (4) respectively. 
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where DS(t) indicates t’s dataset size which needs to be 
transmitted during the offloading process. 
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Note that TD is decided by the network connection from 
the cloudlet to the datacenter and it is usually much larger than 
TC. 

D. Problem Formulation 

The objective of task scheduling is to maximize the profits 
as well as guarantee the deadline constraint, and the problem 
can be formulated as (5)-(9). 

Maximize 
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We can see that this is a multi-dimensional 0-1 knapsack 
problem, and is NP-hard.  

IV. TASK SCHEDULING ALGORITHM 

In order to solve this problem, this paper proposes a 
scheduling algorithm based on ACO which has been widely 
used to solve complex combinatorial optimization 
problems[9][13][18][19][20]. 



 

A. Solution representation 

At some particular timeslot, assume that there are in total 
N tasks for scheduling. Then, each solution obtained by the 
scheduling algorithm is a matrix: 

(1,1) (1,2) (1, )

(2,1) (2,2) (2, )

( ,1) ( , 2) ( , )

M N

x x x N

x x x N
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Each element in M NX   can be seen as a link between a 
task and a host. For ease of description, the task will be called 
the task on the link and the profit obtained by executing the 
task on the host will be called the profit of the link. 

B. Pheromone value placement and update 

The scheduling problem here is different from the 
problems considered in [19] and [20], which belong to the 

Subset Problem, i.e. given a set S of n tasks for scheduling and 

an evaluation function f(), the target is to select the best subset 

of S to maximize or minimize f(). In [19] and [20], pheromone 

value is placed on the tasks since it makes no difference to 
execute the same task on different hosts.  

However, the heterogeneity of the hosts in our scenario 
makes this assumption invalid here. Therefore, the pheromone 
value should be put on the links between the tasks and the 
hosts. This means that a link with a higher pheromone value 
can better satisfy the requirements of the evaluation function.  

After obtaining solutions, the pheromone on the links will 
be updated. The update process includes two parts: Firstly, the 
pheromone value on a link is reduced by a certain percentage 
to emulate the real-life behavior of evaporation of pheromone 
count over time. Secondly, the pheromone value increment 
laid by the new solutions of the ants will be added. Assume 

the pheromone value on link l(j, k) at time 
1t  is 

1( )l t , then at 

the next update time 
2t , the value is updated to 

2( )l t : 

2 1 1 2( ) (1 ) ( ) ( , )l l lt t t t                         (11) 

where 0 1   is a coefficient which represents pheromone 

evaporation, 
1 2( , )t t  is the pheromone value increment 

obtained from all the ants’ partial solutions: 
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where q is the number of the ants, 1 2( , )i

l t t  is the 

pheromone value laid on link l by ant i’s solution at time 
2t , 

and is defined as: 
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where 
2( )iS t  is the solution of ant i at time 

2t , and 
2( ( ))if S t  

is the value of the evaluation function of this solution. To 
maximize the profit, the evaluation is defined as: 
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where  ,p j k  is the profit brought by link l. Therefore, 

2( ( ))if S t  is the total profit of the links belonging to 
2( )iS t . 

The function G in (13) depends on the problem, in this paper, 

it is defined as 
2 2( ( ( ))) ( ( ))i iG f S t Q f S t  , where Q  is a 

parameter of the method. 

C. Local heuristic value 

The positive feedback of the ant colony algorithm is 
usually combined with some local heuristic scheme to 
accelerate the search process. Here, the local heuristic scheme 
needs to consider the profits of the links as well as the 
resources they consumed. 

Let 
2

2 ( )
( , )

i
lh l S t

i rt


  be host h’s resource consumed 

by the partial solution 
2( )iS t  of ant i at time 

2t , where 
lr  

indicates the amount of resources consumed by task j on link 

l. Then, 
2 2( , ) ( ) ( , )h hi t R h i t    is the remaining amount of 

resources on host h. The tightness of link l on host h is defined 
as: 
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i.e., the ratio between 
lr , the amount of host h’s resource 

consumed by the task on link l, and 
2( , )h i t . If there are 

multiple types of resources for consideration, we will 

calculate their average value and assign it to 
2( , )lh i t . 

The average tightness on all providers in case of link l 

being chosen to be included in 
2( )iS t  is: 

2
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In order to consider link l’s profit as well as its resource 

requirement, the local heuristic value 
2( )l t  is defined as:  
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This means that those tasks that have higher profits and 
consume less resources are more likely to be scheduled by the 
cloudlet.  

D. Link scheduling probability 

After obtaining the pheromone value and local heuristic 
value on each link, the probability that l will be selected as the 

next scheduling link of 
2( )iS t  is: 
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where 
2( )allowed t  is the set of all the schedulable links. From 

(18) we can see that the more pheromone value and local 
heuristic value a link has, the higher the probability that it will 
be scheduled. 

E. Bulletin board and Tabu list 

In addition, we set a bulletin board to record the best 
solution up to time t2, with which each ant can compare its 
own solution. If its solution is better than the best one, it will 
update the best one with its solution. Besides, during the 
searching process, a tabu list is set for each ant to help it avoid 
scheduling the same link more than one time. 

F. Algorithm Description 

The scheduling algorithm can be illustrated as following.  

Algorithm 1: Deadline-Aware Task Scheduling Algorithm for a Tiered IoT 
Infrastructure based on ACO 
1. best_solution = [], best_profit = 0 
2. For each scheduling cycle  
3.        For each ant in the ant set 
4. Determine feasible link set based on tasks’ resources requirement 
and hosts’ available resources and the deadline constraint of the tasks 
5. Place initial pheromone trail value on each feasible link 
6. While feasible link set is not null 
7.          Calculate local heuristic value for each link 
8.         Select one link for scheduling according to (18) 
9.         Add the scheduled link to the partial solution 
10.         Adjust the feasible link set based on the resource 
consumption of the scheduled link 
11.             End while 
12. Calculate the total profit of the partial solution 
13.          If the profit of current ant’s partial solution is larger than 
best_profit 
14.                  Set best_profit to be the profit of the partial solution 
15.                Record the partial solution in the best_solution 
16.         End if 
17.          Calculate the incremental pheromone on each link according to 
(11) 
18.         Clear the tabu_list for each ant 
19.        End for 
20. End for 
21. Return best_solution and best_profit 

Step 1 initiates the parameters for scheduling results 
(best_solution) and its profit (best_profit). For each ant in each 
scheduling cycle, Step 4 decides the feasible links based on all 
the tasks’ resource requirements and available resources on 
each host, and the deadline constraint of the tasks. Step 5 
places initial pheromone trail value on each feasible link. Step 
6-9 select a link for scheduling according to (18). Based on 
the selected link, Step 10 adjusts the feasible link set. When 
no more link is available for scheduling, Step 12-16 calculates 
the total profit of the current partial solution and if it is larger 
than the current optimal solution, it will be assigned as the new 
solution. After this, the pheromone on each link will be 
updated according to (11). During this process, a tabu list is 
adopted to help each ant avoid selecting the same links for 
scheduling. 

For ease of description, this algorithm will be referred to 
as DATS-ACO in the following analysis. 

G. Complexity analysis 

The time complexity of the DATS-ACO algorithm is 
O(NMCq), where C is the number of iterations, and q is the 

number of ants. Moreover, the space complexity of the 
algorithm is O(NM) . 

V. SIMULATION AND RESULTS 

A. Experimental Settings 

In order to evaluate the performance of the proposed 
algorithm, a series of experiments is carried out and the main 
parameters are listed in Table II. For the  parameters used in 
ACO, we adopt a few typical values, i.e. = =1  , =0.3 . 

There is only one datacenter and one cloudlet in the system, 
and the number of IoT devices is set to be 200, which remains 
stable during the simulation. Besides, the number of 
simulation timeslots is set to be 100.  

The arrival rate of the tasks obeys Poisson distribution 
with average value

 

 . The minimum resource possession and 

consumption is assumed to be one unit. To model the 
heterogeneity of the hosts’ resources, the amount of 
computation resource units at each host, i.e. Rc(h) obeys 
uniform distribution in the interval between minc and maxc. 
Moreover, Rs(h) also obeys uniform distribution in the interval 
between mins and maxs. Similarly, the computation and storage 
resource requirement of each task, i.e., rc(t) and rs(t),  also 
obey uniform distribution in [minrc, maxrc] and [minrs, maxrs], 

respectively. 
d , the reward factor of each IoT device, obeys 

uniform distribution in the interval [minrf, maxrf]. Moreover, 
the deadline of each task, i.e., d(t), is set to be 

 
times the 

length of a timeslot, where   obeys uniform distribution in 

[mind, maxd]. The default values of these parameters are listed 
in Table II. 

TABLE II.  SIMULATION PARAMETERS 

Parameters Meaning Value 

λ Arrival rate of tasks at each timeslot varies 

minc /maxc 
Minimum/Maximum amount of 
computation resource of each host 

80/200 

mins /maxs 
Minimum/Maximum amount of storage 

resource of each host 
60/200 

minrc/maxrc 
Minimum/Maximum amount of 
computation resource consumption of 

each task 

50/150 

minrs/maxrs 
Minimum/Maximum amount of storage 

resource consumption of each task 
30/100 

minrf/maxrf 
Minimum/Maximum reward factor of 

each IoT device 
0/0.8 

mind/maxd 
Minimum/Maximum deadline of each 

task 
1/5 

TD 
The delay on the path between the 

datacenter and the cloudlet 
100ms 

TC 
The delay on the path between an IoT 
device and the cloudlet 

50ms 

Comparison Benchmark and Metrics. The benchmark 
algorithms adopted are First-Come-First-Served (FCFS) 
algorithm and Min-min algorithm. In FCFS, the tasks are 
scheduled according to their arrival order and for each task the 
first host which can meet its resource and deadline 
requirement would be selected. In Min-min, the execution 
time between tasks and hosts are calculated in advance and the 
task with minimum execution time will be scheduled to its 
corresponding host with higher priority. 



 

The profit and the guarantee ratio of the scheduling 
algorithms are chosen as the metrics to compare the 
algorithms. The profit of a scheduling algorithm is defined as 
the total profit of all the scheduled tasks by the algorithm. The 
guarantee ratio equals the number of scheduled tasks divided 
by the number of arrived tasks. 

B. Experimental Results 

Profits of the algorithms. The total profits for different 

algorithms are shown in Fig. 3. We can see that the total 

profits of thes three algorithms increase as the arrival rate of 

tasks increases. This is due to the fact that there are more 

tasks available for scheduling when λ increases. Furthermore, 

DATS-ACO always has the largest profit of the three 

considered algorithms since it can better find those tasks with 

higher profit and lower resource requirement. 

 
Figure 3.  The profit of FCFS, Min-min and DATS-ACO for different 

arrival rate of tasks. 

 
Figure 4.  The guarantee ratio of FCFS, Min-min and DATS-ACO for 

different arrival rate of tasks. 

Guarantee ratio of the algorithms. The guarantee ratios 

for the three algorithms are shown in Fig. 4. We can see that, 

generally speaking, the guarantee ratios decrease as the arrival 

rate of tasks increases since there are more tasks that cannot 

be scheduled. Furthermore, DATS-ACO always performs 

better than the other two algorithms. 

C. Parameter influence 

The influence of . As mentioned above, and  measure 

the relative importance of the pheromone and local heuristic 

values. However, local heuristic value is usually much less 

than the pheromone value. Therefore, increasing  can 

increase the influence of the local heuristic value on a link’s 

selection probability. Fig. 5 and Fig. 6 show the profit and 

guarantee ratio, respectively, of the fog system when =1 and 

 varies from 1 to 8. Fig. 5 tells us that the total profit first 

increases with  and then becomes somewhat stable, 

achieving its peak when =4, after which it slightly decreases. 

We can make a similar observation on the curve for the 

guarantee ratio. Therefore, under our simulation scenario, 

=1 and =4 is a suitable parameter pair. 

 

Figure 5.  The profit of DATS-ACO when =1  and   varies from 1 to 8. 

 

Figure 6.  The guarantee ratio of  DATS-ACO when =1  and   varies 

from 1 to 8. 

The influence of TD. According to (1) and (4), we know 

that TD may greatly influence the profit of executing a task on 

the datacenter and thus the total number of tasks assigned to 

the datacenter. Here, we evaluate the influence of TD through 

setting it to be 1, 2 and 3 times as much as TC. Generally 

speaking, the number of tasks offloaded to the datacenter 

decreases as TD increases since executing on the datacenter 

would incur larger latency and thus lower profit. Accordingly, 

the number of tasks scheduled to be run on the cloudlet and 

IoT devices increase. Table III shows the profits and 

guarantee ratios with different settings of TD. 
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Figure 7.  The number of tasks executed on different hosts when TD is set 

to be 1, 2, and 3 times TC. 

TABLE III.  THE PROFIT OF DATS-ACO WHEN TD IS SET TO BE 1, 2 

AND 3 TIMES AS MUCH AS TC. 

 TD = TC TD= 2TC TD=3TC 

Total Profit 259850 252490 249250 

Guarantee Ratio 0.8355 0.8080 0.7949 

 

VI. CONCLUSION AND FUTURE WORK 

This paper formulates the task scheduling problem in a 
tiered IoT environment as a multi-dimensional 0-1 knapsack 
problem which is NP hard. An efficient algorithm is proposed 
based on Ant Colony Optimization (ACO). In our algorithm, 
the pheromone value is placed on the links between tasks and 
hosts that execute offloaded tasks, enabling our algorithm to 
maximize the total net profits while meeting the tasks’ 
deadlines and resource constraints. Extensive simulations are 
conducted to evaluate the performance of the proposed 
algorithm. Numerical results show that our solution 
outperforms existing heuristics including FCFS and Min-min 
algorithms. In the future, we will consider distributed, 
lightweight algorithms for the joint optimization.  
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