

Deadline-Aware Task Scheduling in a Tiered IoT

Infrastructure

Jianhua Fan, Xiangli Wei, Tongxiang Wang

Nanjing Telecommunications Technology Institute

Nanjing, China

fjh7659@163.com, wei_xianglin@163.com

Tian Lan, Suresh Subramaniam

George Washington University

 Washington DC, US

tlan@email.gwu.edu, suresh@email.gwu.edu

Abstract—With the proliferation of the Internet of Things (IoT),

the current “cloud-only” architectures cannot efficiently handle

IoT’s data processing and communications needs, while

providing satisfactory service latency to support emerging

mobile applications on the horizon that require almost real-time

responses. fog computing is introduced as a new computing

paradigm that distributes computation, communication, control,

and storage closer to the end users along the “cloud-to-things”

continuum. In this paper, we present a deadline-aware task

scheduling mechanism for fog computing in a tiered IoT

infrastructure, where service providers exploit the collaboration

between their own fog nodes and the rented cloud resources to

efficiently execute users’ offloaded tasks, at large geographical

scale. We first formulate the task-scheduling problem in such a

cloud-fog environment as a multi-dimensional 0-1 knapsack

problem that is NP-hard, and then propose an efficient

algorithmic solution based on ant colony optimization heuristic.

The main objective is to maximize the profits of fog service

provider while meeting the tasks’ deadline constraint. Extensive

experimental results show that our proposed optimization and

solution significantly improves the system performance

compared with existing heuristics.

Keywords—Fog Computing, Task Scheduling, Deadline

Constrained, Internet of Things, Ant Colony System

I. INTRODUCTION

As smart cities, smart transportation, and smart homes are
transitioning toward the real world, cloud computing, which
employs computation resources located far away from the end
users and relies on robust network infrastructure, falls short on
providing low-latency guarantees to deadline-sensitive
applications that are very common in Internet of Things (IoT)
scenarios [1].

To address this issue, fog computing (also known as Edge
Computing) extends the cloud computing paradigm to the
edge of the network, in close proximity to end devices that
serve as both data generator and consumer. Many
characteristics of fog computing make it the appropriate
platform to support critical IoT services and applications. By
placing fog resources (i.e., local computing infrastructures)
within one-hop of the IoT devices, fog computing can bring a
number of key advantages including: a) Low service latency
and location awareness; b) Wide-spread geographical
distribution and coverage; c) Mobility; d) Scalability with

respect to system/network scale, e) Ubiquitous wireless access,
f) Strong support for real-time and ultra-low- latency
applications, g) Heterogeneity and diversity [2]. A typical
architecture of fog computing is shown in Fig. 1. The cloudlet
entities act as the local fog computing platforms, connecting
to the remote datacenters through the Internet. IoT devices,
residing on the network edge, connect to the cloudlet through
a wireless network (e.g., cellular or WiFi) and can offload
their computation tasks to the cloudlet or the datacenters, if
the desired application deadlines can be met.

IoT Devices

Cloudlet
Cloudlet

IoT Devices IoT Devices

Cloudlet

Datacenter

Figure 1. Architecture of a tiered IoT system including cloudlets for edge

computing, datacenters for cloud computing, and IoT devices.

Harnessing both fog and cloud computing can enable more
agile and context-aware services since the cloudlet entities and
the datacenter usually have much more resources than IoT
devices and are able to more rapidly execute computation-
intensive tasks. Moreover, placing computing resources at the
edge of the network allows fog nodes to efficiently process
latency-sensitive tasks in a timely manner, while large-scale
and latency-tolerant tasks can still be efficiently processed by
the cloud that is equipped with more computing power. Many
IoT applications such as big data analytics [3] require the
interplay and cooperation between the edge (fog) and the core
(cloud), calling for a joint optimization of both fog and cloud
resources in the network.

In this paper, we present a deadline-constrained task
scheduling framework for IoT systems with a joint fog and
cloud computing architecture. Our goal is to maximize the
total net profit received by service providers through task
scheduling and placement, while meeting application deadline

mailto:fjh7659@163.com
mailto:tlan@email.gwu.edu

requirements and satisfying resource capacity constraints in
both fog and cloud networks. A fog service provider can
exploit the collaboration between its own fog nodes (including
cloudlet and participating mobile user devices) and the rented
cloud resources for efficiently executing tasks offloaded by
end users’ IoT devices. We show that the proposed task
scheduling problem in fog system can be formulated as a
multi-dimensional 0-1 knapsack problem, which is known to
be NP-hard. Then, a scheduling algorithm based on Ant
Colony Optimization (ACO) is presented to maximize the
total net profit for the fog service provider, which is defined
as total revenue minus execution cost. Finally, we conduct
extensive simulations to evaluate the performance of the
proposed algorithm. Significant improvement over existing
heuristic solutions is demonstrated.

II. RELATED WORK

Fog computing is a newly introduced paradigm, therefore,
the number of task scheduling mechanisms specifically
aiming at fog computing is quite limited so far [4]. Although
there has been a lot of work on task scheduling for cloud
computing, we are moving from a centralized cloud model to
a distributed heterogeneous fog model, and it will be
significantly more complex from the IoT application
developer’s perspective [3].

In [5], the authors consider task scheduling in a cloud-fog
computing system, and propose a heuristic-based algorithm,
whose major objective is achieving balance between the
makespan and the monetary cost of cloud resources.

In [6], a novel mobile task offloading framework based on
network-assisted D2D collaboration is presented, where
mobile users can dynamically and beneficially share the
computation and communication resources among each other
via the control assistance by the network operators. The
optimization problem formulationaims to minimize the time-
average energy consumption for task executions of all users.

In [7], a fog computing-supported software-defined
embedded system is considered. The objective is to balance
the workload on a client device and computation servers.

The above papers on task scheduling for fog computing do
not consider job deadlines, which are becoming increasingly
more important and impact the Quality of Service (QoS).

In [8-16], various deadline-constrained task scheduling
mechanisms are studied by some prominent researchers.
However, they only focus on cloud computing.

In [17], some comparative analysis and experiments of the
fog computing paradigm and the conventional cloud
computing paradigm in the context of the tiered IoT system
have been conducted. The work shows that in the context of
IoT with a large number of latency-sensitive applications, fog
computing outperforms cloud computing.

III. PROBLEM FORMULATION

A. Task Offloading

In the architecture shown in Fig. 1, the IoT devices can
offload their tasks to the cloudlet entities or the datacenter. We

consider a joint scheduling of all tasks at a given time over
five different scheduling choices:

 Execute it locally, i.e. in the cloudlet;

 Transfer and execute it in remote datacenter;

 Execute it in some suitable IoT device;

 Buffer the task in a queue until the next scheduling
interval, in which a new optimization is performed;

 Reject the task, so it will no longer be executed by the
fog system.

The optimization jointly schedules all arrived and buffered
tasks and also determines their placement in the fog and cloud
network, i.e., the cloudlet or datacenter executing the task. The
scheduling process is illustrated in Fig. 2, where newly arrived
tasks submitted by IoT end-users in an optimization interval
are jointly optimized together with tasks kept in the buffer.
Some of the tasks that are not scheduled for the next interval
will be placed in the buffer. The optimization is performed
repeatedly to enable online task scheduling and processing.

…

Requesters Cloudlet

…

Processor

Processor

IoT device 1

IoT device 2

Cloudlet
Local Execution

Mobile

Execution

Task

offloading
Task queue Processor

IoT device M-2

Service Providers

DC
Remote Execution

Pending list

Figure 2. The scheduling process of a tiered IoT system

B. Assumptions and Notations

We make several assumptions in our system model. First,
while located far away from IoT end-devices (i.e., incurring high

network latency), the datacenter has sufficient resources to
process any tasks it is assigned. On the other hand, the
cloudlets are only one hop away from the IoT end-devices (i.e.,
incurring low network latency), but have limited resources for
computation. Second, IoT end-devices with underutilized
computation, storage, and communication resources can also
behave as edge servers to process tasks offloaded by other devices.

Each edge or cloud server, i.e., an IoT device (or fog node), the
datacenter or the cloudlet, can run multiple tasks concurrently,
for example, through resource virtualization. These edge or
cloud entities are collectively referred to as hosts in this paper.
Next, we assume that each task submitted by IoT end-devices
has known resource requirements. In practice, the information
can be estimated from previous execution traces or via task
profiling. Further, each task has a time-dependent profit
function and a hard deadline, meaning that the revenue
received by service provider decreases over time and drops
down to zero at the deadline. Thus, a task is kept in the buffer
until it is rejected by the system after missing the deadline.
Finally, for tractability, we consider a time-slotted system

model and focus on scheduling of indivisible tasks. The key
notations used in this paper are summarized in Table I.

TABLE I. SUMMARY OF NOTATIONS FOR PROBLEM FORMULATION

Notation Description

T
Tp the pending tasks set

Th the current running task set on host h

h

huser IoT device in the fog system

hcloudlet cloudlet hosts in the fog system

hcloud Hosts in the datacenter

H Hosts set, H={huser } {hcloudlet } {hcloud}

R(h)
The amount of resources of the host h, including
computation, communication and storage resources,

R(h) =(Rc(h),Rb(h),Rs(h))

t A task

M-2

of IoT devices in the fog system.The total number of

hosts is M, including one cloudlet and one cloud
datacenter.

r(t)

Resource required by task t, including computation,

communication and storage resources,
r(t)=(rc(t),rb(t),rs(t))

DS(t) Task t’s dataset size

T0
The execution time for processing one unit of data based

on one unit of computing resource.

BC The bandwidth between an IoT device and the cloudlet

BD The bandwidth between the datacenter and the cloudlet

DT
The delay on the path between the datacenter and the
cloudlet

CT
The delay on the path between an IoT device and the

cloudlet

DT'
The delay jitter on the path between the datacenter and

the cloudlet

CT'
The delay jitter on the path between an IoT device and

the cloudlet

x(t,h)
It indicates whether task t is scheduled on host h or not

and can be 0 or 1

TS The current time of scheduling

a(t) The arrival time of task t

d(t) The deadline of task t

l(t) The estimated execution time of task t

e(t, h) The estimated ending time of task t on host h

m(t,h)
The estimated transmission time interval of task t from
and to host h

d
A reward factor of IoT device d which offloads a task to

the fog system

p(t,h) The profit of running task t on host h

b(h)
The benefit of consuming one unit resource while running

a task on host h

c(h)
The cost of consuming one unit resource while running a

task on host h

C. Profits and Execution Time Estimation

Task t’s profit running on host h can be calculated as:.



 
(,)

(() ()) ((1),) t

d

t t

d e t h
b h c h r th

d
p

a
t 


    


 

where b(h) is the basic benefit of running a task on host h, and

c(h) the basic cost of running a task on host h, and
d is a

reward factor to stimulate the fog system to finish the task as

soon as possible, since the smaller (,)e t h is, the higher

 ,p t h will be. (,)e t h is decided by three factors, i.e. task t’s

start time at, task t’s execution time l(t) and the transmission

time m(t,h), expressed as (2). l(t) and  ,m t h

are defined in

(3) and (4) respectively.

    (, ,)Se T l t htt h m    



0 ()
()

()c

T DS t
l t

r t




 

where DS(t) indicates t’s dataset size which needs to be
transmitted during the offloading process.

 

S() ()

()

S()

2 2 2 +2 , if is thedatacenter

2 2 , if is the Cloudlet

2 4 4 , if isa IoTdevi

,

ce

C D

C

C

D t DS t

D C D CB B

DS t

C CB

D

B

t

t

C C

T T T' T' h

T T' h

T T

m

' h

t h

    



  


 
  

Note that TD is decided by the network connection from
the cloudlet to the datacenter and it is usually much larger than
TC.

D. Problem Formulation

The objective of task scheduling is to maximize the profits
as well as guarantee the deadline constraint, and the problem
can be formulated as (5)-(9).

Maximize 

(,) (,)
t Tp h H

V x t h p t h
 

 
 

Subject to: 
  , 0,1()t Tp h H x t h    ，

 



T , (,) 1p

h H

t x t h


  
 

 T T

(), () , () ()
ht p t

h H r t x t h r t R h
 

    
 

 (,) 1, ()(,)pt T h H x t h e d tt h       

We can see that this is a multi-dimensional 0-1 knapsack
problem, and is NP-hard.

IV. TASK SCHEDULING ALGORITHM

In order to solve this problem, this paper proposes a
scheduling algorithm based on ACO which has been widely
used to solve complex combinatorial optimization
problems[9][13][18][19][20].

A. Solution representation

At some particular timeslot, assume that there are in total
N tasks for scheduling. Then, each solution obtained by the
scheduling algorithm is a matrix:

(1,1) (1,2) (1,)

(2,1) (2,2) (2,)

(,1) (, 2) (,)

M N

x x x N

x x x N
X

x M x M x M N



 
 
 
 
 
   

Each element in M NX  can be seen as a link between a
task and a host. For ease of description, the task will be called
the task on the link and the profit obtained by executing the
task on the host will be called the profit of the link.

B. Pheromone value placement and update

The scheduling problem here is different from the
problems considered in [19] and [20], which belong to the

Subset Problem, i.e. given a set S of n tasks for scheduling and

an evaluation function f(), the target is to select the best subset

of S to maximize or minimize f(). In [19] and [20], pheromone

value is placed on the tasks since it makes no difference to
execute the same task on different hosts.

However, the heterogeneity of the hosts in our scenario
makes this assumption invalid here. Therefore, the pheromone
value should be put on the links between the tasks and the
hosts. This means that a link with a higher pheromone value
can better satisfy the requirements of the evaluation function.

After obtaining solutions, the pheromone on the links will
be updated. The update process includes two parts: Firstly, the
pheromone value on a link is reduced by a certain percentage
to emulate the real-life behavior of evaporation of pheromone
count over time. Secondly, the pheromone value increment
laid by the new solutions of the ants will be added. Assume

the pheromone value on link l(j, k) at time
1t is

1()l t , then at

the next update time
2t , the value is updated to

2()l t :

2 1 1 2() (1) () (,)l l lt t t t      (11)

where 0 1  is a coefficient which represents pheromone

evaporation,
1 2(,)t t is the pheromone value increment

obtained from all the ants’ partial solutions:

 1 2 1 21
(,) (,)

q i

l li
t t t t 


  

 

where q is the number of the ants, 1 2(,)i

l t t is the

pheromone value laid on link l by ant i’s solution at time
2t ,

and is defined as:

2

1 2

((())) if ant incorporates link
(,)

0 otherwise

ii

l

G f S t i l
t t


  




where
2()iS t is the solution of ant i at time

2t , and
2(())if S t

is the value of the evaluation function of this solution. To
maximize the profit, the evaluation is defined as:


2

2 ()
(()) ,)

i
i l S t

p jt kf S


 （  

where  ,p j k is the profit brought by link l. Therefore,

2(())if S t is the total profit of the links belonging to
2()iS t .

The function G in (13) depends on the problem, in this paper,

it is defined as
2 2((())) (())i iG f S t Q f S t  , where Q is a

parameter of the method.

C. Local heuristic value

The positive feedback of the ant colony algorithm is
usually combined with some local heuristic scheme to
accelerate the search process. Here, the local heuristic scheme
needs to consider the profits of the links as well as the
resources they consumed.

Let
2

2 ()
(,)

i
lh l S t

i rt


 be host h’s resource consumed

by the partial solution
2()iS t of ant i at time

2t , where
lr

indicates the amount of resources consumed by task j on link

l. Then,
2 2(,) () (,)h hi t R h i t   is the remaining amount of

resources on host h. The tightness of link l on host h is defined
as:

2

2

(,)
(,)

l

lh

h

r
i t

i t



 (15)

i.e., the ratio between
lr , the amount of host h’s resource

consumed by the task on link l, and
2(,)h i t . If there are

multiple types of resources for consideration, we will

calculate their average value and assign it to
2(,)lh i t .

The average tightness on all providers in case of link l

being chosen to be included in
2()iS t is:

2

2

(,)
(,)

| H |

lhh H

l

i t
i t


 


 (16)

In order to consider link l’s profit as well as its resource

requirement, the local heuristic value
2()l t is defined as:

2

2

(,)
()

(,)
l

l

p j k
t

i t



 (17)

This means that those tasks that have higher profits and
consume less resources are more likely to be scheduled by the
cloudlet.

D. Link scheduling probability

After obtaining the pheromone value and local heuristic
value on each link, the probability that l will be selected as the

next scheduling link of
2()iS t is:

2

2 2
2

2 22 ()

[()] [()]
, ()

[()] [()]()

0

l l

i
k kl k allowed t

t t
l allowed t

t tP t

 

 

 

 





 





 

where
2()allowed t is the set of all the schedulable links. From

(18) we can see that the more pheromone value and local
heuristic value a link has, the higher the probability that it will
be scheduled.

E. Bulletin board and Tabu list

In addition, we set a bulletin board to record the best
solution up to time t2, with which each ant can compare its
own solution. If its solution is better than the best one, it will
update the best one with its solution. Besides, during the
searching process, a tabu list is set for each ant to help it avoid
scheduling the same link more than one time.

F. Algorithm Description

The scheduling algorithm can be illustrated as following.

Algorithm 1: Deadline-Aware Task Scheduling Algorithm for a Tiered IoT
Infrastructure based on ACO
1. best_solution = [], best_profit = 0
2. For each scheduling cycle
3. For each ant in the ant set
4. Determine feasible link set based on tasks’ resources requirement
and hosts’ available resources and the deadline constraint of the tasks
5. Place initial pheromone trail value on each feasible link
6. While feasible link set is not null
7. Calculate local heuristic value for each link
8. Select one link for scheduling according to (18)
9. Add the scheduled link to the partial solution
10. Adjust the feasible link set based on the resource
consumption of the scheduled link
11. End while
12. Calculate the total profit of the partial solution
13. If the profit of current ant’s partial solution is larger than
best_profit
14. Set best_profit to be the profit of the partial solution
15. Record the partial solution in the best_solution
16. End if
17. Calculate the incremental pheromone on each link according to
(11)
18. Clear the tabu_list for each ant
19. End for
20. End for
21. Return best_solution and best_profit

Step 1 initiates the parameters for scheduling results
(best_solution) and its profit (best_profit). For each ant in each
scheduling cycle, Step 4 decides the feasible links based on all
the tasks’ resource requirements and available resources on
each host, and the deadline constraint of the tasks. Step 5
places initial pheromone trail value on each feasible link. Step
6-9 select a link for scheduling according to (18). Based on
the selected link, Step 10 adjusts the feasible link set. When
no more link is available for scheduling, Step 12-16 calculates
the total profit of the current partial solution and if it is larger
than the current optimal solution, it will be assigned as the new
solution. After this, the pheromone on each link will be
updated according to (11). During this process, a tabu list is
adopted to help each ant avoid selecting the same links for
scheduling.

For ease of description, this algorithm will be referred to
as DATS-ACO in the following analysis.

G. Complexity analysis

The time complexity of the DATS-ACO algorithm is
O(NMCq), where C is the number of iterations, and q is the

number of ants. Moreover, the space complexity of the
algorithm is O(NM) .

V. SIMULATION AND RESULTS

A. Experimental Settings

In order to evaluate the performance of the proposed
algorithm, a series of experiments is carried out and the main
parameters are listed in Table II. For the parameters used in
ACO, we adopt a few typical values, i.e. = =1  , =0.3 .

There is only one datacenter and one cloudlet in the system,
and the number of IoT devices is set to be 200, which remains
stable during the simulation. Besides, the number of
simulation timeslots is set to be 100.

The arrival rate of the tasks obeys Poisson distribution
with average value

 . The minimum resource possession and

consumption is assumed to be one unit. To model the
heterogeneity of the hosts’ resources, the amount of
computation resource units at each host, i.e. Rc(h) obeys
uniform distribution in the interval between minc and maxc.
Moreover, Rs(h) also obeys uniform distribution in the interval
between mins and maxs. Similarly, the computation and storage
resource requirement of each task, i.e., rc(t) and rs(t), also
obey uniform distribution in [minrc, maxrc] and [minrs, maxrs],

respectively.
d , the reward factor of each IoT device, obeys

uniform distribution in the interval [minrf, maxrf]. Moreover,
the deadline of each task, i.e., d(t), is set to be 

times the

length of a timeslot, where  obeys uniform distribution in

[mind, maxd]. The default values of these parameters are listed
in Table II.

TABLE II. SIMULATION PARAMETERS

Parameters Meaning Value

λ Arrival rate of tasks at each timeslot varies

minc /maxc
Minimum/Maximum amount of
computation resource of each host

80/200

mins /maxs
Minimum/Maximum amount of storage

resource of each host
60/200

minrc/maxrc
Minimum/Maximum amount of
computation resource consumption of

each task

50/150

minrs/maxrs
Minimum/Maximum amount of storage

resource consumption of each task
30/100

minrf/maxrf
Minimum/Maximum reward factor of

each IoT device
0/0.8

mind/maxd
Minimum/Maximum deadline of each

task
1/5

TD
The delay on the path between the

datacenter and the cloudlet
100ms

TC
The delay on the path between an IoT
device and the cloudlet

50ms

Comparison Benchmark and Metrics. The benchmark
algorithms adopted are First-Come-First-Served (FCFS)
algorithm and Min-min algorithm. In FCFS, the tasks are
scheduled according to their arrival order and for each task the
first host which can meet its resource and deadline
requirement would be selected. In Min-min, the execution
time between tasks and hosts are calculated in advance and the
task with minimum execution time will be scheduled to its
corresponding host with higher priority.

The profit and the guarantee ratio of the scheduling
algorithms are chosen as the metrics to compare the
algorithms. The profit of a scheduling algorithm is defined as
the total profit of all the scheduled tasks by the algorithm. The
guarantee ratio equals the number of scheduled tasks divided
by the number of arrived tasks.

B. Experimental Results

Profits of the algorithms. The total profits for different

algorithms are shown in Fig. 3. We can see that the total

profits of thes three algorithms increase as the arrival rate of

tasks increases. This is due to the fact that there are more

tasks available for scheduling when λ increases. Furthermore,

DATS-ACO always has the largest profit of the three

considered algorithms since it can better find those tasks with

higher profit and lower resource requirement.

Figure 3. The profit of FCFS, Min-min and DATS-ACO for different

arrival rate of tasks.

Figure 4. The guarantee ratio of FCFS, Min-min and DATS-ACO for

different arrival rate of tasks.

Guarantee ratio of the algorithms. The guarantee ratios

for the three algorithms are shown in Fig. 4. We can see that,

generally speaking, the guarantee ratios decrease as the arrival

rate of tasks increases since there are more tasks that cannot

be scheduled. Furthermore, DATS-ACO always performs

better than the other two algorithms.

C. Parameter influence

The influence of . As mentioned above, and  measure

the relative importance of the pheromone and local heuristic

values. However, local heuristic value is usually much less

than the pheromone value. Therefore, increasing  can

increase the influence of the local heuristic value on a link’s

selection probability. Fig. 5 and Fig. 6 show the profit and

guarantee ratio, respectively, of the fog system when =1 and

 varies from 1 to 8. Fig. 5 tells us that the total profit first

increases with  and then becomes somewhat stable,

achieving its peak when =4, after which it slightly decreases.

We can make a similar observation on the curve for the

guarantee ratio. Therefore, under our simulation scenario,

=1 and =4 is a suitable parameter pair.

Figure 5. The profit of DATS-ACO when =1 and  varies from 1 to 8.

Figure 6. The guarantee ratio of DATS-ACO when =1 and  varies

from 1 to 8.

The influence of TD. According to (1) and (4), we know

that TD may greatly influence the profit of executing a task on

the datacenter and thus the total number of tasks assigned to

the datacenter. Here, we evaluate the influence of TD through

setting it to be 1, 2 and 3 times as much as TC. Generally

speaking, the number of tasks offloaded to the datacenter

decreases as TD increases since executing on the datacenter

would incur larger latency and thus lower profit. Accordingly,

the number of tasks scheduled to be run on the cloudlet and

IoT devices increase. Table III shows the profits and

guarantee ratios with different settings of TD.

10 15 20
0

0.5

1

1.5

2

2.5

3
x 10

5

The arrival rate of tasks

T
o

ta
l

p
ro

fi
t

FCFS

Min-min

DCTS-ACO

10 15 20
0

0.2

0.4

0.6

0.8

1

The arrival rate of tasks

G
u

a
ra

n
te

e
 r

a
ti

o

FCFS

Min-min

DCTS-ACO

1 2 3 4 5 6 7 8
2.52

2.525

2.53

2.535

2.54

2.545

2.55

2.555

2.56

2.565
x 10

5

T
o

ta
l

p
ro

fi
t

1 2 3 4 5 6 7 8
0.808

0.809

0.81

0.811

0.812

0.813

0.814

0.815

0.816

G
u

a
ra

n
te

e
 r

a
ti

o

Figure 7. The number of tasks executed on different hosts when TD is set

to be 1, 2, and 3 times TC.

TABLE III. THE PROFIT OF DATS-ACO WHEN TD IS SET TO BE 1, 2

AND 3 TIMES AS MUCH AS TC.

 TD = TC TD= 2TC TD=3TC

Total Profit 259850 252490 249250

Guarantee Ratio 0.8355 0.8080 0.7949

VI. CONCLUSION AND FUTURE WORK

This paper formulates the task scheduling problem in a
tiered IoT environment as a multi-dimensional 0-1 knapsack
problem which is NP hard. An efficient algorithm is proposed
based on Ant Colony Optimization (ACO). In our algorithm,
the pheromone value is placed on the links between tasks and
hosts that execute offloaded tasks, enabling our algorithm to
maximize the total net profits while meeting the tasks’
deadlines and resource constraints. Extensive simulations are
conducted to evaluate the performance of the proposed
algorithm. Numerical results show that our solution
outperforms existing heuristics including FCFS and Min-min
algorithms. In the future, we will consider distributed,
lightweight algorithms for the joint optimization.

ACKNOWLEDGMENT

This research was supported in part by NSF grant 1320226,
the National Natural Science Foundation of China Grant No.
61402521, and Jiangsu Province Natural Science Foundation
of China Grant No. BK20140068 and No. BK20150201.

REFERENCES

[1] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan and G. J.
Ren, "Foggy clouds and cloudy fogs: a real need for coordinated
management of fog-to-cloud computing systems," in IEEE Wireless
Communications, vol. 23, no. 5, pp. 120-128, October 2016.

[2] Bonomi F, Milito R, Zhu J, et al. Fog computing and its role in the
internet of things[C]//Proceedings of the first edition of the MCC
workshop on Mobile cloud computing. ACM, 2012: 13-16.

[3] M. Chiang and T. Zhang, "Fog and IoT: An Overview of Research
Opportunities," in IEEE Internet of Things Journal, vol. 3, no. 6, pp.
854-864, Dec. 2016.

[4] Zhan Z H, Liu X F, Gong Y J, et al. Cloud computing resource
scheduling and a survey of its evolutionary approaches[J]. ACM
Computing Surveys (CSUR), 2015, 47(4): 63.

[5] Xuan-Qui Pham and Eui-Nam Huh, "Towards task scheduling in a
cloud-fog computing system," 2016 18th Asia-Pacific Network
Operations and Management Symposium (APNOMS), Kanazawa,
2016, pp. 1-4.

[6] L. Pu, X. Chen, J. Xu and X. Fu, "D2D Fogging: An Energy-Efficient
and Incentive-Aware Task Offloading Framework via Network-
assisted D2D Collaboration," in IEEE Journal on Selected Areas in
Communications, vol. 34, no. 12, pp. 3887-3901, Dec. 2016.

[7] D. Zeng, L. Gu, S. Guo, Z. Cheng and S. Yu, "Joint Optimization of
Task Scheduling and Image Placement in Fog Computing Supported
Software-Defined Embedded System," in IEEE Transactions on
Computers, vol. 65, no. 12, pp. 3702-3712, Dec. 1 2016.

[8] Chen Z G, Du K J, Zhan Z H, et al. Deadline constrained cloud
computing resources scheduling for cost optimization based on
dynamic objective genetic algorithm[C]//Evolutionary Computation
(CEC), 2015 IEEE Congress on. IEEE, 2015: 708-714.

[9] Chen Z G, Zhan Z H, Li H H, et al. Deadline constrained cloud
computing resources scheduling through an ant colony system
approach[C]//Cloud Computing Research and Innovation (ICCCRI),
2015 International Conference on. IEEE, 2015: 112-119.

[10] Shin S M, Kim Y, Lee S K. Deadline-guaranteed scheduling algorithm
with improved resource utilization for cloud computing[C]//Consumer
Communications and Networking Conference (CCNC), 2015 12th
Annual IEEE. IEEE, 2015: 814-819.

[11] Chen C H, Lin J W, Kuo S Y. MapReduce Scheduling for Deadline-
Constrained Jobs in Heterogeneous Cloud Computing Systems[J].
IEEE Transactions on Cloud Computing, 2015.

[12] Li D, Chen C, Guan J, et al. DCloud: deadline-aware resource
allocation for cloud computing jobs[J]. IEEE Transactions on Parallel
and Distributed Systems, 2016, 27(8): 2248-2260.

[13] Komarasamy D, Muthuswamy V. Adaptive Deadline Based Dependent
Job Scheduling algorithm in cloud computing[C]//Advanced
Computing (ICoAC), 2015 Seventh International Conference on. IEEE,
2015: 1-5.

[14] Sidhu H S. Cost-Deadline Based Task Scheduling in Cloud
Computing[C]//Advances in Computing and Communication
Engineering (ICACCE), 2015 Second International Conference on.
IEEE, 2015: 273-279.

[15] Yi X, Liu F, Li Z, et al. Flexible Instance: Meeting Deadlines of Delay
Tolerant Jobs in The Cloud with Dynamic Pricing[C]//Distributed
Computing Systems (ICDCS), 2016 IEEE 36th International
Conference on. IEEE, 2016: 415-424.

[16] Zuo L, Shu L, Dong S, et al. A Multi-objective Hybrid Cloud Resource
Scheduling Method Based on Deadline and Cost Constraints[J]. IEEE
Access, 2016.

[17] S. Sarkar; S. Chatterjee; S. Misra, "Assessment of the Suitability of Fog
Computing in the Context of Internet of Things," in IEEE Transactions
on Cloud Computing , vol.PP, no.99, pp.1-1.

[18] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE Trans.
Evol. Comput., vol. 1, no. 1, pp. 53-66, 1997.

[19] Wei X, Fan J, Wang T, et al. Efficient application scheduling in mobile
cloud computing based on MAX---MIN ant system[J]. Soft Computing,
2016, 20(7):2611-2625.

[20] Xianglin Wei, Jianhua Fan, Ziyi Lu, and Ke Ding. Application
Scheduling in Mobile Cloud Computing with Load Balancing[J].
Journal of Applied Mathematics, 2013, 2013(3):337-366.

0

200

400

600

800

1000

 T
D

=T
C

 T
D

=2T
C

 T
D

=3T
C

N
u

m
b

e
r

o
f

e
x
e
c
u

te
d

 t
a
s
k
s

Datacenter

Cloudlet

Mobile devices

	I. Introduction
	II. Related Work
	III. Problem Formulation
	A. Task Offloading
	B. Assumptions and Notations
	C. Profits and Execution Time Estimation
	D. Problem Formulation

	IV. Task Scheduling algorithm
	A. Solution representation
	B. Pheromone value placement and update
	C. Local heuristic value
	D. Link scheduling probability
	E. Bulletin board and Tabu list
	F. Algorithm Description
	G. Complexity analysis

	V. Simulation and Results
	A. Experimental Settings
	B. Experimental Results
	C. Parameter influence

	VI. Conclusion and Future Work
	Acknowledgment
	References

