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Abstract

With the freight delivery demands and shipping costs increas-
ing rapidly, intelligent control of fleets to enable efficient
and cost-conscious solutions becomes an important problem.
In this paper, we propose DeepFreight, a model-free deep-
reinforcement-learning-based algorithm for multi-transfer
freight delivery, which includes two closely-collaborative
components: truck-dispatch and package-matching. Specifi-
cally, a deep multi-agent reinforcement learning framework
called QMIX is leveraged to learn a dispatch policy, with
which we can obtain the multi-step joint dispatch decisions
for the fleet with respect to the delivery requests. Then an effi-
cient multi-transfer matching algorithm is executed to assign
the delivery requests to the trucks. Also, DeepFreight is inte-
grated with a Mixed-Integer Linear Programming optimizer
for further optimization. The evaluation results show that the
proposed system is highly scalable and ensures a 100% de-
livery success while maintaining low delivery time and fuel
consumption.

1 Introduction
According to American Trucking Associations1, the U.S.
trucking industry shipped 11.84 billion tons of goods in
2019 and had a market of 791.7 billion dollars. With ship-
ping costs rising and freight volumes outpacing the supply
of available trucks, companies are thinking of radical new
initiatives to get their products into customers’ hands more
efficiently. On the other hand, transportation is currently the
largest source (29%) of greenhouse gas emissions in the
U.S., where the passenger cars and trucks account for more
than 80% of this section2. Thus, innovations to enable intel-
ligent and efficient freight transportation are of central im-
portance for the sake of better utilization of the trucks and
less fuel consumption.

We propose DeepFreight, a model-free learning frame-
work for the freight delivery problem. The proposed
algorithm decomposes the problem into two closely-
collaborative components: truck-dispatch and package-
matching. In particular, the dispatch policy aims to find the
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dispatch decisions for the fleet according to the delivery
requests. It leverages a multi-agent reinforcement learning
framework, QMIX (Rashid et al. 2018), which can train de-
centralised policies in a centralised end-to-end fashion. Then
an efficient matching algorithm is developed to match the
delivery requests with the dispatch decisions, which is a
greedy approach that makes use of multiple transfers and
aims at minimizing the total time use of the fleet. Further,
DeepFreight is integrated with a Mixed-Integer Linear Pro-
gramming (MILP) optimizer for more efficient and reliable
dispatch and assignment decisions.

To the best of our knowledge, this is the first work
that takes a machine learning aided approach for freight
scheduling with multiple transfers. The key contributions
of the paper can be summarized as follows: 1) We propose
DeepFreight, a learning-based algorithm for multi-transfer
freight delivery, which contains truck-dispatch and package-
matching. The dispatch policy is adopted to determine the
routes of the trucks, and then matching policy is executed to
assign the packages to the trucks efficiently. 2) We propose
to train the dispatch policy through a centralized training
with decentralized execution algorithm, QMIX (Rashid et al.
2018), which considers the cooperation among the trucks
when training and makes the multi-agent dispatch scalable
for execution. 3) We propose an efficient rule-based match-
ing policy which allows multi-transfer to minimize the us-
age time of the fleet. 4) We formulate a MILP model for this
freight delivery problem and integrate it with DeepFreight to
achieve better reliability and efficiency of the overall system.

2 Related Work
Truck Dispatch Problem. The freight delivery problem
is a variant of ‘Vehicle Routing Problem (VRP)’, which
was first introduced in (Dantzig and Ramser 1959) as the
‘Truck Dispatch Problem’. Over the decades, the classic
VRP has been extended to a lot of variants by introduc-
ing additional real-life characteristics (Braekers, Ramaek-
ers, and Van Nieuwenhuyse 2016). For example, VRP with
Pickup and Delivery (Parragh, Doerner, and Hartl 2008),
that is, goods are required to be picked up and dropped off
at certain locations and the pick-up and drop-off must be
done with the same vehicle; Multi-Depot VRP (Montoya-
Torres et al. 2015), which assumes that there are multiple
depots spreading among the customers for scheduling. The



extended VRP is NP-hard, and many heuristics and meta-
heuristics algorithms have been adopted as the solution, such
as simulated annealing (Wang et al. 2015), genetic algorithm
(Tasan and Gen 2012), and local search algorithm (Avci and
Topaloglu 2015).

We note that these works don’t consider that goods can
be dropped off in the middle and carried further by another
truck (multi-transfer of goods), which has the potential for
better utilization of the fleet and is considered in our work.
Further, the approaches they adopt are model-based, which
need execution every time new observation occurs. Also, the
execution time would increase with the scale of the problem,
which leads to high time complexity and poor scalability.

Multi-hop Ride-Sharing. As a related area, researches
about the ride-sharing system are introduced in this part.
To handle the dynamic requests in this scenario, rein-
forcement learning aided approaches for efficient vehicle-
dispatch and passenger-matching have been proposed in
(Oda and Joe-Wong 2018; Al-Abbasi, Ghosh, and Aggarwal
2019; de Lima et al. 2020). However, these approaches don’t
consider passengers going over multiple hops. As shown in
(Teubner and Flath 2015), multi-transfer has the potential to
greatly increase the ride availability and reduce emissions
of the ride-sharing system by making better use of the ve-
hicle capacities. Given this, a reinforcement learning based
approach for the multi-hop ride-sharing problem has been
recently studied in (Singh, Alabbasi, and Aggarwal 2019).

However, we note that there are some key differences be-
tween the ride-sharing system and freight-scheduling sys-
tem. For ride-sharing, the driving distances are smaller and
it’s more concerned with the real-time scalable solutions for
the highly dynamic requests. While for freight-scheduling,
the number of the trucks needed is much fewer due to their
huge capacity and the delivery demands can usually be ac-
quired in advance (e.g. one day ahead). In this case, the coor-
dination among trucks is possible and necessary for making
better scheduling decisions and we try to take it into con-
sideration with our freight delivery system through a multi-
agent reinforcement learning setting.

Multi-Agent Reinforcement Learning. Multi-agent re-
inforcement learning (MARL) methods hold great potential
to solve a variety of real-world problems, and centralized
training with decentralized execution (CTDE) is an impor-
tant paradigm of it. Centralized training exploits the inter-
action among the agents, while decentralized execution en-
sures the system’s scalability. Specific to the multi-agent co-
operative setting (like ours), there are many related works:
VDN (Sunehag et al. 2018), QMIX (Rashid et al. 2018),
QTRAN (Son et al. 2019) and MAVEN (Mahajan et al.
2019). However, their performance varies greatly in dif-
ferent benchmarks and none of them has the absolute ad-
vantage. Considering there have been more applications of
QMIX in complicated scenarios and its robust performance
(Zhang et al. 2020; Iqbal et al. 2020), we choose QMIX to
train the dispatch policy in our algorithm framework.

3 System Model
In this section, we will describe the proposed system model
for multi-transfer freight delivery. As an example, consider

Figure 1: An example for multi-transfer freight delivery

the scenario shown in Figure 1, where Loads 1 and 4 need to
be shipped to a distribution center in Petersburg, VA, while
Loads 2 and 3 to the distribution center in New Castle, DE.
There are two trucks located at zone A and zone C, with
capacity R1 = 4 and R2 = 5, respectively. When freight
ride-sharing is enabled, two different possibilities are shown
in the figure to serve the requests: 1) serving all the requests
using only the truck 2 at zone C (i.e. the dashed red line in
the figure), 2) serving Loads 1 and 4 using truck 2 (i.e. the
dashed-dotted blue line) and Loads 2 and 3 using truck 1
(i.e. the dotted green line), offering different tradeoffs be-
tween delivery time and fuel cost. Furthermore, if multiple
transfers are allowed, we may also have the two trucks pick-
ing up their loads first and then meeting at zone H to fold the
loads into a single truck before the final delivery, which pro-
vides additional elasticity for the truck scheduling problem.
Through adoption of freight ride-sharing and multi-transfer,
fewer truck miles may be required, which will lead to re-
duced shipping costs and less fuel consumption.

3.1 Model Parameters
In this section, key parameters of the system model are intro-
duced. First, there are Ns distribution centers in the freight
delivery system, which can be used as the sources and desti-
nations of packages. Based on them, a delivery request list,
denoted by R1:Nr (Nr: the number of requests), is collected
at the beginning of each day. The i-th request ri can be rep-
resented as (sourcei, destinationi, sizei), which indicates
the source, destination, and size of the i-th package.

Second, our target is to complete these requests using a
fleet of trucks within a time limit. The number of the trucks
for dispatch is Nt and the time limit is denoted as Tmax

which can be one or two days. To fulfill this target, we need
to schedule the itinerary of the fleet and the assignment of
the packages to the trucks.

Further, in our system, the itinerary of a truck is not
decided as a whole and instead consists of a sequence of
dispatch decisions, each of which shows the truck’s next
stop (distribution center) to visit. Also, the assignment of
the packages allows multiple transfers, which means that a
package can be assigned to more than one truck along the
route from its origin to its destination. Note that the total
driving time of a truck can’t exceed the time limit Tmax and
the volume of the packages it takes at the same time should
be within its maximum capacity Cmax.



3.2 Problem Objectives
The key objectives of the freight delivery system are: (i)
maximizing the number of served requests (denoted as Nrs)
within the time limit Tmax; and (ii) minimizing the total fuel
consumption of the fleet (denoted as Ftotal) during this pro-
cess. The second component Ftotal is viewed as the function
of the total driving time (denoted as Tdrive) and can be cal-
culated with Equation (1), where fuel factor is a constant,
representing the fuel consumption per unit time, while etakj
is the estimated time of arrival (ETA) for the k-th dispatch
decision of truck j that can be obtained through Google Map
API.

Ftotal = fuel factor ∗ Tdrive (1)

Tdrive =

Ne∑
k=1

Nt∑
j=1

etakj (2)

4 Proposed Approach: DeepFreight
In this section, we introduce our proposed approach: Deep-
Freight Algorithm. First, we describe its overall framework
in Section 4.1, including the main algorithm modules and
connections between them. Then, in Section 4.2-4.4, we talk
about these modules further, including the detailed proce-
dure and the intuition to propose them.

4.1 Overall Framework of DeepFreight
Algorithm 1 shows the overall framework of the proposed
approach. As mentioned, the proposed approach should give
out the itinerary of the fleet and the assignment of the pack-
ages to the trucks. In this case, we split the whole system
into two parts: the dispatch policy and matching policy. The
dispatch policy determines a sequence of dispatch decisions
for each truck in the fleet according to the unfinished de-
livery requests, based on which we can get the route net-
work of the fleet. The matching policy is then executed to
assign the requests to the trucks based on the route of each
truck. We note that the matching policy is executed based
on the dispatch results, while then the matching results pro-
vide reward feedback for the training of the dispatch policy.
The dispatch policy is trained in a multi-agent reinforcement
learning setting called QMIX, which includes: the agent net-
work Qsingle and mixing network Qmix (Section 4.3).

There are some key points to note about Algorithm 1.
First, Line 3-6 is the initialization process of the simulator.
A new request list will be generated at the beginning of each
episode, however, the truck list will not be generated again
until the next operation cycle starts. Within an operation cy-
cle, the trucks’ locations at the beginning of a new episode
are the same as those at the end of the previous episode.
Also, we note that the generation of the request list and truck
list is model-based, which is introduced in Section 6.1.

Second, Line 7-17 shows the sampling process of the
agents which is used to collect the experiences for training.
In order to prune the joint search space of the agents and
further improve the learning efficiency, which is essential
for solving this complex problem, we add some constraints
to the truck’s routes: 1) It’s not allowed for the truck to pass

through the same stop twice, except for returning to its ori-
gin (no sub-tours); 2) No dispatch decisions are allowed any
more after the truck returns to its origin or its cumulative
time exceeds the time limit. These constraints are realized
through the action mask m1:Nt

.
Third, not all the dispatch decisions can be matched with

delivery requests. For a truck, there may be some idle route
segments with no package assignment and these idle dis-
patch decisions (route segments) can be eliminated on the
condition that the truck’s route continuity is not affected
(show in Line 18). Through this, total fuel consumption is
further reduced and better scheduling of the fleet is realized.

Algorithm 1 DeepFreight Algorithm
1: Given: operation cycle ∆, episode time limit Tmax, agent net-

work Qsingle, mixing network Qmix

2: for episode epi = 1 to Nepi do
3: Generate Nr delivery requests randomly
4: if epi % ∆ == 1 then
5: Generate Nt trucks randomly
6: end if
7: for epoch k = 1 to Ne do
8: Obtain the current environment state sk, obser-

vation list zk1:Nt
, and action mask list mk

1:Nt

9: Get the q-value list Qk
1:Nt

from Qsingle

10: Choose the available action uk
1:Nt

for each truck
based on the corresponding Qk

1:Nt
and mk

1:Nt
,

with Boltzmann exploration (Cesa-Bianchi et al. 2017)
11: Match the delivery requests with the dispatch

decisions with Algorithm 2
12: Calculate the joint reward rk according to Equation (3)
13: Update the cumulative time for each truck tk1:Nt

14: if min(tk1:Nt
) ≥ Tmax or no requests left then

15: break
16: end if
17: end for
18: Eliminate the useless dispatch decisions, calculate the

number of unfinished packages and average driving
time of the fleet for evaluation

19: Update replay buffer B with experiences collected
above, including (s1:Ne , z1:Ne

1:Nt
, u1:Ne

1:Nt
, r1:Ne , m1:Ne

1:Nt
)

20: for iteration iter = 1 to Niter do
21: Sample a random batch of experiences from B
22: Update Qsingle and Qmix by minimizing loss

function defined as Equation (4)
23: end for
24: end for

4.2 Model Dispatch Problem with Dec-POMDP
This cooperative multi-agent dispatch problem can be
modeled with Dec-POMDP (Decentralized Partial Observ-
able Markov Decision Process), and described as a tuple
(S,U, P, r, Z,O, n, γ). General definition of these elements
can be found in Section IV-B of the extended version of our
paper (Chen et al. 2021).

Specifically, the environment state space S for this pack-
age delivery dispatch problem includes four terms: 1) cur-
rent epoch number k; 2) distribution of the trucks at epoch
k, that is the number of the trucks at each stop; 3) avail-



Figure 2: Workflow of QMIX Algorithm

able capacity of each truck; 4) unfinished delivery requests
at epoch k, which are initialized at the beginning of each
episode and updated with the epochs. As for the individual
observation space Z, it is for a single truck, so it replaces the
item 2) 3) with the truck’s current stop and available capac-
ity respectively and keeps item 1) 4).

Moreover, the individual action space U includes: 1)
next stop ∈ {1, 2, · · ·, Ns} : the index of the next stop; 2)
invalid dispatch: there are some constraints for the dispatch
decisions to be valid, e.g. within the time limit. In this case,
the dimension of the individual action space U is Ns + 1.

The joint reward function r should reflect the objectives
mentioned in Section 3.2, so the reward for the epoch k is
defined as Equation (3), where β1:2 > 0.

rk = β1N
k
rs − β2F k

total (3)
Obviously, it has a positive correlation with the package
number served at epoch k and a negative correlation with
the fuel consumption during this process.

Based on these elements, the dispatch policy for agent a
can be defined as πa(ua|za) : Z×U → [0, 1]. The execution
of the policy is decentralized, since it conditions only on the
observation of the single agent.

4.3 QMIX for Training the Dispatch Policy
QMIX (Rashid et al. 2018) is a value-based reinforcement
learning algorithm that can train decentralized policies in
a centralized end-to-end fashion. It is suitable to solve this
multi-agent freight delivery problem because 1) the central-
ized training process takes the coordination among trucks
into consideration, 2) the decentralized execution process al-
leviates the complexity to determine the joint dispatch deci-
sions and ensures the scalability of the dispatch policy. The
workflow of QMIX is shown as Figure 2, where two key
components: Qsingle and Qmix, need special attention.

The agent network Qsingle outputs the Q-value list for
each truck, which can be used for decentralized execution,
or as a part of the centralized training process. The inputs
of Qsingle include: 1) the agent (truck) id a, which is in the
form of a one-hot vector; 2) the individual observation for
the current epoch oka; 3) the dispatch decision (action) for
the previous epoch uk−1

a . Input 2) shows that the execution
of the dispatch policy is in a decentralized way, which condi-
tions only on local observations. While, input 3) shows that
dispatch decisions of different epochs within an episode are
correlated rather than independent.

The mixing network Qmix estimates the joint Q-value
Qtot as a complex non-linear combination of Q-values for
all the n trucks. HyperNetworks (Ha, Dai, and Le 2017)
is adopted to transform the environment state sk into the
parameters of Qmix. Based on Qtot, the loss function for
QMIX can be defined as Equation (4), where yktot (Equation
(5)) is the target joint q-value from the target networks.

Loss(θ) =

batchsize∑
i=1

[
(yktot −Qtot(τ

k,uk, sk;θ))2i
]

(4)

yktot = rk +maxuQtot(τ
k+1,u, sk+1;θ−) (5)

After the centralized training, the agent networkQsingle can
be used to give dispatch decisions for each truck based on
their individual observation in a decentralized way.

Figure 3: Graph Representation of the Dispatch Decisions

4.4 Matching Algorithm
The matching algorithm, shown as Algorithm 2, is executed
to match the delivery requests with the dispatch decisions.
Considering the number of the packages to deliver is huge,
it’s nearly impossible to find the optimal matching results for
all the packages within a reasonable time. In this case, Algo-
rithm 2 adopts a greedy approach to ensure the optimality
for every single package (assuming no other packages) and
takes the least increase in the total driving time of the fleet
as the optimization objective. It mainly includes two parts:

First, in Line 3-14, a weighted directed graph, like Fig-
ure 3, is created based on the dispatch decisions. Each node
in the graph represents for a stop that has occurred in the
dispatch decisions. While each edge means there is a truck
that has been dispatched between the two stops. Also, the id,
departure time, and available capacity of the truck and ETA
between the two stops are saved with the edge for later use.

Second, based on the graph, we can adopt DFS to acquire
all the available paths from the source to the destination for
each delivery request (Line 16). An available path contains
a list of edges and their truck id may be different, which



means the package may be delivered by more than one truck
(multi-transfer). In this case, there are some conditions for
a path to be available: 1) The package’s arrival time at any
node in the path should be earlier than the departure time
from that node of the truck it transfers to; 2) The package’s
size should be smaller than that truck’s available capacity.

Further, among all the available paths, the one that causes
the least increase in the total driving time of the fleet will
be chosen (Line 18). For example, there are three available
paths from A to D in Figure 3: A→ D, A→ B → D, and
A→ B → C → D and the edgesA→ B andB → C have
been matched with other requests. Then, the time cost of the
third path should only be the ETA from C to D, since it will
share the trucks denoted by the red edges with other requests
(freight ride-sharing). Similarly, the time cost of the first two
paths are respectively the ETA from A to D and ETA from
B to D. Then, in order to minimize total driving time of the
fleet, the path with the least time cost should be chosen. Note
that if there are more than one path with the least time cost,
the shortest path will be chosen.

Algorithm 2 Matching Algorithm
1: Given: initial capacity of the trucks, dispatch decisions viz.

next stop for each truck at each valid epoch, request list viz.
(source, destination, size)1:Nr

2: Turn the dispatch decisions into a weighted directed graph as
follows (Line 3-14):

3: Create as many nodes as stops in the dispatch decisions, using
the stop id as the node id

4: Set the current time for each truck as 0
5: for every truck do
6: for every valid epoch do
7: Create a directed edge from current stop node

to next stop node
8: Set the departure time from current stop as the

truck’s current time
9: Acquire the ETA from current stop node to

next stop node through Google Map API
10: Record the id, departure time, ETA, and initial

capacity of the truck as the edge’s information
11: Update the truck’s current stop as next stop
12: Update the truck’s current time as ETA +

current time
13: end for
14: end for
15: for every delivery request do
16: Find all the available paths from source to

destination using DFS (depth-first search)
17: if success then
18: Choose the path that causes the least increase in

the total driving time of the fleet
19: Subtract the package size from the available capacity

of the edges it passes through
20: end if
21: end for

5 Integration with MILP
We further propose a hybrid approach that harnesses Deep-
Freight and MILP to ensure successful delivery of all pack-
ages. Specifically, experiments show that when most of the

requests have been completed and only a small number of
packages remain to be optimized, DeepFreight may have un-
stable training dynamics resulting in undelivered packages
(as evidenced in Figure 5(e)). To this end, we leverage MILP
to find the exact routing decisions for the small portion of re-
quests that are not efficiently handled by DeepFreight. This
leads to an integration of DeepFreight and MILP, denoted as
DeepFreight+MILP. The MILP’s formulation and the work-
flow of DeepFreight+MILP are presented in this section.

5.1 MILP Formulation
Parameters:
• i, j, l ∈ L = {0, 1, . . . ,m−1}: index and set of locations;
• k ∈ N = {0, 1, . . . , n− 1}: index and set of trucks;
• D: depot for each truck k, a dictionary, D(k) ∈ L;
• ti,j ∈ N: ETA from location i to location j, in seconds;
• di,j ∈ N: delivery demand from location i to location j;
• C ∈ N+: truck capacity, the same for each truck k;
• Tk ∈ N+: the time limit for truck k.
Decision Variables:
• xi,j,k ∈ {0, 1}: the variable equals 1, if truck k travels

from location i to location j, and 0 otherwise;
• uk ∈ {0, 1}: the variable equals 1, if truck k is in use, and
0 otherwise;

• ri,j,k ∈ {0, 1}: the variable equals 1, if truck k takes the
delivery demand from location i to location j, and 0 other-
wise; (Note that a truck takes the path from i to j doesn’t
mean it will take the delivery request from i to j.)

• si,k ∈ N: the cumulative stop number when truck k ar-
rives at location i;

• vi,k ∈ N: the cumulative volume when truck k departs
from location i.

Optimization Objective:
The optimal solution should minimize the objective func-

tion defined as follows, where T1 and T2 respectively repre-
sent the total time use (in hours) and the total volume of the
unserved packages, and ω1 > 0, ω2 > 0 are the weights for
each term. Based on the results of parameter-adjustment, ω1

is set as 0.5 and ω2 is set as 0.04.

target = ω1T1 + ω2T2 (6)

T1 =

m−1∑
i=0

m−1∑
j=0

[
ti,j ×

(
n−1∑
k=0

xi,j,k

)]
(7)

T2 =

m−1∑
i=0

m−1∑
j=0

[
di,j ×

n−1∏
k=0

(1− ri,j,k)

]
(8)

Constraints:
• No self-loop:

∀i ∈ L,∀k ∈ N, xi,i,k == ri,i,k == 0 (9)
• Within the time limit:

∀k ∈ N,
m−1∑
i=0

m−1∑
j=0

ti,jxi,j,k ≤ ukTk (10)



• Depart from and return to the same depot:

∀k ∈ N,
m−1∑
i=0

xi,D(k),k ==

m−1∑
i=0

xD(k),i,k == uk (11)

• Form a tour that includes the depot:

∀k ∈ N, ∀i ∈ L,
m−1∑
j=0

xj,i,k ==

m−1∑
j=0

xi,j,k ≤ uk (12)

• Eliminate any subtour:

∀k ∈ N, sD(k),k == 0 (13)

∀k ∈ N, ∀i ∈ L\{D(k)},∀j ∈ L,
si,k ≥ 1 + sj,k −m(1− xj,i,k)

(14)

∀k ∈ N, ∀i ∈ L, si,k ≥ 0 (15)

• For each request, one truck can be assigned at most:

∀i ∈ L,∀j ∈ L,
n−1∑
k=0

ri,j,k ≤ 1 (16)

• If truck k takes the demand from location i to location j,
truck k’s trajectory should include i→ j:

∀i ∈ L,∀k ∈ N, ∀j ∈ L\{D(k)},

ri,j,k ≤

(
m−1∑
l=0

xi,l,k

)(
m−1∑
l=0

xl,j,k

)
,

ri,j,k(sj,k − si,k) ≥ 0

(17)

ri,D(k),k ≤

(
m−1∑
l=0

xi,l,k

)(
m−1∑
l=0

xl,D(k),k

)
(18)

• Within the capacity limit:
∀k ∈ N, ∀i ∈ L\{D(k)},

vi,k ==

m−1∑
j=0

vj,kxj,i,k +

m−1∑
l=0

ri,l,kdi,l −
m−1∑
l=0

rl,i,kdl,i

(19)

∀k ∈ N, vD(k),k ==

m−1∑
i=0

rD(k),i,kdD(k),i (20)

∀i ∈ L,∀k ∈ N, 0 ≤ vi,k ≤ ukC (21)

Given the large number of packages, we efficiently combine
MILP with DeepFreight for a scalable solution.

5.2 The Workflow of DeepFreight+MILP
To exploit the advantages of DeepFreight and MILP, we pro-
pose an integration of the two, that is DeepFreight gives out
dispatch and assignment decisions for most of the requests,
while MILP is adopted to find the exact truck routing for the
remaining unmatched requests. The workflow is as follows:

1. Get the initial dispatch decisions and matching results us-
ing Algorithm 1;

2. Define a key parameter called efficiency, which equals
the number of packages delivered by the truck divided by
its driving time, and calculate efficiency for each truck;

3. Eliminate all the dispatch decisions of the trucks whose
efficiency is lower than a certain threshold;

4. Rematch the package list with the pruned dispatch deci-
sions, and get the unmatched package list;

5. Pick the new truck list: choose two trucks from the ini-
tial truck list for each distribution center that has un-
matched packages, based on the trucks’ priority defined
as Equation (22); (available time means the truck’s
available time for dispatch before the time limit and eta
means the ETA from the truck to the distribution center,
so the truck with a higher priority is preferred.)

priority = available time− 2 ∗ eta (22)
6. Adopt the MILP optimizer to get the routing result for

the new truck list to serve the unmatched package list.
The threshold of efficiency should be determined by the

total number of the packages and the total driving time of the
fleet that we’d like to achieve. By eliminating the inefficient
dispatch decisions, better utilization of the fleet can be real-
ized. However, note that a higher threshold means a larger
unmatched package list and the MILP optimizer may not
be able to find the optimal routing results when the pack-
age number is too large (e.g. shown as Figure 4(e)), so there
should be a tradeoff. After fine-tuning, we set the threshold
as 0.028 (≈ 40000/(20 ∗ 20 ∗ 3600)) in our experiment, that
is how much the efficiency should be if 20 trucks complete
40000 requests with an average driving time of 20 hours.

6 Evaluation and Results
In this section, we introduce the setup of the simulator
and comparisons among: DeepFreight, DeepFreight without
Multi-transfer, MILP and DeepFreight+MILP.

6.1 Simulation Setup
Ten Amazon distribution centers in the eastern U.S. are cho-
sen as the origins and destinations of delivery requests in
the simulation (shown as Figure 4 in the extended version of
our paper (Chen et al. 2021)). For each episode, Nt trucks
should complete Nr randomly generated requests within the
time limit Tmax. The generation of the request and truck list
is model-based:

As mentioned above, each delivery request can be repre-
sented as (source, destination, size). Equation (23) shows
the distribution of the requests’ sources, where popi repre-
sents the population in the vicinity of distribution center i
which is acquired through its zip code 3. After confirming
the source of a delivery request, its destination is randomly
generated according to the distribution defined as Equation
(24), where norm is the normalization coefficient. Further,
the size of each package is represented as an integer uni-
formly distributed between 1 and 30 in our simulation.

P (source = i) =
popi∑10

k=1 popk
(23)

P (destination = j|i) = norm ∗ popj√
etai,j

(24)

3 https://www.cdxtech.com/tools/demographicdata/
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Figure 4: (a)-(c): Training curves of DeepFreight with/without Multi-transfer. DeepFreight with Multi-transfer can complete
more package requests with a smaller driving time. (d): Changing curves of loss function (Equations (4)) and target joint q-value
(Equation (5)) for DeepFreight, which show its learning process. (e)-(f): Convergence curves of MILP and DeepFreight+MILP
over time. The optimization objective is defined in Equation (6)-(8). It can be observed that MILP falls into a local optimum
with poor performance, while DeepFreight+MILP can obtain a significantly improved solution within 10 minutes.

As for the truck list, we need to specify its location at
the beginning of each operation cycle. In our simulation, an
operation cycle includes 7 episodes and the time limit Tmax

for each episode is 2 days. Within an operation cycle, the
trucks’ locations at the beginning of a new episode are the
same as those at the end of the previous episode, while the
distribution of the trucks’ locations at the first episode is the
same as that of the packages’ sources (Equation (23)), which
is convenient for the fleet to pick up the packages.

Moreover, we set the truck numberNt as 20, and the max-
imum capacity for each truck as 30000. Also, with the con-
sideration that trucks should be efficiently used, the total vol-
ume of the the delivery requests should match the load ca-
pacity of the fleet, so the request number Nr is set as 40000.

6.2 Discussions and Results
Training Process of DeepFreight: The training process in-
cludes 2800 episodes, that is 400 operation cycles, and at
each episode, the networks will be trained for 100 iterations.
From the loss curve in Figure 4(d), it can be observed that
the training process starts to converge at the 1500th episode.
Further, the training effect can be seen from the increase of
the reward shown in Figure 4(a). The reward function for
evaluation is the same as that for training (Equation (3)),
which is related to the average driving time of the fleet (0-
48 hours) and the number of packages served by them (0-
40000). β1 and β2 are key parameters for defining the reward
function. Based on parameter-adjustment, we set them as:
β1 = 0.004, β2 = 0.5. The increase of the reward is mainly
due to the reduction of the number of unfinished packages,
which decreases from ˜2000 to ˜1200 and the lowest number

shown in Figure 4(b) is about 700. Also, we pick the optimal
checkpoint between the 1500th and 2000th episode for the
further experiments, as a comparison with other approaches.
The comparison is about their performance within an opera-
tion cycle which equals two weeks (defined in Section 6.1).
DeepFreight vs. DeepFreight without Multi-transfer: To
show the improvement brought by the flexibility of multi-
ple transfers, we compare our approach with a freight deliv-
ery system without multi-transfer, of which the results are
shown in Figure 4(a)-4(c). For the system without multi-
transfer, each package will be delivered to its destination by
a fixed truck, so there is an extra restriction on the truck used
when executing the matching policy (Algorithm 2). It can
be observed that after convergence, with the flexibility of
multi-transfer, the average driving time is shorter (˜2 hours
(7.5%) reduction) and the number of unfinished packages is
lower (˜1500 packages (60%) reduction), which means bet-
ter utilization of the fleet is realized. For 40000 packages,
53.3% are delivered with no transfer in the middle, 41.2%:
one hop, 5.5%: two or more hops, so the extra load/unload
effort due to multi-transfer can be overlooked.
DeepFreight vs. MILP: MILP is used as the baseline al-
gorithm, which is defined in Section 5.1 and solved through
a state-of-the-art optimization solver: Gurobi (Gurobi Opti-
mization 2020). The evaluation of MILP shows that it has
poor scalability. The fleet can carry up to 40000 packages at
the same time. Figure 5(a)-5(c) show that when the number
of packages is 30000, the MILP solver can complete all the
requests at a fairly low average driving time (12.169 hours).
However, its performance drops dramatically with growing
number of packages: both the number and the ratio of the
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Figure 5: (a)-(c): Plotting MILP’s performance for varying number of requests. It can be observed that not only the driving time
and the number of unfinished packages increase, the ratio of unfinished packages (normalized by the total package number)
also grows, demonstrating the poor scalability of MILP. (d)-(f): Comparisons of different algorithms, in terms of the reward
function, the number of unfinished packages and the fleet’s average driving time. As a comprehensive index, the reward function
we use for evaluation is the same as that for training (Equation (3)), which gives priority to the rate of delivery success.
DeepFreight+MILP performs best among these algorithms. It achieves 100% delivery success with low fuel consumption.

unfinished packages increase. Further, Figure 4(e) shows the
convergence curves of the MILP solver, when the number of
delivery requests is 40000. It can be observed that the op-
timization objective (defined as Equation (6)-(8)) converges
within 3000s and then the performance doesn’t increase any
more, which means the MILP solver cannot find a solution
for this task even if given more time. Note that the MILP
solver runs on a device with an Intel i7-10850H processor.

Next, we compare Deepfreight and MILP. First, in terms
of time complexity, Qsingle trained with DeepFreight can
be executed in a decentralized manner. When testing, it can
give out the multi-step dispatch decisions for each truck in
real time. While, when using MILP, we have to run the op-
timizer for every episode, since the problem scenario has
changed. Also, the time spent will increase with the number
of the trucks, distribution centers and packages. Second, as
for their performance, Figure 5(e) shows that DeepFreight
can complete more requests than MILP. However, its per-
formance is unstable, which is one of the characteristics of
reinforcement learning. Also, the average driving time taken
of DeepFreight is much higher than that of MILP.

Overall, as compared to MILP, DeepFreight is transfer-
able among different problem scenarios and has lower time
complexity, but the average driving time and number of un-
finished packages need to be further reduced, which moti-
vates our design of DeepFreight+MILP.
DeepFreight vs. DeepFreight+MILP: Among all the eval-
uation metrics, serving all the packages is given top priority.
As shown in Figure 5(e), DeepFreight+MILP completes all
the delivery requests of an operation cycle, eliminating the

uncertainty and instability of DeepFreight, which makes it
suitable for the industrial use. Figure 5(f) shows that Deep-
Freight+MILP has a further reduction in the average driving
time as compared with DeepFreight and with comparable
driving time as MILP, DeepFreight+MILP realizes a 100%
delivery success. Figure 4(f) shows the convergence curves
of DeepFreight+MILP when using the optimizer, and it can
be observed that we can get the routing results for the rest of
the packages within 10 minutes. That is because most of the
packages have been served by the dispatch decisions made
by DeepFreight and only 4000-5000 packages are left for
MILP to serve. Also, not all the trucks are used for dispatch
(as the new truck list defined in Section 5.2). In this case,
DeepFreight+MILP can still be adopted when the number of
packages or trucks is large, which ensures its scalability.

Overall, DeepFreight+MILP performs best among these
algorithms, because it not only has better scalability and
lower time complexity but also can ensure a 100% delivery
success with fairly low fuel consumption.

7 Conclusion
This paper proposes DeepFreight, a novel learning-based
approach for multi-transfer freight delivery. The problem
is sub-divided into truck-dispatch and package-matching,
where QMIX is used for training the dispatch policy and
DFS is used for matching in a greedy fashion. This approach
is then integrated with MILP for further optimization. Eval-
uation results show superior scalability and improved per-
formance of the combined system as compared to the MILP
solver alone and the learning-based solution alone.
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