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ABSTRACT

Detecting code clones is important for various software engineer-
ing development and debugging tasks. In particular, binary code
clone detection can have significant uses in the context of legacy
applications that are already deployed in several critical domains.

In this paper, we present an novel framework, Clone-Slicer, for
identifying domain-specific binary code clones (e.g., pointer-related
code) through program slicing. Our approach first eliminates non-
domain-related instructions through program slicing, and then
applies deep learning-based algorithm to model code samples as
numerical vectors for the remaining binary instructions. We then
use clustering algorithms to aggregate code clones, and use formal
analysis to verify validity of code clones. Our experimental results
show the Clone-Slicer can swiftly identify up tp 43.64% code clones
and cut the time-to-solution by 32.96% compared to previously
proposed code clone detectors.

CCS CONCEPTS

«» Software and its engineering — Software testing and de-
bugging; « Security and privacy — Software security engi-
neering;
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1 INTRODUCTION

Understanding software and detecting duplicate code fragments is
an important task, especially in large code bases [15, 24, 29]. De-
tecting similar code fragments, usually referred to as code clones,
can be helpful in discovering vulnerability, refactoring code and
removing unnecessary code segments. Prior approaches have been
proposed for code clone detection that take advantage of token
subsequence matching, text/tree comparison or control flow graph
analysis [6, 21, 23]. While a number of existing clone detection
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algorithms target source code [7, 25, 41], we note that legacy ap-
plications exist in several real-world domains and have been in
deployment for a number of years in production systems including
airspace, military and banking (where only binary executables are
available). Also, binary code clone detection is more difficult com-
pared to source code-level detectors that leverage rich structural
information such as syntax trees and variable names made available
through the source lines of program code.

Prior work on binary code clones have adapted source code-
based techniques and are usually oblivious to the specific domain
of applications on which clone detection is useful. For instance, Seeb-
jornsen et al [33] have proposed a code clone detection algorithm
based on characteristic vectors and normalize the assembly-level
instructions to detect more clones. Xu et al. [43] propose a graph
embedding approach using deep neural network to detect vulnera-
ble binaries that are compiled for different computer architectures
or platforms. While these prior work outline methods to detect code
clones, it is more important to tailor code clone detection based on
specific application areas to increase usefulness of detecting them.

To improve the application of detecting code clones, we introduce
domain-specific code clone detection, which can be used to detect
code clones for certain types of applications. This approach takes
advantage of the knowledge within a specific domain and tailors
code clone detection approach based on that domain. For instance,
since pointers and pointer-related operations widely exist in real-
world applications and are often behind security bugs [9, 11, 34],
detecting code clones related to pointers are of great significance for
application security. Thus, detecting pointer-related code clones is
one such domain-specific application that can significantly improve
the scalability for pointer-specific application analysis. Similarly,
tracking code that depends on external inputs is another example
of domain-specific code.

In this paper, we propose Clone-Slicer, a novel framework for
domain specific code clone detection in binaries. In particular, we
select pointer analysis (that determines pointer safety) to present
our methodology and demonstrate the soundness of our approach
in this work. We first deploy a lightweight pointer tainting method
in binary to find pointer-related instructions that can potentially
change the array boundary conditions. Then we leverage forward
program slicing and binary rewriting to remove pointer-irrelevant
instructions in order to detect pointer-related code clones. By doing
so, we are able to improve the number of code clones detected and
their time-to-solution in determining applicability on a specific
domain (removing unnecessary checking code surrounding point-
ers that are already deemed safe). We note that this enables rapid
security analysis by ignoring binary instructions that are irrelevant
to pointer-related code.
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The contributions of our paper are summarized as follows:

(1) We propose Clone-Slicer, a domain-specific binary code clone
detection framework. Given a domain of interest, Clone-Slicer au-
tomatically identifies domain-related binary instructions through
tainting frameworks, and then performs code clone detection to
enable rapid security analysis.

(2) Clone-Slicer leverages program slicing to remove domain-
irrelevant instructions to find code clones of interest within the
application domain. Clone-Slicer deploys formal analysis to per-
form a closed-loop operation and introduces a clone verification
mechanism to formally verify if identified clone samples are indeed
clones within the domain context.

(3) We implement a prototype of Clone-Slicer and evaluate pointer
analysis domain using real-world applications from SPEC2006 bench-
marks suite [1]. Our results show Clone-Slicer can swiftly identify
up tp 43.64% code clones and cut the time-to-solution for (the time
spent to formally verify the redundancy of array bound checks) by
32.96% compared to prior work [45].

The rest of this paper is structured as follows: In Section 2, we
survey related work. We illustrate the overview of Clone-Slicer
and how we design and implement our system, respectively. We
evaluate Clone-Slicer and show our experimental results in Section
4. Section 5 discusses our conclusions and future work.

2 RELATED WORK

Code clone detection. Code clone detection techniques can gen-
erally be classified into several categories. String matching-based
techniques [5, 6, 13] apply lightweight program transformations
and utilize code similarity measurement through comparing text
sequences of text. Such text-based techniques are limited in scal-
ability for large code bases and only find exact match code clone
pairs. Second, tree- or token-based clone detection [7, 26, 41] are
performed by parsing program into tokens or generate abstract syn-
tax tree (AST) representation of the source program. Consequently,
tree- or token-based approaches usually more robust against code-
specific changes. Some well-known tools in this category include
CC-Finder [23], DECKARD [21] and CP-Miner [29]. Learning based
approaches have also been developed for code similarity detection.
White et al. [42] proposed a deep neural network (DNN) based
code clone detection in source code. Komondoor et al. [25] also
make the use of program slicing and dependence analysis to find
non-contiguous code clones. But such approaches typically find
isomorphic subgraphs from program dependency graph in order to
identify code clones, for which computing such graphs is typically
more expensive. Also, the approaches mentioned above are still
demonstrated on the source code-level and not on binaries. Gem-
ini [43] use DNN to detect cross-platform code clones in binaries.
But it is limited in scope to detect clones within a single function
complied in different platforms.

Statistical method and Formal analysis. In this paper, we
make use of both machine learning and formal analysis for code
clone detection and verification. Prior work have studied bug/vul-
nerabilities using learning based approaches [20, 32]. StatSym [46]
and SARRE [28] propose frameworks combining statistical and for-
mal analysis for vulnerable path discovery. SIMBER [44] proposes
a statistical inference framework to eliminate redundant bound
checks and improve the performance of applications without sacri-
ficing security. However, SIMBER is limited in scalability and does
not use machine learning algorithms. Similarly, Clone-Hunter [45]

also takes advantage of binary code clone detection for accelerated
bound check removal. However, Clone-Hunter uses normalization
on instruction operand for vector embedding, which may omit rele-
vant information and does not use domain-specific knowledge (e.g.,
pointers) for improved clone detection. In this paper, we use deep
learning based language models for vector embedding instead.

Deep Learning and Language Modeling. The state-of-the-art
Deep Learning algorithms have been used as new approaches for
language modeling [3, 22]. Traditionally, natural language process-
ing (NLP) in particular has utilized deep learning to do software
engineering tasks such as text/code suggestions, text classifica-
tion and so on [3, 14, 19]. For instance, recurrent neural network
(RNN) is known as a capable approach for modeling sequential
information [17, 36]. Recently, such techniques has been applied on
modeling program source code fragments. White et al. [42] propose
a deep learning-based detection approach for source code clone
detection using RNN. It develops an automated framework to ex-
tract source code features at both lexical and syntax levels. To the
best of our knowledge, we are the first to demonstrate improved
code clone detection in a scalable way using deep learning and
clustering algorithms, while making sure that clones are verified
through formal analysis in the back end.

3 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present the overview and details of our sys-
tem design along with its modules, and show how our system is
implemented. The kernel of Clone-Slicer is shown in Figure 1.

For a given application binary, Clone-Slicer first employs static
binary program slicing and binary rewriting to remove pointer ir-
relevant instructions. We disassemble binary executables and work
with the resulting assembly code (Section 3.1). To detect code clones
in binaries, we leverage deep learning-based approach to gener-
ate feature vectors for each instruction sequence and embed them
into vector space (Section 3.2). After we obtain feature vectors, we
deploy clustering algorithm to form clusters and find code clone
pairs. Note that we also use different code similarity thresholds to
further increase the number of detected code clones (more details in
Section 3.3). Since we adopt sliding window-based method to gener-
ate code regions, we perform quick post-processing to consolidate
overlapping code clones.

We use binary symbolic execution to verify whether the code
clone samples are safe in terms of array bound checks. We deploy
a selective sampling method to further verify the validity of clone
detection by selecting a random subset of samples within the cluster
center and boundary regions, and perform binary symbolic execu-
tion on these samples. Section 3.4 describes our implementation in
more detail.

3.1 Domain Specific Program Slicing

In pointer analysis domain, we aim to analyze each pointer in the
program to ensure there is no issue like memory violation. Thus,
only some certain types of instructions are related to the target
pointer for further consideration, which can affect the base, off-
set or bound information of this pointer. In this paper, we use
pointer tainting analysis to find such pointer-related instructions
at a function-level granularity. Then, we deploy forward program
slicing and binary rewriting to remove pointer irrelevant instruc-
tions.
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Figure 1: The Kernel of Clone-Slicer

To address this problem, Clone-Slicer first performs tainting
analysis of the binary code and deploy program slicing in two
steps:

(1) Lightweight Pointer Tainting. To select pointer related
instructions, we utilize a lightweight pointer tainting mech-
anism. Typically, there are two types of instructions need to
be tainted: Memory load operations moving data from mem-
ory to register; Store operations moving data from register
to memory.We implemented the pointer tainting based on
previous work [10, 39, 40]. Whenever a program performs
memory operations using its data from registers and memory,
such instructions need to be tainted through propagation.
In particular, for each load instruction, the tainting is propa-
gated from memory to register along the load path. Similarly,
for each store instruction, the tainting is propagated from
writing to the memory along the store path. Whenever two
pointers are subtracted (e.g., offset computation), the result-
ing location is un-tainted. However, addition of two pointers
still results in a pointer.

Program Slicing. After we obtain all the target pointers
and their corresponding pointer-related instructions, we use
forward program slicing and binary rewriting to remove
pointer-irrelevant instructions. To build a forward slice, we
utilize control flow graph (CFG) and data dependency graph
(DDG) to understand the dependency among all the tainted
instructions. Forward slicing is then constructed starting
with tainted targets in the program, and all of the data flows
in this slice end at the target after traversing the entire CFG.
We then are able to select all pointer-related instructions. For
those instructions are pointer irrelevant, we simply rewrite
them as nop using binary rewriting tools.

@

~

To remove pointer irrelevant instructions in binary executables,
we deployed a Static Binary Rewriting tool Dyninst [37]. We in-
strumented a binary analysis framework angr [35] and develop a
python script to construct CFG and DDG in binaries.

3.2 Vector Embedding using Deep Neural
Networks
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Figure 2: An illustration of RNN. The input of each node is
a one-hot vector representing the current term in the disas-
sembly code corpus, and output is a probability distribution
predicting the next term. U, V, W are the parameters in the
network, and s; is the hidden layer state vector.

We adopt a sliding window method to select different code re-
gions for code clone analysis. The approach is implemented with
two parameters: window size and stride. Window size defines the
maximum length of code regions for consideration, while stride
denotes the smallest increment of starting instruction address for
subsequent sliding windows. Since we rewrite non-pointer related
instructions as nop. We skip such nop instructions while we gener-
ate code regions and only count pointer related sliced instructions
in the code regions.

Next, we leverage Deep Neural Network (DNN) to propose a so-
lution to enable automated vector embedding. First, to obtain vector
embedding for a given code region (that consists of an instruction
sequence), we use Recursive Neural Network (RNN) to map each
term in the binary instructions (e.g., opcodes and operands) to a
vector embedding at lexical level, resulting in a signature vector
for the code region.

Embedding binary code at lexical level. Consider a disas-
sembly code corpus from a target program, with m distinct terms
(e.g., different opcodes and operands) across the whole corpus. We
use a RNN with n hidden nodes to convert each term in the code
corpus into an embedding vector U € R™ ™ RNN is known as an
effective approach for modeling sequential information, such as
sentences in texts or program code. Figure 2 presents the training
process of our RNN model for binary code. The input x; € R™*" at
time step ¢ is a one-hot vector representation [38] corresponding to
the current term, e.g., ‘exa’. The hidden layer state vector, s; € R",
stores the current state of the network at step ¢ and captures the
information that has already been calculated. Specifically, it can be
obtained using the previous hidden state s;_; at time step t — 1 and
the current input x; at time step ¢:

st = f(Uxy + Wsp—1) o))



Function f is a nonlinear function, e.g., tanh.U € R™™ and W €
R™" are the shared parameters in all time steps.

The output, O; € R™, is a vector of probabilities predicting the
distribution of the next term in the code corpus [18]. It is calculated
based on current state vector along with another shared parameter
V e R™X je., :

O; = softmax(Vs;) (2)

The parameters {U, V, W} are trained using back propagation
through time (BPTT) method in our RNN network [8]. Once RNN
training is complete, each term in the code corpus will have an
unique embedding U from Equation (1), which comprises its se-
mantic representation cross the corpus [4]. We compute such em-
beddings U to represent the terms of binary instructions at lexical
level.

Generating signature at syntax level. We use Autoencoder
to combine embeddings U € R™™ of the terms from multiple in-
structions and to obtain a signature vector for a given code region.
Autoencoder is widely used to generate vector space representa-
tions for a pairwise composed terms with two phases: encode phase
and decode phase. It is a simple neural network with one input
layer, one hidden layer and one output layer. As shown in Figure 3,
we apply Autoencoder recursively to a sequence of terms, which is
known as the Recursive Autoencoder (RAE). Let x1, x2 € R™"™ be
the vector embeddings of two different terms, computed using RNN.
During encode phase, the composed vector embeddings Z(x1, x3)
is calculated by:

Z(x1,x2) = f(Wi[x1; x2] + b1), (3

where [x1;x2] € R®™™ is the concatenation of x; and xz, W; €
RAMX2nM jg the parameter matrix in encode phase, and b € R™"™ is
the offset. Similar to RNN, f again is a nonlinear function, e.g., tanh.
In decode phase, we need to assess if Z(x1, x2) is well learned by
the network to represent the composed terms. Thus, we reconstruct
the the term embeddings by:

Olx1;x2] = g(Wa[x1; x2] + b2), 4

where O[x1; x2] is the reconstructed term embeddings , W,
is the parameter matrix for decode phase, and by € R™™*! is the
offset for decode phase and the function g is another nonlinear
function. For training purpose, the reconstruction error is used
to measure how well we learned term vector embeddings. Let
0 = {Wy; Wa; by; bo}. We use the Euclidean distance between the
inputs and reconstructed inputs to measure reconstruction error,
ie,

E([x13%21;:0) = ||[x1; x2] = Olxr; x2]1 12 (5

For a given code region with multiple terms and instructions,
we adopt a greedy method [42] to train our RAE and recursively
combine pairwise vector embeddings. The greedy method uses
a hierarchical approach - it first combines vector embeddings of
adjacent terms in each instructions, and then combines the results
from a sequence of instructions in an execution path. Figure 3
shows an example of how to combine the vector embeddings to
generate a signature vector. It shows a (binary) execution path
with a sequence of 8 instructions. The greedy method is illustrated
as a binary tree. Node 1 gives the vector embedding for the first
instruction Inst; = (push %rbp) encoded from terms [push; %rbp)].
Then, we continue to process the remaining instructions, e.g., Nodes
2 and 3, until we derive the final vector embedding (i.e., the signature
vector) for the instruction sequences of the given execution path.
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Figure 3: RAE combines embeddings from different terms
and instructions through a Greedy method.

We used IDA Pro [2] for disassembly and implemented RNN and
RAE in python based on the framework proposed in [27]. For RNN,
we develop a python script to tokenize the disassembly code and
use the RNNLM Toolkit [30] to train RNN for each program, with
the hidden layer size equal to 500.

3.3 Clustering for Code Clone Detection

3.3.1 Definitions. We first formally give the definition of code
similarity used in our code clone detection module.

Definition 3.1. Code Similarity. Given two Abstract Syntax
Trees (AST) Ty and Ty, which are representing two code fragments,
the code similarity S between them is defined as following:

28
P (6)
2S+L+R

where S is the number of shared nodes in Ty and T, L and R are
the different nodes in terms of the node types and number of nodes
in Ty and T, respectively.

STy, Tp) =

3.3.2  Clone Detection. Given a group of feature vectors, we utilize
Locality Sensitive Hashing (LSH) [12] and near-neighbor querying
algorithm based on the euclidean distance between two vectors to
cluster a vector group, where LSH can hash two similar vectors to
the same hash value and helps near-neighbor querying algorithm
to form clusters [16, 21]. Suppose two feature vectors V; and V;
representing two code fragments C; and C; respectively. The code
size (the total number of AST nodes) are denoted as S(C;) and S(Cj).
The euclidean distance E([V;; V;]) and hamming distance H([V;; V;])
between V; and V; are calculated as following:

E([Vi; Vj]) = [IVi - VI3 )

H([Vi; VD) = [IVi = Vjlh ®)

The threshold used for clustering can be approximated using
the euclidean distance and hamming distance between two feature
vectors for two ASTs T1 and T as following:

E(IVis Vi) 2 \JH([Vis Vj]) = VL + R ©)

Based on the definition from Equation 3.1, we can derive that

VL+R= \/2(1 = 8) X (|T1] + |T2]), where (|T1|+|T2|) = 2xmin(S(C;), S(Cj)).



Then, the threshold for the clustering procedure is defined as:

T = \/2(1 — 8) x min(S(C1), S(C})) (10)

Then, given a feature vector group V, the threshold can be sim-
plified as 2(1 — S) X minyey € S(v), where we use vector sizes to
approximate tree sizes. The S is the code similarity metric defined
from Equation 3.1. Thus, code fragments C; and C; will be clus-
tered together as code clones under a given code similarity S if
E(VisVj) < T.

3.3.3  Post-Processing. As described in previous section, we deploy
a sliding window approach to generate code fragments for code
clone detection. We note that this method can potentially create
duplicated or overlapping code clones. To address this problem, we
further eliminate such code clones and only preserve the largest
code clones by computing the union of overlapping code clones.
Assuming a code clone sample is denoted as (c1, c2) , where ¢; is
the starting instruction address of the code and c; is the ending
instruction address in the code fragment. Give two code clone
samples (c1, c2) and (cy, ¢;), we only keep clone sample (cy, cz) iff
¢; = ¢ and ¢j < cz. On the other hand, we do not consolidate
two code clone samples if (c1, c2) N (c], ;) # (c1,c2)or(cy, ¢5). This
post-processing procedure is performed until all consolidated code
clones are non-overlapping.

We implemented our clustering system with python and provide
as a user-friendly interface in Linux command line, which can
provide the options of code similarity S for users.

3.4 Binary Symbolic Execution for Verification

Clone-Slicer makes use of clustering algorithms to identify binary
code clones. In prior work Clone-Hunter [45] , it uses binary code
clone detection to assist removal of redundant array bound checks.
Clone-Slicer can be further applied to the same task to remove
redundant bound checks. Similarly, we utilize binary symbolic ex-
ecution to formally verify if the code clone samples are memory
safe in the same cluster.

There are two major steps for this verification process in Clone-
Slicer:

(1) Selection of samples for analysis: First, we pick a ran-

dom code clone sample from each cluster center as seed code
sample. We determine the pointer dereference is safe, and
that no memory violation can exist. We deploy partial bi-
nary symbolic execution to execute the seed code sample,
which we perform symbolic execution starting from begin-
ning to end of the seed code sample based on its instruction
addresses. We check whether the code samples contain mem-
ory violation (e.g. buffer overflow) based on the output from
symbolic execution.
Note that this identification process can be further applied to
the task like redundant bound checks removal. If the point-
ers in seed code sample turn out to be safe, then array bound
checks may be safely removed. To the contrary, the bound
checks cannot be removed if the output from symbolic execu-
tion says that there are memory violation in the correspond-
ing code snippet. We further conduct a case study applying
the kernel of Clone-Slicer to redundant bound check removal
to show the applications of Clone-Slicer(Section 4.4)

(2) Verification of memory safety: Since machine learning
based clustering algorithm cannot offer any guarantees in

terms of ensuring memory safety from all detected code
clones. It is possible the code clone samples have different
memory safety conditions in the same cluster. To address
such issue, Clone-Slicer further executes a verification pro-
cess. We select a random set of code clone samples from the
cluster boundary within the same cluster and perform the
same partial binary symbolic execution to check whether the
memory safety conditions on these code clones are indeed
similar. If the random code clones samples also turn out to
be safe just as the seed code sample does, then we assume all
the code clone samples are safe in the corresponding cluster.

We instrumented a binary analysis framework angr [35] for our
verification module. We take advantage of the binary symbolic
executor in angr to perform partial symbolic execution, which is
beginning with the starting address and execute instructions within
the specific code region to the end.

4 EVALUATION

In this section, we provide an overview of our experimental setup.
We later present our evaluation results in terms of the effective-
ness of code clone detection using our approach and the over-
head of binary symbolic execution comparing to prior work, Clone-
Hunter [45].

4.1 Experiment Setup

We performed empirical experiments on Clone-Slicer. All experi-
ments are performed on a 2.54 GHz Intel Xeon(R) CPU E5540 8-core
server with 12 GByte of main memory. The operating system is
Ubuntu 14.04 LTS. We selected 4 different real-world applications:
hmmer, sphinx3, bzip2 and Ibm from SPEC2006 benchmark suite [1].

4.2 Code Clone Detection

We measured the number of code clones that are detected from
Clone-Slicer using domain-specific knowledge (pointer safety, in
our case). We conduct experiments in terms of the following: code
clones quantity and the effect of relaxing the code similarity metric.
We use the binary code clone detection algorithm proposed in
Clone-Hunter as our baseline. For a fair comparison, we choose
the same configuration to generate code regions with maximum
sliding window size equals to 100 instructions (minimum window
size = 2 instructions) and stride value of 4.

Table 2 shows the experiment results for each benchmark, the
number of code clone detected using Clone-Hunter and Clone-
Slicer, with code similarity thresholds equal to 1.00 and 0.90. First,
we are able to increase the number of code clone detection while
we relax the code similarity. Second, as we can say, Clone-Slicer
is able to detect more code clones than Clone-Hunter among all
the benchmarks, with the highest up to 43.64% improvement than
Clone-Hunter.

4.3 Overhead of Binary Symbolic Execution

We evaluated the overhead of binary symbolic executors to check
for pointer memory safety using Clone-Slicer, and compared the
execution time with Pure Symbolic Execution on function-level (per-
forming partial symbolic execution on each function as function-
level overhead) and Clone-Hunter. Similarly, our baseline is the
binary analysis framework angr [35].

For a fair comparison, we set up the same threshold for number
of code samples used for verification as mentioned in Clone-Hunter,



Table 1: Comparison of execution time spent in Pure Symbolic Execution, Clone-Hunter and Clone-Slicer

Program Size | Pure Symbolic Execution Time Clone-Hunter assisted Clone-Slicer assisted . .
Benchmark . . . . A . . %Improvement of time-to-solution
(Byte) Function-Level (sec) Symbolic Execution time (sec) | Symbolic Execution time (sec)
bzip2 305K 383.4 154.0 103.2 32.96%
Ibm 55K 1584.4 387.9 308.5 20.45%
hmmer 974K 6733.3 957.4 710.7 25.76%
sphinx3 1.3M 14010.0 6144.3 5202.2 15.33%

Table 2: Comparison of number of code clones detected by
Clone-Slicer and Clone-Hunter

#Code Clones
Benchmark - %Improvement
Clone-Hunter | Clone-Slicer
bzip2 27 37 37.04%
Ibm 10 14 40.00%
hmmer 261 352 34.44%
sphinx3 1,488 1,815 21.98%

Code Similarity Threshold, S = 1.00

#Code Clones
Benchmark - %Improvement
Clone-Hunter | Clone-Slicer
bzip2 55 79 43.64%
Ibm 32 40 25.00%
hmmer 587 769 31.10%
sphinx3 1,988 2,417 21.58%

Code Similarity Threshold, S = 0.90

with a lower bound as 2 code clone samples (since the smallest clus-
ter only contains two code clone samples) and 30% sampling rate for
larger cluster as upper bound to randomly select code clone samples
described in Section 3.4. Table 1 presents the runtime overhead due
to pure symbolic execution on function-level, Clone-Hunter and
Clone-Slicer. We observe that Clone-Slicer is able to improve the
time-to-solution (the time spent to verify pointer memory safety)
comparing to Clone-Hunter among all the testing benchmarks, with
the highest up to 32.96% improvement of time-to-solution in bzip2.

4.4 Case Study: Removing Redundant Array

Code Clones ||

Bound Checks

Binaries
Instrumented with
Bound Checks

Bound Check Removal Optimized Binaries

Clone-Slicer

Figure 4: Application of Clone-Slicer kernel to remove re-
dundant bound checks

As mentioned in previous sections, Clone-Slicer proposes a mem-
ory safety verification mechanism after detecting code clones which
can be further used in different engineering tasks. Here, we applied
the kernel of Clone-Slicer for redundant bound checks removal task.
We selected two representative benchmarks: bzip2 and sphinx3 to
present the results. Figure 4 shows the process of redundant bound
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Figure 5: Runtime overhead of softbound-instrumented

applications and Clone-Slicer. The baseline is non-

instrumented applications.

checks removal. We use Clone-Slicer on the top of binaries instru-
mented with bound checks and identify code clones with code
similarity equaling to 0.90. Clone-Slicer is able to automatically
verify whether bound checks are redundant in the code clones (if
binary symbolic execution raises no memory violation). Afterwards,
we deploy a static binary rewriter Dyninst [37] to remove bound
checks in binaries.

To evaluate the performance of Clone-Slicer, we employ a run-
time bound checker tool: Softbound [31] to insert bound checks
in the benchmarks. Figure 5 shows the comparison of Softbound’s
runtime execution overhead before and after using Clone-Slicer.
Our results show that Clone-Sliceris able to significantly reduce
the runtime overheads caused by redundant array bound checks in
both bzip2 and sphinx3. Clone-Slicer achieves the highest overhead
reduction up to 42.25% in sphinx3.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel framework, Clone-Slicer, a
domain-specific code clone detector for binary executables, that
integrates program slicing and a deep learning based binary code
clone modeling framework to improve the number of code clone
detected. In particular, we chose pointer analysis for memory safety
as our example domain to demonstrate the usefulness of our ap-
proach. We evaluated our approach using real-world applications
from SPEC 2006 benchmark suite. Our results show Clone-Slicer is
able to detect up to 43.64% code clones compared to prior work and
further cut the time-to-solution (the time spent to verify memory
bound safety) for Clone-Slicer by 32.96% compared to Clone-Hunter.

As future work, we plan to apply Clone-Slicer to different do-
mains and tasks, such as vulnerable program path discovery, and
further improve the capability for code clone detection through



advanced clustering algorithms. We will also study the cost-benefit
tradeoffs of using such advanced algorithms.
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