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Abstract—This paper considers deadline dependent pricing
and its impact to datacenter net profit optimization. We formulate
the problem by jointly maximizing total revenue as a function of
individual job deadlines and minimizing electricity cost through
job scheduling over different time and locations. These two
complementary objectives—the maximization of revenue and
the minimization of cost—are mutually-dependent due to the
coupling of job completion time and scheduling decisions. Lever-
aging a new approximation method for job completion time,
we develop two low-complexity, distributed algorithms for the
net profit optimization. Through numerical evaluations, we show
the efficacy of the proposed algorithms as well as the net profit
improvements.

I. INTRODUCTION

Large investments have been made in recent years in data
centers and cloud computing. A survey by KPMG Interna-
tional [1] in February 2012 shows that over 50% of senior
executives find the most important impact of cloud computing
to their business models to be its cost benefits. Accordingly,
much research has been focused on demystifying various
economic issues in data center and cloud computing.

Due to the fast growing power consumption of data centers,
reducing the total electricity cost and therefore maximizing
data center net profit is becoming ever more urgent and
important. In contrast to the adoption of low power devices
and energy saving solutions in [2], [3], a cost-optimization
approach in [4], [5] exploits the diversities of electricity
prices over time and geographic regions. In particular, a load-
balancing algorithm is proposed in [5] to coordinate cloud
computing workload with electricity prices at distributed data
centers, in order to achieve the goal of minimizing the total
electricity cost while guaranteeing the average service delay
experienced by all jobs.

However, achieving an average service delay is unsatis-
factory to cloud users, not only because they may have
heterogeneous job requirements and spending budgets, but also
due to a fundamental limitation of the average delay approach
- individual job completion times are still randomly scattered
over a wide range of values. Delayed response may frustrate
users, and consequently, result in revenue loss. Therefore,
the ability to deliver according to pre-defined Service Level
Agreements (SLAs) increasingly becomes a competitive re-
quirement [6], [7]. Cloud providers and users can negotiate
SLAs (e.g., individual job deadlines) to determine costs and
penalties based on the desired performance and budget. This
presents an opportunity to offer deadline dependent pricing,
which generates an additional source of revenue for cloud
providers. It immediately raises the following question: How to

jointly optimize both electricity cost of distributed data centers
and total revenue from deadline dependent pricing, in order to
maximize the net profit cloud providers receive?

In this paper, we systematically study the problem of data
center net profit optimization, which aims to maximize the dif-
ferent between total revenue from deadline dependent pricing
and electricity cost of distributed data centers. Time-dependent
pricing, which charges users based on not only how much
resources are consumed, but also when they are consumed,
has been widely studied in the electricity industry [8], [9],
[10], [11] and the Internet Service Provider (ISP) industry
[12], [13], [14] as an effective solution to even out resource
consumption peaks and reduce operating costs. However our
problem is largely different because the prices are determined
by job deadlines (i.e., completion times), whereas job duration
or progress are irrelevant.

Our goal is to maximize the data center net profit through
job scheduling. It requires (1) to maximize the total revenue
as a function of individual job completion deadlines, (2) to
minimize the electricity cost by scheduling jobs to different
time and locations, and (3) to satisfy a capacity constraint
at each distributed data center. We formulate this problem as
a constrained optimization, whose solutions characterizes an
interesting tradeoff between delay and cost - while completing
a job earlier generates a higher revenue, it restricts the set
of feasible scheduling decisions, causing higher electricity
cost. While being a complex, mixed-integer optimization due
to the scheduling formulation, the net profit optimization
problem remains to be hard due to the coupling of scheduling
decisions and job completion deadlines. There is no closed-
form, differentiable function that computes job completion
deadlines by scheduling decisions, which is often necessary
if standard optimization techniques are to be applied.

Toward this end, we propose a new approximation method
for job completion deadlines. Quantifying its gap in closed-
form, we then leverage the approximation and the primal-
dual decomposition [20] to design two efficient, distributed
algorithmic solutions for the net profit optimization. Through
numerical evaluations, we show the efficacy of the proposed
algorithms as well as the total electricity cost reduction. Due
to space limitations, all proofs are omitted in this paper and
can be obtained in our online technical report in [21].

II. SYSTEM MODEL

In this section, we give the detailed modeling of the
net profit optimization with deadline-dependent pricing over
multiple regional data centers. We will first introduce the



deadline dependent pricing mechanism and derive the total
revenue, electricity cost, and workload constraints. Then we
formulate the net profit optimization as a constrained integer
maximization problem. The main notations are summarized in
Table I as follows.

Symbol Meaning

N Number of distributed data centers, indexed by j

T Number of periods, indexed by t

K Number for jobs, indexed by i

Ui(t) Payment for completing job i at time t

ηi, ri Subscription time and demanded VM number of job i

mj(t) Number of active servers at data center j

Mj Available servers at data center j

cj Electricity consumption per server over one period

µj Number of VMs rate per server

Pj(t) Electricity price for data center j at time t

xi,j(t) Number of VMs data center j assigns to job i at time t

di Scheduled completion time of Job i

X (di) The set of all feasible job scheduling decisions

TABLE I
MAIN NOTATIONS.

A. Deadline Dependent Pricing
Deadline dependent pricing charges users based on not only

how much resources are consumed, but also when they are
consumed. Suppose that a cloud computing service consists of
a set of N distributed data centers, and that its billing cycle
is divided into T periods. Let K be the total number of jobs
submitted for the next cycle. To enable deadline-dependent
SLA and pricing, each user request i not only contains the
number of demanded VM instances (i.e., ri) and the total
subscription time (i.e., ηi), but is also associated with a bid
function Ui(t), which measures the payment user i is willing
to make if his job is accepted and scheduled to complete by
period t. For example, a bid function is flat when a user
is indifferent to job deadlines, whereas it becomes strictly
decreasing when a user is willing to pay more to get his job
completed early.

All user requests for the next cycle are collectively handled
by a job scheduler, which decides the location and time for
each job to be processed in a judiciary manner. This scheme
can be viewed as an generalization of existing on-spot VM
instances in Amazon EC2, which allows users to bid for
multiple periods and different job deadlines (or job completion
times). The system model is illustrated in Fig. 1. Let di denote
the scheduled completion time of job i, the total revenue
received by the cloud provider over the next cycle is given
as:

Utotal =

K∑
i=1

Ui(di) (1)

Fig. 1. An illustration of our system model. 4 jobs with different parameters
are submitted to a front-end server, where a job scheduler decides the location
and time for each job to be processed, by maximizing the net profit a data
center operator receives.

B. Electricity Cost

In the electricity market of North American, Regional
Transmission Organization (RTO) is responsible for transmit
electricity over large interstate areas and electricity prices are
regionally different. Electricity prices remain the same for a
relatively long period in some regions, while they may change
every hour, even 15 Minutes in the regions who have wholesale
electricity markets [5], [8], [9]. In this paper, we consider
cloud computing services consisting of distributed regional
data centers, which are subject to different electricity prices.

We make the assumption that the servers at each data center
are homogeneous, so that the total electricity consumption at
each data center j over period t can be calculated directly by
multiplying the number of active servers mj(t) and the elec-
tricity consumption per server cj . Let Pj(t) be the electricity
price of data center j at time t. We also assume that Pj(t) for
t = 1, . . . , T is known non-causally at the beginning of each
billing cycle. In practice, this can be achieved by stochastic
modeling of electricity prices [15], [16] or by purchasing
forward electricity contracts in the whole sale market [17],
[22]. Thus, the total electricity cost for N data centers over
the next cycle is given as:

Ctotal =

N∑
j=1

T∑
t=1

mj(t)cjPj(t) (2)

C. Workload Constraints

We denote the number of VM instances received by job i
from data center j at period t as xi,j(t). We consider two types
of jobs: divisible jobs and indivisible jobs. An indivisible job
that requires ri VM instances and a subscription time ηi cannot
be interrupted and must have ri VM running continuously for
ηi periods, whereas a divisible job can be partitioned arbitrarily
into any number of portions, as long as the total VM instance-
hour is equal to the demand riηi. Each portion of a divisible
job can ran independently from other portions. Examples
of applications that satisfy this divisibility property include
image processing, database search, Monte Carlo simulations,
computational fluid dynamics, and matrix computations [18].

Given the scheduling decisions xi,j(t) of all jobs, the
aggregate workload for each regional data center must satisfy



a service rate constraint:
K∑
i=1

xi,j(t) ≤ µjmj(t), ∀j, t (3)

where µj is the service rate per server at regional data center
j, and mj(t) is the number of active server at time t. There
is also a limitation on the number of servers at each location.
Therefore, we have

mj(t) ≤Mj , ∀t (4)

D. Net Profit Maximization

The goal of this paper is to design a job scheduler that max-
imizes the net profit Utotal − Ctotal over feasible scheduling
decisions xi,j(t), subject to the workload constraints. For a
given job completion time di, we denote the set of all feasible
job scheduling decisions by a set X (di). In particular, for
a divisible job, a user is only concerned with the total VM
instance-hour received before time di. This implies

X (di) =

xi,j(t) :
N∑
j=1

di∑
t=1

xi,j(t) = riηi

 (5)

where riηi is the total demand of job i. On the other hand,
an indivisible job must be assigned to a single regional data
center and run continuously before completion. It will have a
feasible scheduling set as

X (di) =
{
xi,j(t) : xi,j(t) = 0 or ri · 1(di−ηi≤t≤di)

}
(6)

where 1(di−ηi≤t≤di) is an indicator function and equals to 1 if
t is belongs to the scheduled execution interval [di−ηi, di], and
0 otherwise. We suppress the positivity constraints of xi,j(t)
for simplicity of expressions.

We formulate the data center Net Profit Optimization (NPO)
problem as follows:

Problem NPO :

maximize

K∑
i=1

Ui(di)−
N∑
j=1

T∑
t=1

mj(t)cjPj(t) (7)

subject to

K∑
i=1

xi,j(t) ≤ µjmj(t),∀j, t (8)

mj(t) ≤Mj , ∀j (9)
{xi,j(t)} ∈ X (di),∀i (10)

variables di, xi,j(t),mj(t) (11)

The above problem can be looked at graphically as illustrated
in Fig. 1. It requires a joint optimization of revenue and
electricity cost, which is a mixed-integer optimization since the
scheduling decisions xi,j(t) are discrete for indivisible jobs.
Further, due to our deadline dependent pricing mechanism,
the maximization of revenue over completion time di is
coupled with the minimization of electricity cost over feasible
scheduling decisions X (di). However, there is no closed-form,
differentiable function that represents di by X (di). Therefore,
off-the-shelf optimization algorithms cannot be directly ap-
plied.

It is worth noticing that our formulation of Problem NPO
in (7) also incorporates sharp job deadlines. For instance, if
job i must be completed before time t∗, we can impose a
utility function with Ui(t) = −∞, for all t > t∗, so that
scheduling decisions with a completion time later than t∗

become infeasible in Problem NPO.

III. APPROXIMATION OF JOB COMPLETION TIME

Problem NPO is a complex joint optimization over both
revenue and electricity cost, whose optimization variables,
scheduling decisions {xi,j(t)} ∈ X (di) and job completion
time di, are not independent of each other. There is no closed-
form, differentiable function that relates the two optimization
variables. Let xi(t) =

∑
j xi,j(t) be the aggregate service

rate received by job i at time t. For given scheduling decisions
xi,j(t), we could have replaced constraint (10) by a supremum:

di = sup
τ

{
τ :

τ∑
t=1

xi(t) < riηi

}
. (12)

where riηi is the total demand of job i. However, it still
requires evaluating supremum and inequalities, and therefore
does not yield a differentiable function to represent di by
scheduling decisions {xi,j(t)}.

In this section, we propose an approximation of the job
completion time function in (12) by a differentiable function
as follows:

d̂i =
1

β
· log

(
1

riηi

T∑
t=1

eβt · xi(t)

)
, (13)

where β is a positive constant, and 1/(riηi) normalizes the
service rate xi(t). The accuracy of this approximation is given
as follows.

Theorem 1: For a positive constant β and a bounded service
rate 0 ≤ xi(t) ≤ xmax, we have

riηi ·
[
1− log(1 + β/xmax)

β/xmax

]
≤

d̂i∑
t=1

xi(t) ≤ riηi. (14)

Hence, limβ→∞ d̂i = di, i.e., the approximation in (13)
becomes exact.

Proof: It is easy to verify that d̂i defined in (13) is the ge-
ometric mean of time t with normalized weights xi(t)/(riηi).
Therefore, d̂i is no more than the maximum t that is associated
with a positive weight. This implies d̂i ≤ di, which proves the
last inequality.

To prove the first inequality, we consider F =∑T
t=d̂i+1 xi(t), that is the cumulative mass of xi(t) after d̂i.



From (12), we have

eβd̂i =
1

riηi

T∑
t=1

eβt · xi(t)

≥ 1

riηi

T∑
t=d̂i+1

eβt · xi(t)

≥ 1

riηi

T∑
t=d̂i+1

eβt · fmax · 1(d̂i+1≤t≤d̂i+F/fmax)

=
1

riηi

F/fmax∑
t=1

eβ(t+d̂i) · fmax

=
fmax

riηi
eβd̂i

[
eβ(F/fmax+1) − eβ

]
/(eβ − 1)

≥ fmax

riηi
eβd̂i

[
eβF/fmax − 1

]
(15)

Here the second step uses positivity of xi(t), and the fourth
step absorbs the indicator function into the summation. The
third step bounds the weighted sum of xi(t) by that of another
distribution xmax1(d̂i+1≤t≤d̂i+F/xmax)

, which has the same
cumulative mass F over [d̂i+1, T ], and is construct by skewing
distribution xi(t) to d̂i as much as possible. It provides a lower
bound because eβt, for β > 0, is monotonically increasing
over t ≥ d̂i.

Finally, we take β → ∞ in (14) and make use of
xmax log(1 + β/xmax)/β → 0, which implies d̂i → di
according to the definition in (12). This means that the
approximation in (13) becomes exact.

Remark: By the approximation in (13) , we obtain a closed-
form, differentiable expression for d̂i, which guarantees an
approximated completion of job i, off by a logarithmic term
xmax log(1 + β/xmax)/β in the worst case. The approxima-
tion becomes exact as β approaches infinity. However, often
there are practical constraints or overhead concerns on using
large β. We choose an appropriate β such that the resulting
optimality gap is sufficiently small.

IV. ALGORITHMIC SOLUTION FOR DIVISIBLE JOBS

In this section, we present a solution method for Problem
NPO with divisible jobs, which have a feasible set:

X (di) =

xi,j(t) :
N∑
j=1

di∑
t=1

xi,j(t) = riηi

 (16)

In order to solve the problem, we leverage the approximation
of job completion time in Section III to obtain an approximated
version of Problem NPO. The resulting problem has a easy-to-
handle analytical structure, and is convex for certain choices
of Ui functions. Further, when the problem is non-convex,
we then convert it into a sequence of linear programming and
solve it using an efficient algorithm. It provides useful insights
for solving Problem NPO with indivisible jobs.

Rewriting (10) in Problem NPO using the approximation in
(13) and the feasible set in (15), we obtain a net profit opti-
mization problem for divisible jobs (named Problem NPOD)

as follows:

Problem NPOD :

maximize

K∑
i=1

Ui(d̂i)−
N∑
j=1

T∑
t=1

mj(t)cjPj(t) (17)

subject to

K∑
i=1

xi,j(t) ≤ µjmj(t),∀j, t (18)

mj(t) ≤Mj , ∀j (19)

d̂i =
1

β
log

 1

riηi

T∑
t=1

N∑
j=1

eβtxi,j(t)

(20)

N∑
j=1

T∑
t=1

xi,j(t) = riηi (21)

variables d̂i, xi,j(t),mj(t) (22)

where completion time becomes a differentiable function of
xi,j(t). The optimization variables in Problem NPOD may
still be integer variables, i.e., the number of active servers
mj(t) and the number of demanded VM instances xi,j(t). We
can leverage rounding techniques (e.g., [19]) to relax Problem
NPOD so that its optimization variables become continuous.

Since our goal is to maximize the net profit, we need to
balance deadline-dependent revenue and electricity cost in
Problem NPOD. Since inequality constraints in (17, 18, 20)
are linear, we investigate the convexity of the optimization
objective in (16), which is a function of xi,j(t) and mj(t), by
plugging in the equality constraint (19).

Proposition 1: For d̂i in (19) and a positive, differentiable
Ui(·), the objective function of Problem NPOD is convex if
U ′′(y) ≥ βU ′(y) for all y > 0, and concave if U ′′(y) ≤
βU ′(y) for all y > 0.

The two conditions of Ui(·) in Proposition 1 captures a wide
range of functions in practice. Let a > 0 and b be arbitrary
constants. Examples of Ui(·) that result in a concave objective
function include certain exponential and logarithmic functions.
Examples that result in a convex objective function include
linear Ui(y) = b − ax and logarithm Ui(y) = a − b log(y).
We remark that when U ′′(y) ≤ βU ′(y) for all y > 0, Problem
NPOD is a concave maximization. It can be solved efficiently
by off-the-shelf convex optimization algorithms, e.g., primal-
dual algorithm and interior point algorithm [20].

Next, we develop an iterative algorithm to solve Problem
NPOD when it maximizes a convex objective function. We
show that the problem can be converted into a sequence of
linear programming. We then leverage a primal-dual algorithm
to obtain a distributed solution to each linear programming.

Let x(k−1)i,j (t) be a set of given scheduling decisions, and

d̂i
(k−1)

be the corresponding completion time approximation
using (13). We linearize revenue Ui(d̂i) by its first order Taylor
expansion:

Ui(d̂i
(k−1)

) +
U ′i(d̂i

(k−1)
)

riηiβeβd̂i
(k−1)

N∑
j=1

T∑
t=1

eβt
[
xi,j(t)− x(k−1)i,j (t)

]



Plugging this approximation into the objective function of
Problem NPOD in (16), it reduces to the following linear
programing:

maximize
∑
i,j,t

U ′i(d̂i
(k−1)

)

riηiβeβd̂i
(k−1)

eβtxi,j(t)−mj(t)cjPj(t)

subject to (17), (18), (20)

variables xi,j(t),mj(t)

where additive terms that only depend on x
(k−1)
i,j (t) are

dropped, since they have no effect in the optimization over
xi,j(t),mj(t).

Relying on this linearization, we propose the following iter-
ative algorithm to solve Problem NPOD by solving a sequence
of linear programming. It starts at some random initial point
x
(0)
i,j (t), solves the linear programming with x

(k−1)
i,j (t), and

therefore generates a sequence {x(k)i,j (t)}∞k=0. This procedure
is indeed a special case of the difference of convex program-
ming, has been extensively used in solving many non-convex
programs of similar forms in machine learning [23]. It is
shown that the sequence {x(k)i,j (t)}∞k=0 converges to a local
minimum or a saddle of Problem NPOD, as in Theorem 2.
We further apply a primal-dual algorithm in [20] to obtain a
distributed solution to each linear programming. The algorithm
is summarized in Fig. 2.

Theorem 2: (Difference of convex programming) The se-
quence {x(k)i,j (t)}∞k=0 generated by our proposed interative
algorithm satisfies the monotonic ascent property, i.e.,

U
(k)
total − C

k
total ≥ U

(k−1)
total − C

k−1
total, ∀k. (23)

which insures the convergence to a local minimum or a saddle
of Problem NPOD.

V. ALGORITHMIC SOLUTION FOR INDIVISIBLE JOBS

The Problem NPO with indivisible jobs is a mixed-integer
optimization because its feasible set is discrete, i.e.,

X (di) =
{
xi,j(t) : xi,j(t) = 0 or ri · 1(di−ηi≤t≤di)

}
, (24)

which implies that the job requires ri VM to run continuously
for ηi periods and cannot be interrupted. Although we can use
the technique in Section III to approximate job completion
time, Problem NPO with indivisible job and a feasible set in
(23) could still be very challenging to solve. In practice, it is
often acceptable to solve the problem sub-optimally , but in a
distributed manner. In the following, we leverage the insights
obtained from solving Problem NPOD and the primal-dual
algorithm in [20] to derive a heuristic, distributed algorithm
for Problem NPO with indivisible jobs.

We first notice that for indivisible jobs, completion time di
can also be obtained by approximating the scheduled starting
time of job i, plus its subscription time ηi, i.e.,

d̂i = −
1

β
· log

 1

riηi

T∑
t=1

n∑
j=1

e−βt · xi,j(t)

+ ηi, (25)

where a negative exponent −β places higher weights at smaller
t. Using Theorem 1, we can show that limβ→∞ d̂i = di, i.e.,

the approximation in (13) becomes exact. The major advantage
of this new approximation d̂i is that it generates a convex
Ui(d̂i) even if U ′′(y) ≤ U ′(y) for all y > 0, which would
otherwise result in a concave function if the approximation in
(13) were used.

Proposition 2: For d̂i in (24) and a positive, differentiable
Ui(·), the objective function d̂i is concave if U ′′(y) ≥ U ′(y)
for all y > 0, and convex if U ′′(y) ≤ U ′(y) for all y > 0.

Rewriting (10) in Problem NPO using the approximation
in (24) and the feasible set in (23), we obtain a net profit
optimization problem for indivisible jobs (named Problem
NPOI) as follows:

Problem NPOI :

maximize

K∑
i=1

Ui(d̂i)−
N∑
j=1

T∑
t=1

mj(t)cjPj(t) (26)

subject to

K∑
i=1

xi,j(t) ≤ µjmj(t),∀j, t (27)

mj(t) ≤Mj , ∀j (28)

d̂i = ηi −
1

β
log

 T∑
t=1

N∑
j=1

e−βt

riηi
xi,j(t)

(29)

xi,j(t) = 0 or ri · 1(di−ηi≤t≤di) (30)

variables d̂i, xi,j(t),mj(t) (31)

Using the same derivation in Section IV, we can convert
Problem NPOI into a sequence of mixed-integer linear pro-
gramming, by linearizing a convex Ui(d̂i) with its Taylor
expansion. For a given initial point x(k−1)i,j (t) , we have

maximize
∑
i,j,t

−U ′i(d̂i
(k−1)

)

riηiβeβd̂i
(k−1)

e−βtxi,j(t)−mj(t)cjPj(t)

subject to (26), (27), (29)

variables xi,j(t),mj(t)

Therefore, Problem NPOI can be solved by an iterative al-
gorithm, which generates a sequence, {x(k)i,j (t)}∞k=0, by the
solution of the above mixed-integer linear programming.

Toward this end, we leverage the primal-dual algorithm in
[20] to derive a distributed, heuristic algorithm for the mixed-
integer linear programming. It is easy to see that constraint
(26) is satisfied with equality at optimum. We introduce a set
of Lagrangian multipliers λj(t) (i.e., data center congestion
prices) for constraint (27) and decompose the mixed-integer
linear programming into individual user problems. The de-
tailed derivation is omitted here due to space limitation. The
proposed algorithm is summarized in Fig. 2.

VI. SIMULATIONS

In this section, we evaluate our algorithmic solution for
Problem NPOD and NPOI over a 24-hour cycle, divided
into T = 144 10-minute periods. The goal is to obtain
empirically-validated insights about the feasibility/efficiency
of our solution using synthesized data from a recent study
[5]. We construct N = 3 regional data centers, which reside



Initialize a feasible point {x(0)i,j (t)}, k = 0, and stepsize δ > 0.
for each k, iteratively solve the linearization:

Find effective profit for each data center j and period t:

Γj(t) =
U′i(d̂i

(k−1)
)

riηiβe
βd̂i

(k−1) e
βt −

cjPj(t)+λ
(k)
j (t)

µj

for each job i
Schedule job i to maximize

∑
j,t Γj(t) · x

(k)
i,j (t), satisfying

NPOD:
∑
i,j,t x

(k)
i,j (t) = riηi

NPOI: x(k)i,j (t) = 0 or ri · 1(y−ηi≤t≤y) for some y
end for
Obtain m(k)

j (t) =
∑
i x

(k)
i,j (t)

Update price λ(k)j (t) =
[
λ
(k−1)
j (t) + δ(m

(k)
j (t)−Mj)

]+
k ← k + 1

end for

Fig. 2. Algorithm for Problem NPOD and NPOI.

in different electricity markets and have electricity prices
P1(t) =$56/MWh, P2(t) =$(51+15 cos 0.05t)/MWh, and
P3(t) =$(45 + 20 sin 0.06t)/MWh. The data centers host
M1 = 2000, M2 = 1000, M3 = 1000 servers, respectively.
Each server is operating at cj = 1200 Watts with µj = 4 VMs
per server for j = 1, 2, 3.

We construct two types of jobs: elephant jobs that subscribes
ri ∈ [50, 100] VMs for ηi = [10− 20] periods, and mice jobs
that subscribes ri ∈ [5, 20] VMs for ηi = [1 − 10] periods.
In our simulations, both ri and ηi are uniformly-randomly
generated from their ranges. We fix the total workload to be
K = 1200 jobs, each being an elephant job with probability
20% and a mice job with probability 80%. Job i is associated
with a non-linear bid function, given by

Ui(di) = riηi · (a− b log t) (dollars) (32)

where a ∈ [0.01, 0.02] and b ∈ [0.001, 0.002] are uniformly
distributed. Using this non-linear bid function, the approxima-
tion of job completion time will result in a convex objective
function in (16) and (25). All numerical results shown in this
section are averaged over 5 realizations of random parameters.
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Fig. 3. A comparison of optimized net profit of NPOD, NPOI, LJF.

We solve Problem NPOD and NPOI using the proposed
algorithms in Fig. 2. Problem NPOD and NPOI use the same

job parameters, while Problem NPOD assume that all jobs are
divisible, and therefore provides an upper bound for Problem
NPOI. To provide benchmarks for our evaluations, we also
implement a greedy algorithm that sequentially schedules all
jobs with a Largest Job First (LJF) policy. Fig. 3 compares
the optimized net profit of NPOD, NPOI, and LJF algorithms.
When jobs are indivisible, our NPOI algorithm improves the
net profit by 12% over the baseline LJF algorithm (from
$1,868 to $2,095), while an additional 16% increment (to
$2394) can be achieved by NPOD if all jobs are divisible. We
also notice that our NPOI algorithm is able to simultaneously
improve total revenue and cut down electricity cost, compared
to the baseline LJF algorithm. This is achieved by the joint
optimization over job completion time di and scheduling
decisions xi,j(t).
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Fig. 4. Plot net profit per job for different workload in NPOI.

Fig. 4 studies the impact of changing data center workload
when jobs are indivisible. We run the NPOI algorithm and plot
the average profit per job by varying the number of jobs from
K = 1000 to K = 1400. Increasing the workload results
in smaller net profit per job, not only because it makes the
average electricity price to go up, but also due to the result
of higher congestion in data centers, causing job completion
times to be pushed behind. This is not to discourage data center
operators to run their services at low utilization. It is also worth
noticing that while net profit per job goes down, the total net
profit monotonically increases from $2,030 for K = 1000 jobs
to $2,292 for K = 1400 jobs.

VII. CONCLUSION

This paper studies data center net profit optimization with
deadline dependent pricing, by a joint maximization of revenue
and minimization of electricity costs. Making use of a new
approximation for job completion time, we develop two dis-
tributed algorithms for the net profit optimization. The efficacy
of the proposed algorithms as well as the total electricity cost
reduction are demonstrated through numerical evaluations. As
a next step work, we plan to extend the proposed method to
capture dynamic job arrival/departures.
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