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Abstract
Memory access violation and unsafe pointer usage are the
most common types of vulnerabilities in binary executables.
To protect memory safety, array bound checks are inserted
to detect out-of-bound accesses. Unfortunately, array bound
checks contribute to high runtime overheads. Although re-
dundant bound checks elimination techniques have been de-
veloped, they suffer from limited scalability. This is because,
the number of memory bound checks are often numerous to
eliminate them one-by-one.

In this paper, we propose Clone-Hunter, a practical and
scalable framework for redundant bound checks elimination
in binary executables. Our approach leverages binary code
clone detection to reduce the extensive efforts in eliminating
redundant bound checks. Clone-Hunter employs a bound
verification mechanism using binary symbolic execution to
improve the accuracy of safe removal of bound checks. Our
results show Clone-Hunter can swiftly identify redundant
bound checks 90× faster than pure binary symbolic execution.
We note that Clone-Hunter achieves similar removal ratio
for redundant bound checks as prior approaches, in addition
to achieving several orders of magnitude improvement in
time-to-solution (the time spent to remove redundant bound
checks).

1 Introduction
Memory related bugs and buffer overflows are oft-cited prob-
lems leading to software security issues. This concern is exac-
erbated in legacy applications where only binary executables
are available, and have been in deployment for a number of
years in production systems. Numerous instances of such
legacy binary code exist in domains such as airspace, military
and banking [27]. Illegal memory accesses and unsafe pointer
usage in such applications can lead to compromising sensitive
user data. We note that memory safety in applications con-
tinues to remain as a major concern. For instance, in August
2017, Microsoft identified a flaw in the legacy JET database
program supported by Windows 7 and 10 editions. This bug
was reported to have the potential to take over users private
computer full system control remotely [40].

To secure and protect binary executables from memory
and pointer-related problems, techniques that ensure safety
through checking array bounds have been developed [10,
24, 35]. However, these techniques and tools still incur high
runtime overheads when they are performed exhaustively es-
pecially when such checks turn out to be redundant for most
benign pointer accesses. Note that such overheads can be
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Figure 1. Total static bound checks and runtime overhead
incurred by bound checks instrumented applications over un-
instrumented applications as baseline in SPEC2006 Bench-
marks

dramatically higher in pointer-intensive programs. Figure 1
shows the total number of static bound checks and runtime
overheads introduced by an array bound checker tool, Soft-
bound [24] for several representative SPEC2006 benchmarks.
In order to improve and reduce such high performance over-
heads, redundant bound check elimination approaches have
been developed [6, 41, 46]. By eliminating redundant array
bound checks, the performance overheads resulting from such
unnecessary checks can be avoided. However, note that such
redundant check elimination methods still need to analyze
every single pointer deference to compute the constraints in-
volving pointer-related variables, and verify whether bound
checks are redundant and be removed effectively from that
location. In case of applications involving billions of pointer
dereferences, the task of verifying the redundancy of bound
check can still be prohibitively expensive or impossible in
practice.

Our work is motivated by the key observation that software
applications usually have an abundant number of similar code
fragments, called code clones [19, 20]. Two code fragments
can be named as code clones if they are similar to each other
based on a given code similarity matrix (e.g., tree-based code
similarity [18]). There is a high possibility that if checking
array bounds is deemed redundant for a certain code frag-
ment, it can also be removed from its corresponding code
clones. Effectively, instead of analyzing every single pointer,
we leverage binary code clone detection techniques to iden-
tify code clones and reduce the time-to-solution in terms of
eliminating redundant bound checks in binaries.

We propose a novel approach, Clone-Hunter, in order to
perform rapid elimination of redundant bound checks in bi-
nary applications through identifying identical code clones.
Clone-Hunter first finds all of the identical clone pairs in
binaries, and forms clusters of such clones. It then picks a
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random seed sample from each cluster, and with the help
of a binary symbolic executor, determines whether bound
checks are necessary on the seed. If deemed unnecessary,
the decision to remove bound checks is replicated to all of
the other clone samples, thereby significantly speeding up
the redundant bound check elimination process. We improve
the confidence of our decision to replicate bound check re-
moval through performing random spot-checks. That is, we
randomly select a group of clones within the cluster and
determine whether bound checks can be removed through
symbolic execution. This verifies the soundness of our de-
cision to remove bound checks in the clone samples within
the cluster. Our experimental results show that our approach
is powerful, and can significantly reduce the performance
overheads in eliminating redundant bound checks by up to
45.54% in binary applications.

We note that Clone-Hunter presents a new approach that
combines statistical methods (such as machine learning to
identify code clones) and formal analysis tools (such as sym-
bolic execution) to preserve array bound checks where neces-
sary, while eliminating a vast majority of redundant checks.
This approach can be especially significant in binary appli-
cations where memory safety is important to system secu-
rity while making sure that the performance of such sys-
tems is not adversely affected. To the best of our knowledge,
Clone-Hunter is the first proposed framework for redundant
bound check elimination in application binaries. This work
is significant because most of the critical binary applications
deployed in military and financial domains need effective
memory safety, but should not be adversely affected by the
unnecessary performance overheads imposed by redundant
checks[9].

In summary, the contributions of this paper are:
1. We propose Clone-Hunter, a framework that leverages

machine learning to replicate the decision to remove array
bound checks on identical code clones, thereby reducing the
time-to-solution in terms of eliminating redundant bound
checks in application binaries.

2. We demonstrate a novel use of joint statistical-formal
learning where safe removal of redundant bound checks are
identified using binary symbolic execution, and machine
learning-based clone detectors are used in accelerating the
elimination of redundant checks.

3. We implement a prototype of Clone-Hunter and evaluate
using real-world applications from SPEC2006 benchmarks
suite [1]. Our results show the time-to-solution (time spent
to remove bound checks) for Clone-hunter is 90× faster com-
pared to pure binary symbolic execution, and three out of four
applications experienced time-out when pure binary symbolic
executors are used.

The rest of this paper is organized as follows: Section 2
gives the overview of our approach along with some tech-
nical details. In Section 3, we illustrate how we design and
implement our system, respectively. We evaluate our system

for redundant bound checks elimination and state the results
in Section 4. Section 5 and 6 give some related works and
conclusion of this paper.

2 Approach Overview
In this section, we give an overview how Clone-Hunter ac-
celerates the removal of redundant bound checks in binary
executables. The main components of Clone-Hunter is shown
in Figure 2.

For given binaries that are instrumented with bound checks,
Clone-Hunter first employs a Binary Code Clone Detector to
identify identical code clone pairs. We disassemble binary ex-
ecutables and work with the resulting assembly code. In order
to detect code clones, the assembly code is transformed into
normalized instruction sequences with intermediate represen-
tations in order to remove instruction-specific details, such
as register names and memory addresses. This step improves
the performance of machine learning algorithms and enables
Clone-Hunter to find clones that are syntactically identical.
Note that our clones will very likely be semantically equiva-
lent as well since two identical instruction patterns will very
likely perform the same functionally logical operation. This is
further verified through binary symbolic execution later. Then,
we generate feature vectors for each normalized instruction
sequence, embed them into vector space and use clustering
algorithms to find code clones (more details in Section 3.1.1).
Note that the detected code clones need to be consolidated,
because there could be overlapping and duplicated clones due
to sliding window algorithm, and because we only need to
consider pointer-related code (since bound checks relevant to
only pointers). Thus, the code clones that are duplicated or not
pointer-related would be removed from further consideration,
during code clone consolidation (Section 3.1.3).

The next step is to use binary symbolic execution to verify
whether redundant bound checks can be safely removed. This
process is performed as follows: We sample each cluster of
code clones and apply binary symbolic execution to deter-
mine whether array bound check is possible on the selected
samples. Array bound checks will be redundant if the pointer
dereference is guaranteed to be safe and never out of array
bounds. Since all code clones in the same cluster are seman-
tically equivalent, we replicate the decision of array bound
checks removal on all code clones in the cluster. Note that
code clone detection through clustering algorithms are not
guaranteed to be precise, and hence we need to further verify
the validity of clone detection, by selecting a random subset
of samples within the cluster and performing binary symbolic
execution on all of them.

Finally, we perform redundant bound checks elimination
using binary rewriting to remove the corresponding bound
check instructions. Section 3.3 describes our implementation
of this module in more detail.
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Figure 2. Approach Overview

addl, mov, cmp, jle

…
for (i ; i < len_1 ; i += 1 )
{

buf_1 [ i ] = “A”;
}

…

…
for (j ; j < len_2 ; j += 2 )
{

buf_2 [ j ] = “B”;
}

…

addl $0x1, -0x4(%rbp)
mov -0x4(%rbp),%eax
cmp -0x8(%rbp),%eax
jle 53<main+0x1b>

addl $0x1, -0x8(%rbp)
mov -0x8(%rbp),%eax
cmp -0xe(%rbp),%eax
jle 1b<main2+0x1b>

assembly code

identical instruction sequence 

source code

Figure 3. Motivation example for code normalization

3 System Design and Implementation
In this section, we present details of our Clone-Hunter and
show how our system is implemented.

3.1 Binary Code Clone Detection
Clone-Hunter accelerates redundant bound checks removal
by identifying binary code clones and replicating the same
removal condition on these code clones.

3.1.1 Vector Embedding
We first disassemble the target binaries, and detect code clones
in the assembly code, which are syntactically or semantically
identical. Note that every machine instruction in binary ex-
ecutables is a combination of instruction type and the cor-
responding operands, such as memory references, registers
and immediate values. Two code samples are considered as
identical code clones if they are exactly the same except for
some certain constant values, offsets in memory locations,
or particular addresses used as branch targets. For example,
Figure 3 shows two identical source code snippets and their
corresponding assembly code. As we can see, their assembly
codes share the same instruction sequence but with different
operands. To address these issues, we perform normalization
to abstract out specific addresses and register names, while
preserving the instruction patterns and the logical function-
ality of the code regions. This enables more effective code
clone detection using clustering algorithms.

mov %r10 ,% r d i
sub %eax ,%r9d
mov $0x1 ,% e s i
mov %r8 , %rsp

Original Assembly Code

mov REG, REG
sub REG, REG
mov VAL, REG
mov REG, REG

Normalized Assembly Code

Figure 4. An example illustrating normalization of given
code region.

We use a sliding window method to select different code
regions for code clone analysis. The method has two pa-
rameters: window size and stride. Window size defines the
maximum length of code regions under consideration, while
stride denotes the smallest increment of starting instruction
address for subsequent sliding windows. For each code re-
gion, normalization is performed, since two code regions
that are syntactically or semantically equivalent may have
identical instruction patterns and functionality, but different
memory references, registers or constants. Specifically, we
use an abstract operand format with three symbols, namely
{MEM,REG,VAL}. Memory references are replaced by sym-
bol MEM , register names by symbol REG or constant values
by symbol VAL. Figure 4 shows an example how we normal-
ize the instructions for a given code region.

Next, we cluster these normalized code regions and identify
code clones via machine learning algorithms. The code re-
gions are embedded into a feature vector space. In particular,
we count the number of occurrences of assembly instruc-
tions in each code region after normalization. Let n be the
total number of distinct normalized instructions. The occur-
rences of different instructions are collectively stored in a
feature vector, denoted as Ci = (Ci1 ,Ci2 , ...,Cin ), where Cik
(for k = 1, . . . ,n) measures the occurrence of normalized
instruction k in code region i. This process is illustrated in
Figure 5 for the code region example shown in Figure 4.

In Clone-Hunter, we employ IDA Pro [3] binary disas-
sembler and implement instruction normalization and vector
embedding in Python. The actual instruction addresses, regis-
ter names prior to normalization, and code region’s starting
and ending addresses are stored as a query table using SOLite
database [2]. This is done to reverse map normalized code
samples back to the binary such that the decision of removing
bound checks can be verified (Section 3.2).
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Figure 5. Normalized assembly code embedded into vector
space

3.1.2 Machine Learning based Clone Detector
After embedding code regions into feature vectors, we make
use of the Affinity Propagation (AP) clustering algorithm for
binary code clone detection. AP clustering is able to deter-
mine the number of clusters among the data points without
being provided in advance. The embedded vectors correspond-
ing to different code regions, C1,C2, . . . ,Cm are referred to
asm different data points in the clustering algorithm.

AP performs an iterative procedure to update the associa-
tion between data points and candidate cluster centers. Let S
be a similarity matrix. Its off-diagonal components S(i, j) for
i , j quantify the similarity between two distinct data points,
Ci andCj , via their Negative Squared Euclidean distance, i.e.,

S(i, j) = −||Ci −Cj | |
2
2 . (1)

where | | · | |2 denotes the L-2 vector norm. On the other hand,
the diagonal values S(k,k) are algorithm input parameters
(known as the preference) reflecting the likelihood of data
point k being chosen as a cluster center. It is easy to see that
if S(i, j) > S(i,k), then Ci is closer to Cj than to Ck .

In the AP algorithm, R(i,k) is sent from data points to
candidate cluster centers, and the Availability matrix A(i,k) is
sent from candidate cluster centers to data points. In particular,
R(i,k) measures how well data pointCk is suited to serve as a
candidate cluster center for pointCi , whileA(i,k) reflects how
appropriate it is for Ci to choose Ck as its cluster center. The
AP algorithm initializes an zero Availability matrix A(i,k),
and in each iteration, updates both R(i,k) and A(i,k) in a
coupled fashion, according to

R(i,k) = S(i,k) − max
k ′:k ′,k

{A(i,k ′) + S(i,k ′)} (2)

A(i,k) = min{0, R(k,k) +
∑

i′<{i,k }

max{0, R(i ′,k)}} (3)

Note that the A(i,k) is non-positive due to Equation (3).
It is updated by the R(k,k) (measuring the preference for
point Ck to serve as a cluster center), plus the aggregate re-
sponsibilities point Ck receives from all other data points (re-
flecting its overall popularity as a cluster center among other
points). The self-availability A(k,k) is updated differently,
i.e., A(k,k) ←

∑
i′<{i,k }max{0,R(i ′,k)}, without depending

on the self-responsibility R(k,k). Finally, the iterations are

terminated when the changes of availabilities and responsibili-
ties are smaller than a pre-defined threshold, implying that the
cluster assignments also stop changing. More details about
AP clustering can be found in [12].

We implement our clustering-based code clone detector in
Python using a machine learning tool Scikit-learn [25]. We
instrument its AP clustering API - sklearn.cluster for our
clustering module.

3.1.3 Consolidation of Code Clones
Code Clone Consolidation removes duplicated and pointer-
irrelevant code clones from further consideration.

We first filter out the pointer-irrelevant code clones by
checking if they contain bound check-related instructions. For
example, Softbound-instrumented bound checks instructions
will contain "softbound_spatial_checks" symbol in binary
executables. This enables filtering out these instructions using
such symbols.

When using sliding window algorithm to generate code
regions, it can create overlapping windows and thus result
in partially overlapping or even duplicated code clones. To
address this problem, we consolidate the code clones by com-
puting the union of overlapping code clones, i.e., the union of
their start and end instruction line numbers in assembly code.
Each code clone sample is denoted as a vector (s, e) where s
is the starting address and e is the ending address in the code
region. Two code clones, (s, e) and (s ′, e ′), are overlapping
if they have non-empty intersection, i.e., (s, e) ∩ (s ′, e ′) , ϕ.
Thus, we use their union to consolidate them and define a
maximum-size, continuous code clone, (s, e) ∪ (s ′, e ′). This
consolidation procedure is performed until all consolidated
code clones are non-overlapping.

We implement our Code Clone Consolidation module as
using Python embedded into ML-Clone Detector.

3.2 Symbolic Execution for Bound Verification
Clone-Hunter utilizes clustering algorithms in Machine Learn-
ing to identify binary code clone to assist redundant bound
checks removal. Based on our observations from large scale
of code samples, It is highly likely that the redundant bound
checks in two code samples can be both removed if they are
identical code clones. To formally verify if the code clones de-
tected by Clone-Hunter guarantee simultaneous bound checks
removal, we utilize binary symbolic execution.

There are three major steps for bound checks verification
and elimination in Clone-Hunter:

1. Redundant bound checks identification: First, we
pick a random code clone sample as seed clone sample
in each cluster to verify if the bound checks are redun-
dant. This can be done by determining if the pointer
dereference is safe, and that no memory violation can
exist. We deploy binary symbolic execution to execute
such set of seed clone sample and determine whether
the bound checks are redundant based on the outputs
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from symbolic execution. Since the seed clone sample
is just a code snippet from the original program, we
perform partial symbolic execution starting at the be-
ginning of the seed clone sample to the end of seed
clone sample based on instruction addresses. To deal
with the incomplete program state while performing
partial symbolic execution, we should make the values
of unknown variables in this code region as symbolic
variables instead of concrete values. Then, we are able
to perform arithmetic operations with symbolic vari-
ables through symbolic execution. If the pointers in
seed clone sample turn out to be safe, then we continue
to execute the next step of bound verification. If not
safe, we terminate bound verification procedure and
apply the decision as "Not redundant" to the other cor-
responding identical code clones in the cluster to keep
bound checks.

2. Verification of bound identification: Clustering algo-
rithm cannot offer a 100% guarantee in terms of en-
suring simultaneous, safe bound check removal from
all detected code clones. It is possible that two code
snippets are found to be identical code clones, but have
different bound safety conditions and do not allow si-
multaneous bound checks removal. To further improve
the removal’s accuracy, we select a random set of code
clone samples within the same cluster and perform the
same procedure using binary symbolic execution to
check whether the bound checks removal conditions on
these code clones are indeed identical.

3. Applying Removal Decision: If the random code clones
samples turn out to be safe as the seed clone sample
does, then we apply the final decision as "Redundant"
to the all corresponding identical code clones in the
cluster to remove bound checks. Nevertheless, if the
random code clones samples turn out to be not safe,
which is against with the decision we made for seed
clone sample from the previous step, then we apply the
final decision as "Not redundant" to all clone samples
in the cluster instead.

We instrument a binary analysis framework angr [32] for
bound verification. We deploy the binary symbolic executor
in angr for a target location to start performing symbolic
execution in binary executables, beginning with the starting
address and execute the total number of instructions in the
code region.

3.3 Removal of Redundant Bound Checks
To delete instructions in binary executables, we deploy a
Static Binary Rewriting tool Dyninst [34]. As we mentioned
in previous section, we store additional information for each
code region including their start and end addresses. We use
such address information to rewrite control transfers. We im-
plement our Bound Checks Remover in C++ with Dyninst.

Given a code clone as input, we scan each instruction and
remove bound checks. We obtain Optimized Binaries as out-
put.

4 Evaluation
4.1 Experiment Setup
We selected 4 different real-world applications: bzip2, hmmer,
lbm and sphinx3 from SPEC2006 benchmark suite [1] and use
the largest reference inputs provided with SPEC benchmark.
We manually injected buffer overflow bugs to verify whether
there are any false positives. Some techniques such as fault
injection [15, 39] can be applied in larger scale programs for
future work. All experiments are performed on a 2.54 GHz
Intel Xeon(R) CPU E5540 8-core server with 12 GByte of
main memory. The operating system is ubuntu 14.04 LTS.

To evaluate the performance of Clone-Hunter, we deploy a
runtime bound checks tool: Softbound [24] to illustrate our
mechanism and create bound checks in binary executables.

Bench. #Total Static Instructions #Clusters #Cloned Instructions %Cloned Instructions
bzip2 14,293 213 4,397 30.76%

sphinx3 203,708 2,771 89,647 44.01%
lbm 2,360 58 712 30.17 %

hmmer 171,376 1,440 69,324 40.45%

Table 1. Binary Code Clone Detection Statistics

4.2 Effectiveness of Binary Code Clone Detection
We evaluated our binary code clone detector with different
window size and stride. The number of cloned instructions
shows the code clone coverage over the whole program. We
noticed that there are more code clones detected with smaller
window size in general, but not always the case. If the window
size is small, there will be more noise, such as a clone with
only one nop instruction. Here, we observed that we detect
the most code clones with maximum window size equals
to 100 (minimum window size = 2) and stride equals to 4.
For simplicity, we represent the statistics of code clones with
fixed window size range and stride as from 2 to 100 and 4
respectively. Table 1 shows for each benchmark, how many
static instructions, clone clusters, cloned instructions, and
percentage of cloned instructions over total static instructions
generated by our machine learning based clone detector.

As we can see, sphinx3 has the highest coverage of cloned
instructions with over 44% and also has the most number of
clusters generated from machine learning algorithms.

4.3 Overhead of Binary Symbolic Execution
We evaluated the overhead of binary symbolic executors for
bound verification, and compared with Pure Symbolic Execu-
tion over entire binary programs. We instrumented a binary
analysis framework angr [32] as our baseline.
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Bench. Application Type Program Size Pure Symbolic Execution time Pure Symbolic Execution time Clone-Hunter assisted
(Byte) Whole Program (sec) Function-Level (sec) Symbolic Execution time (sec)

bzip2 File Compression 305K TIME OUT 383.40 153.98
sphinx3 Speech Recognition 1.3M TIME OUT 14010.00 6144.30

lbm Computational Fluid Dynmaics 55K 35032.54 1584.40 387.90
hmmer DNA Sequence Search 974K TIME OUT 6733.28 957.36

Table 2. Comparison of symbolic execution time spent in Clone-Hunter and Pure Symbolic Execution

Table 2 presents the runtime overhead from pure symbolic
execution and Clone-Hunter. We evaluate pure symbolic exe-
cution overhead on whole program and conduct partial sym-
bolic execution on each function as function-level overhead.
We set up 43200 seconds (12 hours) as TIME OUT in this
experiment. In this experiment, we set up a threshold for
bound verification. Since the smallest cluster contains only 2
code clone samples, we chose a lower bound as 2 code clone
samples for bound verification. For larger clusters, we pick
30% sampling rate as upper bound to random select code
clone samples (noting that this sampling rate is tunable de-
pending on the users). For example, we select 6 different code
clone samples if one cluster contains 20 total code clones.
The time spent in Clone-Hunter assisted Symbolic Execution
is calculated as the summation of symbolic execution time
in the random seed clones in each cluster. We observe that
Clone-Hunter always spends less time than angr in the terms
of Symbolic Execution overhead. Notably, for bzip2, sphinx3
and hmmer, angr fails to finish the execution within TIME
OUT. The time-to-solution (the time spent to remove bound
checks) for Clone-hunter is 90× faster compared to pure Bi-
nary Symbolic Execution in lbm. On the other hand, it is easy
to see that why sphinx3 takes more time in Clone-Hunter. Our
code clone detector detected the number of cluster as 2,771
in sphinx3, which means we need to pick at least 5,542 code
clones for bound verification. On the other hand, we only
need to pick at least 116 code clones in lbm.

As expected, pure symbolic execution over entire program
cost much more time in angr, that is because pure exhaustive
approach is going to Symbolic Execute the entire program,
which can lead to problems like path explosion. Some func-
tions in bzip2 contain more loop operations and function calls,
it leads to a longer symbolic execution time in entire program
analysis, sphinx3 and hmmer have a similar program behavior
during entire program symbolic execution.

4.4 Redundant Bound Checks Elimination
We evaluated our approach in identical binary code clones
for redundant bound checks elimination. Figure 6 plots the
comparison of Softbound runtime execution overhead before
and after using Clone-Hunter to eliminate redundant bound
checks at runtime. We further evaluate the percentage false
positives of removing redundant bound checks (where a false
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Figure 6. Runtime overhead of softbound-instrumented ap-
plications and Clone-Hunter optimized bound checks.

Bench. bzip2 hmmer lbm sphinx3
%Dynamic Checks Removed 26.72% 42.31% 30.90% 45.54%

%False Positive 0.00% 0.00% 0.00% 0.00%

Table 3. Percentage of Softbound Dynamic Bound Checks
removed by our approach

positive occurs if a bound check identified as redundant is in-
deed necessary and cannot be safely removed). Clone-Hunter
achieves an average reduction of 34.24% compared to Soft-
bound runtime overheads.

Table 3 shows the percentage of dynamic bound checks
eliminated in all 4 benchmarks, along with rate of false posi-
tive reported under Clone-Hunter. Clone-Hunter shows an av-
erage 36.37% redundant bound checks elimination ratio, with
the highest 45.54% at sphinx3, which is similar to other exist-
ing source code based redundant bound checks approaches,
such as SIMBER [41]. However, current approaches still
need the access to source code. To the best of our knowledge,
Clone-Hunter is the first framework for binary bound checks
removal. Also, the result represents that Clone-Hunter obtains
zero false positive in all benchmarks used in this evaluation.

Note that the percentage of dynamic checks removed by our
approach is not linearly related to the number of Softbound
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runtime overhead. We further analyzed the breakdown of Soft-
bound execution time. We note that Softbound load instruc-
tion dereference check has 4× runtime slowdown compared
to the corresponding store instruction dereference check. This
is because load instructions are on the critical path affecting
program runtime directly, while store instructions are usu-
ally issued and the processor begins fetching the subsequent
instruction even before stores complete. This is the reason
why we observe a better reduction in softbound overheads if
we remove more load instruction deference checks. As we
can see, sphinx3 achieves the highest overhead reduction per-
formance than others. We further analyzed sphinx3 and we
found Clone-Hunter removes 62.33% load instruction related
checks of the total Softbound dereference bound checks. We
also notice that our approach outperforms the performance of
source code-based redundant bound removal methods [41].
Some functions in lbm are written with a bunch of macro
functions within a user defined switch loop structure. This
makes it more burdensome for the source code-based ana-
lyzers to expand such macros and unroll the loops within
them.

5 Related Work
Prior solutions for eliminating redundant bound checks are
usually based on static source code analysis. WPbound [46]
and ABCD [6] both reduce redundant bound checks in Soft-
bound [24] by solving a system of linear inequalities obtained
through static code analysis. In contrast, SIMBER [41] pro-
poses a learning approach based on runtime statistics to refine
the bound elimination conditions. These methods are often
limited in their scalability due to the need to derive bound
elimination conditions and to analyze every single bound
check locations. In addition, these techniques are only appli-
cable to software systems whose source code is available.

To protect memory safety in software systems, various
static code analysis [14, 23, 42, 48], have been developed to
analyze program behaviors and to identify bug/vulnerabil-
ities, such as SECRET [47], StatSym [45], HOTracer [17]
and Sarre [21]. These techniques also suffer from growing
program size, since the amount of analysis required is di-
rectly proportional to the sizes of software systems. Another
line of works propose hardware based array bound checks
for memory protection [37]. For instance, MemTracker [36]
provides hardware support to accelerate array bound checks.
Shen et al. [31] present a hardware based framework for flex-
ible and fine-grain heap memory protection. Such techniques
can efficiently support proper array bound checks and viola-
tions using hardware support, but they may involve hardware
modifications and hardware costs.

To address the scalability issue, a number of tools have
been developed for source-code clone detection [5, 18, 19, 30,
38]. In particular, Chunky [43] uses context-based Natural

Language Processing for static code analysis. These tech-
niques, often relying on source code or intermediate represen-
tation, are intended to identify general code clones. Another
line of work is detecting code clones in binaries. Pewny et
al. [26] has developed a prototype for binary code clone de-
tection through translating the binary code to an intermediate
representation. A binary code clone framework is proposed by
Yikun et al. [16] with a more advanced approach using Deep
Learning techniques to identify identical code clones within
different complied architectures and configurations. While in
this paper we harness code clone detection and formal anal-
ysis techniques in an integrated framework to enable rapid
bound elimination at scale. We current only work on identical
code clones. Thus, our code clone detector is efficient, such
binary code clone approaches can be applied in the future
to deal with problems like cross-platforms and semantically
equivalent code clone detection. Instead of deploying code
clone detection, some other techniques, such as using a pre-
trained probabilistic model to extract code features and track
similar code fragments [29].

Binary code analysis is particularly important for legacy
software systems, whose source codes are often not available.
Several static binary analysis tools have been developed to
support the safety of lower-level binaries, such as rev.ng [11],
vfGuard [28], ByteWeight [4] and BitBlaze [33]. Over the
past decade, lots of efforts have been made in binary reverse
engineering. Caballero et al.[7] summarized various binary
code type inference and binary analysis methods for improv-
ing program security, such as binary differing for vulnerabil-
ity detection, binary program customization through binary
rewriting and program patching against software obfuscation
using tools like BinSim [22], DamGate [8] and BinHunt [13].
In another line of work, Jop-alarm [44] uses binary analysis
to track indirect jumps for detecting jump oriented program
attack.

6 Conclusion and Future Work
In this paper, we present a novel framework, Clone-Hunter,
integrating Machine Learning based binary code clone de-
tection with redundant bound checks elimination in binary
executables. We evaluated our approach in real-world appli-
cations from SPEC 2006 benchmark suite. Our results show
the time-to-solution (the time spent to remove bound checks)
for Clone-Hunter is 90× faster compared to pure Binary Sym-
bolic Execution while three out of four applications fail to
finish the execution. Currently, Clone-Hunter only works for
identical code clones to remove bound checks. As future work,
we will analyze Clone-Hunter on code patterns that are not
exact matches that still semantically equivalent.
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