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a churn-refined algorithm is further put for-
ward. A series of simulation experiments have 
shown that out proposal outperforms many 
state-of-the-art algorithms in both profit and 
guarantee ratio.
Keywords: fog computing; task scheduling; 
deadline constrained; internet of things; ant 
colony optimization

I. INTRODUCTION

In the 5G and Internet of Things (IoT) era, 
where the time requirements of the mobile 
tasks initiated at the network edge are usually 
rigid, traditional cloud-as-the-center com-
puting paradigm faces several challenges to 
meet the time-sensitive tasks [1]. For instance, 
many virtual reality (VR)-based tasks require 
sub-millisecond response time.

In this backdrop, many edge-centered 
novel computing paradigms are put for-
ward, including fog computing, mobile edge 
computing, sensor cloud, and etc. In the fog 
computing architecture, many fog nodes, or 
named cloudlet entities, are implemented at 
the access networks of the wireless IoT devic-
es. They usually have much more powerful 
computational and communication capabilities 
than ordinary mobile devices, and can handle 
the local computational needs on behalf of 
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task offloading and processing problems at the 
network edge. This raises the resource sched-
uling problem in this tiered system, which 
is vital for the promotion of the system effi-
ciency. Therefore, in this paper, a scheduling 
mechanism for the cloudlets or fog nodes are 
presented, which takes the mobile tasks’ dead-
line and resources requirements at the same 
time while promoting the overall profit of the 
system. First, the problem at the cloudlet, to 
which IoT devices offload their tasks, is for-
mulated as a multi-dimensional 0-1 knapsack 
problem. Second, based on ant colony opti-
mization, a scheduling algorithm is presented 
which treat this problem as a subset selection 
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requirements. The profit of the fog system is 
the optimization objective, and available re-
sources and reliability of the service providers 
are taken as the constraints. Furthermore, to 
cope with the challenges brought by dynamic 
joining and leaving of service providers, i.e. 
churn in the system, the failure probabilities 
of service providers will be considered when 
designing the heuristic in the scheduling al-
gorithm based on Ant Colony Optimization 
(ACO). To summary, a multi-dimensional 0-1 
knapsack problem is built, and an ACO-based 
scheduling algorithm is put forward. To cope 
with the dynamics of end users’ IoT devices, 
a refined algorithm is designed to promote the 
scheduling performance when IoT devices join 
and leave the system dynamically. Compared 
with the algorithm based on ACO [25], the 
algorithm presented in this paper can better 
cope with the churn and dynamic nature of 
the wireless network, which is not considered 
before. To validate the performance of the al-
gorithm, a series of simulations are conducted 
on the developed simulator. Remarkable pro-
motion can be observed from the simulation 
results through compared with state-of-the-art 
algorithms.

The contributions of this manuscript mainly 
include:

1) The scheduling problem in the cloudlet 
entity is formulated as a 0-1 knapsack prob-
lem.

2) An efficient scheduling algorithm based 
on ACO is proposed, which can maximize the 

cloud-infrastructures. Furthermore, they can 
transfer the received tasks to the cloud entity 
if the time requirements of the tasks can be 
fulfilled. Compared with traditional two-layer 
infrastructure, this tiered system can better 
fulfill end-user needs in four aspects. First, 
it can achieve reduced service latency com-
pared with always offloading to remote cloud 
through the Internet. Second, the coverage area 
of this architecture will be larger and much 
more easy to access. Third, it can support the 
mobility of mobile devices. Fourth, better het-
erogeneity can be included or tolerated in this 
architecture [2]. Figure 1 shows an example 
of this three-layer architecture. Many IoT de-
vices are interconnected by wireless networks, 
which are constructed based on IEEE 802.11, 
802.15, and other standards, and a cloudlet en-
tity locates at the access point of each access 
network. On the top level, cloudlets connect to 
the centralized cloud data center through the 
Internet.

To promote the performance of the tasks 
requires the system to efficiently utilize the 
resources at the cloudlet entity, the cloud, as 
well as the idle resources at mobile IoT de-
vices. Note that these three types of compu-
tation facilities have different characteristics 
[3]. The resources at the mobile devices are 
usually very limited, but they are much closer 
to the task initiators. The cloudlet entity has 
much more resources to schedule, but is also 
limited compared with that of the cloud due to 
cost and volume consideration. The cloud has 
nearly unlimited resources, but offloading to 
the cloud usually incur long transmission de-
lay. Therefore, a comprehensive scheduling of 
the available resources is in great need in this 
architecture. The unique dynamic nature intro-
duced by the wireless network and IoT devices 
even make this problem more challenging than 
traditional cloud paradigm which is usually 
static and has refined fault management mech-
anism.

The overall objective of this paper is to 
design a scheduling algorithm for the cloudlet 
entities to help them utilize all the available re-
sources while meeting mobile tasks’ rigid time Fig. 1.  Three layer structure of a tiered IoT architecture.

IoT Devices

Cloudlet Cloudlet

IoT Devices IoT Devices

Cloudlet

Datacenter

 

To effectively utilize 
t h e  a v a i l a b l e  r e -
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formulates the task 
scheduling problem as 
a multi-dimensional 
0-1 knapsack problem, 
and put forwards an 
algorithm based on 
Ant Colony Optimiza-
tion (ACO).
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ation, usually aim at Cloud-based systems 
[8-16]. For example, the genetic algorithm 
(GA) was employed by Chen et al. to min-
imize the execution cost when considering 
the deadline-constrained workflow [8]. In 
addition, they investigated the Ant Colony 
System (ACS) based scheduling approach to 
optimize the execution cost while satisfying 
the deadline of each task [9]. Zuo et al. also 
employed the ACS-based method to optimize 
the resource utilization considering both the 
deadline and cost of tasks [16].

As for the utilization of Fog or Cloud 
computing in the IoT system, many research-
ers contribute a lot. Sarkar et al. conduct-
ed the employment of Fog-computing and 
Cloud-computing in the tiered IoT system 
[17]. Experimental results showed that as for 
the IoT system with large numbers of laten-
cy-sensitive tasks, Fog-computing was more 
efficient than Cloud-computing. A resource 
management framework was presented by Aa-
zam et al. based on the characteristics of cus-
tomers in IoT system [18]. The industrial IoT 
was studied by Tang et al. and a GA-based al-
gorithm was proposed to solve the scheduling 
problem [19]. Yang et al. studied the homoge-
neity fog system and presented a scheduling 
method to improve the energy efficient [20].

ACS-based method is an efficient approach 
to solve the problem of tasks scheduling in 
Fog-computing system due to its distributed 
character. Dorigo et al. firstly investigated the 
application of the ACS in the Traveling Sales-
man Problem (TSP) [21], which proved that 
the ACS outperformed the other nature-in-
spired methods. Wei et al. modeled the tasks 
scheduling problem to the TSP based on the 
proposed Hybrid Local Mobile Cloud Model 
(HLMCM) and then, the ACS was utilized to 
solve it in [22] and [23]. In order to evaluate 
the performance of the proposed algorithm, a 
series of simulations were conducted and the 
results demonstrated the better performance 
of the proposed algorithms. However, the 
deadline was not considered in the scheduling 
process. Later, they took further studies on the 
scheduling problem and extended the Fog-

system profit while meeting the tasks’ deadline 
constraints.

3) To tackle the dynamics nature of the 
wireless IoT environment, a churn-resilient 
algorithm is presented which can promote 
the performance when fog nodes can join and 
leave dynamically.

4) Extensive simulation experiments are 
conducted to validate the effectiveness of this 
paper’s proposal.

II. RELATED WORK

As far as we know, the studies on the sched-
uling problem in Cloud computing are quite 
abundant and a series of scheduling strategies 
have been put forward while taking different 
types of tasks into consideration [3]. However, 
these achievements cannot be utilized in the 
scenario of Fog computing directly due to the 
distributed heterogeneity of the Fog computing 
model and limited resources of fog nodes [4].

In order to deal with the scheduling prob-
lem in Fog-based computing systems, a few 
scheduling algorithms have been presented 
by researchers from different perspectives. 
Pham et al. paid attention to the cloud-fog 
computing system and put forward a heuristic 
algorithm [5]. The collaborative execution 
between cloud data center and fog nodes was 
investigated by balancing the makespan and 
monetary cost of the system. Pu et al. pre-
sented a novel offloading framework via net-
work-assisted Device-to-Device collaboration 
[6], whose objective is to minimize the energy 
consumption. Through the assistance of net-
work operator, mobile users can collaborate 
with each other to execute tasks by sharing 
the common resources. The Fog-computing 
supported embedded system was investigated 
by Zeng et al., and a joint optimization meth-
od was presented to deal with the problems 
of task scheduling and image placement [7]. 
However, the above researches did not consid-
er the deadline of task, which may impact the 
Quality of Service (QoS) seriously.

Existing scheduling algorithms, which 
take the deadline of each task into consider-
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data center locates in the core network, and 
has nearly unlimited resources. In comparison, 
the distance between a use-end device and a 
cloudlet is usually only one hop. However, 
the computation, communication, and storage 
resources at the cloudlet are much less than 
those at the data center. Second, several IoT 
devices with idle resources can also be service 
providers in the system. They can join or leave 
the system based on their remaining battery 
supply, wireless link condition or mobility re-
quirements. This assumption is due to the mo-
bility nature of IoT devices and the wireless 
network’s inherent randomness characteristics. 
Moreover, a server may stop providing service 
if its own resources are insufficient. Multiple 
tasks could be executed by some particular 
service provider at each time interval as long 
as the total resources requirements of these 
tasks do not exceed the provider’s service 
capacity. For example, the provider can imple-
ment this through initializing different VMs 
for different tasks. For simplicity of expres-
sion, all the service providers will be called 
hosts in the following analysis. Third, all the 
submitted tasks are assumed to have known 
resource requirements, which can be estimated 
based on execution history or application pro-
filing. Fourth, the profit brought by each task 
is dependent on its execution time and dead-
line requirement. No profit can be harvested if 
it is rejected or not finished before its deadline. 
Finally, the running time is divided into sever-
al time slots, and the scheduling algorithm will 

based system to the Cloud-fog system. The 
performance of ACS-based algorithm was 
improved and the deadline of task was taken 
into consideration [25]. However, the dynamic 
characteristics of Fog nodes were not consid-
ered in the scheduling process.

III. PROBLEM FORMULATION

3.1 Task offloading

As shown in figure 1, a large number of IoT 
devices may connect to the same cloudlet. 
Many tasks could be offloaded to a cloudlet by 
its served IoT devices with different resources 
requirements. Upon receiving the offload-
ed tasks from IoT devices, the cloudlet is in 
charge of scheduling them based on available 
resources locally and remotely. Moreover, a 
cloudlet will make a scheduling decision ev-
ery once in a while, called a timeslot. For any 
task, it will experience one of the five choices 
below at a given timeslot:
l	�Local execution at the cloudlet;
l	�Further offload it to the remote datacenter;
l	�Deliver it to an IoT service provider;
l	�Store it in the task queue for later schedul-

ing ;
l	�Reject it due to resource limitation.

The scheduling algorithm at the cloudlet 
has to decide whether and how to execute 
newly arrived and buffered tasks. It has to 
select the most suitable execution place for 
each task based on resources requirements 
and deadline limitations while maximizing 
the profit of the system. Figure 2 shows the 
workflow of the scheduling problem. We can 
see that tasks arrived at a time interval will be 
scheduled together with those tasks stored in 
the buffer. To ensure a continuous task sched-
uling, the algorithm will be executed at the 
end of each time interval.

3.2 Assumptions and notations

Before diving into problem statement and al-
gorithm design, we make a few assumptions 
about the service providers in the system to fa-
cilitate problem formulation. First, the remote Fig. 2.  The scheduling workflow at the cloudlet entity.
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3.3 Profits and execution time 
estimation

Through providing services to IoT devices, the 
service hosts could obtain some kind of profit. 
Task t’s profit when it is executed on host h is 
defined as:

p (t,h) = − × × +( ( ) ( )) ( (1 )b h c h r t) αd
d e t ht

d
−

t t−
( , )
a

� (1)
where b(h) and c(h) are the basic benefit and 
cost of running a task on host h, and αd is a re-
ward factor that can be used to encourage the 
system to execute the task, since the smaller 
e t h( , ) is, the higher p t h( , ) will be. e t h( , ) can 
be calculated according to (2) based on three 
parts, i.e. t’s start time at, execution time l(t), 
and transmission time m(t,h). l(t) and m t h( , ) 
in (2) are shown in (3) and (4) respectively.

	 e T l(t h, ,) = + +S (t) m (t h)� (2)

	         l t( ) =
T DS t0 ×
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� (3)

where DS(t) is t’s dataset size transmitted in 
the offloading process.
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Here, TD is determined by the transmission 

link between the cloudlet and the data center, 
and is usually much larger than TC.

3.4 Problem statement

Our optimization objective in this paper is 
maximizing the profits while meeting the 
deadline limitation, and the problem can be 
formally stated as:

Maximize V x t h=
t Tp h H
∑ ∑
∈ ∈

( , ) ( , )× p t h � (5)

Subject to:
	      ∀ ∈ ∀ ∈ ∈t Tp h H x t h，       , 0,1( ) { }� (6)

	   ∀ ∈ ≤t x t hT , ( , ) 1p
h H
∑
∈

� (7)

be executed at each time slot. Table I shows 
the symbols used for the problem statement.

Table I.  Notations.
Notation Meaning

Tp Buffered tasks set

Th Set of tasks executed on host h

huser All user-end devices

hcloudlet Cloudlet entities

hcloud Service providers in the data center

H The union of all hosts, H={huser }∪{hcloudlet }∪{hcloud}

R(h)
Resources at host h, including computation, communication, and storage, 
R(h) =(Rc(h),Rb(h),Rs(h))

t A task

M-2
Total number of user-end devices.The total number of hosts is M, includ-
ing user-end devices, a cloudlet, and a cloud data center.

r(t) Task t’s resource requirements, r(t)=(rc(t),rb(t),rs(t))

DS(t) Task t’s dataset size

T0 Time for executing a data unit through one unit of computing resource.

BC The bandwidth between an IoT device and the cloudlet

BD The bandwidth between the datacenter and the cloudlet

TD
The delay introduced by the transmission path between the datacenter and 
the cloudlet

TC
The delay introduced by the transmission path between an IoT device and 
the cloudlet

T'D
The delay jitter introduced by the transmission path between the datacen-
ter and the cloudlet

T'C
The delay jitter introduced by the transmission path between an IoT de-
vice and the cloudlet

x(t,h) Task t is scheduled on host h or not, and it can be 0 or 1

TS Scheduling time

a(t) t’s arrival time

d(t) t’s deadline

l(t) t’s estimated execution time

e(t, h) t’s estimated ending time on host h

m(t,h) t’s estimated transmission time from and to host h

αd The reward factor of device d which offloads a task to the fog system

p(t,h) The profit of running task t on host h

b(h)
The benefit of consuming one unit resource while running a task on host 
h 

c(h) The cost of consuming one unit resource while running a task on host h

q(h) Link quality of host h

e(h) Remaining energy supply of host h

L(h) Leaving factor of host h

l(h) The leaving probability of host h

h(l) The host on link l
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are taken into consideration. Considering 
that the profits obtained from the same tasks 
with different hosts are varies, the pheromone 
should be placed on the links between tasks 
and hosts. Therefore, the target in our scenario 
is to select the best links set from all the avail-
able links.

After the initialization step, the pheromone 
on each link needs to be updated at the end 
of each solution searching cycle. Generally 
speaking, the update process mainly consists 
of two parts: At first, the pheromone value on 
each link should be reduced by a certain per-
centage in corresponding to the real behavior 
of pheromone evaporation as time goes on. 
Then, the increment of pheromone value that 
is laid by the solutions in the last cycle needs 
to be added on the links. To be specific, the 
pheromone value on link l(j, k) at time t1 is 
assumed to be τ l ( )t1 . Then, at the next update 
time t2, the value should be updated to be 
τ l ( )t2 , which can be calculated by:

     τ ρ τ τl l l( ) (1 ) ( ) ( , )t t t t2 1 1 2= − + ∆ � (11)
where 0 1≤ ≤ρ  is a coefficient which rep-
resents pheromone evaporation, and ∆τ ( , )t t1 2  
represents the increment of pheromone that is 
laid by the solution derived by the ants in the 
last cycle:

	 ∆ = ∆τ τl l( , ) ( , )t t t t1 2 1 2∑ i

q

=1
i  � (12)

where q is the number of the ants, ∆τ l
i ( , )t t1 2  is 

the pheromone value laid on link l by ant i’s 
solution at time t2, which can be calculated by:
∆ =





G f S t i l
τ l

i

( ( ( )))     if ant incorporates link
( , )t t1 2

0                         otherwise
i 2 � (13)

where S ti ( )2  is an ant i’s solution at time t2, 
and f S t( ( ))i 2  is the value of its evaluation 
function. In order to maximize the total prof-
its, the evaluation can be calculated by:

	 f S( ( ))i t2 = ∑ l S t∈ i ( )2
（p j, )k � (14)

where p j k( , ) is the profit that is laid on link 
l. Thus, f S t( ( ))i 2  is the total profits which be-
long to S ti ( )2 . The function G in (13) depends 
on the formulated problem. In our analysis, it 
can be defined as G f S t Q f S t( ( ( ))) ( ( ))i i2 2= ⋅ , 

∀ ∈ + ≤h H r t x t h r t R h, ( ) , ( ) ( )
t p t
∑ ∑
∈ ∈T T

× ( )
h

� (8)

  ∀t T h H x t h e d t∈ ∧ ∈ ∧ =p ( , ) 1, ( )( , )t h ≤ � (9)
This is a multi-dimensional 0-1 knapsack 

problem, and it is hard to find a solution by 
polynomial time algorithms.

IV. TASK SCHEDULING ALGORITHM

To find an sub-optimal solution for the prob-
lem defined above, an algorithm is designed 
in this paper based on ACO which has been 
adopted to tackle complex combinatorial opti-
mization problems [9][13][18-20].

4.1 Solution representation

Given a specific scheduling timeslot, N tasks 
are stored in the pending list and wait to be 
scheduled. Assume there are M available hosts 
and then, the solution that formulated by the 
mapping relationship between tasks and hosts 
in a matrix:

X M N× =

 
 
 
 
 
 x M x M x M N

x x x N
x x x N

( ,1) ( , 2) ( , )

(2,1) (2,2) (2, )
(1,1) (1,2) (1, )

   







� (10)
For each element in this matrix, it rep-

resents the link between a task and a host. In 
order to describe briefly, the task will be con-
sidered as the task on the link, and the profit 
of executing the task on the host will be called 
the profit of the link. For instance, task t is 
said to be on link x h t( , ) and p t h( , ) is the prof-
it of link x h t( , ).

4.2 Pheromone value placement 
and update

In general, existing scheduling problems that 
considered in [21] and [22] are two instanc-
es of the Subset Selection Problem. In other 
words, the objective is to choose the best 
subset from the available set with the aim to 
maximize or minimize the evaluation function. 
Therefore, in order to improve the total profits, 
the pheromone is placed on the tasks.

In this paper, the heterogeneity of the hosts 
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the next scheduling link of S ti ( )2  is determined 
by its pheromone value and local heuristic val-
ue. The calculation of this probability is:

P tl
i ( )2 = 









∑ k allowed t∈

[ ( )] [ ( )]τ ηl l

( )

t t2 2

2
[ ( )] [ ( )]

l allowed t

τ η

α β

∈

k k

0

t t2 2
α β

( )2

,

� (18)

where allowed t( )2  is the set of all the available 
links. It can be concluded form formula (18) 
that the bigger the pheromone value and local 
heuristic value of the link are, the higher the 
probability it will be chosen.

4.5 Bulletin board and Tabu list

A bulletin board is utilized to remember the 
best solution, with which the solutions of the 
ants can compare with it after a new cycle. If 
one solution is better than the best one in the 
bulletin board, the optimal solution will be up-
dated according to the new solution. Besides, 
a tabu list is defined to record the scheduled 
links in order to avoid to schedule the same 
link repeatedly.

4.6 Algorithm description

The description of the algorithm is shown in 
Algorithm 1.

Several parameters including scheduling 
results (best_solution) and its profit (best_
profit) are initialized in Step 1. The available 
links that determined by the tasks’ resources 
requirements and available resources on hosts 
are calculated in Step 4. Step 5 puts the initial 
pheromone on all the available links. The cho-
sen link based on (18) is decided in Steps 6-9, 
and the available links are updated in Step 10. 
When all the available links have been sched-
uled, the total profits based on the local partial 
solutions are calculated in Steps 12-16, and If 
it is larger than the optimal solution in the bul-
letin, the bulletin will be updated according to 
the newly optimal solution. After each cycle, 
the pheromone on each link should be updated 
based on (13). Besides, a tabu list is employed 
to help each ant avoid selecting the same links 
more than once.

For the simplicity of expression, this algo-

where Q is a parameter of the method.

4.3 Local heuristic value

In the process of ACO, local heuristic value 
is usually defined to accelerate the searching 
process in corresponding to the positive feed-
back of ACO. Apart from the profits obtained 
from the tasks, the resources consumed by the 
hosts should be taken into consideration while 
determining the local heuristic scheme. It 
means that those links which can bring higher 
profit with less resource consumption will be 
preferred by the scheduling algorithm.

The resources in host h that are consumed 
by the partial solution S ti ( )2  of ant i at time t2 
is assumed to be µh ( , )i t2 = ∑ l S t∈ i ( )2

rl, where 

rl represents the total resources consumed by 
task j. The remaining resources of host h can 
be represented as γ µh h( , ) ( ) ( , )i t R h i t2 2= − . 
Therefore, the tightness of link l on host h can 
be defined as:

	      δ lh ( , )i t2 =
γ h ( , )

r
i t
l

2

� (15)

i.e., the ratio between rl, the amount of host h’s 
resource consumed by the task on link l, and 
γ h ( , )i t2 . When multi-dimensional resources of 
hosts should be taken into consideration, the 
average value of tightness can be calculated 
and then, it will be assigned to δ lh ( , )i t2 .

The average tightness on all providers in 
case of link l being chosen to be included in 
S ti ( )2  is:

	  δ l ( , )i t2 = ∑ h H∈

| H |
δ lh ( , )i t2 � (16)

When taking the profits and resources re-
quirement of link l into consideration, the lo-
cal heuristic value ηl ( )t2  can be calculated by:

	         ηl ( )t2 =
δ
p j k

l

( , )
( , )i t2

� (17)

From (17), we know that a task will be 
scheduled with a higher probability when it 
can bring high profit while consuming less re-
sources.

4.4 Link scheduling probability

The probability that link l will be chosen as 
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the host with different link quality and remain-
ing energy supply.

Then, we can incorporate this probability 
into the scheduling process when deciding 
each link’s scheduling probability in (18). 
Now, (18) can be rewritten as:

P tl
i ( )2 = 









l allowed t
∑
∈

k allowed t∈

[ ( )] [ ( )] ( ( ))τ ηl l
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t t l h l

2

2 2

( )

[ ( )] [ ( )] ( ( ))τ η

2

α β

k kt t l h k2 2

0

α β ,

� (21)
This means that the lower leaving probabil-

ity the host on a link, the higher the probabili-
ty that it will be scheduled.

To realize this refinement in Algorithm 1, 
we only need to Select one link for scheduling 
according to (21) in step 9.

For the ease of comparison, this refined 
algorithm will be called Refined DATS-ACO 
(RDATS-ACO) in the following analysis.

rithm will be called DATS-ACO in the simu-
lation section.

The time complexity of the DATS-ACO 
algorithm is O(NMCq), where C is the num-
ber of iterations, and q is the number of ants. 
Moreover, the space complexity of the algo-
rithm is O(NM).

4.7 Host dynamic handling

An important difference between our cloud-
fog environment and traditional cloud-only 
setting is that the end user IoT devices have 
relatively high dynamic nature due to their 
limited energy supply and unreliable wireless 
links. Note that an IoT device may leave the 
system without noticing the cloudlet entity 
due to network disruption or energy supply 
running out. This type of system churn may 
hurt the scheduling process and thus the profit 
of the system.

To tackle this problem, the cloudlet has to 
judge each IoT device’s leaving possibility 
based on its link quality and remaining energy 
supply. The cloudlet can put more profitable 
tasks on those reliable devices with low leav-
ing possibilities. After detecting a leaving IoT 
device, the cloudlet has to put the unfinished 
tasks running on the device to the task queue 
for future scheduling if they have not missed 
their deadlines.

To be specific, the cloudlet estimates a 
leaving probability for each IoT device based 
on their link and energy supply condition. A 
leaving factor L(h) is defined for each host as:

	   L(h)=(1-q(h)) (1- e(h)) � (19)
where q(h) is the link quality of host h and 
e(h) is the remaining energy supply of host h. 
They are both normalized to be defined in the 
interval [0, 1]. High value means good link 
quality and enough energy supply and low 
leaving factor. Based on this factor, the leav-
ing probability of a host h is defined as:

l L h L h(h) = < ≤






ϕ2

ϕ

ϕ
( ), if 0.4 ( ) 0.7

3

1L h L h

L h L h

( ), if ( ) 0.4

( ), if ( ) 0.7

≤

>
� (20)

where ϕ1, ϕ2, and ϕ3 are chosen in the interval 
[0, 1] to reflect different leaving behavior of 

Algorithm 1.  Deadline-Aware Task Scheduling Algorithm for a Tiered IoT 
Infrastructure based on ACO.

1. best_solution = []
2. best_profit = 0
3. For each time slot
4. For each ant in the ant set
5.	� Find feasible link set based on all tasks’ resource requirements and deadline 

constraints, and hosts’ available resources
6.	 Place initial pheromone value on every feasible link
7.	 While feasible link set is not null
8. 	     Calculate local heuristic value for every link
9.	     Select one link for scheduling according to (18)
10.	     Add the selected link to the partial solution
11.	     �Adjust the feasible link set based on the resource consumption of the 

selected link
12.            End while
13.	 Calculate the total profit of the partial solution
14.         	 If the profit of current ant’s partial solution is larger than best_profit
15.        	    Set best_profit to be the profit of the partial solution
16.       	     Record the partial solution in the best_solution
17.        	End if
18.         	 Calculate the incremental pheromone on each link according to (13)
19.        	Clear the tabu_list for each ant
20. End for
21. End for
22. Return best_solution and best_profit
�
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in [minrc, maxrc] and [minrs, maxrs], respective-
ly. αd, the reward factor of each IoT device, 
obeys uniform distribution in the interval 
[minrf, maxrf]. Moreover, the deadline of each 
task, i.e., d(t), is set to be φ times the length of 
a timeslot and φ obeys uniform distribution in 
[mind, maxd]. ϕ1, ϕ2 and ϕ3 in (20) are set to be 
0.16, 0.08, and 0.04 respectively. The default 
values of some parameters are listed in Table 
II.

Comparison Benchmark and Metrics. To 
show the effectiveness of the proposal, First-
Come-First-Served (FCFS) algorithm, Min-
min algorithm and algorithm, and Improved 
Max-min algorithm (IMax-min), are imple-
mented on the simulator as the comparison 
basis [24]. In FCFS, the tasks are scheduled 
according to their arrival order and for each 
task the first host which can meet its resource 
and deadline requirement would be select-
ed. In Min-min, the execution time between 
tasks and hosts are calculated in advance and 
the task with minimum execution time will 
be scheduled to its corresponding host with 
higher priority. In IMax-min, the expected 
execution time for each task and host will be 
calculated in advance and then, the tasks will 
be scheduled in a descending way according 
to the expected execution time.

The profits and the guarantee ratios of 
the scheduling algorithms are the metrics to 
compare different algorithms. The profit of a 
scheduling algorithm is the total profits of all 
its scheduled tasks. The guarantee ratio equals 
to the number of scheduled tasks divided by 
the total number of arrived tasks.

5.2 Experimental results

Profits of the algorithms. The total profits 
for different algorithms are shown in figure 3. 
We can see that the total profits of these five 
algorithms increase as the arrival rate of tasks 
increases from 30 to 100. This is due to the 
fact that there are more tasks with high profits 
available for scheduling when λ increases. 
When the number of tasks is relative small, 
the resources of hosts have not been fully 

V. SIMULATION AND RESULTS

5.1 Experimental settings

To validate the effectiveness of our proposal, 
a simulator is built and extensive simulations 
are conducted based on the parameters listed 
in Table II. A few typical values are adopted 
for ACO, i.e. α β= =1, ρ=0.3. There is only 
one datacenter and one cloudlet in the system, 
and the initial number of IoT devices is set to 
be 80. 3 IoT devices join the system in each 
timeslot while each IoT device has its own en-
ergy supply and wireless link quality random-
ly selected in the interval [0, 1], which is used 
to derive its leaving probability according to 
(19). The number of simulation timeslots is 
50.

The arrival rate of the tasks obeys Poisson 
distribution with parameter λ. The minimum 
resource possession and consumption is as-
sumed to be one unit. To model the heteroge-
neity of the hosts’ resources, the amount of 
computation resource units at each host, i.e. 
Rc(h) obeys uniform distribution in the interval 
between minc and maxc. Moreover, Rs(h) obeys 
uniform distribution in the interval between 
mins and maxs. Similarly, the computation and 
storage resource requirement of each task, 
i.e., rc(t) and rs(t), obey uniform distribution 

Table II.  Simulation parameters.
Parameters Meaning Value

λ Arrival rate of tasks at each timeslot varies

minc /maxc
Minimum/Maximum amount of computational resource of 
each host

100/500

mins /maxs
Minimum/Maximum amount of storage resource of each 
host

100/500

minrc/maxrc
Minimum/Maximum amount of computational resource 
consumption of each task

50/150

minrs/maxrs
Minimum/Maximum amount of storage resource consump-
tion of each task

30/100

minrf/maxrf Minimum/Maximum reward factor of each IoT device 0/0.8

mind/maxd Minimum/Maximum deadline of each task 2/10

TD
The delay on the path between the datacenter and the 
cloudlet

100ms

TC
The delay on the path between an IoT device and the cloud-
let

50ms
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minc / mins and maxc /maxs are set to be 200 
and 600 respectively. From figure 6 and 7, we 
can draw two observations. Firstly, RDATS-
ACO always performs better than the other 
four algorithms during these two scenarios. 
Secondly, less and more resources can reduce 

exploited. As the number of tasks increases, 
the increasing rate of profits decreases. This is 
due to the relative limited resources of hosts. 
In addition, the profit of IMax-min is smaller 
than FCFS and Min-min when the number of 
tasks exceeds a certain number due to that it 
always chooses the tasks with larger execution 
time. Among all the scheduling algorithms, 
RDATSACO always has the largest profit 
since it can better find those tasks with higher 
profits and lower resource requirement and 
can cope with the dynamic nature of the IoT 
devices.

Guarantee ratio of the algorithms. The 
guarantee ratios of the five algorithms are 
shown in figure 4. From figure 4, we know that 
all five algorithms’ guarantee ratios decrease 
as the increase of the task arrival rates since 
there are more tasks that cannot be executed. 
Furthermore, RDATS-ACO always performs 
better than the other four algorithms.

5.3 Parameter influence

There are a few parameter settings that can po-
tentially influence the five algorithms’ perfor-
mance. Here, we mainly consider the deadline 
of each task, the amount of computation re-
source units at each host, ϕ1, ϕ2, and ϕ3 which 
decide the leaving probability of the hosts.

The influence of the deadline. Figure 5(a) 
and figure 5(b) shows the profits and the guar-
antee ratios of the five algorithms when mind 
and maxd are set to be 1 and 8 respectively. 
From figure 5, we can draw two observations. 
Firstly, RDATS-ACO always performs better 
than the other four algorithms during this sce-
nario. Secondly, short deadline can reduce the 
algorithms’ profits and task guarantee ratios 
since more tasks may miss their deadline when 
waiting for scheduling in the queue.

The influence of the amount of resources. 
Figure 6(a) and figure 6(b) show the profits 
and the guarantee ratios of the five algorithms 
when minc / mins and maxc /maxs are set to be 
100 and 300 respectively. In contrast, Figure 
7(a) and figure 7(b) show the profits and the 
guarantee ratios of the five algorithms when Fig. 4.  The guarantee ratio of FCFS, Min-min, DATS-ACO, and RDATS-ACO for 

different arrival rate of tasks.

Fig. 3.  The profit of FCFS, Min-min, DATS-ACO, and RDATS-ACO for different 
arrival rate of tasks.
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the same weight. Therefore, the gap between 
the leaving probabilities of different host 
groups is narrow and less hosts will leave the 
system during the process in comparison with 
the initial setting.

We can see that less leaving probabilities 
can increase the profit as well as the five al-
gorithms’ task guarantee ratios. This is due to 

and increase the algorithms’ profits and task 
guarantee ratios respectively.

The influence of the leaving probability. 
In contrast, Figure 8(a) and figure 8(b) show 
the profits and the guarantee ratios of the five 
algorithms when ϕ1, ϕ2, and ϕ3 are all set to be 
0.08. Under this setting, hosts with different 
link and energy supply quality will leave with 
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Fig. 5.  The profits and the guarantee ratios of the five algorithms when mind and maxd are set to be 2 and 8 respectively.

(b) The guarantee ratio of FCFS, Min-min, DATS-ACO, and RDATS-ACO algorithms.(a) The profit of FCFS, Min-min, DATS-ACO, and RDATS-ACO algorithms.

Fig. 6.  The profits and the guarantee ratios of the five algorithms when minc / mins and maxc /maxs are set to be 100 and 300 respectively.

(a) The profit of FCFS, Min-min, DATS-ACO, and RDATS-ACO algorithms. (b) The guarantee ratio of FCFS, Min-min, DATS-ACO, and RDATS-ACO algorithms.
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computing is introduced to act as the local 
computation facility and the relay between 
IoT devices and the remote data center. To 
effectively utilize the available resources, this 
paper formulates the task scheduling problem 
as a multi-dimensional 0-1 knapsack problem, 
and put forwards an algorithm based on Ant 
Colony Optimization (ACO). In our proposal, 

the fact that more resources are available to 
execute the offloaded tasks when the leaving 
probability is low.

VI. CONCLUSION AND FUTURE WORK

To cope with the challenges brought by tiered 
Internet of Things (IoT) environments, fog 

Fig. 7.  The profits and the guarantee ratios of the five algorithms when minc / mins and maxc /maxs are set to be 200 and 600 respectively.

(b) The guarantee ratio of FCFS, Min-min, DATS-ACO, and RDATS-ACO algorithms.(a) The profit of FCFS, Min-min, DATS-ACO, and RDATS-ACO algorithms.

Fig. 8.  The profits and the guarantee ratios of the five algorithms when ϕ1, ϕ2, and ϕ3 are all set to be 0.08.

(a) The profit of FCFS, Min-min, DATS-ACO, and RDATS-ACO algorithms. (b) The guarantee ratio of FCFS, Min-min, DATS-ACO, and RDATS-ACO algorithms.
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strained Cloud Computing Resources Sched-
uling for Cost Optimization based on Dynamic 
Objective Genetic Algorithm,” Evolutionary 
Computation (CEC), 2015 IEEE Congress on, IEEE, 
2015, pp. 708-714.

[9]	� Z. Chen, Z. Zhan, H. Li, et al., “Deadline Con-
strained Cloud Computing Resources Schedul-
ing through An Ant Colony System Approach,” 
Cloud Computing Research and Innovation (IC-
CCRI), 2015 International Conference on. IEEE, 
2015, pp. 112-119.

[10]	� S. Shin, Y. Kim, S. Lee, “Deadline-guaranteed 
Scheduling Algorithm with Improved Resource 
Utilization for Cloud Computing,” Consumer 
Communications and Networking Conference 
(CCNC), 2015 12th Annual IEEE, IEEE, 2015, pp. 
814-819.

[11]	� C. Chen, J. Lin, S. Kuo. “MapReduce Scheduling 
for Deadline-Constrained Jobs in Heteroge-
neous Cloud Computing Systems,” IEEE Trans-
actions on Cloud Computing, 2015.

[12]	� D. Li, C. Chen, J. Guan, et al., “DCloud: Dead-
line-aware Resource Allocation for Cloud Com-
puting Jobs,” IEEE Transactions on Parallel and 
Distributed Systems, 2016, pp. 2248-2260.

[13]	� D. Komarasamy, V. Muthuswamy, “Adaptive 
Deadline Based Dependent Job Scheduling 
algorithm in cloud computing,” Advanced Com-
puting (ICoAC), 2015 Seventh International Con-
ference on. IEEE, 2015, pp. 1-5.

[14]	� A. Razaque, N. R.Vennapusa, N. Soni, G. S. 
Janapati, and K. R. Vangala., “Task Scheduling 
in Cloud Computing,” in Long Island Systems, 
Applications and Technology Conference, 2016, 
pp.1-5.

[15]	� X. Yi, F. Liu, Z. Li, et al., “Flexible Instance: Meet-
ing Deadlines of Delay Tolerant Jobs in The 
Cloud with Dynamic Pricing,” Distributed Com-
puting Systems (ICDCS), 2016 IEEE 36th Interna-
tional Conference on, IEEE, 2016, pp. 415-424.

[16]	� L. Zuo, L. Shu, S. Dong, et al., “A Multi-objective 
Hybrid Cloud Resource Scheduling Method 
Based on Deadline and Cost Constraints,” IEEE 
Access, 2016.

[17]	� S. Sarkar, S. Chatterjee, S. Misra, “Assessment of 
The Suitability of Fog Computing in The Con-
text of Internet of Things,” in IEEE Transactions 
on Cloud Computing, vol.312, no. 2C3, 2003, 
pp.266-269.

[18]	� M. Aazam, E. N. Huh, “Fog Computing Micro 
Datacenter Based Dynamic Resource Estimation 
and Pricing Model for IoT,” 2015 IEEE 29th Inter-
national Conference on Advanced Information 
Networking and Applications, Gwangiu, 2015, 
pp. 687-694.

[19]	� C. Tang, X. Wei, S. Xiao, W. Chen, W. Fang, W. 
Zhang, and M. Hao. “A Mobile Cloud based 
Scheduling Strategy for Industrial Internet of 
Things.” IEEE ACCESS, vol.6, 2018, pp. 7262-
7275.

the pheromone value is placed on the links 
between tasks and hosts that execute offloaded 
tasks, enabling it to maximize the total profits 
while meeting the tasks’ deadlines and re-
source constraints. To cope with the dynamic 
nature of the IoT devices, an refined algorithm 
is presented which takes the hosts’ leaving 
probabilities into consider when scheduling 
the tasks. Extensive simulations are conducted 
to evaluate the performance of the proposed 
algorithms. Numerical results show that our 
solution outperforms existing three heuristics 
algorithms. Moreover, the refined algorithm 
outperforms the original scheduling algorithm 
since it can better tackle the churn of the sys-
tem. In the future, we will consider distribut-
ed, lightweight algorithms for the joint optimi-
zation.
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