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Abstract—Accurate and timely network inference, known as network tomography, is a vital ingredient in efficient network operation,
supporting more sophisticated and ambitious traffic optimization algorithms. In practice, however, precise knowledge of the dynamic
internal network bottlenecks/states can be impossible to obtain under restricted network visibility on network edge where only
end-to-end measurements are available without cooperation of internal network components. In this paper, we acknowledge that
network tomography on the edge is often imperfect, leading to dynamic, time-varying inference errors that could change from iteration
to iteration on the same time-scale as distributed network optimization algorithms. We quantify the impact of such imperfect
bottleneck/state inference on algorithm convergence and optimality. In particular, we show that under arbitrary, bounded inference
errors (belonging to three common classes including absent and incorrect bottlenecks, and inaccurate capacity), the solution of the
distributed optimization algorithm still converges to a bounded neighborhood of the optimal solution. The resulted optimality gap is
quantified in closed form and shown to be proportional to average inference errors. These results are evaluated using extensive
network simulations and on real-world IoT data sets. The work provide a theoretical support for understanding the impact of imperfect
inference on distributed network optimization.

Index Terms—Network optimization, Network inference, Utility optimization.
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1 INTRODUCTION

Edge computing improves service latency and processing
efficiency by enabling computation and storage capacity
at the edge network [1], [2]. The explosive growth of
the Internet of Things, combined with rapid advances in
emerging applications such as real-time data analytics and
smart cities have led to the increasing popularity of edge
computing [1], and yet at the same time, has rendered edge
network optimization a demanding task in heterogeneous
edge environment.

Such optimization problems are often addressed through
the Network Utility Maximization (NUM) framework [3],
[4], [5], [6], [7], [8], [9], [10], which often calls for distributed
algorithmic solutions based on the Lagrangian function[11].
The idea is to interpret network metrics as primal or dual
variables, and design distributed optimization algorithms
that often update the primal and dual variables via a
gradient-based approach[12], [13]. In edge networks, in
order for these gradients to be computed at the various
edge nodes, it is essential to know (dynamically) the internal
network bottlenecks/states, which, however, is often not
directly available due to restricted network visibility on
the edge, as shown in Fig. 1. To this end, techniques to
infer internal network bottlenecks/states via end-to-end
measurements on the edge, which is referred to as network
tomography[14], are becoming a vital ingredient in enabling
more sophisticated and ambitious traffic optimization
algorithms in edge networks. Unfortunately, due to growing
network complexity and yet limited visibility on the edge,
perfect network knowledge is often impossible to obtain
in practice even with state-of-the-art network tomography

Fig. 1. Distributed traffic optimization must cope imperfect network
inference due to limited network visibility on the network edge.

techniques [14], [15], [16].
In this paper, we acknowledge that perfect network

knowledge may not be available in edge NUM problems
and address the question of how much network inference
errors impact utility suboptimality. Interestingly, the answer
is “not so much” when inference errors are dynamic
and bounded. Traditionally, network monitoring relies
on the cooperation of internal network components
[17] or active probing [18], [19], which are often
impractical due to high probing overhead, lack of
cooperation, and growing privacy and proprietary concerns
[20], [21], [22]. Alternatively, network tomography [23]
infers internal network bottlenecks and states via edge-
based measurements, e.g., [14], [15], [16], [24]. However,
dynamically inferring precise network knowledge is
difficult due to a number of reasons [25], [26]. First,
network tomography based on end-to-end measurements
often encounter the lack of identifiability problem [17],
meaning that the measurements are insufficient to uniquely
determine a network state and link metrics [27], [28], [29].



Second, network virtualization, widely used in cloud/fog
systems, can introduce an opaqueness imposing serious
obstacles on network inference [30]. Finally, edge networks
are usually exposed to a high degree of dynamics and
heterogeneity induced by device mobility and application
variability, which can degrade the quality of available edge-
based measurements. Perfect network inference is hardly
achievable in practice.

Under incomplete and imperfect network inference,
our goal in this paper is to quantify the convergence
and optimality of distributed NUM algorithms in edge
networks. We consider dynamic inference errors that can vary
during the process of network inference and on the same
time-scale of distributed NUM algorithms. In particular, we
focus on three common classes of inference errors: (i) absent
bottlenecks that are not identified, (ii) incorrect bottlenecks
in which flows are mistakenly inserted or erased, and (iii)
inaccurate estimate of bottleneck link capacity. All of the
three kinds of errors could vary in different network metric
estimation iterations by using probe data, even adjacent
iterations, which makes the optimization better adapt to
fast changing network interference. In addition, for slowly
changing network interference, three kinds of errors may
remain the same for many iterations which make the
optimization converge faster.

In this paper, we consider distributed NUM problems
and prove that, under arbitrary, bounded inference errors,
distributed traffic optimization algorithms based on the
Lagrangian can still converge using running averages of the
primal and dual variables. Further, the converged solution
is shown to converge to a small neighborhood of the global
optimal solution, with an optimality gap that is proportional
to the average inference error and diminishes linearly to
zero as the inference errors decrease. We provide proofs
of all lemmas in the appendix. We quantify the optimality
gap and validate our theoretic results using extensive
NS2 simulations, with randomly generated topologies and
routing. We simulated our algorithm’s performance in
different setting of network scale, amount of flows, network
inference, and showed it worked well in all scenarios.

The main contributions of the paper can be summarized
as follow:

• We show that distributed traffic optimization
algorithms based on the Lagrangian still converge
under imperfect bottleneck inference with dynamic,
bounded errors, including absent and incorrect
bottlenecks, and inaccurate bottleneck capacities.

• The optimality gap due to network inference errors
is quantified in closed form. The gap is shown
to be proportional to average inference error and
diminishes to zero as inference error decreases.

• Our theoretical analysis is evaluated using extensive
simulations. The numerical results validate our
theory under different inference error rates and with
randomly generated networks and flows.

2 RELATED WORKS

Network bottleneck/state inference is known to be
a challenging problem due to growing network size,
increasing heterogeneity, and dynamic network changes

[31], [32]. The active approach is often undesirable in
practice because it normally requires the cooperation of
internal network components [17] or active probing [18],
[19]. A mechanism for estimating network bottlenecks and
their link capacities is proposed in [14], [24] by minimizing
the entropy of the inter-packet spacing via flow clustering.
The work has since been extended to dynamic networks
using Lypunov theory [15], [16], robust clustering based
on Renyi entropy [24], and maximum-likelihood-based
topology inference [21]. Network tomography has also
been used for clustering online TCP flows [22], estimating
multicast trees [33], and locating network bottlenecks [19].
Given current network topology, there are also papers
targeting to optimize network resource by predicting traffic
by machine learning[34] or data analysis[35]. However, it is
often not possible to achieve perfect network inference due
to network dynamics, virtualization, and limited visibility
on network edge. In this paper, we address a crucial
question as follows: with imperfect bottleneck inference
on network edge, how does it affect the convergence
and optimality of existing distributed traffic optimization
algorithms?

Many network design problems can be formulated
as utility and traffic optimization under bottleneck/link
capacity constraints [36], [37], [38], [39], [40], [41], [42].
To enable distributed implementation of NUM algorithms,
information feedback through message passing among
network entities are normally required. The impact of
imperfect and noisy feedback on distributed NUM in multi-
hop wireless networks have been considered in [37], [38].
Another line of work such as [36] develops robust NUM
algorithms to deal with imperfect information, e.g., in the
form of delay, while incentive mechanisms to promote
reporting of truthful local information is studied in [43].
The authors of [44] developed an analytical framework
to quantify the impact of suboptimality gap on the
convergence and stability of distributed NUM problems.
In contrast, our work aims to quantify the impact of
dynamic, time-varying inference errors – that could change
from iteration to iteration – distributed NUM algorithms.
While in this paper we focus the family of distributed
NUM algorithms, we note that besides distributed NUM
algorithms, other practical solutions for traffic optimization
[45] have also been proposed in the literature.

Edge/fog computing enables a large number of
heterogeneous and decentralized devices on network edge
to communicate and perform storage and computing
tasks [46], [1]. Focusing on imperfect network inference,
our work in this paper is different from those that
employ robust optimization to deal with uncertainty in the
problem parameters and constraints [47]. In contrast, we
acknowledge that perfect inference may be impossible to
achieve in practice and analyze the performance of existing
distributed traffic optimization algorithms under dynamic
inference errors, which varies on the same time scale as the
algorithms and could change from iteration to iteration [13].

3 SYSTEM AND PROBLEM STATEMENT

We consider a network consisting of m distributed edge
nodes/entities, such as smart devices, access points,
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computing/storage servers, mobile terminals, which form
various edge-computing clusters and enclaves. Typically,
NUM aims to jointly determine all flow rates x =
(x1, x2, . . . , xm) (denoted as the bandwidth allocation
vector) to maximize an aggregate utility f(x) =∑
i f(xi), subject to determined topology and link capacity

constraints. We note that f(xi) is assumed to be continuous,
increasing, and concave. It measures the utility of assigning
bandwidth xi to edge source i. Let b denote the link capacity
vector containing the link capacity constraint bj of each link
j, and A be the combined routing matrix such that Aij = 1
if flow i traverses link j, and Aij = 0 otherwise. The NUM
problem can be formulated as follows:

max
∑
i

f(x) s.t. g(x) = Ax− b ≤ 0 (1)

where Ax ≤ b is the network capacity constraint. This
optimization framework has been shown to capture many
crucial design objectives including meeting application
deadlines, mitigating network congestion, and providing
QoS guarantees.

To obtain a distributed solution to the NUM problem,
we often decouple the problem using the primal-dual
method[13]. More precisely, we consider flow rates x as
prime variables and introduce λ as the Lagrangian dual
variables with respect to the capacity constraints. The
Lagragian function is then obtained as

L(x, λ) = f(x)− λT (Ax− b) (2)

Functions f(x) is convex and continuous on feasible
set X and D, respectively. Suppose that the set of optimal
solutions {x∗} and the set of optimal dual solutions (i.e.,
optimal Lagrange multipliers) {λ∗} are both nonempty,
closed and bounded. Solving the traffic optimization
problem is equivalent to finding a saddle point of the
associated Lagrangian function over X × D, which is
solved by a Projected Gradient Algorithm (PGA) [13]. Let
PX and PD denote the projections of the primal and
dual variables onto X and D, respectively. The Projected
Gradient Algorithm employs the following updates on the
primal and dual variables:

x(τ + 1) = PX [x(τ) + α∇xL(x(τ),λ(τ))] (3)
λ(τ + 1) = PD [λ(τ)− α∇λL(x(τ),λ(τ))] (4)

where (τ = 0, 1, 2, . . .) is the number of iterations, and α >
0 is a constant stepsize. The algorithm can be carried out
distributedly at different edge entities, and it is guaranteed
to converge to an optimal solution (x∗,λ∗) to both the
primal and dual problems.

In primal-dual algorithm, prime variables x and dual
variables λ are updated on the same time scale in a
discrete fashion. For each iteration τ + 1, each source
node i updates its flow rate through the gradient in 3,
i.e., ∇xi

L(xi(τ),λ(τ)) = ∇f(xi) − ĉiλ where ĉi is the
ith column of routing matrix A. Thus, node i needs the
congestion prices λj(τ) of all routers on the path of flow i.
Let rj be the jth row of routing matrix A. Similarly, each
router will update congestion prices according to 4 with
gradient ∇λL(x(τ),λ(τ)), which is the aggregate data rate
minus capacity at link j. These updates can be performed by

distributed source nodes and routers(when such capabilities
exist) or by a network controller.

However, in edge networks, the edge entities are
connected by a network, whose internal link metrics,
bottlenecks and network states are not known to the
edge nodes. It lacks the necessary cooperation and
information(e.g., ĉi and r̂j) from routers and network
controllers to update x and λ. To estimate routing topology
A and bottleneck capacity b, edge nodes often leverage
packet data. Edge nodes use data they receive(like flow rate
or package loss rate) and some simple measurements(like
probe-collecting information) to estimate the internal link
metrics in ”black box”[14], [24]. For example, in [14], the
author showed how to estimate bottlenecks by minimizing
the entropy of the inter-packet spacing and clustering flows
into groups. Due to the statistical natural of these algorithms
as well as time-varying network dynamics, the results
inevitably contain inference errors, e.g., causing ”hidden”
flows in routing matrix and ”noise” in bottleneck capacity.
Traffic optimization with time-varying imperfect inference

We acknowledge that perfect network knowledge may
not be available in edge NUM problems and analyze
the convergence and optimality of projected-gradient-based
NUM algorithms (jointly) under three common classes
of dynamic inference errors that can vary on the same
time-scale of the inference and NUM algorithms. First,
we consider the possibility of absent bottlenecks that are
missing in the network inference from time to time. For
each iteration τ , we model missing bottlenecks using a set
of binary variables djj(τ) ∀j, i.e., djj(τ) = 1 if bottleneck
link j is identified at the time of the τ th iteration, and
djj(τ) = 0 otherwise. Then, we define a diagonal indicator
matrix De = diag{djj , ∀j}. When there is no missing
bottleneck, De(τ) becomes an identify matrix. Next, we
introduce an error matrix Re(τ) to model the incorrectly
inferred bottlenecks where flows are mistakenly inserted
or erased. More precisely, we have Reij(τ) = 1 if flow i
is incorrectly inserted on bottleneck link j, Reij(τ) = −1
if flow i is undetected, and Reij(τ) = 0 if the inference
about flow i is correct. Thus, the (imperfect) inferred routing
matrix at the time of ith iteration becomes A + Re(τ).
Finally, to model erroneous bottleneck capacity, we assume
that the inferred capacity values on bottleneck links are
corrupted by a noise vector be(τ), i.e., b+ be(τ).

In this paper, we do not make any assumptions on the
time-scale or dependence of such inference errors. More
precisely, the three types of errors could vary (dependently
or independently) on arbitrary time scales, e.g., from
iteration to iteration if network inference is carried out
frequently on each iteration of the NUM algorithm, or
remaining the same for a number of iterations under
a slowly-changing network environment. For example,
in [14], a wrong clustering in routing matrix estimation
will introduce extra or missing flows represented by
Re. Omitting bottlenecks will be represented by De.
Time-varying network quality and previous optimization
feedback will be represented by be.

To illustrate our model of NUM with imperfect inference,
we consider a simple network shown in Fig. 2 with 3
flows sharing 2 bottlenecks, with capacity 2 Mbps and 3
Mbps, respectively. In particular, Blue flow 1 is from node
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1 to node 5. Yellow flow 2 is from node 2 to node 4
but share the same link with green flow 3 from node 3
to node 4. The first bottleneck applies to a link used by
flow 1, while the second bottleneck applies to the shared
link by flows 2 and 3. It is easy to see that the routing
matrix is thus A = (1 0 0; 0 1 1) and capacity vector
b = (2, 2)T , corresponding to constraints x1 ≤2Mbps and
x2 + x3 ≤3Mbps. Thus, the gradient-based update will
consider the following constraint instead:

ĝ(x) = De(τ) [(A + Re(τ))x− (b + be(τ))] ≤ 0, (5)

Fig. 2. A illustrative example of NUM with imperfect network inference.

Now consider the following network inference error
during iteration τ of the optimization algorithm. Because
node 1 and node 2 are far from node 3, they can not
exchange information with node 3. So node 1 and node
2 estimate they share the same link, and thus cause link
bottleneck x1 + x2 ≤ 2.2Mbps. Then, there are 3 kinds ot
estimation errors: (1)they omit one bottleneck including x2

and x3, which can be represented by De(τ) = diag(1, 0);
(2) they incorrectly include x2 in the first bottleneck which
actually only includes x1, which can be represented by
Re(τ) = (0 1 0; 0 0 0); (3)they have a capacity estimate error
of +0.2Mbps, which can be represented by be(τ) = (0.2, 0)T .
In this iteration, De(τ) cause one missing constraint, Re(τ)
cause one incorrect bottleneck link, and be(τ) cause one
larger maximum link capacity in constraint.

4 ANALYZE CONVERGENCE AND OPTIMALITY
UNDER IMPERFECT INFERENCE

In this section, we prove that under the three
types of network inference errors, the solution of the
distributed traffic optimization algorithm still converges
to a neighborhood of the optimal solution. Further, the
optimality gap (i.e., the difference between the achieved
utility and the maximum possible utility) can be quantified
by an upper bound in closed-form.

In the τ th iteration, consider inference errors modeled
by De(τ), Re(τ), and be(τ). The distributed traffic
optimization (1) now has a new constraint function ĝ(x)
(which takes into account the network inference errors) as
follows:

ĝ(x) = De(τ) [(A + Re(τ))x− (b + be(τ))] ≤ 0 (6)

To apply the projected gradient algorithm, we formulate the
Lagrangian with respect to ĝ(x). We have

L̂(x, λ) = f(x)− λT ĝ(x) (7)

Because the Lagrangian function is different due to
the inference errors, the gradient update will change
accordingly:

x(τ + 1) = PX
[
x(τ) + α∇xL̂(x(τ),λ(τ))

]
(8)

λ(τ + 1) = PD
[
λ(τ)− α∇λL̂(x(τ),λ(τ))

]
(9)

Suitable average can help deal with nonvanishing
errors in gradient based approaches. To derive an upper
bound on the optimality gap, we show that the following
running average converges to a neighborhood of the optimal
solution.

x̄(τ) ,
1

τ

τ−1∑
i=0

x(i) and λ̄(τ) ,
1

τ

τ−1∑
i=0

λ(i) (10)

Let || · || denote the matrix L2-norm. In the following,
we first analyze the evolution of primal and dual variables
x(τ) and λ(τ) in the projected gradient update in Lemma
1. In particular, it quantifies the distance between x(τ) and
an arbitrary point x as the distributed algorithm proceeds
from iteration τ to τ + 1. Then, in Lemma 2, we utilize the
result in Lemma 1 and add up the inequalities from iteration
i = 0 to i = τ − 1, which offer a bound for the difference
between the optimal (error-free) utility and the sum of
Lagrangian functions. Finally, we combine the lemmas
to obtain the desired upper bound between the optimal
solution and the sum of utilities of running averages. To
simplify the notations, we will use L = L(x(τ),λ(τ)) and
L̂ = L̂(x(τ),λ(τ)). The detailed proof procedures of lemma
1, 2 and 3 are shown in the Appendix.

Lemma 1. Let the sequences {x(τ)} and {λ(τ)} be generated
by the projected gradient algorithm (9) with bottleneck inference
errors, we then have:

‖x(τ + 1)− x‖2 − ‖x(τ)− x‖2

≤ −2α[L(x,λ(τ))− L(x(τ),λ(τ))] + α2‖∇xL̂‖2

+2α‖Γ1(τ)(x(τ)− x)‖ (11)
‖λ(τ + 1)− λ‖2 − ‖λ(τ)− λ‖2

≤ 2α[L(x(τ),λ(τ))− L(x(τ),λ] + α2‖∇λL̂‖2

+2α‖Γ2(τ)(λ(τ)− λ)‖ (12)

where we defined Γ1(τ) = ∇xL̂ −∇xL as the introduced error
in the x-gradient, and Γ2(τ) = ∇λL̂ − ∇λL as that of the
λ-gradient, or equivalently,

Γ1(τ) = λT (τ)[De(τ)A+De(τ)Re(τ)−A] (13)
Γ2(τ) = Ax−De(τ)[A + Re(τ)]x

+De(τ)[b + be(τ)]− b (14)

Next, we use the results in Lemma 1 to bound the
difference between the optimal solution and the average of
Lagrangian functions over different iterations.

Lemma 2. Let f∗ be the optimal utility obtained without
bottleneck inference error, and x(0) and λ(0) be the initial primal
and dual variables at the beginning (τ = 0) of the iterative
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optimization algorithms. We have

f∗ − 1

τ

τ−1∑
i=0

L(x(i),λ(i))

≤ ‖x(0)− x‖2

2ατ
+

1

τ

τ−1∑
i=0

(‖Γ0(i)‖+
α

2
‖∇xL̂‖2), (15)

1

τ

τ−1∑
i=0

[L(x(τ),λ)− L(x(τ),λ(τ))] ≤ ‖λ(0)− λ‖2

2ατ

+
1

τ

τ−1∑
i=0

(‖Γ2(i)(λ(i)− λ)‖+
α

2
‖∇λL̂(i)‖2) (16)

where we introduced the following auxiliary variable:

Γ0(τ) = Γ1(τ)[x(τ)− x] (17)

Now, we combine Lemmas 1 and 2 to bound the
difference between optimal utility f∗ and the achieved
utility f(x̄(τ)). To this end, we define the following
auxiliary variables:

K0 = ‖x(0)− x∗‖2 + ‖λ(0)‖2, (18)

KL̂ =
1

τ

τ−1∑
i=0

(‖∇xL̂‖2 + ‖∇λL̂‖2), (19)

KRe,be,De =
1

τ

τ−1∑
i=0

(‖Γ0(i)‖+ ‖Γ2(i)λ(i)‖), (20)

which is used to state the following lemma.

Lemma 3. The solution x̄(τ) generated by the distributed
optimization algorithm under bottleneck inference errors converge
to a neighborhood of the optimal solution, bounded by

f∗ − f(x̄(τ)) ≤ K0

2ατ
+
αKL̂

2
+KRe,be,De , (21)

where K0 in (18) is determined by the initial state of the
algorithm, KL̂ in (19) depends on the average value of the
Lagrangian, and KRe,be,De in (20) is determined by the three
types of errors.

Remark 1: Lemma 3 shows that with sufficiently
small α and sufficiently large ατ , distributed traffic
optimization algorithms under inference errors converges to
a neighborhood of the optimal solution. The gap KRe,be,De

depends on the three types of inference errors. It provides
us with a powerful tool for analyzing the optimality under
inference errors.

We consider bounded network inference errors
satisfying ∀τ

‖De(τ)− I‖ ≤ BD, ‖Re(τ)‖ ≤ BR, ‖be(τ)‖ ≤ Bb, (22)

for some constants BD, BR, Bb ≥ 0. We assume that the
sequence of primal and dual variables, {x(τ)}∞τ=0 and
{λ(τ)}∞τ=0, are also bounded, i.e., there exists a constant
Bx ≥ 0, such that for any τ :

‖λ(τ)‖ ≤ Bx, x(τ) ≤ Bx, ‖x(τ)− x∗‖ ≤ Bx, (23)

which allow us to bound the Lagrangian and gradient in
Lemma 3. We also use BU ′ to denote the bound on the
gradient of utility, i.e., ||∇xf(x)|| ≤ BU ′ , for bounded x(τ).

Theorem 1. When all three types of inference errors are bounded,
the solution x̄(τ) generated by distributed optimization algorithm
satisfies:

f∗ − f(x̄(τ)) ≤ Bx
ατ

+
αB1

2
+

1

τ

τ−1∑
i=0

Qi, (24)

where B1 = (BU ′ + 2Bx||A|| + 2BxBR + Bb + ||b||)2 is a
constant, and Qi is the weighted sum of the three types of network
inference errors in iteration i, given by

Qi = 2B2
x(‖(De(τ)− I)‖ · ‖A‖+ ‖Re(τ)‖)

+Bx(‖De − I‖‖b‖+ ‖be‖) (25)

Proof. We just need to analyze and bound K0, KL̂ and
KRe,be,De in Lemma 3. The result is then directly from (21).
First, it is easy to see that due to (22), we have

K0 = ‖x(0)− x∗‖2 + ‖λ(0)‖2 ≤ 2Bx. (26)

For KL̂ in (19), we need to bound ‖∇xL̂‖2 and ‖∇λL̂‖2
separately. To this end, we derive for any iteration τ

‖∇xL̂‖ = ‖∇xf(x)− λTDe(τ)(A+Re(τ))‖
≤ BU ′ +Bx (‖A‖+BR) , (27)

where we used ‖De(τ)‖ ≤ 1 because it is a diagonal matrix
with only 0 or 1, and the bound of Re(τ) in (22). Similarly,
we also have for any iteration τ

‖∇λL̂‖ = ‖De(τ) [(A+Re(τ))x− b− be(τ)] ‖
≤ ‖A‖Bx + ‖b‖+BxBR +Bb, (28)

where we again used ‖De(i)‖ ≤ 1 and the bound for be(i)
and Re(i)) in (22). Combining these results and using c2 +
d2 ≤ (c+d)2 for c = ‖∇xL̂‖ and d = ‖∇λL̂‖, we can easily
derive the bound for KL̂.

Next, to bound KRe,be,De in (20), we need to bound
‖Γ0‖ and ‖Γ2(τ)λ(τ)‖. It is easy to show that

‖Γ0‖ ≤ Bx‖λT (τ)[De(τ)A+De(τ)Re(τ)−A]‖
≤ B2

x(‖(De(τ)− I)A+Re(τ)‖)
≤ B2

x(‖(De(τ)− I)‖ · ‖A‖+ ‖Re(τ)‖) (29)

where we used ‖λ‖ ≤ Bx. On the other hand, we can also
show:

‖Γ2(τ)λ(τ)‖ ≤ Bx‖Ax−De(τ)[A+Re(τ)]x

+De(τ)[b + be(τ)]− b‖
≤ Bx‖(De(τ)− I)(Ax− b)‖
+Bx‖De(τ)(Re(τ)x− be(τ))‖
≤ B2

x(‖(De(τ)− I)‖ · ‖A‖+ ‖Re(τ)‖)
+Bx(‖De − I‖‖b‖+ ‖be‖) (30)

where the first step used ‖λ‖ ≤ Bx, and the second step
used ‖De‖ ≤ 1 and ‖x‖ ≤ Bx. Combining (29) and (30),
we can bound KRe,be,De . Finally, by plugging (26)-(30) into
(21) in Lemma 3 and rearranging the terms, it is straight
forward to prove the result in this theorem.

Corollary 1. (Convergence) For any ε1 > 0, there exist stepsize
α and iteration number τ , such that

f∗ − f(x̄(τ)) ≤ ε1 +
1

τ

τ−1∑
i=0

Qi. (31)
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Proof. We choose α = 1/Z and τ = Z2. Since Bx and B1 are
constants, not depending on α or τ , we have

Bx
ατ

+
αB1

2
=
Bx +B1/2

Z
→ 0, as Z →∞, (32)

which implies that there exist α and τ , such that (32) is no
greater than ε1. According to Theorem 1, this completes the
proof of this corollary.

Corollary 2. (Optimality bound) Suppose the three types of
network inference errors occur independently in each iteration
with probabilities θD, θR, θb, respectively. For any ε2 > 0, there
exist stepsize α and iteration number τ , such that

f∗ − f(x̄(τ)) ≤ ε2 +B2BDθD + 2B2
xθR +Bxθb. (33)

In other words, the optimality gap diminishes linearly as the
probabilities of inference errors decrease.

Proof. We again choose α = 1/Z and τ = Z2. From
Corollary 1, for ε2/2, there exists Z1, such that f∗ −
f(x̄(τ)) ≤ ε2/2 + 1

τ

∑τ−1
i=0 Qi. Next, we recognize that

||De(i)−I|| is a sequence of i.i.d. random variables bounded
by BD . Due to the law of large number, it is easy to see that
there exists Z2, such that τ = Z2

2 satisfy

1

τ

τ−1∑
i=0

||De(i)− I|| ≤
ε2
6

+ E[||De(i)− I||] ≤
ε2
6

+ θDBD,

where E[·] is the expectation function, and we used the
bound BD in the last step. Using exactly the same method,
we can prove that there exists Z3 and Z4, such that

1

τ

τ−1∑
i=0

||Re(i)|| ≤
ε2
6

+ θRBR,
1

τ

τ−1∑
i=0

||be(i)|| ≤
ε2
6

+ θbBb.

If we choose Z = max(Z1, Z2, Z3, Z4), then all the
inequalities above are satisfied simultaneously. It directly
leads to

f∗ − f(x̄(τ))

≤ ε2
2

+
1

τ

τ−1∑
i=0

Qi

=
ε2
2

+
ε2
6

+ θDBD +
ε2
6

+ θRBR +
ε2
6

+ θbBb,

which completes the proof of this corollary.

Remark 2: Corollary 1 proves that for sufficiently small α and
sufficiently large ατ , distributed optimization algorithms
under imperfect network inference can converge to the
optimal solution with an optimality gap v = 1

τ

∑τ−1
i=0 Qi =

B2BDθD+2B2
xθR+Bxθb, determined by average inference

error. Further, as the probabilities θD, θR, θb of inference
errors decrease, the optimality gap diminishes linearly and
becomes tighter, as shown in Corollary 2. It also allows us to
separately characterize the impact of each type of inference
error.

Corollary 3. (Iteration number bound) Suppose the three
types of network inference errors occur independently in each
iteration with probabilities θD, θR, θb, respectively. For any ε2 >
0, there exist step size α =

√
BxB1

2τ , for any iteration number

τ >
16Bx+B4

1Bx+8B2
1Bx

(f∗−v−f(x̄(τ))−ε2)2 , the difference between f(x̄(τ)) and
theoretical optimal value f∗ converge to optimality gap v:

f∗ − f(x̄(τ)) ≤ ε2 + v (34)
(35)

Proof. From Theorem 1 and α =
√

BxB1

2τ , we have

f∗ − f(x̄(τ)) ≤

√
2Bx
B1τ

+

√
B3

1Bx
8τ

+
1

τ

τ−1∑
i=0

Qi (36)

From corollary 2, given optimality gap v = B2BDθD +
2B2

xθR +Bxθb, and (36), we have

f∗ − f(x̄(τ)) ≤ ε2 +

√
2Bx
B1τ

+

√
B3

1Bx
8τ

+B2BDθD

+2B2
xθR +Bxθb

≤ ε2 +

√
2Bx
B1τ

+

√
B3

1Bx
8τ

+ v (37)

From (37), we have

f∗ − v − f(x̄(τ))− ε2 ≤

√
2Bx
B1τ

+

√
B3

1Bx
8τ

(f∗ − v − f(x̄(τ))− ε2)2 ≤ 2Bx
B1τ

+
B3

1Bx
8τ

+
B1Bx
τ

τ ≤ 16Bx +B4
1Bx + 8B2

1Bx
(f∗ − v − f(x̄(τ))− ε2)2

which completes the proof of this corollary.
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Fig. 3. An example of our optimality bound for different network inference
errors and algorithm parameters.

To demonstrate application of our results, we consider
the simple network example shown in Section 3 and
compute its optimality bound without running the
distributed algorithm. There are 3 flows and 2 bottlenecks
x1 +x2 ≤ 2 and x2 +x3 ≤ 2. Thus, we have ‖A‖ =

√
3 and

‖b‖ = 2
√

2. Since each flow is limited by the maximum
link capacity, we also have ‖x‖ = 2

√
3. Consider the

throughput optimization with objective f =
∑
i xi. It is

easy to see that ‖∇xf(x)‖ ≤ BU ′ =
√

3. For each iteration
τ , we consider all three types of (independent) inference
errors with probability θD = θB = θb. More precisely,
with the same probability, one of the two bottlenecks will
be be absent (thus ‖De(τ) − I‖ ≤ BD = 1), one flow
will be incorrectly added/inserted into the bottleneck (thus
B‖Re(τ)‖ ≤ BR = 1), while the link capacity estimate error
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Figures # of nodes
N

# of flows
F

Error rate, type Utility Function Local Link Central
Link

7, 5, 6 500 20 0-20%, all
∑

i xi 0.25,54
Mbps

1-10 Gbps

8 500 0.7 ·N 0-20%, all
∑

i wi log(xi) 0.25,54
Mbps

10 Gbps

10 500 0.7 ·N 0-20%, single
∑

i wi log(xi) 0.25,54
Mbps

10 Gbps

9 500 0.7 ·N 0-20%, all
∑

i wi log(xi) 0.25,54
Mbps

10 Gbps

11 100-500 0.7 ·N 0-20%, all
∑

i wi log(xi) 0.25,54
Mbps

10 Gbps

12 500 0.1−0.8 ·N 0-20%, all
∑

i wi log(xi) 0.25,54
Mbps

10 Mbps

TABLE 1
A summary of the key parameters in our simulation.

could swing in band ±0.1 (thus ‖be(τ)‖ ≤ Bb = 0.1 ·
√

2).
Leveraging our analytical bound, we can compute an upper
bound of f∗ − f(x̄(τ)) in closed form, which is shown
in Fig. 13 for different inference error probabilities and
algorithm parameters. The bound improves with smaller
stepsize α and larger number of iterations τ . It also
diminishes linearly as the inference error decreases, as
shown in Fig. 13.

5 EVALUATION AND NUMERICAL RESULTS

5.1 Methodology and Simulation Setup
We validate our theoretical results on algorithm
convergence and optimality through extensive NS2
simulations with real world IoT nodes’ transmission rate as
well as file size with real IoT data set.

In simulation, we use file size from two real IoT data
sets: (1) consisting of 200 hours of accelerometer information
recorded over 25 days from 5 participants [48], with each
data point in the size range of 80-187MB. (2) a series of
continuous frames extracted from a traffic video sequence
recorded by stationary cameras[49][50]. For the transmission
rate of nodes, we set a uniform combination of 250Kbps and
54Mbps. This is because if IoT nodes communicating with
its cluster header through IEEE 802.15.4, NB-IoT, or ZigBee,
in which the transmission rates are 250Kbps; if the IoT nodes
communicating through IEEE 802.11 a/g, the transmission
rate is 54 Mbps.

We write a script to randomly generate an edge network.
The network contains K clusters. Each cluster has a random
number of edge entities, uniformly distributed in [2, 5],
one of which is selected as the cluster head. So the
number of clusters is determined by our network size
and the generated cluster size. Then, we randomly select
edge entities as traffic sources and destinations to generate
three types of data flows (totally F flows): (i) peer flows,
beginning with and ending in the same cluster, (ii) multiple-
to-one flows, which transfer data between edge entities
and cluster heads, and (iii) cross-cluster flows, from one
cluster to another, traversing cluster head and intermediary
nodes. We also vary assigned capacities to central links
(connecting intermediaries and cluster heads) and local
links (connecting edge entities). Since the objective of the
evaluation is mainly to validate our theoretical analysis on
the impact of network inference errors, we did not observe

a substantial difference with respect to varying traffic type,
albeit that networks with more multiple-to-one flows and
cross-cluster flows require more time to converge.

We implement the distributed traffic optimization
algorithm with the projected gradient method for stepsize
α. Two different utility functions are considered, including
total throughput

∑
i xi and proportional fair utility∑

i wi log(xi), where weights wi are uniformly distributed
in [1, 2]. We run the algorithm under all three types of
(coupled) inference errors - absent bottlenecks, incorrect
bottlenecks, and inaccurate bottleneck capacity - with error
rates r% ranging from 0 to 20%. Since most existing works
on network tomography demonstrated estimation inference
error below 20%, we set 20% as the maximum error rate of
our simulation setting. The inference errors are generated
randomly and vary from iteration to iteration.

Since NS2 records the status and time stamps of each
packet, including the time it departs and arrives at each
intermediary/source/destination, we analyze the package
logs to obtain flow rates, throughput, utility values, and
average packet delays. An example of our randomly
generated networks is illustrated in Fig. 4, where the denser
packets indicate the higher flow rates. All numerical results
presented in our evaluation are the average of 2000-5000
runs. Table 1 summarizes key parameters.

5.2 Numerical Results

Fig. 8 shows the impact of bottleneck inference error
on the speed of convergence for the distributed traffic
optimization algorithms. We consider the α-fair utility
function u =

∑
i wilog(xi) with uniform weights in [1, 2].

While it is proven that the algorithms always converge
under bounded inference errors, higher inference error leads
to slower convergence, as the (average) required number
of iterations increases from 292 to 458 (i.e., 58% increase)
when bottleneck inference error grows to 20%. For the same
setup, Fig 9 plots the distribution of normalized utility (i.e.,
the Cumulative Distribution Function, or CDF) achieved
under different error rates. Higher bottleneck inference error
not only causes lower achievable utility on average, it also
increases the spread of achievable utility, implying higher
variation in the outcome.
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Fig. 4. Network Topology Fig. 5. Average packet delay Fig. 6. Breakdown of different flows rates

Fig. 7. Average packet delay

Fig. 8. Convergence speed
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In Fig. 7, we optimize the total throughout
∑
i xi under

0%, 10%, and 20% bottleneck inference error (for all three
types of errors), as the central link capacity (connecting
intermediaries and cluster heads) increases from 1Gbps to
10Gbps, while local link are at 2Mbps (which is the average
data from our second IoT dataset). It can be seen that,
as central link capacity increases, the relative difference
between the optimal throughput achieved under different
error rates becomes smaller. For example, the normalized
throughput loss due to 20% inference error decreases
from 52% to less than 10% as central link capacity grows
from 1Gbps to 10Gbps. It implies tha accurate bottleneck
inference is more crucial for optimizing resource constrained
networks with high congestion.

For the same simulation setup, Fig. 5 illustrates the
adverse effect of bottleneck inference on packet delay.
Higher bottleneck inference error results in higher packet
delay, for up to 49%. Also, we notice that under bottleneck
inference error, packet delay increases quickly as central
link capacity drops, highlighting the importance of accurate
inference in networks that are already congested. Similarly,
Fig. 6 shows the breakdown of data rates assigned to
each flow in the network with central link capacity ,
when central link capacity is 2Gbps (which is chosen
from the range shown Figure 7 and corresponds to a low
throughput scenario). While total throughput suffers from
higher bottleneck inference error (as witnessed in Fig. 7),
there exist flows that actually benefit from such inference
error, since missing bottlenecks may unfairly assign high
data rate to certain flows, at the expense of decreasing
overall network performance.

Next, we study the impact of each type of inference
errors, including (i) absent bottlenecks, (ii) incorrect
bottlenecks, and (iii) inaccurate bottleneck capacity. In
particular, we vary each type of inference error from 2%
to 20% error rate, while keeping the other two types of
errors fixed. The local link capacity is a combination of
0.25Mbps and 54Mbps, and the central link capacity is
10 Gbps. Fig. 10 shows the (achieved) normalized utility
with respect to each type of inference error. Interestingly,
absent bottlenecks result in the smallest utility loss. It is
because dynamic inference errors change on the same time-
scale as the distributed optimization algorithm, and thus
the gradient-based update can still take different subsets
of bottlenecks (i.e., active constraints) into account from
iteration to iteration, leading to efficient computation of
optimal utility. On the other hand, inaccurate bottleneck
capacities have the highest impact on achievable utility, due
to the accumulation and propagation of gradient error in the
distributed algorithm.

Our analysis in this paper provides an upperbound on
the optimality gap G = f∗ − f(x̄(τ)). Thus, f(x̄(τ)) + G
establishes an upperbound on the optimal solution f∗. To
numerically illustrate our upperbound, Figure 13 shows
the normalized optimality bound that is defined as ratio
between our upperbound and the optimal solution, i.e.,
[f(x̄(τ)) + G/]/f∗, for different inference error rates and
different network size. The results are averaged over 5 runs.
It can be seen that the normalized bound is tighter for
larger-size networks as the random errors are more likely
to average out.

Fig. 13. Normalized optimality bound for different inference error rates.

Fig. 14. Normalized utility for edge network topology in .
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To demonstrate the impact of network inference errors
on real-world edge network typologies, in Figure 14 we
leverage an edge network dataset recently published in [51]
and plot the normalized utility with different inference error
rates: 5%, 10%, and 20% and for network size of 25, 50 and
100 nodes, respectively. The results are consistent with our
simulations.

Finally, we study the scalability of distributed
traffic optimization under bottleneck inference errors, by
increasing the network size from N = 100 nodes to
N = 1800 nodes, while the number of flows also increases
proportionally at F = 0.7 · N . It can be seen in Fig.11 that
the network grows, the achieved utility (normalized by the
optimal utility in the error-free case) drops quickly. This
is because larger networks lead to longer flows (that are
subject to more link capacity constraints) and more network
bottlenecks (both on central and local links), and thus
are more sensitive to inference error. Fig. 12 demonstrates
similar results when the number of flows increases from
100 to 400, while the size of the network is fixed at 500
nodes. Again, inference errors cause larger utility loss in
more heavily congested networks.

6 CONCLUSIONS
Under imperfect bottleneck inference, we prove the
convergence and optimality of distributed traffic
optimization algorithms relying on projected gradient
method. It is shown that the algorithms converge to a
neighborhood of the optimal solution under arbitrary,
bounded inference errors. The optimality gap is quantified
in closed form and is shown to be proportional to average
inference error. The results may also be applicable to
other types of networks with similar characteristics. The
theoretical results are validated via extensive simulations
and provide valuable insights on distributed network
operations and algorithms under the impact of imperfect
network inference. We will consider the impact of imperfect
network inference on other traffic management algorithms
in future work.

APPENDIX

.1 Proof of Lemma 1

Proof. First, according to the non-expansive property of the
projection [13] and the definition of gradient (3), we have:

‖x(τ + 1)− x‖2 (38)

≤ ‖x(τ) + α∇xL̂− x‖2

≤ ‖x(τ)− x‖2 + 2α(x(τ)− x)∇xL̂+ α2(∇xL̂)2

Consider the definition of erroneous Lagrangian functions
(6) and (7). We rewrite the Lagrangian functions as:

∇xL̂ = ∇xL+ λT (τ)(De(τ)A+De(τ)Re(τ)−A)

= ∇xL+ Γ1(τ) (39)

Then, using the concavity of the Lagrangian functions with
respect to primal variable x, we have

L(x,λ(τ))− L(x(τ),λ(τ))

≤ ∇TxL(x(τ),λ(τ))(x− x(τ)) (40)

Pluging (40) and (39) into (38), we can directly obtain the
result (11) in Lemma 1, i.e.,

‖x(τ + 1)− x‖2 − ‖x(τ)− x‖2

≤ 2α(x(τ)− x)(∇xL+ λTΓ1(τ)) + α2(∇xL̂)2

≤ −2α[L(x,λ(τ))− L(x(τ),λ(τ))]

+2α(x(τ)− x)Γ1(τ) + α2(∇xL̂)2 (41)

where the first step is obtained by plugging (40) into (38),
and the second step follows directly by applying (39).

Next, the proof of (12) is similar. Due to the non-
expansive property of the projection and the definition of
gradient (4), we have

‖λ(τ + 1)− λ‖2 (42)

≤ ‖λ(τ)− α∇λL̂− λ‖2

≤ ‖λ(τ)− λ‖2 + 2α(λ(τ)− λ)∇λL̂+ α2(∇λL̂)2

Using the erroneous Lagrangian function (6) and (7), we
derive

∇λL̂ = ∇λL−De(τ)[A + Re(τ)]x

+De(τ)[b + be(τ)] +Ax− b
= ∇λL+ Γ2(τ) (43)

Based on the convexity of the Lagrangian functions with
respect to dual variable λ, we have:

L(x(τ),λ(τ)− L(x(τ),λ) ≥ ∇TλL(x(τ),λ(τ))(λ(τ)− λ) (44)

Finally, plugging (43) and (44) into (42), we can obtain the
result (12) in Lemma 1:

‖λ(τ + 1)− λ‖2 − ‖λ(τ)− λ‖2

≤ 2α(λ(τ)− λ)(∇λL+ Γ2(τ)) + α2(∇λL̂)2

≤ 2α[L(x(τ),λ(τ)− L(x(τ),λ)]

+2α‖(λ(τ)− λ)Γ2(τ))‖+ α2(∇λL̂)2, (45)

where the first step uses (43), (42), the last step uses (44).

.2 Proof of Lemma 2
Proof. We first prove (15). Dividing both sides of (11) by 2α
and applying (17), we can obtain:

L(x,λ(τ))− L(x(τ),λ(τ))

≤ 1

2α
(‖x(τ)− x‖2 − ‖x(τ + 1)− x‖2)

+
α

2
‖∇xL̂‖2 + ‖Γ0(τ)‖ (46)

We consider the sum of a sequence of inequalities (46) from
iteration 0 to τ − 1. It results in

1

τ

τ−1∑
i=0

[L(x,λ(τ))− L(x(τ),λ(τ))]

≤ 1

2ατ
(‖x(0)− x‖2 − ‖x(τ)− x‖2)

+
1

τ

τ−1∑
i=0

(‖Γ0(i)‖+
α

2
‖∇xL̂‖2) (47)

Due to the convexity of L(x,λ) with respect to λ, we have
1
τ

∑τ−1
i=0 L(x,λ(i)) ≤ L(x, λ̄(τ)) ≤ L(x,λ)

≤ L(x∗,λ∗) ≤ f∗ (48)
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Then, to obtain (15) in Lemma 2:

f∗ − L(x(τ),λ(τ))] (49)

≤ 1

τ

τ−1∑
i=0

[L(x,λ(τ))− L(x(τ),λ(τ))]

≤ ‖x(0)− x‖2

2ατ
+

1

τ

τ−1∑
i=0

(‖Γ0(i)‖+
α

2
‖∇xL̂‖2),

where the first step is obtained by plugging (48) into (47),
and the second step since (for ∀τ ) ‖x(τ)− x‖2/(2ατ) ≥ 0.

Next, we prove (16). Dividing both sides of (12) in
Lemma 1 by 2α, we can obtain:

L(x(τ),λ)− L(x(τ),λ(τ))

≤ α‖∇λL̂‖2

2
+ ‖Γ2(τ)(λ(τ)− λ)‖

+
1

2α
(‖λ(τ)− λ‖2 − ‖λ(τ + 1)− λ‖2) (50)

Then, adding up the inequalities (50) from iteration 0 to τ−1
and dividing the result by τ , we find

1

τ

τ−1∑
i=0

[L(x(τ),λ)− L(x(τ),λ(τ))]

≤ ‖λ(0)− λ‖2

2ατ
− ‖λ(τ)− λ‖2

2ατ

+
1

τ

τ−1∑
i=0

(‖Γ2(i)(λ(i)− λ)‖+
α

2
‖∇λL̂‖2)

Since (for ∀τ ) ‖λ(τ)− λ‖2/(2ατ) ≥ 0, this directly leads to
(16).

.3 Proof of Lemma 3

Proof. We use the concavity of the utility function, or f(x):

f(x̄(τ )) ≥ 1

τ

τ−1∑
i=0

f(x(τ)) (51)

Applying the Lagrangian function (2) to (51), we can obtain:

f∗ − f(x̄(τ))

≤ −1

τ

τ−1∑
i=0

f(x(τ)) + f∗

≤ f∗ − 1

τ

τ−1∑
i=0

[L(x(i),λ(i))− λT (i)g(x(i))] (52)

Further, applying (15) to (52) and making x = x∗, we can
get:

f∗ − f(x̄(τ))

≤ f∗ − 1

τ

τ−1∑
i=0

L(x(i),λ(i)) +
1

τ

τ−1∑
i=0

λT (i)g(x(i))

≤ ‖x(0)− x∗‖2

2ατ
+

1

τ

τ−1∑
i=0

[
α

2
‖∇xL̂‖2

+‖Γ0(i)‖+ λT (i)g(x(i))] (53)

Since L(x(i),λ(i))−L(x(i),0) = −λT (i)g(x(i)), we make
λ = 0 in (16) in Lemma 2, which leads to

1

τ

τ−1∑
i=0

−λT (i)g(x(i)) (54)

=
1

τ

τ−1∑
i=0

[L(x(i),0)− L(x(i),λ(i))]

≤ ‖λ(0)‖2

2ατ
+

1

τ

τ−1∑
i=0

(‖Γ2(i)λ(i)‖+
α

2
‖∇λL̂‖2)

Then, plugging (54) into (53), we can obtain:

f∗ − f(x̄(τ))

≤ ‖x(0)− x∗‖2

2ατ
+

1

τ

τ−1∑
i=0

[
α

2
‖∇xL̂‖2 + ‖Γ0(i)‖]

+
‖λ(0)‖2

2ατ
+

1

τ

τ−1∑
i=0

(‖Γ2(i)λ(i)‖+
α

2
‖∇λL̂‖2)

which is exactly the result in Theorem 1 following (18)-(20).
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