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Abstract—In cellular networks, tail states are designed for a
tradeoff between energy efficiency and latency. However, the
energy consumed during tail states becomes a huge energy
drainer itself. Traditional energy saving techniques by content
prefetching cannot be directly applied to mobile ads, due to
the deadline requirements of ads, randomness in user behaviors,
different usage patterns of mobile apps and system services. In
this paper, considering several significant runtime factors, we
make a novel use of Markov Decision Process to model the
energy minimization problem for ad prefetching (EMAP), and
propose an algorithmic solution to the EMAP problem. Further,
we implement the first mobile ad prefetching system that is fully
compatible with contemporary ad libraries and mobile apps. By
replaying real-world user traces on Android devices, we show our
proposed solution consistently outperforms existing On-Demand
policy on Android by up to 59% in saving ad-related energy,
while a simple Fill-Up-Buffer policy can be even 3 times worse
than the default On-Demand policy. Such findings provide critical
insights regarding the promise of saving energy by ad prefetching
in real-world mobile systems.

I. INTRODUCTION

In contemporary cellular networks, tail states are designed
to guarantee the responsiveness of network connections. In
particular, after active data transmission terminates, the net-
work interface normally stays in an intermediate power state
for a certain period (e.g., 11.6 seconds [16] when using LTE
networks) before returning to an idle state. While these tail
states introduce a tradeoff between energy and responsiveness,
they have become a big energy drainer for mobile systems.

Recent research findings [16] show that on average tail
states consume 48.2% and 48.1% of transmission energy for
LTE and 3G networks. The energy inefficiency problem further
stands out when the mobile traffic is periodic and the data
transmission has short durations, resulting in a significant
amount of time in intermediate power states. For instance,
mobile ads often refresh every 12 to 120 seconds [19]. This
leads to a traffic pattern that periodically fetches only a small
amount of data, which means short active transmission time,
yet keeps pushing the network interface to high power states,
generating a large amount of tail energy. To mitigate such
problem, content prefetching (e.g. email, webpage) has been
proposed as a promising energy saving technique in existing
work [29], [14], [22], as well as advocated by mobile operating
system developer [4] and Internet service provider [13].

However, traditional content prefetching techniques are not
directly applicable to mobile ad prefetching. Existing work
even provides contradicting conclusions on the feasibility of

ad prefetching in real-world mobile networks (e.g., prior work
in [20] shows communication energy consumed by ads can be
reduced by more than 50% by ad prefetching, which amounts
to 17% of total energy. In contrast, results in [8] claim 3G
tail energy only constitutes on average 3.2% of the total
energy and this is the hard-to-achieve upper bound for ads
energy saving techniques). The main challenges are two-folds:
First, mobile ads are time-sensitive, usually with deadlines
imposed by advertisers. A naive approach that prefetches
and caches a large number of ads may not only violate
the service-level agreement (SLA) between ad networks and
advertisers [19], but also cause excessive energy waste due to
over-aggressive ad fetching. Second, a significant amount of
randomness exists in real-world mobile systems, such as in
user behavior, network uncertainty, and other runtime system
dynamics. To be specific, users and apps may exhibit very
different patterns of ad usage, e.g., in terms of ad refreshing
rates, which has a direct impact on the required aggressiveness
of ad prefetching. On the other hand, non-ad traffic generated
by background services or apps unavoidably changes the
status of network interfaces, which in turn varies the energy
efficiency of prefetching. Blindly prefetching a fixed number
of ads [19] in a pre-determined fashion fails to adapt to system
randomness. Without a systematic optimization framework
that is backed up by a full-scale prototype, it remains an
open problem whether it is indeed feasible to capitalize on
the promise of ad prefetching techniques for saving mobile
energy.

Toward this end, we propose an optimization framework that
comprehensively tackles the unique challenges rising from ad
prefetching in the real-world mobile system. We make use of
Markov Decision Process (MDP) [15] to systematically model
ad expiration, runtime dynamics, and diversity in mobile
user/app behavior as system state transitions. In particular,
we consider system states consisted of a three-tuple - (i)
status of network interface, (ii) the active app in use, and
(iii) the number of residue ads currently available in the
system. Characterizing the transitions between these system
states, we formulate an MDP with an energy-aware reward
function to minimize the expected energy consumption over
all states. The proposed optimization problem is then solved
by an efficient algorithm. To the best of our knowledge, this is
the first systematic framework to optimize ad prefetching over
both user and system dynamics jointly. The proposed solution
enables customized ad prefetching strategy that adaptively
adjusts to the system and mobile user behaviors to minimize



energy drain due to ad modules in mobile networks.

We fully prototype our framework on Android with the
algorithmic solution and a proxy for ad prefetching, which are
the key modules of our implementation. Our system listens to
the runtime state changes triggered by three types of events: (i)
an ad display, (ii) switches between working states of network
interfaces, and (iii) the changes of foreground app. The state
changes are monitored, and a database storing the optimal
ad prefetching decisions (computed using our proposed MDP
model and optimization algorithm) is queried on the fly. All
prefetched ads are cached in our ad proxy and displayed to mo-
bile apps in a seamless manner, transparent to contemporary ad
libraries. The fully implemented system solution is evaluated
using 8 real-world user traces [2]. A significant amount of ad-
related energy saving is validated, when compared with the
default ‘On-Demand’ policy of contemporary ad libraries [1]
and a heuristic ‘Fill-Up-Buffer’ policy.

The main contributions of our work, spanning theoretical
modeling and system implementations, are summarized below:

1) We propose a novel approach to model and optimize
mobile ad prefetching in real-world networks by a Markov
Decision Process, considering several important and realistic
factors of user and runtime dynamics. We further propose
an algorithmic solution to the optimization problem, which
is shown to be effective and consistent.

2) The MDP-based ad prefetching system, including an op-
timization engine and an ad proxy, is prototyped on Android.
To the best of our knowledge, this is the first fully implemented
ad optimization system that is compatible with contemporary
ad libraries and mobile apps in a transparent manner.

3) Using real-world apps and 8 user traces from Live-
Lab [2], we evaluate the proposed solution and system pro-
totype. We show that the proposed MDP-based approach
consistently outperforms existing On-Demand policy by up
to 59% in ad-related energy saving, and achieves 3 times
energy efficiency compared to a Fill-Up-Buffer policy. Such
findings provide critical insights regarding the feasibility and
optimization of ad prefetching in real-world mobile systems.

It is worth mentioning that our proposed MDP-based op-
timization and the system implementation is not limited to
mobile ads traffic. Rather, it is easily extensible to other types
of contents, which makes it a potential technique to explore
more energy saving opportunities further.

II. PROBLEM STATEMENT

In this section, we introduce background on cellular network
tail energy and ad prefetching. Then, we use an illustrative
example to motivate the necessity of optimized mobile ad
prefetching decisions for energy saving.

A. Tail Energy and Prefetching

To minimize latency, after data transmission is finished, the
transition to low power states and idle states has been both
postponed for certain durations (fail time) in contemporary 3G
and 4G cellular networks [16]. The energy consumed during
the tail time (fail energy) can account for a large portion of the
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Fig. 1. System power (top) measured by Monsoon Power Monitor along with
network interface power (bottom) measured by software-based Energy Meter.

overall network energy, especially for periodic and short data
transmissions. Mobile ad libraries typically refresh displayed
ads every 12 - 120 seconds (e.g., 60 seconds default period
is used by the popular ad library AdMob [1]), however, the
actual time consumed for ad data transmission is very short.

Content prefetching is advocated by both mobile system
developers [4] and Internet service providers [13] for energy
efficiency. We use an app (with ad module by AdMob library)
to illustrate the effects of prefetching on energy consumption.
The app is an offline tool and utilizes Internet service only
for ad data transmission every 1 minute. We use our proposed
ad prefetching system (with details in Section V) to prefetch
10 ads every 10 minutes. We connect the phone to external
Monsoon Power Monitor [3] to measure the system power
consumption and utilize a software-based power meter [31]
to measure the network energy consumption. The power
consumption traces are depicted in Figure 1. As seen in the
figure, in the first 10 minutes, ads are fetched on-demand.
The hardware measured energy shows that each time an ad is
requested, relatively consistent amount of energy is consumed,
and the software-based measurement shows a tail is triggered.
After 10 minutes, a relatively large amount of energy is
consumed in a short time (marked by dashed arrow in the
figure); and this is when prefetching happens. Afterward, when
an ad is requested again, the whole system power consumption
is much smaller than that in the first 10 minutes, and no
network energy tail is generated.

The above simple example shows the effectiveness of ad
prefetching in saving energy. However, in real-world scenarios,
traditional content prefetching techniques [29], [14], [22]
cannot be directly applied to mobile ad prefetching since
ads are always imposed with the deadline requirements from
advertisers, and prefetching policies that are unaware of the
ad deadlines will unavoidably result in SLA violations. In the
following, we use a concrete example to motivate the necessity
for an optimized prefetching policy.

B. Motivational Example

With the ad deadline taken into account, an intuitive goal is
to prefetch the ‘right’ amount of ads and guarantee they are
displayed before the deadlines. Consider the following three
possible ad fetching policies:
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Fig. 2. Illustration of the prefetched ads and consumed energy in a mobile
system with different states for the motivational example

On-Demand: This is the default policy of contemporary ad
libraries. When the running app requests an ad, the ad library
handles the request in an on-demand manner with the ad
servers, which generates network traffic for each ad request.
Fill-Up-Buffer: This policy heuristically pre-set a buffer size,
and prefetches a batch of ads every time the buffer becomes
empty. Prior work [19] uses a similar policy which pre-sets
the prefetching period and aggressiveness by heuristics.
State-Aware: This policy considers expiration rate, ad display
rate, and network status as primary factors and adjust the
prefetching decisions accordingly.

Consider the following example, when a user uses two apps:
one has a slightly higher ad display rate of 1 every 2 iterations
while the other one has lower ad display rate of 1 every 3
iterations. To simplify the example for illustration purpose, the
network state is either on or off. When the network interface
is on due to background traffic, fetching ads from the server
will generate no additional energy tail; while the background
traffic is off, an energy tail (e;) will be added to the fetching
energy. For this example, we assume each ad expires after
three iterations from when it is prefetched.

The illustration for the numbers of prefetched ads and
energy consumption for the Fill-Up-Buffer and State-Aware
policies is depicted in Figure 2. In the figure, iterations marked
by ”"AD” indicates that one ad is requested and displayed by
the currently active app. The three blocks denote the buffers
in the system used for storing ads, and a gray block indicates
the block is occupied by a prefetched ad. A block with an
‘X’ mark denotes that at the end of the iteration, the ad in the
block will expire. It’s clear that On-Demand (OD) policy will
consume 7e + Se; of overall energy and the illustration is left
out from the figure.

The energy consumed to fetch ads is marked along the
arrows. With the buffer size equals to three, the Fill-Up-Buffer
(FUB) policy fetches four ads at the first iteration, with one
for immediate display. Since the network is on, the energy
consumed here is 4e where e is used to denote the average
energy consumed for transmitting the data for a single ad. In
the 4-th iteration, two ads will expire, so another four ads are
prefetched and the consumed energy equals to 4e + e; since
the network is off. FUB policy repeats this behavior and the
total energy consumed is 16e + 3e;.

In contrast, the State-Aware policy dynamically adapts its
prefetching actions to the changes of system states. When the

network is on, it becomes more aggressive and maintains two
available ads when the display rate is high and one available
ad for low display rate. With the network off, due to larger
marginal cost by ad prefetching, it becomes conservative and
prefetches two ads only when all ads are used up. In summary,
State-Aware policy only fetches 9 ads with much less number
of ads expired. The overall energy consumption is 9e + 2e;.

C. Design Goal

The simplified example above shows that in simple heuristic
solutions, unawareness of the system states and the ad expira-
tion will not only result in expired ads violating SLA, it also
consumes more energy (can be even worse than the default
On-Demand manner).

To minimize the energy consumed by ads and avoid possible
ad expirations, our goal in this paper is to make optimized
prefetching decisions, with different system states taken into
considerations.

III. SYSTEM MODEL

We consider a mobile system with a set A of installed apps
that display ads to the users (also termed ad-embedded apps
in this paper). The average ad display rate for app a € A
is represented by A%, which may vary for different apps.
For example, app developers may incorporate a banner for
showing ads and adopt the default refreshing rates for different
ad libraries. Ads may also be refreshed only under certain
triggers, e.g. a game app may show an ad after the user enters
the next trial, and a news app shows an ad each time a new
page is opened. The display rate of currently active app affects
the number of ads needed. With the varied refreshing rates A\,
we model the ad arrivals as a separate Poisson process for the
app currently active in the foreground.

We define the network state as n, and N is the enumeration
of all the possible states of n. Without loss of generality, N
can be defined as {High Power, Low Power, Standby} and

1, High Power state,
n=1< 2, Low Power state, (1)
3, Standby state.

In specific, in accordance with the state machines of 3G and
4G networks [16], High Power state corresponds to Short DRX
and Long DRX in RRC_CONNECTED for LTE network, and
DCH for 3G network. Low Power state is an intermediate
state between Standby (IDLE) and High Power state. Besides,
the delays for state transitions are set by different types of
networks and service providers. For a given network type
and service provider, we can further define the tail energy
consumed during the timeout from High Power state to Low
Power state, and from Low Power state to Standby state as
e1 and es, respectively. We use e(z) to denote the energy
consumed by fetching the data for x number of ads. Network
status n and x jointly determine the overall marginal cost
f(x,n) generated to fetch a batch of ads:

e(x) n=1,
flz,n) =<(e(x)+es n=2, 2
(x)+e2+e n=3
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Fig. 3. State (denoted by rounded rectangles) transition when any of the three
trigger events {ad display, net switch, app change} occurs. The next state is
jointly determined by the event (marked by @), expired ads (8 (marked by
@), and action x.

In consideration of ad deadlines, the number of available
residue ads in the system has a direct effect on future prefetch-
ing decisions, and we denote it as r.

With the notations introduced above, we can uniquely
represent the system state by a three-tuple variable s:

s =(r, n, a), 3)

and the set of all possible states is S. For any current state
denoted as s; € S, we consider a set 'V of trigger events:

vV ={d, m, u}, 4)

in which, the d, m, and u correspond to (i) an ad is displayed,
(ii) the network status changes, and (iii) the currently active
app is switched. The occurrence of any of the three trigger
events will inevitably affect the state.

The goal of this paper is to find an optimal number of ads
x to prefetch for each state s € S, so that the expected energy
consumed by ads over all the possible states is minimized.
The action x is taken when any state comes to an end due to
the trigger events V.

IV. OUR APPROACH

Considering the possible states S in a mobile system, we
first formulate the Energy Minimization for Ad Prefetching
(EMAP) problem based on a novel use of Markov Decision
Process (MDP). Then, we derive the optimal solution and
further propose an algorithmic solution to the EMAP problem.

A. Modeling the State Transition

As discussed in Section III, any trigger event in 'V will
affect the current state denoted as s; € S. Our goal is to make
an optimal action x when any state comes to an end due to
the above system events. Though ad expiration is another event
that may affect the state, consideration of the effects of expired
ads is not necessary until the occurrence of new trigger events.
The diagram of state transition and action taken is depicted in
Figure 3, in which each rounded rectangle denotes a unique
state, 5 denotes the number of ads expired between two states,

and the dashed arrows correspond to the three trigger events
we considered. When any of the events occurs, an action x
is immediately taken. The next state is jointly determined by
the event (marked by @), expired ads 5 (marked by @),
and action x. For example, with action £ when network status
switches from 1 to 2, and 3 ads expired, the state will transits
from current (R, 1,a1) to (R+ 2 — §,2,a4).

B. Constructing Transition Probabilities

As introduced in Section III, the ad display events for an
active app a can be represented by a Poisson process with
rate denoted by A\g which varies for different apps '. Besides,
as studied in prior work [11] on mobile usage, user tends to
have different session (the time between launching and closing
an app) lengths for different apps, we introduce A\, as the
rate of app changes when the active app is a, and similarly
Am as the rate of network status switches. Without loss of
generality, we assume the three trigger events do not happen
simultaneously. It is easy to consider simultaneous events as a
serial of consecutive events. Now we can denote the length of
individual states as an exponentially distributed variable with
mean equals to 1/ where A = Ag+ Ay + Ap. A is the overall
arrival rate for the trigger events when the active app is a.
As mentioned above, the ad expiration can be considered as a
separate event along with the state changes, and we define it
as a Poisson process with expiration rate \p.

Ad Expiration: Considering the trigger events and ad expira-
tion as two separate processes with rates A and A, one single
ad’s expiration can be modeled as a Bernoulli distribution,
with the probability equal to that of ad expiration arriving
earlier than trigger events, i.e. /\;\i - Further, since different
ads’ expirations are independent and identically distributed,
the probability that 3 out of r ads expire before next state is

(3) o)’ (A=) 0<B<r

5
0 otherwise )

Pe(ﬁﬂ“) = {

Trigger Events: Given )\ as the arrival rate of all trigger
events, we analyze the probabilities of each type of trigger
events in the following.

I: Network Switch: Under the condition that trigger events
occur when app a is active, the probability of network status

switches is

Pm = 2 (6)

Under the condition that network switch event happens when
current network status is n;, the probability that the next
network status is n; can be denoted as p(n; — n;|m). Recall
that we assume a state change is triggered by single event and
multiple trigger events will generate consecutive state changes,
hence, when net switches, the app a stays the same, and no
ad is displayed. The change in number of residue ads r; — 7
is due to expired ads B;_,; and prefetched ads. When action
x is taken, 8;—,; = r; + x — r;, and the probability that state

!For simplicity, we suppress the subscript a representing the currently active
app in Section IV without causing any confusion.



s;i = (r4,n4,a) transits to s; = (r;,n;,a) when network
switch happens is obtained:

p(Z*)]|l‘,m) :pe(ﬂi—ﬂvri+x) Xp(ni %n]|m) (7
II: App Change: When user changes the app currently active
in the foreground, the system transits to the next state. Similar
to network switch event, the probability of app changes is:

Pu = 3, ®)

and the probability that state s; transits to s; is:

p(i = jl,u) = pe(Bimjy i + ) X plai = aglu) — (9)
III: Ad Display: The probability of ad display represented by
Ag and A is N

pa =3 (10)

After x ads are prefetched, one ad is displayed before transit-
ing to state s;, and we get the following transition probability:

p(i = jlo,d) = pe(Bisj, ri + ) (1D

However, for the above equation, it is necessary to distinguish
two cases exist for the number of ads expired 3;_,;: (i) Bij <
r; + 2, one ad from the r; + z ads is displayed, so the number
of expired ads can be calculated as 3;,; =, +x —7; — 1;
(ii) Bi—; = T + x, meaning all the previous r; residue ads
and the prefetched x ads expired before being displayed and
the one ad displayed need to be fetched again.

C. Calculating the Cost for Actions

The taken actions x will affect the cost (termed reward in
MDP [7]). In the following, we quantify the cost by action x
for each of the state transitions discussed above.

As introduced in Section III, the cost of fetching = ads
depends on the network state n. Equation (2) can be used as
the cost function when the state transition is triggered by Net
Switch ¢(x|m) or App Change c(x|u).

c(zlm) = e(zlu) = f(z,n) (12)

However, special considerations are needed when ad is dis-
played. We again distinguish the two cases regarding the
values of f3;,; and r; + z: Case 1: B;—,; < r; + = and
Case 2: B;; = r; + x. We further use p; and p» to denote
the probabilities of the two cases, i.e. p; and p, respectively
denotes the probability that the displayed ad is from the r; +x
ads and the displayed ad is fetched on-demand due to the
expiration of all r; + x ads. p; and ps can be obtained by:

B erp(ri—i—x—rj—l,r,-—f—x)
= Z”p(ri +z—r;j—L1r+x)+plr;+zr+)
Dy = p(ri +x,7; + )
2 erp(n- +x—r;—1ri+x)+p(ri+x,r+)
(13)
Considering the effects on costs from network state n, now

we can summarize the cost when state transition is triggered
by ad display as:

e(prz + p2(z + 1)), n=1
c(z|d) = { e(prz + p2(x + 1)) + paea], n=2
e(prz +p2(x+1)) +pa(ez+e1), n=3

(14)

D. Formulating the EMAP Problem

With the state transition probabilities and energy cost func-
tions constructed, now we formally formulate the Energy
Minimization for Ad Prefetching (EMAP) Problem.

We consider to minimize the expected accumulated cost
over time with a discount factor v for future time. ~ dis-
counted method [7] is generally used in MDP formulation to
discriminate the relative importance between future rewards
and current rewards. Denote the state at ¢ and ¢ + 1 by s; and
si+1, and cg, 5, es(s¢ — si41|7) represents the cost when
state transits from s; to s;41 under the condition that action x
is taken. The objective is to find the optimal x, for all s € S,
such that the expected cost overall all the considered current
and future time slots are minimized:

Problem EMAP :
min Z’ytE[c(st — St+1|Ts)] (15)
t=1

st Ele(st = se41]2)]
= Z p(st = spq1]x)e(se = sepilx)  (16)

5t,5t+1€S
p(st = Seq1]x) = Z Do - (8¢ = s¢a1|z, vX17)
veV
c(sy = sey1lx) = Z Dy - c(z]v) (18)
veV
Equations (5) — (14) (19)
var. {xzs, Vs € S}. (20)

Note that the equation (18) is simplified, making use of the
cost models we derived in Section IV-C. ¢(z|v) for eachv € V
also depends on the state transition between s; and s;.1, which
correspond to ¢ and j in equation (13).

E. Algorithmic Solution to EMAP Problem

Now we present an algorithmic solution to the formulated
EMAP Problem based on Value Iteration [7]. Assume c;f is
the minimal cost value can be achieved at a future state s;,
then the cost ¢(s;,x) during state s; is:

(84, @) = Cimalsi,x) + Z p(si — sjlz)cs, (21)

s;ES
with the left and right parts being the immediate and future
costs, respectively, hence the optimal value and decision for
state s; are:

c; =supc(s;,x); xf =arg,le(s;,z) =c] (22)
xT
Besides, inspired by the diminishing effect over future cost
imposed by the discount factor =, we further adopt too
heuristics methods to reduce the complexity of the algorithm.
As seen from optimization objective (15), the expected cost
is averaged over all future times over an infinite horizon. In
reality, due to -, the future costs may diminish quickly as the
number of future iterations increases. In our algorithm, we
keep tracking the future discounted cost, and once the cost
reduces to a certain ratio of the immediate cost, the future
iterations of calculations are canceled. Further, we set a limit



M« HashMap from states s; to minimal cost and decision (¢, x})
1 <— Stop threshold for future iterations
I <+ Max number of iterations allowed
X < Max number of ads can be prefetched
for all states s; € S
if s; ¢ M
(¢}, x}) = Valuelteration(s;, 0, +00), add [s;, (¢}, x})] to M
end if
end for

function Valuelteration(s;, iter, first_cost)
for prefetch decision z € [0, X]
Get immediate cost ¢;,q(x) (Equation (6), (8), (10), (12), (14))
if iter == 0 first_cost = ciymq(x) end if

iter + +
if iter > 1
Future cost cfy = 0
else
Get transition probabilities p(¢ — j|z) (Equation (5) - (12))
if Sj ¢ S
(c}'f7 xj) = Valuelteration(s;, iter, first_cost)
add [s;, (c;f,x;f)] to M
end if
Future cost cf4y = Zsjes{p(i — jlz) - ¢}
endif

if cpq < - first_cost break
Get expected total cost ¢(s;, %) = Cima(Z) + YCrir
end for
Get optimized cost ¢} = mzin c(si, )
return (¢}, x})
end function

Fig. 4. Pseudo code of our algorithmic solution to Problem EMAP

on the max number of iterations within considerations. In these
ways, the computation complexity is largely reduced without
sacrificing the performance of the solution. The algorithmic
solution to Problem EMAP is summarized in Figure 4.

V. DESIGN OF EMAP SYSTEM

This section provides our system design and implementa-
tion details. The prototype of the ad prefetching system is
implemented on Android, with the key modules and work flow
depicted in Figure 5. We dedicate each following subsection
to each of the key modules.

A. Ad Proxy

Ad prefetching and ad requests are handled by a Proxy-
based module in our design. We utilize iptables to redirect ad-
related HTTP and HTTPS traffic to our Proxy. The HTTPS
traffics are handled with a pre-installed certificate on the
system. To reduce the overhead on the network performance,
we only filter out the ad traffics based on a whitelist of
IP addresses. The list is constructed using several popular
ad libraries including the popular ad library AdMob [1] on
Android platform. When prefetched ads are available in the
system, the ad requests from apps are handled in an offline
manner without changing the status of network interfaces.

The Proxy module is also responsible for recording relevant
information needed by other modules. For example, to be able
to calculate the energy consumed by ads, the Proxy keep tracks
of the timestamps of ad traffic. Since Proxy directly handles
the ad traffics, it is also responsible for sharing the information
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Fig. 5. Overview of EMAP System

with our State Listener module when an ad is displayed, i.e. the
occurrence of the trigger event d we introduced in Section III.

B. State Listener

State Listener is a unified module we implement to listen
to each of the trigger events in V. The workload of updating
state and notifying the centralized Controller is implemented
as callback functions. As mentioned before, when an ad
is requested, the Proxy will trigger the callback function.
Similarly, when the network status n changes, another module
Energy Monitor (which will be discussed later) is responsible
for notifying the changes. Detection of the changes of app
state a is implemented as a separate background service to
periodically query the package name of the foreground app,
and the service works seamlessly with State Listener.

C. Controller

Controller is the centralized module that coordinates the
other modules. First, once it is notified by the State Listener
of any state changes, it will work with Optimization Engine
to make an optimal decision using the algorithm we discussed
in the last Section and send the decision to Proxy if any
ad prefetching task is needed. The Optimization Engine also
needs the information shared by the Controller such as the
current system states.

D. Optimization Engine

The algorithmic solution to Problem EMAP, with pseudo-
code listed in Figure 4 is implemented in Optimization Engine.
Optimization Engine is responsible for performing all the re-
quired calculations needed in the algorithm, such as calculating
the transition probabilities, quantifying the costs for different
state transitions and decisions x. It is worth mentioning that
the calculations and optimization work is not needed every
time the state changes. Rather, it is only necessary when
the parameters in the system have noticeable changes, for
example, when a user tremendously changes the usage patterns
such as the app change rate u. However, as the prior study
on mobile usage shows users’ maintain relatively consistent
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Fig. 6. Energy consumed by three ad-fetching policies when running 8 user traces. The energy consumption of all policies are normalized by that consumed

by the default On-Demand Policy.

daily usage patterns, although the usage across different times
of the same day may vary. This problem can be addressed
to maintain certain user profiles in our Database module.
Another system change that calls for re-optimization is when
the user installs or uninstalls an ad-embedded app, however,
for moderate amount of installations or uninstallations, the
re-optimization workload can be safely postponed while still
guaranteeing energy savings for other apps, for example, to the
time when a user connects his/her device to a wall-charger.
Besides, as designed in the algorithm, it is also possible to
cache our MDP decision tables for given set of parameters,
such that when similar usage patterns are recognized in the
future, MDP optimization can be avoided to further reduce
the computation complexity.

To measure the network-related energy, we build a software-
based Energy Meter based on the approach adopted in prior
work [31] and we tune the parameters for different network
types and Internet service providers using measured energy
traces from Monsoon Power Monitor [3]. With the timestamps
recorded by our Proxy module, we are able to divide the
overall energy consumption to ad-related traffic and other
types of network traffic. The measurements and timestamps
are summarized periodically and stored in our Database, to
facilitate future analysis such as the parameter updating.

V1. EVALUATION

A. Environment Setup

1) Hardware Setup: We utilize an external Monsoon En-
ergy Monitor [3] to perform energy measurements and tune
the parameters needed for software-based network energy
measurement. All experiments are performed on Nexus 5.

2) Test User Traces: With our full system implementation,
we adopt a trace-replay evaluation method to capitalize the
effects of different ad prefetching policies in the real-world
system environments. We collect 8 user traces from Rice
LiveLab traces [26]. Each of the trace lasts for around 150
days. To guarantee comparison fairness, we randomly extract
several periods of traces for each user and replay them
on Android devices using the automated testing framework
Monkey [5].
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Fig. 7. App occupancies of two users.

B. Comparing EMAP against Baseline Policies

To guarantee a consistent evaluation environment, we replay
the 8 collected user traces concurrently on three groups of
phones. Each of the three policies is adopted by one of the
three groups: On-Demand policy, heuristics-based Fill-Up-
Buffer policy, and the MDP policy adopted by our EMAP
system. As discussed in Section II-B, For On-Demand policy,
all ads are fetched in real-time when an ad is requested. Fill-
Up-Buffer policy maintains a fixed-size buffer and prefetches
a batch of ads to fill up the available buffer, whenever ads
are used up and a new ad is requested. Our policy makes the
state-aware decisions in the Optimization Engine module by
modeling the ad prefetching decisions as a Markov Decision
Process. In this experiment, buffer size equals to 55 for FUB
policy.

Figure 6 shows the ad-related energy comparison among
the three policies. From the figure, we observe that our
MDP policy always consumes less energy than the other two.
For 6 out of 8 tested users, the saving exceeds 40%, and
the maximum ad energy improvement upon the default On-
Demand policy of contemporary ad libraries is 59%. The
results in the figure show that our proposed state-aware MDP
model in EMAP system is effective and consistent in energy
saving. The Fill-Up-Buffer policy outperforms On-Demand for
User 2 and User 3, but is the worst for other users. In extreme
cases (User 6 and User 7), FUB is 157% and 204% worse than
the default On-Demand policy.

We investigate the traces for representative User 2 and User
7. By comparing the app occupancies of User 2 (Figure 7(a))
and User 7 (Figure 7(b)), we can see that “Home Screen”
occupies much more percentage of time in the trace of User 7
than that of User 2. “Home Screen” and Email app “Outlook™
do not use any ad. Adding these two ad-free apps together,
they consumed totally 86.67% of the experiment time of User
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Fig. 8. Energy consumption for two user traces using Fill-Up-Buffer policy
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7, but 62.02% for User 2. Also, User 2 runs the app “Espn”
for a longer time, which has a very high ad display rate (8
ads/minute). During the experiments, apparently more ads are
expected for User 2 than User 7, thus prefetched ads are more
likely to be used other than wasted.

For the On-Demand policy, the tail energy is a major drainer
which impacts the performance badly. The heuristic Fill-Up-
Buffer compresses the energy tails to the minimum amount,
but due to its unawareness of system state changes, it fails
to make agile decisions regarding the ‘aggressiveness’ in ad
prefetching to adapt dynamically to runtime usage.

Our MDP policy seeks the sweet spot in the tradeoff
between energy saving by ad prefetching and avoiding the
ad expiration. In the following subsections, we will illustrate
the decisions in details.

C. Studying Effect of Buffer Size on FUB Policy

From the previous result, we can see a fixed buffer size
adopted by Fill-Up-Buffer policy fails to adapt to the runtime
dynamics, which may be further affected by user behaviors.
We further study the effect of buffer size for FUB policy in
the current experiment. We use two users’ traces and vary the
buffer sizes and measure the energy consumption.

Figure 8 shows that for different users, the ‘proper’ buffer
size for FUB policy may vary. Among the evaluated buffer
sizes, while buffer size 4 works best for User 4 (solid line), it
is the worst for User 6 (dashed line) and consumes the largest
amount of energy.

On the other hand, from the energy consumptions for
User 4, we can see as the buffer size increases, the energy
consumption first decreases and then increases. However, such
pattern is absent for User 6. This further confirms that simply
fixing a single prefetching decision based on usage profile [20]
is not effective to minimize ad-related energy.

In contrast, our formulation of EMAP problem in this
paper jointly consider the system factors that have effects on
optimal ads prefetching decisions: the ad display rates of active
apps, network status and the number of residue ads. We will
illustrate how the parameters we consider affect the optimal
decisions made in our solution.

D. Studying Effect of Ad Display Rate
In this study, we first cumulatively measure the ad display
rates for individual apps. Then we break down the prefetched
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Fig. 9. The breakdown of average amount of prefetch ads when each single
app is active on the foreground. The right y axis shows the average ad display
rate for the app.
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Fig. 10. Prefetch decisions under different network power states for all users

ads when each individual app is active, and sum up the number
of prefetched ads by our policy. The results are shown in
Figure 9. The left and right y axises respectively denote the
number of ads prefetched when the app is active, and the
accumulated ad display rate for the app.

As seen from the figure, the amount of prefetching ads tends
to increase as the ad display rates increase with apps “Food
Plan” and “Datpiff” being the only exceptions. The reason is
that both of these two apps consume much energy for non-
ad data transmissions and keep the network status frequently
in High Power state. In this case, the difference between the
average cost generated by a prefetched ad and a possible
future on-demand-fetched ad becomes smaller, and our cost
minimization algorithm for the EMAP system considers the
effects of future states. This is confirmed by the current set of
result findings.

E. Studying Effects of Network Status

In the current set of experiment, we study the effect of
another key parameter - current net status. For each individual
user, we summarized the prefetching decisions made by our



algorithm when the network interfaces are working in different
states.

As seen from the results shown in Figure 10, a common
pattern across different users is that when network is in High
Power state, it is preferred to prefetch more ads than in Low
Power state, and the prefetching is least aggressive when
network state is IDLE. This is because the larger amount of
energy (with a full tail) will be generated when network state
is IDLE, compared to no extra tail generated when network is
in High Power state. Both current and previous experiments
provide insights on how our proposed solution jointly consider
different states in the system, and make the optimal decisions,
leading to the huge energy savings, as shown in Figure 6.

VII. RELATED WORK

Various techniques are proposed to save mobile energy
in different problem domains, such as proxy-assisted brows-
ing [27], content pre-staging [29], [12], [22], budget-based
energy management [30], [10], wireless sensor networks [24],
and study of app and user behaviors [6], [11], [25].

Existing work on mobile ad prefetching [20], [8] often
adopts simple heuristics, yet makes strong assumptions such
as single active app, fixed ad refreshing rate. Prior work [19],
[28] also characterizes mobile advertisements on aspects like
ad libraries, usage patterns, and ad deadlines. In contrast,
our work is the first formal optimization framework on this
problem and is evaluated on a full system implementation.

To minimize energy cost, Markov Decision Process has been
previously applied to improve server sleep pattern [18], TCP
connections [23], and email synchronization [9]. Our work
comprehensively addresses the unique challenges in mobile
ad optimization, considering ad expiration, system dynamics,
and diversity in user/app behaviors. Another line of work on
network measurement [17], [16], [21] also provides useful
input to our work and other mobile energy optimization
work [14], [22].

VIII. CONCLUSION

The tail states designed in cellular networks are intended
to guarantee responsiveness for data connections. However,
it causes severe energy inefficiency problem, especially for
periodic and short data transmissions, such as those traffics
made by contemporary ad libraries. Due to the deadlines
imposed on ads, and also the runtime randomness resided in
user behaviors, system states, traditional content prefetching
fails to provide an effective solution for energy minimizing
for ad-related traffic. We formulate the energy minimization
problem for ad prefetching by modeling the decision making
as a Markov Decision Process, considering important system
states and events triggering state changes. Using our fully
implemented system, we replay user traces to illustrate the
effectiveness of our proposed solutions. The results demon-
strate a consistent improvement in energy efficiency by our
solution over existing On-Demand policy on Android by up
to 59%, while a simple Fill-Up-Buffer policy can be even 3
times worse than the default On-Demand policy. Such findings
capitalize on the promise of ad prefetching in real-world
mobile systems.
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