
THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science

Department of Computer Science

User’s Manual

For

Sython:
A Security Addition to the Python Programming Language

PRELIMINARY RELEASE EDITION

ii

TABLE OF CONTENTS

LIST OF FIGURES... iii
LIST OF TABLES .. iv

1. PRODUCT DESCRIPTION ... 5
1.1. MODULE DESCRIPTIONS... 5

2. PRODUCT SPECIFICATIONS.. 7

3. INSTALLATION ... 8
4. TUTORIAL.. 10

5. SYTHON REFERENCE MANUAL... 12

5.1. SYTHON SYNTAX ... 12
5.2. SYTHON BUILT-IN FUNCTIONS ... 13

5.3. SYTHON OBJECT METHODS... 14
5.4. SYTHON DAEMON CONFIGURATION OPTIONS.. 15

5.5. SYTHON DAEMON FILES .. 16

6. MAINTAINANCE ... 19
7. TROUBLESHOOTING.. 20

7.1. INSTALLATION ... 20
7.2. PROGRAMMING PROBLEMS... 20

7.3. CONFIGURATION PROBLEMS .. 21

iii

LIST OF FIGURES

Figure 1 sythond Starting Output.. 10

Figure 2 sython Starting Output.. 10

iv

LIST OF TABLES

Table 1 Sython Syntax Validity .. 12

Table 2 Sython Daemon Command Line Arguments .. 15

Table 3 Sython Daemon Log File ... 16
Table 4 Sython Daemon Database File ... 17

Table 5 Sython Daemon Input Text File ... 17
Table 6 Sython Daemon Output Text File... 18

5

1. PRODUCT DESCRIPTION

Sython adds the ability to specify certain variables in Python as secure. The values of

these secure variables are restricted and only acted upon in a black-box-like fashion. This allows

software development to be outsourced, and testing to be performed upon live data while still

protecting the data’s sensitivity.

Sython accomplishes this data protection by separating the storage of secure variable into

a different memory space. The memory space belongs to Sython’s sister application, the Sython

Daemon (sythond). Requests to modify secure variables are sent (transparently) to sythond.

Sythond will not allow any request that could lead to the values of secure variables being known

by the client operator.

Secure variables in Sython are denoted in a specific fashion that visually separates them

from regular variables. This is in keeping with Python’s philosophy of highly readable source

code. In addition, Sython adds a number of new built-in functions to operate on the secure

variables.

This manual assumes basic familiarity with regular Python. It details all changes to

Python from the point of view of both the developer and the system administrator. For a well-

written, high-level tutorial on Python, Wikipedia is an excellent resource; visit

http://en.wikipedia.org/wiki/Python_programming_language.

1.1. MODULE DESCRIPTIONS

The Sython distribution consists of two main applications: the Sython Interpreter, sython

and the Sython Daemon, sythond. Within each application there are a number of modules. This

section will discuss each module in detail.

The Sython interpreter consists of two modules: the Python module and the

communicator module. The Python module is a modified version of the Python 2.3.4

6

distribution. It has been modified to support the dollar sign ($) as the indicator of secure

variables and adds several new built-in functions, as detailed in Chapter 4. The communicator

module handles communication with the daemon application via a well-defined protocol. It is

implemented as a Python module called sython.comm.

The Sython daemon consists of three modules. These modules are the main module, the

handler module and the database module. The daemon main module initializes the other

modules, based upon command-line arguments supplied when the daemon is launched. The

handler module is the most significant module within the daemon. It consists of two sub-

modules, the fetcher and the handler. The fetcher receives each request from the interpreter and

performs basic validity checks. After passing those checks the request is forwarded to the

handler for processing. The last module within the daemon is the database module. This module

adds support for simple database functionality within Sython. The database module is

implemented as in interface to a SQLite database.

7

2. PRODUCT SPECIFICATIONS

This version of Sython was developed for the Apple MacOS X platform. As such official

testing has been conducted on Apple Macintosh computers. Sython officially supports Macs

with G4 processors with 512 MB of RAM or more. In practice, however, any Macintosh that is

able to run operating system versions 10.3 or above should be able to run Sython. Note: the

Apple Developer Tools are required to install Sython on MacOS X.

Python version 2.3.4, from which Sython is derived, runs on a number of platforms

including Windows and Linux. Care has been taken to use platform-independent coding

practices when constructing Sython; as such Sython should be portable to any platform that

Python supports. Changes may need to be made to the installation scripts.

For database functionality Sython requires SQLite version 3.1 or above. SQLite can be

downloaded from http://www.sqlite.org/. In addition, Python SQLite bindings are required. A

package called PySQLite handles this task. It can be found at http://initd.org/tracker/pysqlite.

Versions supporting SQLite 3 are required. Note: Sython will run without database support. If

database functionality is not required, SQLite and PySQLite are not required.

8

3. INSTALLATION

This chapter will detail the installation procedure for Sython. If database functionality is

required, SQLite and PySQLite will need to be installed before Sython can be installed. To

install these packages, visit the sites listed in Chapter 2. Please refer to SQLite and PySQLite

documentation for installation directions for those packages.

Installation of Sython is very similar to the installation of Python. To install, copy the

Sython distribution found in the install/sython directory of the distribution CD into a working

directory (such as the Desktop) then unpack it using the tar -zxvf Sython.tgz command.

This will create a new folder containing the Sython distribution. The following paragraphs detail

the installation procedure for both the Sython Interpreter and the Sython Daemon.

From here there are two methods of installation. Sython supports the traditional Python

Unix-style installation, but it also supports the installation of a Darwin/MacOS X Framework.

The Framework allows Sython to be embedded in MacOS X applications. It is also less likely to

be effected by operating system upgrades than the traditional Unix-style installation. The Unix-

style installation will be covered first.

In Terminal.app or another terminal application, change into the unpacked sython

directory. Once there, three simple commands will install the Sython Interpreter. Type

./configure and then hit Return. This will create a MakeFile tailored to your environment.

Once the configure command has succeeded type make into the terminal and hit Return. This

will actually build Sython. Once make has completed, the one final command is needed to

actually install Sython. Type into the terminal sudo make install, hit Return and type in your

password if prompted. Because Sython will install itself in the System’s /usr/local directory,

administrator privileges are required. Once this command has completed, Sython has been

successfully installed. If during any of these steps, you encountered an error, please consult the

troubleshooting chapter at the end of this manual.

9

The Framework installation of Sython is very similar to the Unix-style installation. In

Terminal.app or another terminal application, change into the unpacked sython directory. Once

there, follow the steps detailed in the Unix-style installation, but change the commands to the

following: ./configure becomes ./configure --enable-framework and sudo make

install becomes sudo make frameworkinstall. The Sython framework will be installed in

the /Library/Frameworks directory. To install in a different directory, change the configure

command to ./configure --enable-framework=<installation directory>.

The last installation task is to install the Sython Daemon. In the install directory of the

distribution CD there is a subdirectory labeled sythond. To install the Sython Daemon copy that

directory into a more permanent place such as /usr, then from within the terminal application,

change into the moved sythond directory, type ./install_syd and hit Return. You may be

prompted for the administrator password. This script will write a script that launches the Sython

Daemon in /usr/local/bin, allowing the user to invoke the daemon from any location. In addition

to the Daemon application itself, the sythond folder contains sample input, output and database

files.

10

4. TUTORIAL

This chapter offers a brief run though using sython and sythond. It does not seek to be

exhaustive, but rather touches upon the most used features of Sython.

To start the daemon, type sythond -c from the terminal window. Typing sythond –h

will display all of the command line parameters. The –c parameter starts it in an interactive

console mode. The output of sythond when first started, looks like Figure 1. Now, open a new

terminal window and type sython. The output of sython when first started, looks like Figure 2.

Figure 1 sythond Starting Output

Figure 2 sython Starting Output

11

We will begin by allocating a new sython variable. This is done via the line

$x=syalloc(‘i’) This line allocates a new variable x. The variable is a handle for an integer

that is stored on the Sython Daemon. The value was randomly assigned. The function

syalloc() is just one of a number of new built-in functions. Consult the reference manual in

the next chapter for a complete list. Try to determine the value of x by typing print x and

hitting Return. Only the memory location of the syobj handle is revealed. The actual value

isn’t even stored in Sython—it is in sythond’s protected memory. Next we will allocate another

secure variable. Type in $y=syalloc(‘i’,(10,20)) This will allocate a new variable y which

will be a handle to another integer in the Sython Daemon. This integer will be randomly chosen

from the range ten to twenty. Just like normal Python variables, secure variables support

mathematic operations, type $z=x+y The variable z now contains the sum of x and y. A useful

debugging tool in Sython is the new built-in function syval(). The function returns a string

representation of a secure variable. The string will stay the same between calls as long as the

secure variable itself does not change. If the variable changes, the return value may or may not

change, too. To see syval() in action, type syval(z).

This has been a brief tutorial on using the new features of Sython. It has been far from

exhaustive. Users are urged to read the reference manual in the next chapter for a more complete

description of all new Sython features. Also, the Python built-in help is a valuable resource.

Simply type help(“syalloc”) into the Sython interpreter prompt to see help about syalloc()

(or any other new Sython function).

12

5. SYTHON REFERENCE MANUAL

This chapter is the main reference for Sython. It details all of the changes to the standard

Python Interpreter as well as the various configuration options for sythond.

5.1. SYTHON SYNTAX

Sython adds one new syntactical construct to Python. This construct is the use of the

dollar sign ($) to visually distinguish secure variables. The dollar sign goes in front of the

variable name. It is required when declaring a new variable (binding a new name), but after that

the dollar sign is optional while that variable is still secure. See Table 1 for the complete

specification.

Table 1 Sython Syntax Validity

Syntax Validity

$x=syalloc(‘i’) Valid syntax. If x is unbound, x will become a
secure variable. If x is bound, it will be
reassigned as a secure variable.

x=syalloc(‘i’) Ambiguous syntax. If x is unbound, this will
raise a SySecurityException. If x is bound
as a secure variable, x will continue to be a
secure variable (now containing the results of
syalloc(‘i’)). If x is bound as an insecure
variable, a SySecurityException will be
raised.

$x=’abc’ Invalid syntax. The dollar sign denotes a
secure variable, but the string ‘abc’ is not a
secure variable. A SySecurityException
will be raised.

$x=syalloc(‘s’)

x=’abc’

Valid syntax. x is bound as a secure variable,
initially. It is then rebound as an insecure
variable containing the string ‘abc’.

13

5.2. SYTHON BUILT-IN FUNCTIONS

To support development using secure variables, Sython adds a number of new built-in

functions. This section will detail each new function.

syalloc(type [,range/len, constraint_sets])  syobj

Allocates a new syobj. Variables to hold syobj must be denoted with a
dollar sign ($) when assigning a new syobj.

type is the type of sython variable to allocate, either 'i' for int or
's' for string.

range is a two element tuple containing the valid range of values from
which to choose an initial value. range is used with ints and must be
a distance of ten or more units apart.

len is the initial length that a str-based syobj should be.

constraint_sets is a tuple containing strings of constraints.

Valid constraints are:

 'ALL' for no constraints

 'EVEN' for only even numbers

 'ODD' for only odd numbers

 'POSITIVE' for numbers greater than zero

 'NEGATIVE' for numbers less than one

 'UPPER' for uppercase letters

 'LOWER' for lowercase letters

 'PUNCT' for punctuation letters

 'SPACE' for whitespace

 'DIGITS' for numerical digits

The tuple can combine constraints where they make sense for example:

 ('EVEN','POSITIVE') or ('UPPER','LOWER')

Please note: integer-based constraints are restrictive whereas string-
based constraints are additive.

Examples:

$x=syalloc('i',(0,100),('EVEN',)) #for an even integer between 0 and
100

$y=syalloc('s',10,('UPPER','SPACE')) #for a string containing uppercase
letters and spaces that is 10 letters long.

$z=syalloc('s',None,('ODD','NEGATIVE')) #for an odd, negative integer.

14

syval(syobj)  str

Returns a string representing a sython variable. The string will not
change between syval calls if the syobj value does not change. If the
syobj value does change, the string returned by syval may or may not
change.

syinput()  syobj

Returns a syobj containing a line from the daemon's input file. See
Section 5.5 for more information about the input file.

syoutput(syobj)  bool

Writes the current value of syobj to a new line at the end of the
daemon's output file. See Section 5.5 for more information about the
output file.

True is returned if writing the output was successful, False otherwise.

syquery(sql[,syobj, ...])  [(syobj, ...),(syobj, ...), ...]

Performs a database query. The sql statement should reference syobj by
either %i for syints or %s for systrs.

Examples:

syquery(‘select * from users’) might return [(syobj,syobj,syobj)] if
the table users was made up of three columns and contained one row.

syquery(‘select * from users where users.id=%i’,x) <where x is a secure
variable> might return [] if the id column in the users table contained
no entry that equaled the value of x.

5.3. SYTHON OBJECT METHODS

Internally, Sython represents secure variables as Objects of the type syobj. These

objects have two methods in addition to support for various arithmetic operations. Note: Sython

Objects can be handles for both integers and strings in the Sython Daemon.

syobj.isstr()  bool

Returns True if this syobj represents a string in the Sython Daemon.

syobj.isint()  bool

Returns True if this syobj represents an integer in the Sython Daemon.

15

Sython Objects support the following arithmetic operations: addition, subtraction,

multiplication, division, modulus, negation and absolute value. These operations are only

supported with the Sython Object represents an integer. Operations can be mixed between two

Sython Objects (representing integers) or one Sython Object (representing an integer) and one

integer (or long). All arithmetic operations that support Sython Objects produce additional

Sython Objects. Please note: unlike in division between two integers when dividing by zero, no

ZeroDivisionError is raised. Instead x/00 (for all values x). This is done to protect the actual

values of sythond variables. When a string is represented, Sython Objects support the

concatenation and length operations.

5.4. SYTHON DAEMON CONFIGURATION OPTIONS

The Sython Daemon supports a number of configuration options. These options are

specified as command line arguments when launching the daemon. Table 2 details each

command line argument. Note: there is no specific command used to exit the Sython Daemon.

This unix command kill can be used when sythond is launched in non interactive mode.

Table 2 Sython Daemon Command Line Arguments

Command Line Argument Argument Description

-b <file> Specify an alternative SQLite database

filename. See section 5.5 for more information

about the database file.

-c Launch sythond in interactive console mode.

To exit sythond when launched in this mode,

type control-c.

-d Enable debugging mode logging. The log file

(and console if in console mode) will display

additional information about each sythond

request.

16

Command Line Argument Argument Description

-g Enable global client support. Without this

argument, sythond will only allow

communications between clients on the

localhost.

-i <file> Specify alternative input filename. The default

input filename is sydinput.txt

-p <port> Specify alternative port number. The default

port number is 60123.

-o <file> Specify alternative output filename. The

default output filename is sydoutput.txt

5.5. SYTHON DAEMON FILES

The Sython Daemon interacts with four external files. This section details the use and

format of each file. Section 5.4 details how to specify alternative files. By default each file is

searched for within the same directory as the sythond application. System administrators should

take precautions to limit access to all of these files as they can contain the actual values of secure

variables.

Table 3 Sython Daemon Log File

File: Sython Daemon Log File

Default filename: syd.log Note: This filename cannot be changed at sythond runtime.

Purpose: This file keeps a record of events in the Sython Daemon. By default only

only new client sessions are logged, but if debugging is turned on, each client

request will be logged.

File format: <DATE> <TIME> <INFORMATION LEVEL> <MESSAGE>

17

Table 4 Sython Daemon Database File

File: Sython Daemon Database File

Default filename: syd.db

Purpose: This is a SQLite database file. It is contains the database that is queried in

the syquery() command.

File format: See the SQLite reference manual for more information about the file format.

Table 5 Sython Daemon Input Text File

File: Sython Daemon Input Text File

Default filename: sydinput.txt

Purpose: This file is used in coordination with the function syinput(). It is used to

securely input fixed data into Sython secure variables. The syinput()

function together with this file may be used to simulate user input during

testing.

File format: syinput() reads one line of this file with each call. # preceded comments
are supported and will not be included in the syinput() results. Example:

#File start

1234

hello this is a string#that was a string, this is a comment

18

Table 6 Sython Daemon Output Text File

File: Sython Daemon Output Text File

Default filename: sydoutput.txt

Purpose: This file is used in coordination with the function syoutput(). It is used to

output the values of secure variables. The syoutput() function together

with this file may be used to simulate screen output during testing.

File format: The file is formatted into two line groups in this structure:

#<Date> <Time>

<variable value>

19

6. MAINTAINANCE

Because Sython is derived from Python 2.3.4, it needs to be maintained similarly to

regular Python installations. The big difference is that Python patches should not be directly

applied to the Sython source code as they may inadvertently disable Sython functionality.

Instead, Sython specific updates which have been tested explicitly with Sython should be used.

If the Sython database functionality has been enabled, care must also be taken when

maintaining SQLite. Upgrades to SQLite can be found at http://www.sql.org, but should be

tested for compatibility with PySQLite.

20

7. TROUBLESHOOTING

This chapter offers solutions to many common problems when working with Sython.

Please read through these solutions before contacting the manufacturer.

7.1. INSTALLATION

If you experience difficulties during the installation of Sython, please follow this

procedure: if you’re experiencing difficulties installing SQLite, please visit their website at

http://www.sqlite.org. The website has answers to various frequently asked questions. There is

also a special section dealing with installing SQLite on various architectures including MacOS X

at http://www.sqlite.org/cvstrac/wiki?p=HowToCompile. Reading the README file that comes

with the distribution can also provide installation hints.

If you’re experiencing difficulties with installing PySQLite, please visit their website at

http://initd.org/tracker/pysqlite. In addition the README file in the distribution is useful and

points to a more complete usage manual in the doc/rest subdirectory.

If you’re experiencing installation difficulties with the Sython distribution, the Python

README in the main distribution directory has helpful installation tips. The Python website at

http://www.python.org also features helpful installation documentation. If you’re experiencing

difficulties installing the Sython Daemon, you may need to carefully reread the installation

directions. Ensure that before running the install_syd script your current working directory is the

same as that of sythond. Additionally administrator privileges are required for installation.

7.2. PROGRAMMING PROBLEMS

This section details common difficulties when programming with certain parts of Sython.

21

One of the main difficulties with the current Sython implementation is the limited support

for secure variables as function or method arguments. The obvious syntax of def f($x, $y,

z) is not currently supported. Secure variables may still be passed as function or method

arguments, but automatic enforcement of secure status is not currently available. Developers are

encouraged to use type testing as a temporary workaround.

Developers may notice that division operations never raise a ZeroDivisionError. This

is an intentional security decision. A malicious user could write a script that would use the

ZeroDivisionError to discover values of secure integers. Instead ZeroDivisionErrors are

transparently mapped to the value zero. See Section 5.3 for more information.

For the most part, the Sython Daemon transparently supports multiple simultaneous

clients. There are some caveats to this, however. The input and output files are shared between

clients and there is only a single file descriptor that is shared. This means that, for example, if an

input file contains three lines and client A executes syinput(), then client B executes

syinput() and then finally client A executes syinput() again, client A will have variables

containing the first and third lines while client B has a variable containing the second line. The

other main problem with threading is an internal Python issue. There is only one interpreter

thread within each Python process. This generally isn’t a problem, but users may notice some

slow down when the Sython Daemon is servicing many clients simultaneously.

7.3. CONFIGURATION PROBLEMS

By default Sython is configured to communicate with the Sython Daemon running on the

same machine over TCP port 60123. This configuration can be changed. If an alternative port is

desired, to steps are required. First, when launching sythond, the command line argument –p and

then the alternative port number is required. So to launch sythond on port 54321, type in

sythond –p 54321 in the command line and hit Return. Next, the Sython Interpreter needs to

be configured to communicate on the alternative port. This is done programmatically. Simply

22

type sython.comm.dPort=54321 to change the port number to 54321. This should be done

before creating any secure variables. The change is for the current session only.

The steps are similar to use Sython on different machine than the Sython Daemon. On

machine A, launch sythond using the command line argument –g. This enables non-local (or

“global”) clients. Then, in the Sython Intepreter on machine B use the command

sython.comm.dHost=machineA.local where machineA.local is the hostname of the machine

running the Sython Daemon instance. In addition to host names, IP addresses may be used.

Please note: the protocol Sython uses to communicate with the Daemon is not encrypted. As

such it may be intercepted by third parties when used over a network. To protect against this

attack, users are encouraged to use SSH port tunneling. Please see the SSH man page for more

information on port tunneling.

Sometimes when launching the Sython Daemon, an error message will be displayed

saying socket.error (48, 'Address already in use'). This can happen in two cases.

The first, and most obvious, is when there is already a program bound to the port sythond is

attempting to launch using. To solve this problem exit the other program. This error message

can also happen when relaunching sythond immediately after exiting the program. In this case,

simply wait a few minutes before relaunching sythond.

