Electronic Notes in Theoretical Computer Science 88 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume88.html pages

Synchronous Estelle: Just Another
Synchronous Language?

1

Miguel Riesco! Javier Tuya?

Computer Science Department
University of Oviedo
Oviedo, Spain

Abstract

Synchronous Estelle is a new language designed to specify distributed reactive sys-
tems. We have developed this new language, that tries to merge both asynchronous
and synchronous paradigms, as an answer to some problems not solved with exist-
ing techniques. We will show its syntactic and semantic features, the way to obtain
executable programs according to a specification, and some hints to perform the
validation of the programs written in this language.

The Steam Boiler Control Problem, a referent study case in the field of reac-
tive systems, has been used to study the applicability of Synchronous Estelle to
distributed reactive systems.

Key words: Synchronous Estelle, Reactive Systems, Distributed
Systems, Estelle, Reactive Languages, Steam Boiler

1 Introduction

The term reactive system was introduced to characterize a kind of systems dif-
ferent from the transformational ones. Many languages and techniques have
been used to try specify them. The first techniques used to do this (concurrent
programs synchronized and communicated by OS primitives, finite- states ma-
chines, Petri nets, classical concurrent programming languages, etc.) present
several problems that made them not suitable for this kind of systems [4].
Consequently several specific designed languages were developed to specify,
program and verify reactive systems. There are several different approaches:
graphical languages based on automata (Statecharts [14], RSML [22], Sync-
Charts [2], Argos [25]), data- flow based languages (Signal [21], Lustre [13]),
imperative languages (Esterel [5], Reactive C [§]), ..., but all of them are based

! Email:albizu@lsi.uniovi.es
2 Email:tuya@lsi.uniovi.es

(©2003 Published by Elsevier Science B. V.

RiEsco AND TuyA

on the synchrony hypothesis. The adoption of this hypothesis (which says that
the reaction time of the system is zero), helps the developer to specify reactive
systems.

Synchronous Estelle [28] is a new member of this family of languages,
usually called synchronous languages. It was created to specify distributed
reactive systems, because we found that existing languages were not com-
pletely suitable for this kind of systems, where the features of reactivity and
distribution appear together.

Most existing languages and tools to specify reactive systems are based
on the synchrony hypothesis, but this hypothesis is not applicable in a dis-
tributed environment. As we can read in [4] ”... real-time systems are often
implemented on distributed architecture, that is on sets of processors connected
by asynchronous means. Synchronous models as introduced before can hardly
be considered as realistic for such target architectures”.

As the same need was felt by some other working teams some tools were
designed to specify distributed reactive systems (Distributed Reactive Ma-
chines [9], Meta [26], CRP [6], Corea [7]), but they are only useful for a few
aspects of distribution:

e Distributed Reactive Machines tried to extend the synchrony hypothesis
through the network, using a centralized synchronizer. Due to network
delays, system reaction can not be considered instantaneous.

e Meta detaches the interface from the reactive kernel, allowing each part to
be implemented in different machines.

» CRP allows the communication of reactive nodes (implemented in Esterel)
using a rendezvous mechanism. We consider this technique as a good ap-
proach, but we think that message passing is a more intuitive communi-
cation mechanism than rendezvous, and it does not introduce unnecessary
delays due to the synchronization.

* Corea makes different reactive systems share the main clock, and assumes
that the communication among reactive nodes has an exact and constant
length of time.

So, we found that only CRP can be considered a valid option to specify
distributed reactive systems, but it has the problem mentioned above.

We have studied two additional languages, but they present also some
drawbacks:

e The use of Signal in the design of distributed reactive systems was rejected
because data-flow declarative languages are not easy to understand in some
environments. A graphical language can be better accepted.

e The GALS (Globally Asynchronous Locally Synchronous). We will deal
with this model later.

Next we tried the use of Formal Description Techniques (FDTs) (Lotos [20],
SDL [12], Estelle [19]), but we found that they are not adequate to specify

2

RiEsco AND TuyA

reactive systems either, although they are very suitable to describe distributed
systems. We found that their semantics depart a lot from the semantics of
synchronous languages, which we consider easier to understand.

A complete comparison of all these techniques and the problems we found
when dealing with distributed and reactive systems can be found in [27]. The
conclusion of this study is that no existing language has all the features needed
to deal with a distributed reactive system.

This paper is structured as follows. First we will introduce Synchronous
Estelle main features, including its syntax and semantics. The way of obtain-
ing the executable specification from the original one and how the verification
of the system can be done is also presented. Next we compare our language
with GALS system and OcRep tool. Then, Section {4 will introduce the Steam
Boiler Control Problem, which will be specified using our new language. Fi-
nally, we will show the conclusions of this work.

2 Synchronous Estelle

To solve the problem of specifying distributed reactive systems, we have de-
signed Synchronous Estelle. The main goal of Synchronous Estelle is to join
in one specification technique two different paradigms: first, a synchronous
one, to specify reactive systems, and second an asynchronous one, to specify
communication protocols.

We use the term distributed reactive system to define a set of reactive
nodes connected one another by means of a communication network. Each
node have a specific function to perform autonomously, but they have to share
information to do it. So distribution has to be given at specification level.

Synchronous Estelle is an extension of the ISO Standard Estelle. Estelle
is a Formal Description Technique standardized by ISO, designed to specify
distributed systems. An Estelle specification consists of a set of modules
and a set of channels to communicate one another by means of exchanging
messages. One module can be divided into several modules in order to develop
the system in a structured way. The behaviour of each module is represented
by a finite state machine, where the transitions between states are triggered
by the arriving of messages through interaction points.

The only difference between Synchronous and Standard Estelle is that
our language adds a new kind of modules (called systemsynchrony), to spec-
ify reactive behaviours. So, a Synchronous Estelle specification consists of
a set of modules of three types: standard systemactivity and systemprocess
and our new systemsynchrony modules. The structure and semantics of sys-
temsynchrony modules are based on the Statechart formalism: one system-
synchrony module represents one finite state machine with hierarchical and
parallel states. Each module of this kind can be divided again in two or
more modules, each one representing one ”extended state” of the hierarchical
machine.

RiEsco AND TuyA

Table 1

Graphical representation of an example system and its textual code

module System SystemSynchrony;
body bodyl for System;
module A; Parallel;
module B;
module D; module E;
trans name tl1 from E to D;
trans name t2 from D to E;
initialize to D;
end module (* B *);
module C;
module F; module G; module H;
trans name t3 from F to G;
trans name t4 from F to H
trans name t5 from H to G
trans name t6 from G to H;
trans name t7 from F to H
initialize to F;
end module (* C *);
end module (* A *)
end; (* Bodyl *)

It is important to note the difference between Standard Estelle modules and
systemsynchrony modules: both can be divided into a set of modules, but they
represent a set of state machines in the former, while each module represents
one state of a hierarchical state machine in the latter. The semantics of the
new kind of modules is completely different from the semantics of standard
modules, as will be shown.

Synchronous Estelle supports both textual and graphical specification.
The textual specification of this kind of modules has a very similar syntax
to Standard Estelle, to make it familiar to Estelle developers. This syntax
has a direct relationship with the graphical specification. This allows us to
use a graphical representation in early stages of development, and a textual
language to complete implementation details.

Using Synchronous Estelle systemsynchrony modules we can specify re-
active subsystems, while the communication between them is specified using
Standard Estelle modules and message passing mechanism.

2.1 Synchronous Estelle syntax

A systemsynchrony module is declared in two parts (like every Estelle module):
the header and the body. This division stresses the separation between the
interface of the module and its internal structure and behaviour. It allows
the definition of different bodies for the same module, making it easy to test
different behaviours, in order to choose the most suitable for each situation.
The header declaration should include the name of the module, the inter-
action points with the rest of the specification and the interaction points with
the environment. Interaction points with other modules are maintained to use
the usual message passing mechanism to communicate the module with the
rest of the system (other systemsynchrony or Standard Estelle modules). In-
teraction points with the environment are an easy way to connect the system

4

RiEsco AND TuyA

and the rest of the world. Three types can be distinguished, depending on the
kind of events that will circulate through them: continuous events, discrete
events and discrete events with parameters.

The body declaration is made apart, as said before. In it we can declare
constants, types, variables, procedures and functions in the same way it is done
in Standard Estelle. We can also declare new modules, which will represent
compound states in the global state machindﬂ. Transitions between modules
represent transitions between states. Inter-level transitions are allowed. Each
transition have an enabling condition and a guard. The first one is a logical
expression of events (where de presence of an event is treated like true and its
absence like false), while the guard is a Pascal-like logical expression. When
both are computed as true the transition is said enabled. Finally, a module
can be tagged as parallel.

Table [1| shows a Statechart style graphic representation of a system. The
module drawn in dotted line is a parallel module: its sons will work in par-
allel. This graphical specification can be drawn with the Synchronous Estelle
Graphical Editor (see Section , and it is automatically transformed into a
textual specification. In the same table the Synchronous Estelle textual spec-
ification for that system is shown, where all the details have been removed in
order to show only the way to specify the system structure.

2.2 Synchronous Estelle semantics

A Synchronous Estelle specification execution makes normal Estelle modules
(with their own semantics) run in parallel with systemsynchrony modules,
which have an execution semantics very similar to the Statecharts one. There
are other semantic approaches (like SyncCharts), but we choose the State-
charts approach because it deals with event paradoxes in a flexible and easy
to understand way, although it can be considered ”less synchronous” than
other semantics.

The system execution (for this kind of modules) is divided into a set of
computations steps, which are also divided into micro-steps. A step begins
with the arrival of a set of messages from other modules and events from the
environment; then all the messages are dealt with generating, eventually, a
set of events. These, together with environmental events, are the input for
the first micro-step. These events will enable some transitions. Incompatible
transitions will be eliminated from this set. Every transition of the resulting
set will be shot (the enable transition with higher priority will be the first
one), making the system to change its state, and, eventually, to generate more
events. When all transitions are been shot, the next micro-step begins. This
process goes on until one micro-step can not begin because there is not any
enabled transition. Now external signals are sent to the environment and

3 Remember that a systemsynchrony module represents a hierarchical state machine, and
each submodule represents one state of that machine.

5

RiEsco AND TuyA

messages are sent to other modules, finishing the step. Algorithm [1| shows the
implementation of the computation step.

Algorithm 1 Implementation of computation step

1.- I={Input events}
2.- Compute triggered=f(I)
3.- I=()
4.- While (triggered # 0)
4.1.- microstep=compatibles(triggered);
4.2.- while (microstep # ()
4.2.1.- ToShot = highest priority transition € microstep;
4.2.2.- microstep = microstep - ToShot;
4.2.8.- shoot ToShot
4.2.4.- I=I U{ Generated events }
4.8.- Compute triggered=f(1)
5.- Send generated Estelle messages and environment events.

Each synchronous module runs asynchronously in parallel with the rest of the
modules of the system. The interaction between synchronous modules and
the rest of the system is performed only at the beginning and at the end of
the computational step. At the beginning of the step all messages arrived to
the synchronous module are processed, usually to generate internal events. At
the end of the step all external signals generated inside it are sent through
external interaction points.

A system execution consists not only on changing the actual state of the
automata. Each transition has an associated code, which determines the ac-
tions to perform when the transition is shot. In addition, each state has four
codes associated: initialization, which is executed when the system starts;
on-entry, which is executed when the state goes into the actual state of the
automata; on- first, which is executed the first time the state goes into the
actual state of the automata; on-exit, which is executed when the state leaves
the actual configuration of the system. All these codes are written using Pascal
programming language. We use this language because it is used in Standard
Estelle specifications.

System response time is supposed to be zero (due to synchrony hypothesis),
but in fact it will take some time. All events received during one step will be
dealt with in the next step. All events that have not been dealt with during
one step are ignored. This behaviour is similar to Statecharts one, but it
differs from SyncCharts semantics.

2.8 Determinism

There is an important property we have tried to preserve in our semantic
approach: determinism. Our semantics is completely deterministic, because
even when several transitions are enabled in the same computational step,

6

RiEsco AND TuyA

there is a clear criterion to choose one: the transition with highest priority
will be shot. All transitions have different priorities (parent module transitions
rank higher than child module transitions; transitions that share the same
origin are more important depending on their declaration order). Only when
the user changes ”by hand” the transition priority it is possible to have non-
determinism (assigning the same priority to two different transitions), but in
this case it is understood that the user knows what he is doing. The compiler
will warn the user though it is not an error.

2.4 Compositionality

The computation step semantics is not compositional. This is so on purpose.
We have chosen this behaviour for three reasons:

[t is easier to understand this kind of semantics rather than a compositional
one.

e It is easier to implement, and the execution is faster.
e Modularity can be achieved implementing independent reactive modules.

Although we know that compositionality is one of the desirable properties for
a language designed to specify reactive systems, we have decided to sacrifice
it to obtain responsiveness and causality, given that it is not possible to have
a semantics with the three properties [17].

2.5 The Synchronous FEstelle development environment

We have designed several tools to help developers use this language. The
structure of this development environment can be seen in Fig. [We have
designed the following tools:

* Graphical Editor: 1t allows us to "draw” the system in a graphical way. It
generates both textual Synchronous Estelle and SIF representation of the
system. In order to make the implementation of these tools easy, we use
an intermediate form (Synchronous Estelle Intermediate Form - SIF), that
contains all the information of the original specification but in a simpler
format (in fact, XML is used to do this).

* Translator: It generates the SIF representation of the system from the
original Synchronous Estelle specification.

e Interpreter: From a specification written in Synchronous Estelle, it gener-
ates several files: one containing the Standard Estelle modules, and a group
of files, written in C, that represent the behaviour of each reactive module.
Once all these files are compiled (the first one using Estelle tools, while
the rest are compiled using a standard C compiler), we will obtain a set of
executable programs that work together to represent the behaviour of the
whole system.

e Compiler: It is functionally very similar to the interpreter. The difference

7

RiEsco AND TuyA

Fig. 1. Synchronous Estelle Development Environment

ES
Graphical Ed.

Interpreter
i o
b eh oah eactive modules
it Representation (in C)

Estelle
"Compiler”

Estelle Modules
Representation (in C)

E.S. Corpiler

Reactive modules
Representation (in C)

Test Interfaze
Generator

Estelle
Specification

Estelle
"Compiler"

C Code CCode

[
Compiler
Executable Executable Final Executable Final Executable
Interface Interface Program Program

Estelle Modules
Representation (in)

will be dealt with later.

e Graphical ”Animator”: It allows us to examine the execution of a system,
in a graphical way: the user can see the graphical representation of each
reactive module (where active states have a different colour), he can perform
a step by step execution, seeing graphically how a transition is shot, how a
state is exited, etc.

o Test interface generator: It is used to generate one custom made interface
with the system, to allow users to generate control events or to display the
information the system sends them. It can be used to test the system or to
build the final user interface.

All these tools (except the translator) have been developed and are func-
tional, in a prototype version.

2.6 FEzecuting Synchronous Estelle specifications

When we want to generate an executable program from a Synchronous Estelle
specification we have two possibilities: either using the interpreter or the
compiler. Both have a similar function: they separate each reactive subsystem
and the Estelle modules, generating several Estelle and C files that can be
compiled to get a set of executable programs that, running together, represent
the behaviour of the system.

The first step, both in the compiler and in the interpreter, is to copy
Standard Estelle modules as they are, with the addition of a new module to
manage the communication with the rest of the system. The Standard Estelle
Compiler, like EC [18] is used to obtain an executable program.

8

RiEsco AND TuyA

The interpreter represents all the information of the original specification
for each reactive module within a C program. All the structural informa-
tion (states, substates, transitions, etc) is included with data structures, but
maintaining the original hierarchical information. An execution engine that
implements the semantics of the system, as has been seen in section [2.2] is
added to this program.

The compiler transforms the original hierarchical structure into a "tra-
ditional” automaton, without hierarchical nor parallel states, but with an
equivalent functionally. A similar execution engine, like in the interpreter, is
added too, to implement the computation step semantics.

The advantage of the second tool is a faster execution, because all oper-
ations are simpler than in the first case. In a hierarchical automaton it is
not simple to choose one transition to be shot or to know which states are
exited and which ones are entered. In a flat state machine these are very
simple decisions. The problem is that only simple systems can be translated,
because the equivalent automaton is much larger than the original one (par-
allel and compound states were originally designed to avoid state-explosions
problems). Our studies [27] show that with 100 states, with a medium degree
of parallelismﬂ we can not perform a transformation due to virtual memory
overflow (with the same number of states but with a low degree of parallelism
the size of the program generated by the compiler is greater than 103 MB,
while the size of the program generated by the interpreter is only 38 KB).

The transformation is not a simple process, because every state and every
transition has to be treated, eventually, several times. Every code of each
state or transition has to be modified, too. In [27] a complete description of
how to perform the transformation is done.

2.7 Verifying specifications

It is important for a language like Synchronous Estelle to have some kind
of tool to perform properties verification of the specification. Now we are
working in verifying Synchronous Estelle specifications, using SPIN. Instead of
building a new model checker from scratch, we are trying to use SPIN [16], an
automated verification tool (model checker) that uses PROMELA (PROcess
MEta LAnguage) as system specification language, in a similar way to what
we have done before using SPIN to verify SA/RT Models [29]. Our intention
is to translate the Synchronous Estelle Specification to PROMELA in order to
use SPIN to verify the original system. A translator from Synchronous Estelle
to PROMELA is under development for that purpose.

The question of why not using directly PROMELA to specify the system
could be made. The answer is that it is easer to understand and use Syn-
chronous Estelle (a language based on a graphical formalism) than PROMELA,

4 The size of the equivalent automaton depends on the number of states, the structure, the
number of parallel states and their position on the original system

9

RiEsco AND TuyA

a pure textual language.

3 Other related work

Now we can compare Synchronous Estelle with two existing techniques to
specify distributed reactive systems: the GALS systems and OcRep tool. The
GALS (Globally Asynchronous Locally Synchronous) systems [11] were de-
signed to specify a reactive distributed system like a set of Finite State Ma-
chines, working in a synchronous mode. FSMs can exchange information
using a single-slot buffer of signals. The global behaviour of the system is
asynchronous, because communication is not instantaneous, so each FSM sees
that the reaction time of the other FSMs is not zero. The POLIS [3] design
environment uses a GALS model (CFSM - Codesign Finite State Machines),
where each node is developed using Esterel synchronous language.

Both POLIS and Synchronous Estelle have a very similar structure: there
is a set of synchronous nodes and each node communicates through non-
instantaneous channels. But there are some differences between them:

e POLIS uses a "more synchronous” language, like Esterel, while Synchronous
Estelle uses a structure very similar to Statecharts. The former has a
stronger formal basis than the latter.

e POLIS is a complete development environment. Synchronous Estelle devel-
opment environment, under construction, and all the tools are prototype
versions.

e Graphical tools to specify the whole system can be used in Synchronous
Estelle. In POLIS only text is used for the specification.

» Using Synchronous Estelle we can encompass within a single framework all
reactive aspects [4]: the whole specification is included in one file. In POLIS
we need the Esterel specification for each module and one additional file to
indicate the interconnections of the modules.

e All modules in POLIS are synchronous; a Synchronous Estelle specification
can be made up of synchronous modules and Standard Estelle modules.
This kind of modules has a different structure and semantics, and have
been mainly used to specify network protocols. This different approach can
be interesting in some circumstances, and we can reuse existing protocol
specifications when the network behaviour is important for the global system
performance.

So, both approaches are very similar, but while in POLIS a lot of work has
already done in Synchronous Estelle, that has some additional features, a lot
of work has to be done.

OcRep [10] deals with distribution from a different point of view. With
OcRep where the whole system is compiled in only one module. This module
contains the code that every node of the distributed system has to execute.

10

RiEsco AND TuyA

The idea is to distribute this program to every location, according to distribu-
tion directives given by the user, and then remove on each node the code that
is not relevant to it. Communication and synchronization will be automati-
cally done, too. This approach offers a centralized compilation and debugging
before the distribution. The advantage of this approach is that supposedly
the distributed program has the same safety as the centralized one.

4 The steam boiler control problem

The steam boiler control specification problem [1] belongs to a group of bench-
mark problems designed to compare different techniques to specify reactive
and real-time systems. Other similar problems are the Production Cell Prob-
lem [23] or the Generalized Railroad Crossing (GRC) [15].

The steam boiler is a typical example of a reactive system. There is a set
of sensors (water level, steam rate, state of the pumps) and a set of actuators
(four pumps, one valve). According to the values measured by the sensors,
the system has to react opening or closing the pumps or the valve to keep the
water level in a safe value. The controller has to respond as soon as possible
to avoid the boiler damage, even when one component of the boiler fail.

From 1995, when the problem was introduced several techniques have been
applied to solve the problem [I]. Timed Automata, Statecharts, Esterel, Lus-
tre, NUT, Z, Evolving Algebra, TTL and many other languages and techniques
have been used to specify and/or verify this problem.

4.1 Synchronous FEstelle specification of the Steam Boiler Problem

We have used this problem to test the Synchronous Estelle language and
related tools. We will specify every physical part of it and the controller
itself as different synchronous modules, while the communication network will
be specified with a Standard Estelle module. All the synchronous modules
will be connected to the network module to exchange information. Modules
representing physical parts of the system are connected with the environment
too, in order to get information or to send commands. All messages emitted
by the physical units are sent to the control program. The messages emitted
by the control program are sent only to one physical unit.

4.2 General structure of the specification

The first step in our specification is to define the main modules of the system
and the interconnection channels between them. All the channels will connect
every module with the network module. This module has to route every
message to the proper destination. The declaration of the channels is very
simple: it only enumerates the messages that can travel through them.

Once defined the channels, we have to specify the header of the modules.
We include in the header definition of each module the interaction points of the

11

RiEsco AND TuyA

module with the environment (when the module interacts with the physical
units) and with the other modules.

In the main body of the specification the configuration of the system is
included associating the headers of the modules with the appropriate bodies
and connecting the interaction points of the different modules.

The rest of the specification consists on the definition of each reactive mod-
ule and one Standard Estelle module to specify the interconnection network.

4.8 Specification of reactive modules

There are six main types of reactive modules in our specification, representing
different parts of the system: the water level measurement device, the steam
measurement device, the pump, the pump control device, the valve and the
control program. There are four pumps and pump controllers, so there will
be four instances of those kind of modules.

The behaviour of the physical units is really simple: sensors send period-
ically read values to the control program, while actuators send signals to the
environment to change the state of some physical unit (pump and valve). The
modules dealing with the physical parts of the system have to manage the er-
rors, too. When the system control program detects a failure in some physical
part of the system it will send a message to notify the failure. The controller
of this part then stops the normal behaviour until the device is repaired: Any
message received will be ignored, and no message will be emitted until the
physical device is repaired. Then, the physical device will notify this event to
its controller, which will report it to the system controller.

4.3.1 Control module

The core of the steam boiler program is the Control module. This module
represents all the logic of the system: it has to accept read values of system
parameters (water level, steam level, state of the pumps) and it has to decide
what to do in each moment to maintain a safe water level. The controller
has to deal with potential failures of the physical units too. Therefore this
is the most complex module of the specification. It is constituted by four
submodules that run in parallel:

* Read_messages_ini: used only during the initialization phase to deal with
initial message exchanging.

* Read_-messages: reads messages sent by physical units, and estimates the
present value when some physical sensor does not work properly.

e Timing: periodically sends a signal to notify that it is the time to react to
the physical units messages.

* Operation_modes: represents different modes of operation: Normal, when
everything works properly; Rescue, Degraded when there are some physical
failures; Emergency_stop, when the system has to be shut down because the

12

RiEsco AND TuyA

program can not guarantee the safety of the boiler; and Initialization, for
this purpose.

All those modules (states) are decomposed in more complex state ma-
chines. To give an idea of the complexity of the control module we can say
that it has 160 submodules, 154 transitions and 52 Estelle transitions. Be-
sides states and transitions the specification should be completed with pieces
of Pascal code to define the actions to perform when the transition fires or
when an state is entered or exited.

In [27] the complete specification of the system, both in graphical and in
textual way can be found.

4.4 Specification of network module

This module is used to represent the behaviour of the communication system
between reactive modules. Communication through a network is based on
message interchanging, and this is the mechanism Estelle uses instead event
broadcasting using in synchronous modules. So, Standard Estelle has been
used to specify this module because it is more suitable for this kind of be-
haviour.

A very simple protocol has been used in this first approach (messages are
sent to their destination without any further considerations). More complex
and real protocols can be used to study real systems, but in this paper we
are only interested in studying the applicability of Synchronous Estelle to
distributed reactive systems, not in a real, efficient and fault tolerant specifi-
cation. Further refinements of this first work can improve and complete the
specification to become more robust.

5 Conclusions and future work

This paper has introduced a new language: Synchronous Estelle. This lan-
guage is not just another synchronous language, but it tries to merge in one
single framework both synchronous and asynchronous paradigms to specify
distributed reactive systems. We have shown its syntax, semantics and the
way to get executable specifications.

The main contribution of this approach is to put together in only one
specification both different kinds of behaviours: the synchronous behaviour
for the reactive subsystems and the asynchronous one for the communication
part of the system. The new technique to specify distributed reactive systems
has been tested on the Steam Boiler Control Problem, showing that it is very
suitable for this kind of systems.

The developed specification for the Steam Boiler Control Problem has been
compiled with the Synchronous Estelle Compiler, obtaining a set of C files that
implement a fully executable model of the system. This control program has
been successfully linked to the steam boiler simulator developed in the FZI[24].

13

RiEsco AND TuyA

At this point of time we are working in verifying the Synchronous Estelle
specifications. As we have said in Section 2.7 we are working on a translator
from Synchronous Estelle to PROMELA to do that.

References

[1] Abrial, J.R., Specifying and Programming the Steam Boiler Control. Springer-
Verlag Lecture Notes in Computer Science, 11654 (1996).

[2] André, C., SyncCharts: A Visual Representation of Reactive Behaviours.
Research Report 95-52, Université Nice, Shopia Antipolis, 1996

[3] Ballarin, F, M. Chiodo, P. Giusto et al, Hardware-Software Co-Design of
Embedded Systems: The Polis Approach, Kluwer Academic, 1997.

[4] Benveniste, A., and G. Berry, The Synchronous Approach to Reactive and Real-
Time Systems. Proceedings of the IEEE, vol 79, n 9, pp.1270- 1282, 1991

[5] Berry G., and G. Gonthier, The Esterel Synchronous Programming Language:
Design, Semantics, Implementation. Technical Report, 1988. Reprinted in
Science of Computing Programming, 19 (1992), no.2, 83-152.

[6] Berry, G., S. Ramesh and R.K. Shyamasundar, Communicating Reactive
Processes. Proc. 20th Symp. on Principles of Programming Languages, 1993

[7] Boniol, F., and M. Adelantado, Programming Distributed Reactive Systems: A
Strong and Weak Synchronous Coupling. Proc. of WDAG’93, pp. 294-308. 1993

[8] Boussinot, F., Reactive C: An extension of C to Program Reactive Systems.
Software Practice And Experience, vol.21(4), pp. 401-428, 1991

[9] Boussinot, F., J. Susini, and L. Hazard, Distributed Reactive Machines. Inria
Research Report 3376, 1998

[10] Caspi, P., A. Girault, D. Pilaud, Automatic Distribution of Reactive Systems for
Asynchronous Networks of Processors, IEEE Trans. on Software Engineering,
25(3), pp.416-127, 1999.

[11] Chapiro, D.M., Globally Asynchronous Locally Synchronous Systems, PhD
Thesis, Stanford University, 1984

[12] CCITT, Specification and Description Language. International Consultative
Committee on Telegraphy and Telephony, CCITT Z.100, Geneva.

[13] Halbwachs N., P. Caspi, P. Raymond and D. Pilaud, The Synchronous Data
Flow Programming Language LUSTRE. Proc. of the IEEE, vol 79, no 9, 1305-
1320, 1991

[14] Harel, D., Statecharts: A wvisual Formalism For Complex Systems. Science of
Computer Programming, 1987.

14

RiEsco AND TuyA

[15] Heitmeryer, C., R. Jeffords and B. Labaw, A benchmark for comparing different
approaches for specifying and verifying real-time systems. In Proc. 10th Int.
Workshop on Real-Time Operating Systems and Software. May, 1993.

[16] Holzmann, G. J., The Spin Model Checker, IEEE Trans. on Software
Engineering, 23 (1997), No. 5, pp. 279-295.

[17] Huizing, C., Semantics of Reactive Systems: Comparison and Full Abstraction.
Ph.D. Thesis, Eindhoven University, 1991.

[18] Institut Nacional des Telecomunications. EDT: Estelle Development Toolset,
Evry, France, 1996.

[19] International Organization for Standardization, ESTELLE - A Formal
Description Technique based on an Extended State Transition Model, 1SO /TEC
9074, Geneva, 1989

[20] International Organization for Standardization, LOTOS - A Formal
Description Technique based on the Temporal Ordering of Observational
Behaviour, ISO/IEC 8807, Geneva, 1989

[21] Le Gernic, P., T. Gautier, M. Le Borgne and C. Le Marie, Programming Real
Time Applications with Signal. Proc. of the IEEE, Vol. 79, No 9, Sep. 1991

[22] Leveson, N., M. Heimdahl, H. Hildreth and J. D. Reese, Requirements
Specification for Process Control Systems. IEEE Transactions on Software
Engineering, 20 (1994), No. 9

[23] Lindner, T., Task Description of the case Study Production Cell. Technical
Report. Forschungszentrum Informatik. Karlsruhe, 1993

[24] Lotzbeyer, Annette, Simulation of a Steam-Boiler. Technical Report.
Forschungszentrum Informatik. Karlsruhe, 1994.

[25] Maraninchi, F., and Y. Rémond, Argos: an automaton-based synchronous
language. Computer languages 27, pp. 61-92, 2001

[26] Marzullo K., and M. D. Wood, Tools for Constructing Distributed Reactive
Systems. Technical Report. Cornell University, Department of Computer
Science, Ithaca, New York, 1991

[27] Riesco, M., Specification of Distributed Reactive Systems Using Synchronous
Estelle. Ph.D. thesis, University of Oviedo, Oviedo (Spain), 2002. Available via
http://www.di.uniovi.es/"albizu/tesis.

[28] Riesco, M., J. Tuya and O. Alonso, Synchronous Estelle: A language for
Specifying Distributed Control System. In International Workshop on the Formal
Description Technique ESTELLE, pp. 237-244. Evry, France, 1998

[29] Tuya, J., J. R. De Diego, C. de la Riva, J. A. Corrales. Dynamic
Analysis of SA/RT Models using SPIN and Modular Verification. The Spin
Verification System. J-C Grégoire,G.J. Holzmann, D.A. Peled, Eds., American
Mathematical Society, Vol. DIMACS/32, pp. 165-183, 1997

15

http://www.di.uniovi.es/~albizu/tesis

	Introduction
	Synchronous Estelle
	Synchronous Estelle syntax
	Synchronous Estelle semantics
	Determinism
	Compositionality
	The Synchronous Estelle development environment
	Executing Synchronous Estelle specifications
	Verifying specifications

	Other related work
	The steam boiler control problem
	Synchronous Estelle specification of the Steam Boiler Problem
	General structure of the specification
	Specification of reactive modules
	Specification of network module

	Conclusions and future work
	References

