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Abstract 

Recent advances in software engineering, such as 
graphical user intevaces and object-oriented programming, 
have caused applications to become more memory intensive. 
These applications tend to allocate dynamic memory 
prolipcally. Moreove< automatic dynamic memory 
reclamation (garbage collection, GC) has become a popular 
feature in modern programming languages. As a result, the 
time consumed by dynamic storage management can be up 
to one-third of the program execution time. This illustrates 
the need for a high-performance memory management 
scheme. 

This paper presents a top-level design and evaluation of 
the proposed instruction extensions to facilitate heap 
management. These instructions are h-malloc for memory 

allocation, mark, and sweep for garbage collection. 
Simulation results show that the hit ratio for 2 Kbits and 8 
Kbits buffer range from 84-99% and 95-99%, respectively. 
The hardware complexiv of the proposed scheme is O(n), 
where n is the size of the bit-vector: For a design with 20K 
gates and 97% miss rate, the overall speedup can be as high 
as 1.41. 

1. Introduction 
By early 2010s, the VLSI technology would allow 

fabricators to pack 1 billion transistors into a single chip that 
can run at Giga-Hertz clock speed. Consequently, the 
challenge is no longer how to make a billion-transistor chip, 
but instead, what kind of facilities should be incorporated 
into the design [4]. The current trend in CPU design is to 
include application specific instruction sets such as MMX 
and 3D-now as extensions to basic functionalities. The 
rationales behind such approaches are obvious. First, space 
and cost limitations are no longer issues. High-density chips 
can be manufactured cheaply in current semiconductor 
technology. Second, these application specific instruction 
sets are included to alleviate performance bottlenecks in the 
most commonly used applications such as 3-D graphic 
rendering and multimedia. These rationales closely follow 
the corollary of Amdahl’s law: Make the common case fast. 
Amdahl’s Law reminds us that the opportunity for 
improvement is affected by how much time the event 
consumes. Thus, making the common case fast will tend to 
enhance the performance better than optimizing rare cases 

[6]. Since the biggest merit of hardware is speed, the 
significant speedup can be gained through hardware 
implementations of common cases. 

As the popularity of object-oriented programming and 
graphical user interface increases, applications become more 
and more dynamic memory intensive. It is well-known 
among experienced programmers that automatic dynamic 
memory management functions (i.e. allocation and garbage 
collection) are slow and non-deterministic. Since object- 
oriented applications prolifically allocate memory in the 
heap, it  is also no coincident that such applications can run up 
to 20 times slower than the procedural counterparts. A study 
has also shown that Java applications can spend 20% of the 
execution time in dealing with dynamic memory 
management [I] .  Unlike stack or queue, heap is not a well- 
defined data structure. Allocating memory in the heap often 
requires some form of search routines. In software 
approaches to heap management, searching is done in 
sequential fashion (i.e. linked list search). As the number of 
existing objects grows, the search time would grow linearly 
longer as well. Studies have shown that applications written 
in C++ can invoke up to ten times more dynamic memory 
management calls than comparable C applications [2]. 
Apparently, dynamic memory management is a common case 
in object-oriented programming. With Amdahl’s corollary in 
mind, the need of a high-performance dynamic memory 
manager is obvious. 

Deterministic turnaround time is a very desirable trait for 
real-time applications. Presently, software approaches to 
automatic dynamic memory management often fail to yield 
predictable turnaround time. The most often used software 
approach in maintaining allocation status is sequential fit or 
segregated fit. These two approaches utilize linked-list to 
keep the occupied chunks or free chunks. With linked-list, 
the turnaround time often relates to the length of the list. As 
the linked-list becomes longer the sequential search time 
would grow longer as well [7]. Similarly, the software 
approaches to garbage collection [ 5 ]  also yield unpredictable 
turnaround time. Basically two of the most common 
approaches for garbage collection are mark-sweep and 
copying collector. In both instances, the turnaround time is 
not deterministic. 

According to Nilsen and Schmidt, one of the ways to 
achieve hard real-time performance for garbage collection is 
through the hardware support [SI. In this paper, we introduce 
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an application specific instruction extension called Dynamic 
Memory Management extension ( D M M X )  that includes 
h-malloc, mark, and sweep instructions at the user-level. In 
h-malloc, our high-performance allocation scheme allows 
allocation to be completed in a few instruction cycles. 
Unlike software approaches, our scheme is fast and 
deterministic. To perform garbage collection, the mark 
instruction is invoked repeatedly until all the live objects are 
marked on a bit-map. Once the marking phase is completed, 
the sweep instruction is called. Since we have a dedicated 
hardware to perform the sweeping, this phase can be 
completed in a few instruction cycles. 

The remainder of this paper is organized as follow. 
Section 2 provides a top-level architecture of our instruction 
set. Section 3 describes the internal structure of the Dynamic 
Memory Management Unit (DMMU). Section 4 addresses 
the architectural support issues for the DMMU. Section 5 
analyzes the simulation results. Section 6 provides analysis 
on the hardware cost and the potential performance gain. 
The last section concludes this paper. 

2. Overview of the DMMX 
In our proposed Dynamic Memory Management 

extenstion (DMMX), there are three user-level instructions, 
h-malloc, mark, and sweep. These three instructions are 
used as the communication channels between the CPU and 
the Dynamic Memory Management Unit (DMMU).  This 
DMMU can either be packaged inside CPUs or outside. This 
unit can also be included inside the hardware implemented 
Java Virtual Machines (i.e. PicoJava I1 from Sun 
Microsystems). The main purpose of the DMMU is to take 
responsibility for managing heap space for all processes in 
the hardware domain. The proposed DMMU utilizes the 
modified buddy system combined with the bit-map approach 
to perform constant-time allocation [3]. Usually, each 
process has a heap associated with it. In the proposed 
scheme, each heap requires three bit-maps, one for allocation 
status (A bit-map), one for object size (S bit-map), and one 
for marking during the garbage collection ( X  bit-map). It is 
necessary to place these three bit-maps together all the time, 
since searching and modification to these three bit-maps are 
required for each garbage collection cycle. Figure 1 
demonstrates the top-level integration of the D M M U  into a 
computer system. 

Figure 1 illustrates the basic functionality of the DMMU. 
First, the DMMU provides services to CPU by maintaining 
the memory allocation status inside the heap region of the 
running process. Thus, the DMMU must be able to access the 
A bit-map, S bit-map, and X bit-map of the running process. 
Similar to TLB, the DMMU is shared among all processes. 
The parameters that the CPU can pass to the DMMU are the 
h-malloc, mark, or sweep signal, the object-size (for the 
allocation request), and the objectgointer. The operations of 

the DMMU are very similar to the function calls (i.e. 
malloc()) in C language. Thus, object jointer  is either 
returned from the DMMU in allocation or passed on to the 
DMMU during the garbage collection process. The gc-ack is 
also returned at the completion of garbage collection cycle. 
If the allocation should failed, the DMMU would make a 
request to the operating system for additional memory using 
system call sbrk() or brk(). 

Figure 1. The top-level description of a DMMU - 
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Since the algorithms used in the DMMU are 
implemented through pure combinational logic, the time to 
perform a memory request or memory sweeping is constant. 
On the other hand, the time for a software approach in 
performing an allocation or a sweeping cycle is non- 
deterministic. As stated earlier, Java applications spend 
about 20% of the execution time in dealing with automatic 
dynamic memory management. This extensive execution 
time can be greatly reduced with the use of the DMMU. 

3. Internal architecture of the DMMU 
Inside the DMMU, three bit-vectors are used to keep all 

of the object relevant information such as allocation status of 
the heap, the size information of occupied blocks and free 
blocks, and the live object pointers. The allocation status is 
kept on the Allocation bit-vector (A bit-vector). When a 
h-malloc is called, the size information is received by the 
Complete Binary Tree (CB7). This dedicated hardware unit 
is responsible for locating the first free memory chunk that 
can satisfy the request using the modified buddy system. 
Besides locating the memory chunk, the CBT also has to 
send out the address of that newly allocated memory and 
updates the status of that memory block from free to 
allocated. It is worth noting that while the free block lookup 
is done using size index of 2", the system only allocates the 
requested size. For example, if 5 blocks of memory is 
requested, the system will have to find the first free chunk of 
size 8 (23). After a chunk is located, the system only 
allocates 5 blocks and relinquishes the remaining 3 blocks. 
Each time an object is created or reclaimed, the Size bir- 
vector ( S  bit-vector) is instantly updated by a dedicated 
hardware, S- Unit. The auxiliary bit-vector ( X  bit-vector) is 
only used during the marking phase of the garbage collection 
cycle. Once the marking phase is completed, the sweep 
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instruction is invoked. A dedicated hardware, bit-sweeper, is 
used to perform this task i n  constant time. The internal 
architecture of the DMMU is given in Figure 2. 

Figure 2. Internal architecture of the DMMU. 

Figure 2 depicts the sequence needed to complete the 
allocation or garbage collection. For example, if an 
allocation of size 5 is requested, AIS indicate the first step 
needed to complete the allocation. According the Figure 2, 
the h-malloc and input signal would go to logic '1' and the 
requested size would be given to the CBT. Since the CBTis a 
combinational hardware, the free memory chunk lookup, the 
return address pointer, and the new allocation status signals 
can be produced at the same time (A2s). Next, the new 
allocation status is latched in the A bit-vector (A3).  Since the 
S-Unit is also a combinational hardware, as soon as the A bit- 
vector is latched, the new size information is available to the 
S bit-vector. Lastly, the new size information is latched in the 
S bit-vector (A4) and the allocation is completed. The 
sequence of garbage collection can also be traced in a similar 
fashion. 

4. Architectural support for DMMU 
This section summarizes the process of memory 

allocation and garbage collection in the D M M U .  Since the 
bit-maps of a given process may be too large to be handled in 
the hardware domain, the bit-vector, a small segment of the 
bit-map, is used in the proposed system. This idea is very 
similar to the idea of using TLB (Translation Look-aside 
Buger) in the virtual memory. Due to the close tie between 
the S bit-map, A bit-map, and X bit-map, the term bit-vector 
used in this section represents one A bit-vector (of A bit- 
map), one S bit-vector (of S bit-map), and one X bit-vector 
(of X bit-map). Figure 3 presents the operation of the 
proposed DMMU. 

When a memory allocation request is received (step l ) ,  
the requested size is compared against the 
largesf-available-size of each bit-vector in a parallel 
fashion. This operation is similar to the tag comparison in a 
fully associated cache. However, i t  is not an equality 
comparison. There is a hit in the DMMU, if one of the 
largest-available-size is greater or equal to the request size. 

If there were a hit, the corresponding bit-vector would be 
read out (step 2) and sent to the CBT [3]. The CBT is a 
hardware unit to perform allocatioddeallocatlon on a bit- 
vector. For the purpose of illustration, we assume that one 
bit-vector represents one page of the heap. 

After the CBTidentified the free chuck memory from the 
chosen page, the CBT will update the bit-vector (step 3 )  and 
the largest-available-size field (step 3*) .  The object pointer 
(in terms of page offset address) of the newly created object 
is generated by the CBT (step 4). This page offset combines 
the page number (from step 2*) into the resultant address. 

Figure 3.The allocation and garbage collection processes of the DMMU 

For the garbage collection, when the DMMU receives a 
mark request, the page number of the object pointer (i.e. a 
virtual address) is used to select a bit-vector (step A). This 
process is similar to the tag comparison in cache operation. 
At the same time, the page offset is sent to the CBT as the 
address to be marked (step A*). The process is repeated until 
all the memory references to live objects are marked. When 
the marking phase is completed, the sweeping phase (step C) 
would begin by reading out the bit-vectors and send them to 
the bit-sweeper. The bit-weeper would keep all of the objects 
where the starting addresses were provided by step A* and 
update the bit-vector (step D) and the largest available size 
field (step D*). The page number, bit-vectors, and the 
largest-available-siZe are placed in a buffer, called the 
Allocation Look-aside Buffer (ALE). 

Since the DMMU is shared among all processes, content 
of the ALB will be swapped during the context-switching. 
This issue also exists in TLB. To solve this problem, we can 
add a process-id field in the ALE. This will allow bit-vectors 
of different processes to coexist in the ALB. We expect the 
performance of the ALB to be very similar to the much- 
studied TLB. However, further research in the ALB 
organization, hit ratio and miss penalty is required. 
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5. Simulation Results 
This section presents detailed simulation results of the 

proposed D M M U .  The simulator accepts memory allocation 
and deallocation traces as inputs and provides hit ratio as the 
result. The memory allocation/deallocation traces are 
obtained by instrumenting the malloc and free functions of 
the source programs. In the following subsections, the 
characteristics of the programs we traced and the 
performance evaluation of the D M M U  are summarized. 

5.1. Application overview: 

We evaluate our scheme on several memory allocations 
and deallocations traces from various C, C++, and Java 
programs. These programs are drawn from different 
application areas, including compiler (gcc), assembly 
language simulator (xspim), CAD tool (electric), robotic 
simulator (roboop), PDF document viewer (xpdfl, visual 
calculator (calcJ), rich-text editorJ (txteditJ), and 
widgetdemo (widgetJ). All eight programs are publicly 
available software applications. The first three programs are 
written in C. Roboop and Xpdf are written in C++, and calcJ, 
txtEditJ, and widgetdemo are written in Java. 

The gcc was used to compile the electric. The xspim was 
use to run an assembly program of recursive Ackerman’s 
function. We use electric to draw a very simple circuit. The 
xpdf was used to open a 25 pages pdf document. Roboop was 
run in the demo mode to generate graphs. Lastly, our three 
Java programs were used to perform simple tasks in 
calculator and editor. The numbers of malloc and free 
invocation are ranging from about 5000 to nearly a million. 
The average object size of memory allocation request for 
each programs is ranging from 30 bytes to 2100 bytes. This 
shows that our experiments cover a good variety in 
allocation patterns. 

5.2. Investigating block size 

Before we can evaluate the system performance, the first 
parameter to be studied is the block size. Again, in the bit- 
map, one bit stands for one block worth of memory. The 
block size affects the bit-map size for a given heap size. The 
larger block size would yield a smaller bit-map size. A 
smaller bit-map size means a lower cost for the bit-map. 
However, the larger block size may lead to higher internal 
fragmentation during the allocation. The higher internal 
fragmentation can contribute to a higher watermark (i.e. the 
highest memory address allocated). Apparently, the higher 
watermark is considered as the memory overhead in the 
proposed scheme. Next Table summarizes the memory 
overhead (through watermark) with block size ranging from 

8 bytes to 64 bytes. The smallest block size, 4 bytes for one 
block. is used as the benchmark. 

Table 1 Memory overhead as compared to 4 byteshlock (%) 

I 

From the table above, 16 byteshlock is the most logical 
block size. When compare block size of 16 and 8, the 
overhead in block size of 16 is minimal (5.08%). However, 
the overall size of bit-map would be reduced by 50% 
compared to block size of 8. Thus, we will use 16 bytes/ 
block throughout the subsequence simulations. 

5.3. Investigating replacement policy 

Similar to cache, the replacement policy can determine 
the performance of the ALB. The three most common 
replacement policies, FIFO, Random, and LRU are 
investigated in the simulation. The two basic buffer 
configurations used in the simulation are 4 entries x 5 12 bits 
and 4 entries x 1Kbits. Figure 4 demonstrates the 
performances of the buffers with different replacement 
policies. 

Figure 4. Comparison between different replacement policies. 
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The performances between different policies d o  not 
differ much. A closer look reveals that in most instances, 
FIFO performs a little better than the other policies. The 
reason why FIFO performs better has to do with the object 
life-span. Studies have shown that young objects tend to die 
young while old objects continue to live. FIFO strategy can 
guarantee the bit-vector that contains the oldest objects will 
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always be replaced. Thus, FIFO will be used as the 
replacement policy throughout our simulations. 

5.4. ALB Performance Evaluation 

We investigate the performance of the ALB through 
two approaches. First, we fix the size of the Bit-Vector 
Length (BVL) and increase the number of entries (this also 
increases the buffer size). In doing so, we can find a good 
saturation point where the hit ratio of all or most of the 
programs begin to stabilize. The result is illustrated in 
Figure 5. 

Figure 5. Buffer size VS. Hit ratio 
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In most applications, the good saturation point for case 
a is at 16 entries. This translates to the buffer size of 
8Kbits. For case b, the saturation point is at 8 entries. This 
also translates to 8Kbits buffer size. It is worth noting that 
gcc invoked nearly 100,000 objects in the size of 4K bytes 
(i.e. one page worth memory). This is because the gcc 
maintained its own free list for certain objects. The 
burdensome overhead of malloc and free is a well known 
issue among experienced programmers. The most 
common way to lower the penalty is to make less frequent 
calls to malloc. Thus, programmers tend to request a large 
chunk of memory once, then keep track of their own free 
list. It may need to request another large chunk of memory 
if the current one has run out the space. This scheme is 
used in gcc and the chunk size is 4K bytes. 

In the second approach, we set the buffer size to the 
value provided by the first approach (in this case 8K bits). 
Then, we would investigate the effect of buffer 
configuration (number of entries x BVL) on the hit ratio. 
Since the buffer size is set to 8K blocks, we can have the 
following configuration, 2x4K, 4x2K, 8x 1 K, and 
16x0.5K. The result is demonstrated in Figure 6. 

Figure 6. Buffer size VS. Hit ratio (different configurations). 
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From the above Figure, hit ratio decreases as the BVL 
decreases. This phenomenon is similar to caches (i.e. 
larger cache line size may lead to a higher hit ratio). It is 
worth noting that the hit ratio varies more with gcc which 
has a larger average object size. This is because the higher 
miss probability occurs in a smaller BVL with many 
objects that are relative large. Obviously, the configuration 
the allows longer BVL with less entries (2x4K) has the 
best hit ratio. On the other hand, the configuration that 
allows more entries with shorter BVL (16xOSK) would 
also have smaller miss penalty (i.e. less data need be 
moved to buffer for each miss). Similar to the cache 
design, trade-off between lower miss penalty and higher 
hit  ratio must be made by the system architects. 

6. Hardware cost and performance gain 
We perform analysis on the hardware cost to construct 

the DMMU with all three instructions included. The cost is 
expressed as the number of gates. We use N (which 
represents the bit-vector length in bits) equal to 500 
because the simulation result in Figure 5 indicates that the 
BVL of 500 bits already produces hit-ratio of 97% in most 
applications. Thus, the BVL length of 500 bits is used to 
minimize the hardware cost. It is worth noting that murk 
instruction does not require any additional hardware 
because the bit-flipper is used to mark live object on the X 
bit-vector. 

For N = 500 bits, the number of gates required is less 
than 20,000 gates. At the same time, the memory required 
for each bit vector is only 64 bytes (500 bits / (8 bits/ 
byte)). Thus, only 192 bytes are required for all three bit- 
vectors, A bit-vector, S bit-vector, and X bit-vector. 

The potential performance gain analysis of dynamic 
memory allocation is also performed. To get the actual 
machine cycles needed to complete memory allocation, a 
performance profiling tool, Quantify (developed and 
distributed by Rational Software Corporation) is used to 
measure the number of machine cycles spent on memory 
allocation. The malloc function used is written by Doug 
Lea and is distributed as part of the GNU’S G++ library. 
While this malloc is neither the fastest nor the lowest in 
memory overhead, it represents a good balance between 
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high-speed and low-memory overhead. Our study 
indicates that malloc execution time can vary from 51 
cycles to 900 machine cycles (mean value = 192 cycles / 
malloc). From Figure 6, the ALB misses in our proposed 
scheme is about 3% in most applications. On a typical PC 
with IOOMHz system bus, the data transfer rate is about 
800 MBytes/sec (i.e. 64 bit data-bus running at 100 MHz). 
Assuming that the CPU’s clock rate is 400 MHz, on an 
ALB miss, the miss penalty is about 96 cycles. 

192bytes x 400MHz 

Sec 
miss penalty = 800Mbytes = 96 cycles 

Note: the amount of memory required for three bit-vectors 
is 192 bytes. 

In our proposed scheme, the number of machine 
cycles required to perform allocation with ALB hit is 2 
clock cycles. Thus, Average MaffocHordware is: 

Average M ~ ~ ~ O C ~ u r d w u ,  = (0.03 x 96) +(0.97 x 2) 

= 4.82 cycles. 

Since the average Average MallocsqfmUre is 192 cycles. 
The Speedup,,~,o, is: 

192 
4.82 

Speedupmalloc = - = 39.83 

As stated earlier, studies have shown that C++ 
applications can spend up to 38% of its execution time in 
dynamic memory management [2]. To calculate overall 
speedup, Amdahl’s law is applied. We use 30% as the 
value of frac~ionenhanCed. Thus, Overall Speedup is: 

fraction enhanced = 1.413 

Speedupmalloc 
(1  -fracrion enhanced) + 

Therefore, 41.3% of overall speedup can be gained with 
the proposed memory allocation scheme. 

7. Conclusion 
The memory intensive nature of object-oriented 

languages such as C++ and Java has created the need of a 
high-performance dynamic memory management. As 
today’s VLSI technology advances, it becomes more and 
more attractive to map software algorithms such as 
mafloc() and garbage collection into hardware. To 
maintain the backward compatibility with existing 
architectures, these algorithms can be implemented in 
hardware as application specific instruction extensions. 
Moreover, this approach allows high level languages to 
map the most time consuming functions into primitive 
instructions. For example, the malloc function in C, the 
new operator in C++ and the bytecode new in JVM can be 
mapped to the proposed h-malloc instruction directly. 

The innovative bit-maps approach has following 
advantages over traditional software approaches. First, it 
eliminates the cache pollution due to traversing the linked- 
list during object allocation, object marking and object 
size look up. This is true since all the object management 
information is kept separately from the object itself. 
Second, it  requires no splitting and coalescing during the 
allocation. Third, it permits parallel operations, through 
hardware, on the bit-maps during object creation and 
liberation (i.e. garbage sweeping). Software algorithms 
tend to employ sequential search. Fourth, it uses less 
memory space to keep object management information as 
long as object size is less than 24 x BL where BL is the 
block size. 

The detailed design and evaluation of the proposed 
scheme are presented in this paper. Simulation results 
show that the hit ratio for 2 Kbits and 8 Kbits buffer range 
from 84-99% and 95-99%, respectively. The hardware 
complexity of the proposed scheme is O(n), where n is the 
size of the bit-vector. A design with 20K gates and 97% 
miss rate, the overall speedup can be as much as 41 %. The 
proposed DMMX can be included in various architectures 
such as general purpose CPU, Java chip, and garbage- 
collected memory module. 
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