
Architectural Support for Dynamic Memory Management

J. Morris Chang, Witawas Srisa-an and Chia-Tien Dan Lo
Department of Computer Science

Illinois Institute of Technology
Chicago, IL, 60616-3793, USA

lchang I witty I danlo) @charlie.iit.edu

Abstract

Recent advances in software engineering, such as
graphical user intevaces and object-oriented programming,
have caused applications to become more memory intensive.
These applications tend to allocate dynamic memory
prolipcally. Moreove< automatic dynamic memory
reclamation (garbage collection, GC) has become a popular
feature in modern programming languages. As a result, the
time consumed by dynamic storage management can be up
to one-third of the program execution time. This illustrates
the need for a high-performance memory management
scheme.

This paper presents a top-level design and evaluation of
the proposed instruction extensions to facilitate heap
management. These instructions are h-malloc for memory

allocation, mark, and sweep for garbage collection.
Simulation results show that the hit ratio for 2 Kbits and 8
Kbits buffer range from 84-99% and 95-99%, respectively.
The hardware complexiv of the proposed scheme is O(n),
where n is the size of the bit-vector: For a design with 20K
gates and 97% miss rate, the overall speedup can be as high
as 1.41.

1. Introduction
By early 2010s, the VLSI technology would allow

fabricators to pack 1 billion transistors into a single chip that
can run at Giga-Hertz clock speed. Consequently, the
challenge is no longer how to make a billion-transistor chip,
but instead, what kind of facilities should be incorporated
into the design [4]. The current trend in CPU design is to
include application specific instruction sets such as MMX
and 3D-now as extensions to basic functionalities. The
rationales behind such approaches are obvious. First, space
and cost limitations are no longer issues. High-density chips
can be manufactured cheaply in current semiconductor
technology. Second, these application specific instruction
sets are included to alleviate performance bottlenecks in the
most commonly used applications such as 3-D graphic
rendering and multimedia. These rationales closely follow
the corollary of Amdahl’s law: Make the common case fast.
Amdahl’s Law reminds us that the opportunity for
improvement is affected by how much time the event
consumes. Thus, making the common case fast will tend to
enhance the performance better than optimizing rare cases

[6]. Since the biggest merit of hardware is speed, the
significant speedup can be gained through hardware
implementations of common cases.

As the popularity of object-oriented programming and
graphical user interface increases, applications become more
and more dynamic memory intensive. It is well-known
among experienced programmers that automatic dynamic
memory management functions (i.e. allocation and garbage
collection) are slow and non-deterministic. Since object-
oriented applications prolifically allocate memory in the
heap, it is also no coincident that such applications can run up
to 20 times slower than the procedural counterparts. A study
has also shown that Java applications can spend 20% of the
execution time in dealing with dynamic memory
management [I] . Unlike stack or queue, heap is not a well-
defined data structure. Allocating memory in the heap often
requires some form of search routines. In software
approaches to heap management, searching is done in
sequential fashion (i.e. linked list search). As the number of
existing objects grows, the search time would grow linearly
longer as well. Studies have shown that applications written
in C++ can invoke up to ten times more dynamic memory
management calls than comparable C applications [2].
Apparently, dynamic memory management is a common case
in object-oriented programming. With Amdahl’s corollary in
mind, the need of a high-performance dynamic memory
manager is obvious.

Deterministic turnaround time is a very desirable trait for
real-time applications. Presently, software approaches to
automatic dynamic memory management often fail to yield
predictable turnaround time. The most often used software
approach in maintaining allocation status is sequential fit or
segregated fit. These two approaches utilize linked-list to
keep the occupied chunks or free chunks. With linked-list,
the turnaround time often relates to the length of the list. As
the linked-list becomes longer the sequential search time
would grow longer as well [7]. Similarly, the software
approaches to garbage collection [5] also yield unpredictable
turnaround time. Basically two of the most common
approaches for garbage collection are mark-sweep and
copying collector. In both instances, the turnaround time is
not deterministic.

According to Nilsen and Schmidt, one of the ways to
achieve hard real-time performance for garbage collection is
through the hardware support [SI. In this paper, we introduce

0-7695-0801-4/00 $10.00 0 2000 IEEE
99

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

mailto:charlie.iit.edu

an application specific instruction extension called Dynamic
Memory Management extension (D M M X) that includes
h-malloc, mark, and sweep instructions at the user-level. In
h-malloc, our high-performance allocation scheme allows
allocation to be completed in a few instruction cycles.
Unlike software approaches, our scheme is fast and
deterministic. To perform garbage collection, the mark
instruction is invoked repeatedly until all the live objects are
marked on a bit-map. Once the marking phase is completed,
the sweep instruction is called. Since we have a dedicated
hardware to perform the sweeping, this phase can be
completed in a few instruction cycles.

The remainder of this paper is organized as follow.
Section 2 provides a top-level architecture of our instruction
set. Section 3 describes the internal structure of the Dynamic
Memory Management Unit (DMMU). Section 4 addresses
the architectural support issues for the DMMU. Section 5
analyzes the simulation results. Section 6 provides analysis
on the hardware cost and the potential performance gain.
The last section concludes this paper.

2. Overview of the DMMX
In our proposed Dynamic Memory Management

extenstion (DMMX), there are three user-level instructions,
h-malloc, mark, and sweep. These three instructions are
used as the communication channels between the CPU and
the Dynamic Memory Management Unit (DMMU). This
DMMU can either be packaged inside CPUs or outside. This
unit can also be included inside the hardware implemented
Java Virtual Machines (i.e. PicoJava I1 from Sun
Microsystems). The main purpose of the DMMU is to take
responsibility for managing heap space for all processes in
the hardware domain. The proposed DMMU utilizes the
modified buddy system combined with the bit-map approach
to perform constant-time allocation [3]. Usually, each
process has a heap associated with it. In the proposed
scheme, each heap requires three bit-maps, one for allocation
status (A bit-map), one for object size (S bit-map), and one
for marking during the garbage collection (X bit-map). It is
necessary to place these three bit-maps together all the time,
since searching and modification to these three bit-maps are
required for each garbage collection cycle. Figure 1
demonstrates the top-level integration of the D M M U into a
computer system.

Figure 1 illustrates the basic functionality of the DMMU.
First, the DMMU provides services to CPU by maintaining
the memory allocation status inside the heap region of the
running process. Thus, the DMMU must be able to access the
A bit-map, S bit-map, and X bit-map of the running process.
Similar to TLB, the DMMU is shared among all processes.
The parameters that the CPU can pass to the DMMU are the
h-malloc, mark, or sweep signal, the object-size (for the
allocation request), and the objectgointer. The operations of

the DMMU are very similar to the function calls (i.e.
malloc()) in C language. Thus, object jointer is either
returned from the DMMU in allocation or passed on to the
DMMU during the garbage collection process. The gc-ack is
also returned at the completion of garbage collection cycle.
If the allocation should failed, the DMMU would make a
request to the operating system for additional memory using
system call sbrk() or brk().

Figure 1. The top-level description of a DMMU -
0 I 2 3 4 5 67

I I I

A bit-vctl S bit-vciI X bit-vc
h-malloc /

I wee0 . I
gc-xk

CPU 4ob~ec-rire ,
object-pointer

-

Since the algorithms used in the DMMU are
implemented through pure combinational logic, the time to
perform a memory request or memory sweeping is constant.
On the other hand, the time for a software approach in
performing an allocation or a sweeping cycle is non-
deterministic. As stated earlier, Java applications spend
about 20% of the execution time in dealing with automatic
dynamic memory management. This extensive execution
time can be greatly reduced with the use of the DMMU.

3. Internal architecture of the DMMU
Inside the DMMU, three bit-vectors are used to keep all

of the object relevant information such as allocation status of
the heap, the size information of occupied blocks and free
blocks, and the live object pointers. The allocation status is
kept on the Allocation bit-vector (A bit-vector). When a
h-malloc is called, the size information is received by the
Complete Binary Tree (CB7). This dedicated hardware unit
is responsible for locating the first free memory chunk that
can satisfy the request using the modified buddy system.
Besides locating the memory chunk, the CBT also has to
send out the address of that newly allocated memory and
updates the status of that memory block from free to
allocated. It is worth noting that while the free block lookup
is done using size index of 2", the system only allocates the
requested size. For example, if 5 blocks of memory is
requested, the system will have to find the first free chunk of
size 8 (23). After a chunk is located, the system only
allocates 5 blocks and relinquishes the remaining 3 blocks.
Each time an object is created or reclaimed, the Size bir-
vector (S bit-vector) is instantly updated by a dedicated
hardware, S- Unit. The auxiliary bit-vector (X bit-vector) is
only used during the marking phase of the garbage collection
cycle. Once the marking phase is completed, the sweep

100

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

instruction is invoked. A dedicated hardware, bit-sweeper, is
used to perform this task i n constant time. The internal
architecture of the DMMU is given in Figure 2.

Figure 2. Internal architecture of the DMMU.

Figure 2 depicts the sequence needed to complete the
allocation or garbage collection. For example, if an
allocation of size 5 is requested, AIS indicate the first step
needed to complete the allocation. According the Figure 2,
the h-malloc and input signal would go to logic '1' and the
requested size would be given to the CBT. Since the CBTis a
combinational hardware, the free memory chunk lookup, the
return address pointer, and the new allocation status signals
can be produced at the same time (A2s). Next, the new
allocation status is latched in the A bit-vector (A3). Since the
S-Unit is also a combinational hardware, as soon as the A bit-
vector is latched, the new size information is available to the
S bit-vector. Lastly, the new size information is latched in the
S bit-vector (A4) and the allocation is completed. The
sequence of garbage collection can also be traced in a similar
fashion.

4. Architectural support for DMMU
This section summarizes the process of memory

allocation and garbage collection in the D M M U . Since the
bit-maps of a given process may be too large to be handled in
the hardware domain, the bit-vector, a small segment of the
bit-map, is used in the proposed system. This idea is very
similar to the idea of using TLB (Translation Look-aside
Buger) in the virtual memory. Due to the close tie between
the S bit-map, A bit-map, and X bit-map, the term bit-vector
used in this section represents one A bit-vector (of A bit-
map), one S bit-vector (of S bit-map), and one X bit-vector
(of X bit-map). Figure 3 presents the operation of the
proposed DMMU.

When a memory allocation request is received (step l) ,
the requested size is compared against the
largesf-available-size of each bit-vector in a parallel
fashion. This operation is similar to the tag comparison in a
fully associated cache. However, i t is not an equality
comparison. There is a hit in the DMMU, if one of the
largest-available-size is greater or equal to the request size.

If there were a hit, the corresponding bit-vector would be
read out (step 2) and sent to the CBT [3]. The CBT is a
hardware unit to perform allocatioddeallocatlon on a bit-
vector. For the purpose of illustration, we assume that one
bit-vector represents one page of the heap.

After the CBTidentified the free chuck memory from the
chosen page, the CBT will update the bit-vector (step 3) and
the largest-available-size field (step 3*) . The object pointer
(in terms of page offset address) of the newly created object
is generated by the CBT (step 4). This page offset combines
the page number (from step 2*) into the resultant address.

Figure 3.The allocation and garbage collection processes of the DMMU

For the garbage collection, when the DMMU receives a
mark request, the page number of the object pointer (i.e. a
virtual address) is used to select a bit-vector (step A). This
process is similar to the tag comparison in cache operation.
At the same time, the page offset is sent to the CBT as the
address to be marked (step A*). The process is repeated until
all the memory references to live objects are marked. When
the marking phase is completed, the sweeping phase (step C)
would begin by reading out the bit-vectors and send them to
the bit-sweeper. The bit-weeper would keep all of the objects
where the starting addresses were provided by step A* and
update the bit-vector (step D) and the largest available size
field (step D*). The page number, bit-vectors, and the
largest-available-siZe are placed in a buffer, called the
Allocation Look-aside Buffer (ALE).

Since the DMMU is shared among all processes, content
of the ALB will be swapped during the context-switching.
This issue also exists in TLB. To solve this problem, we can
add a process-id field in the ALE. This will allow bit-vectors
of different processes to coexist in the ALB. We expect the
performance of the ALB to be very similar to the much-
studied TLB. However, further research in the ALB
organization, hit ratio and miss penalty is required.

101

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

5. Simulation Results
This section presents detailed simulation results of the

proposed D M M U . The simulator accepts memory allocation
and deallocation traces as inputs and provides hit ratio as the
result. The memory allocation/deallocation traces are
obtained by instrumenting the malloc and free functions of
the source programs. In the following subsections, the
characteristics of the programs we traced and the
performance evaluation of the D M M U are summarized.

5.1. Application overview:

We evaluate our scheme on several memory allocations
and deallocations traces from various C, C++, and Java
programs. These programs are drawn from different
application areas, including compiler (gcc), assembly
language simulator (xspim), CAD tool (electric), robotic
simulator (roboop), PDF document viewer (xpdfl, visual
calculator (calcJ), rich-text editorJ (txteditJ), and
widgetdemo (widgetJ). All eight programs are publicly
available software applications. The first three programs are
written in C. Roboop and Xpdf are written in C++, and calcJ,
txtEditJ, and widgetdemo are written in Java.

The gcc was used to compile the electric. The xspim was
use to run an assembly program of recursive Ackerman’s
function. We use electric to draw a very simple circuit. The
xpdf was used to open a 25 pages pdf document. Roboop was
run in the demo mode to generate graphs. Lastly, our three
Java programs were used to perform simple tasks in
calculator and editor. The numbers of malloc and free
invocation are ranging from about 5000 to nearly a million.
The average object size of memory allocation request for
each programs is ranging from 30 bytes to 2100 bytes. This
shows that our experiments cover a good variety in
allocation patterns.

5.2. Investigating block size

Before we can evaluate the system performance, the first
parameter to be studied is the block size. Again, in the bit-
map, one bit stands for one block worth of memory. The
block size affects the bit-map size for a given heap size. The
larger block size would yield a smaller bit-map size. A
smaller bit-map size means a lower cost for the bit-map.
However, the larger block size may lead to higher internal
fragmentation during the allocation. The higher internal
fragmentation can contribute to a higher watermark (i.e. the
highest memory address allocated). Apparently, the higher
watermark is considered as the memory overhead in the
proposed scheme. Next Table summarizes the memory
overhead (through watermark) with block size ranging from

8 bytes to 64 bytes. The smallest block size, 4 bytes for one
block. is used as the benchmark.

Table 1 Memory overhead as compared to 4 byteshlock (%)

I

From the table above, 16 byteshlock is the most logical
block size. When compare block size of 16 and 8, the
overhead in block size of 16 is minimal (5.08%). However,
the overall size of bit-map would be reduced by 50%
compared to block size of 8. Thus, we will use 16 bytes/
block throughout the subsequence simulations.

5.3. Investigating replacement policy

Similar to cache, the replacement policy can determine
the performance of the ALB. The three most common
replacement policies, FIFO, Random, and LRU are
investigated in the simulation. The two basic buffer
configurations used in the simulation are 4 entries x 5 12 bits
and 4 entries x 1Kbits. Figure 4 demonstrates the
performances of the buffers with different replacement
policies.

Figure 4. Comparison between different replacement policies.

B u l l e r s l z e = 2 K (4 e n I r l e 8 x 5 1 2 b l t s)

1

0.96

0.92

0.84 o.88 i 1 -FIFO

RANDOM

0.8

0.76
Electric Widgetl CalcJ Roboop

Xspim Texteditl Xpdf Gcc

Applications

The performances between different policies d o not
differ much. A closer look reveals that in most instances,
FIFO performs a little better than the other policies. The
reason why FIFO performs better has to do with the object
life-span. Studies have shown that young objects tend to die
young while old objects continue to live. FIFO strategy can
guarantee the bit-vector that contains the oldest objects will

102

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

always be replaced. Thus, FIFO will be used as the
replacement policy throughout our simulations.

5.4. ALB Performance Evaluation

We investigate the performance of the ALB through
two approaches. First, we fix the size of the Bit-Vector
Length (BVL) and increase the number of entries (this also
increases the buffer size). In doing so, we can find a good
saturation point where the hit ratio of all or most of the
programs begin to stabilize. The result is illustrated in
Figure 5.

Figure 5. Buffer size VS. Hit ratio

F i x e d B V L a t . 5 K b i t s

--1 0 9,‘ [-
0 92

2 4 8 16 3 2

X 01 e n l r l e s

F i x e d E V L a t t K b i t s

1
E L E C T R I C

* P X P D F - - T X T E D I T J
0 96

0 3 2 \ ////--- ~ -WIDGETJ - - - - X S P l M

- CALCJ

~ R O B W P
0 88

j -GCC
0 04

2 4 E 16 32

X 0 1 e n t r i e s

In most applications, the good saturation point for case
a is at 16 entries. This translates to the buffer size of
8Kbits. For case b, the saturation point is at 8 entries. This
also translates to 8Kbits buffer size. It is worth noting that
gcc invoked nearly 100,000 objects in the size of 4K bytes
(i.e. one page worth memory). This is because the gcc
maintained its own free list for certain objects. The
burdensome overhead of malloc and free is a well known
issue among experienced programmers. The most
common way to lower the penalty is to make less frequent
calls to malloc. Thus, programmers tend to request a large
chunk of memory once, then keep track of their own free
list. It may need to request another large chunk of memory
if the current one has run out the space. This scheme is
used in gcc and the chunk size is 4K bytes.

In the second approach, we set the buffer size to the
value provided by the first approach (in this case 8K bits).
Then, we would investigate the effect of buffer
configuration (number of entries x BVL) on the hit ratio.
Since the buffer size is set to 8K blocks, we can have the
following configuration, 2x4K, 4x2K, 8x 1 K, and
16x0.5K. The result is demonstrated in Figure 6.

Figure 6. Buffer size VS. Hit ratio (different configurations).

Fixed Buffer Size at 8K bits

a - E L E C T R I C

X P D F ‘I ** -
- - ~ T X T E D I T J

-WlDGETJ

- ~ - ~ - - .XSpIM

- CALCJ - ROEOOP

0 0 9 6 92 I ---\ -GCC

2X4K 4x2K ExiK 16xO5K

C o n l i g u r a t i o n s

From the above Figure, hit ratio decreases as the BVL
decreases. This phenomenon is similar to caches (i.e.
larger cache line size may lead to a higher hit ratio). It is
worth noting that the hit ratio varies more with gcc which
has a larger average object size. This is because the higher
miss probability occurs in a smaller BVL with many
objects that are relative large. Obviously, the configuration
the allows longer BVL with less entries (2x4K) has the
best hit ratio. On the other hand, the configuration that
allows more entries with shorter BVL (16xOSK) would
also have smaller miss penalty (i.e. less data need be
moved to buffer for each miss). Similar to the cache
design, trade-off between lower miss penalty and higher
hit ratio must be made by the system architects.

6. Hardware cost and performance gain
We perform analysis on the hardware cost to construct

the DMMU with all three instructions included. The cost is
expressed as the number of gates. We use N (which
represents the bit-vector length in bits) equal to 500
because the simulation result in Figure 5 indicates that the
BVL of 500 bits already produces hit-ratio of 97% in most
applications. Thus, the BVL length of 500 bits is used to
minimize the hardware cost. It is worth noting that murk
instruction does not require any additional hardware
because the bit-flipper is used to mark live object on the X
bit-vector.

For N = 500 bits, the number of gates required is less
than 20,000 gates. At the same time, the memory required
for each bit vector is only 64 bytes (500 bits / (8 bits/
byte)). Thus, only 192 bytes are required for all three bit-
vectors, A bit-vector, S bit-vector, and X bit-vector.

The potential performance gain analysis of dynamic
memory allocation is also performed. To get the actual
machine cycles needed to complete memory allocation, a
performance profiling tool, Quantify (developed and
distributed by Rational Software Corporation) is used to
measure the number of machine cycles spent on memory
allocation. The malloc function used is written by Doug
Lea and is distributed as part of the GNU’S G++ library.
While this malloc is neither the fastest nor the lowest in
memory overhead, it represents a good balance between

103

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

high-speed and low-memory overhead. Our study
indicates that malloc execution time can vary from 51
cycles to 900 machine cycles (mean value = 192 cycles /
malloc). From Figure 6, the ALB misses in our proposed
scheme is about 3% in most applications. On a typical PC
with IOOMHz system bus, the data transfer rate is about
800 MBytes/sec (i.e. 64 bit data-bus running at 100 MHz).
Assuming that the CPU’s clock rate is 400 MHz, on an
ALB miss, the miss penalty is about 96 cycles.

192bytes x 400MHz

Sec
miss penalty = 800Mbytes = 96 cycles

Note: the amount of memory required for three bit-vectors
is 192 bytes.

In our proposed scheme, the number of machine
cycles required to perform allocation with ALB hit is 2
clock cycles. Thus, Average MaffocHordware is:

Average M ~ ~ ~ O C ~ u r d w u , = (0.03 x 96) +(0.97 x 2)

= 4.82 cycles.

Since the average Average MallocsqfmUre is 192 cycles.
The Speedup,,~,o, is:

192
4.82

Speedupmalloc = - = 39.83

As stated earlier, studies have shown that C++
applications can spend up to 38% of its execution time in
dynamic memory management [2]. To calculate overall
speedup, Amdahl’s law is applied. We use 30% as the
value of frac~ionenhanCed. Thus, Overall Speedup is:

fraction enhanced = 1.413

Speedupmalloc
(1 -fracrion enhanced) +

Therefore, 41.3% of overall speedup can be gained with
the proposed memory allocation scheme.

7. Conclusion
The memory intensive nature of object-oriented

languages such as C++ and Java has created the need of a
high-performance dynamic memory management. As
today’s VLSI technology advances, it becomes more and
more attractive to map software algorithms such as
mafloc() and garbage collection into hardware. To
maintain the backward compatibility with existing
architectures, these algorithms can be implemented in
hardware as application specific instruction extensions.
Moreover, this approach allows high level languages to
map the most time consuming functions into primitive
instructions. For example, the malloc function in C, the
new operator in C++ and the bytecode new in JVM can be
mapped to the proposed h-malloc instruction directly.

The innovative bit-maps approach has following
advantages over traditional software approaches. First, it
eliminates the cache pollution due to traversing the linked-
list during object allocation, object marking and object
size look up. This is true since all the object management
information is kept separately from the object itself.
Second, it requires no splitting and coalescing during the
allocation. Third, it permits parallel operations, through
hardware, on the bit-maps during object creation and
liberation (i.e. garbage sweeping). Software algorithms
tend to employ sequential search. Fourth, it uses less
memory space to keep object management information as
long as object size is less than 24 x BL where BL is the
block size.

The detailed design and evaluation of the proposed
scheme are presented in this paper. Simulation results
show that the hit ratio for 2 Kbits and 8 Kbits buffer range
from 84-99% and 95-99%, respectively. The hardware
complexity of the proposed scheme is O(n), where n is the
size of the bit-vector. A design with 20K gates and 97%
miss rate, the overall speedup can be as much as 41 %. The
proposed DMMX can be included in various architectures
such as general purpose CPU, Java chip, and garbage-
collected memory module.

8. References

[l] E. Armstrong, “Hotspot, A new breed of virtual ma-
chine”, JavaWorld, March 1998.

[2] B. Calder, D. Grunwald, and B. Zorn, “Quantifying be-
havioral differences between C and C++ programs”,
Journal of Programming Languages, 2(4):313-35 1 ,
1994

[3] M. Chang and E. E Gehringer, “A High-Performance
Memory Allocator for Object-Oriented Systems,”
IEEE Transactions on Computers. March, 1996. pp.
357-366.

[4] K. Kavi, J.C. Browne, and A. Tripathi, “Computer Sys-
tems Research: The pressure is on” Computer, Janu-
ary 1999, pp. 30-39.

[5] R. Jones, R. Lins, Garbage Collection: Algorithmsfor
automatic Dynamic Memoty Management, John
Wiley and Sons, 1996, pp.20-28, 87-95,296

[6] D. Patterson and J. Hennessy, “Computer Architecture,
A Quantitative Approach”, Morgan Kaufmann Pub-
lishers, Inc., Second Edition 1996.

[7] P. Wilson, M. Johnstone, M Neely and D. Boles, “Dy-
namic Storage Allocation: A Survey and Critical Re-
view”, Proc. 1995 Int’l workshop on Memory
Management, Scotland, UK, Sept. 27-29, 1995.

104

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 13, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

