\( \newcommand{\blah}{blah-blah-blah} \newcommand{\eqb}[1]{\begin{eqnarray*}#1\end{eqnarray*}} \newcommand{\eqbn}[1]{\begin{eqnarray}#1\end{eqnarray}} \newcommand{\bb}[1]{\mathbf{#1}} \newcommand{\mat}[1]{\begin{bmatrix}#1\end{bmatrix}} \newcommand{\nchoose}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\defn}{\stackrel{\vartriangle}{=}} \newcommand{\rvectwo}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\rvecthree}[3]{\left(\begin{array}{r} #1 \\ #2\\ #3\end{array}\right)} \newcommand{\rvecdots}[3]{\left(\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right)} \newcommand{\vectwo}[2]{\left[\begin{array}{r} #1\\#2\end{array}\right]} \newcommand{\vecthree}[3]{\left[\begin{array}{r} #1 \\ #2\\ #3\end{array}\right]} \newcommand{\vecfour}[4]{\left[\begin{array}{r} #1 \\ #2\\ #3\\ #4\end{array}\right]} \newcommand{\vecdots}[3]{\left[\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right]} \newcommand{\eql}{\;\; = \;\;} \definecolor{dkblue}{RGB}{0,0,120} \definecolor{dkred}{RGB}{120,0,0} \definecolor{dkgreen}{RGB}{0,120,0} \newcommand{\bigsp}{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\plss}{\;\;+\;\;} \newcommand{\miss}{\;\;-\;\;} \newcommand{\implies}{\Rightarrow\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\prob}[1]{\mbox{Pr}\left[ #1 \right]} \newcommand{\exval}[1]{\mbox{E}\left[ #1 \right]} \newcommand{\variance}[1]{\mbox{Var}\left[ #1 \right]} \newcommand{\kt}[1]{\left\vert #1 \right\rangle} \newcommand{\br}[1]{\left\langle #1 \right\vert} \newcommand{\bkt}[2]{\left\langle #1 \middle\vert #2 \right\rangle} \newcommand{\inr}[2]{\left\langle #1 \middle\vert #2 \right\rangle} \newcommand{\inrs}[2]{\left\langle #1 \: \middle\vert\: #2 \right\rangle} \newcommand{\inrh}[2]{ \left\langle \vphantom{\huge x} #1 \: \middle\vert \: #2 \right\rangle } \newcommand{\swich}[3]{\left\langle #1 \middle\vert #2 \middle\vert #3\right\rangle} \newcommand{\swichs}[3]{\left\langle #1 \:\middle\vert \: #2 \: \middle\vert \: #3\right\rangle} \newcommand{\swichh}[3]{\left\langle \vphantom{\huge x} #1 \;\middle\vert \; #2 \; \middle\vert \; #3\right\rangle} \newcommand{\otr}[2]{\left\vert #1 \right\rangle\!\left\langle #2 \right\vert} \newcommand{\pss}{\large\psi} \newcommand{\re}{\mbox{Re }} \newcommand{\im}{\mbox{Im }} \newcommand{\mag}[1]{\left\vert #1 \right\vert} \newcommand{\magsq}[1]{{\left\vert #1 \right\vert}^2} \newcommand{\magsqh}[1]{{\left\vert \vphantom{\huge x} #1 \right\vert}^2} \newcommand{\isqt}[1]{\frac{#1}{\sqrt{2}}} \newcommand{\mbx}[1]{\;\;\;\;\;\;\;\;{\scriptsize \color{Gray}{\mbox{ #1}}}} \newcommand{\ksi}{\kt{\psi}} \newcommand{\parenh}[1]{\left( \vphantom{\huge x} #1 \right)} \newcommand{\parenl}[1]{\left(\vphantom{\LARGE x} #1 \,\right)} \newcommand{\khi}{\kt{\phi}} \newcommand{\cnot}{C_{\scriptsize NOT}} \newcommand{\cnot}{C_{\scriptsize NOT}} \newcommand{\setl}[1]{\left\{\vphantom{\LARGE x} #1 \,\right\}} \)


Module 5 Solved Problems

 


Problem:
Use the matrix form of \(\otr{-}{-} \otimes I\) and apply that to \(\ksi = \isqt{1} \parenl{ \kt{00} + \kt{11} } \).

Solution:
$$ \otr{-}{-} \otimes I \eql \left( \mat{\isqt{1} \\ -\isqt{1}} \mat{\isqt{1} & -\isqt{1}} \right) \otimes I \eql \mat{ \frac{1}{2} I & -\frac{1}{2} I\\ -\frac{1}{2} I & \frac{1}{2} I\\ } \eql \mat{ \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\ } $$ Then, $$ (\otr{-}{-} \otimes I) \ksi \eql \mat{ \frac{1}{2} & 0 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\ } \mat{\isqt{1} \\ 0 \\ 0 \\ \isqt{1}} \eql \isqt{1} \mat{ \frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2}\\ \frac{1}{2} } \eql \isqt{1} \parenl{ \kt{-} \otimes \kt{-} } $$ The last step comes from $$ \kt{-} \otimes \kt{-} \eql \left( \mat{ \isqt{1} \\ -\isqt{1} } \right) \otimes \left( \mat{ \isqt{1} \\ -\isqt{1} } \right) \eql \mat{ \frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2}\\ \frac{1}{2} } $$
 

Problem:
What is the result of \((I\otimes I \otimes X) (\kt{01}(\beta\kt{0} + \alpha\kt{1}))\)?

Solution:
$$\eqb{ (I\otimes I \otimes X) (\kt{01}(\beta\kt{0} + \alpha\kt{1})) & \eql & (I\otimes I \otimes X) \parenl{ \kt{0} \otimes \kt{1} \otimes (\beta\kt{0} + \alpha\kt{1}) } \\ & \eql & I\kt{0} \otimes I\kt{1} \otimes X(\beta\kt{0} + \alpha\kt{1}) \\ & \eql & \kt{0} \otimes \kt{1} \otimes \alpha\kt{0} + \beta\kt{1}) \\ & \eql & \alpha \kt{010} + \beta\kt{011} }$$ Recall: \(X\) is one of the four Pauli operators: $$ X (\alpha\kt{0} + \beta\kt{1}) \eql \mat{0 & 1\\ 1 & 0} \mat{\alpha \\ \beta} \eql \mat{\beta \\ \alpha} \eql \beta\kt{0} + \alpha\kt{1} $$
 

Problem:
Show that $$ (H \otimes I \otimes I) \parenl{ \alpha\kt{000} + \beta\kt{101} } \eql \isqt{1} \parenl{ \kt{00} \otimes (\alpha\kt{0} + \beta\kt{1}) + \kt{10} \otimes (\alpha\kt{0} - \beta\kt{1}) } $$

Solution:
$$\eqb{ (H \otimes I \otimes I) \parenl{ \alpha\kt{000} + \beta\kt{101} } & \eql & \alpha H\kt{0}\kt{0}\kt{0} + \beta H\kt{1}\kt{0}\kt{1} \\ & \eql & \alpha \isqt{1} (\kt{0} + \kt{1}) \kt{0} + \beta \isqt{1} (\kt{0} + \kt{1}) \kt{0}\kt{1} \\ & \eql & \isqt{1} \parenl{ \alpha\kt{000} + \alpha\kt{100} + \beta\kt{001} - \beta\kt{101} } \\ & \eql & \isqt{1} \parenl{ \alpha\kt{000} + \beta\kt{001} + \alpha\kt{100} - \beta\kt{101} } \\ & \eql & \isqt{1} \parenl{ \kt{00} \otimes \alpha\kt{0} + \kt{00} \otimes \beta\kt{1} + \kt{10} \otimes \alpha\kt{0} - \kt{10} \otimes \beta\kt{1} } \\ & \eql & \isqt{1} \parenl{ \kt{00} \otimes (\alpha\kt{0} + \beta\kt{1}) + \kt{10} \otimes (\alpha\kt{0} - \beta\kt{1}) } \\ }$$
 




© 2022, Rahul Simha