\( \newcommand{\blah}{blah-blah-blah} \newcommand{\eqb}[1]{\begin{eqnarray*}#1\end{eqnarray*}} \newcommand{\eqbn}[1]{\begin{eqnarray}#1\end{eqnarray}} \newcommand{\bb}[1]{\mathbf{#1}} \newcommand{\mat}[1]{\begin{bmatrix}#1\end{bmatrix}} \newcommand{\nchoose}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\defn}{\stackrel{\vartriangle}{=}} \newcommand{\rvectwo}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\rvecthree}[3]{\left(\begin{array}{r} #1 \\ #2\\ #3\end{array}\right)} \newcommand{\rvecdots}[3]{\left(\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right)} \newcommand{\vectwo}[2]{\left[\begin{array}{r} #1\\#2\end{array}\right]} \newcommand{\vecthree}[3]{\left[\begin{array}{r} #1 \\ #2\\ #3\end{array}\right]} \newcommand{\vecfour}[4]{\left[\begin{array}{r} #1 \\ #2\\ #3\\ #4\end{array}\right]} \newcommand{\vecdots}[3]{\left[\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right]} \newcommand{\eql}{\;\; = \;\;} \definecolor{dkblue}{RGB}{0,0,120} \definecolor{dkred}{RGB}{120,0,0} \definecolor{dkgreen}{RGB}{0,120,0} \newcommand{\bigsp}{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\plss}{\;\;+\;\;} \newcommand{\miss}{\;\;-\;\;} \newcommand{\implies}{\Rightarrow\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\prob}[1]{\mbox{Pr}\left[ #1 \right]} \newcommand{\exval}[1]{\mbox{E}\left[ #1 \right]} \newcommand{\variance}[1]{\mbox{Var}\left[ #1 \right]} \newcommand{\kt}[1]{\left\vert #1 \right\rangle} \newcommand{\br}[1]{\left\langle #1 \right\vert} \newcommand{\bkt}[2]{\left\langle #1 \middle\vert #2 \right\rangle} \newcommand{\inr}[2]{\left\langle #1 \middle\vert #2 \right\rangle} \newcommand{\inrs}[2]{\left\langle #1 \; \middle\vert\; #2 \right\rangle} \newcommand{\inrh}[2]{ \left\langle \vphantom{\huge x} #1 \: \middle\vert \: #2 \right\rangle } \newcommand{\swich}[3]{\left\langle #1 \middle\vert #2 \middle\vert #3\right\rangle} \newcommand{\otr}[2]{\left\vert #1 \right\rangle\!\left\langle #2 \right\vert} \newcommand{\pss}{\large\psi} \newcommand{\re}{\mbox{Re }} \newcommand{\im}{\mbox{Im }} \newcommand{\mag}[1]{\left\vert #1 \right\vert} \newcommand{\magsq}[1]{{\left\vert #1 \right\vert}^2} \newcommand{\magsqh}[1]{{\left\vert \vphantom{\huge x} #1 \right\vert}^2} \newcommand{\isqt}[1]{\frac{#1}{\sqrt{2}}} \newcommand{\mbx}[1]{\;\;\;\;\;\;\;\;{\scriptsize \color{Gray}{\mbox{ #1}}}} \newcommand{\parenh}[1]{\left( \vphantom{\huge x} #1 \right)} \newcommand{\mbx}[1]{\;\;\;\;\;\;\;\;{\scriptsize \color{Gray}{\mbox{ #1}}}} \newcommand{\ksi}{\kt{\psi}} \)


Module 3 Solved Problems

 


Problem:
Show that \(\sqrt{X} \sqrt{X} = I\)

Solution:
First note that $$ (1+i)^2 + (1-i)^2 \eql 1 + i^2 + 2i + 1 + i^ - 2i \eql 0 $$ and $$ (1+i)(1-i) + (1+i)(1-i) \eql 1^2 + 1^2 + 1^2 + 1^2 \eql 4 $$ Next, $$ \sqrt{X} \: \sqrt{X} \eql \mat{ \frac{1+i}{2} & \frac{1-i}{2}\\ \frac{1-i}{2} & \frac{1+i}{2}} \mat{ \frac{1+i}{2} & \frac{1-i}{2}\\ \frac{1-i}{2} & \frac{1+i}{2}} \eql \frac{1}{4} \mat{ 1+i & 1-i\\ 1-i & 1+i} \mat{ 1+i & 1-i\\ 1-i & 1+i} \frac{1}{4} \mat{0 & 4\\ 4 & 0} \eql \mat{0 & 1\\ 1 & 0} \eql X $$
 

Problem:
Consider the matrix $$ A \eql \mat{a^* & b^*\\ -b & a} $$ Show that \(A\) is unitary. Then, show how the numbers \(a,b\) can be selected so that \(A\kt{0} = \ksi\) for any arbitary \(\ksi = \alpha\kt{0} + \beta\kt{1}\). That is, \(A\) can be used to generate any desired state from \(\kt{0}\).

Solution:
First, $$ A^\dagger \eql \mat{a & -b^*\\ b & a^*} $$ (The diagonal entries conjugate. The others reflect about the diagonal and conjugate.) Thus, $$ A^\dagger A \eql \mat{a & -b^*\\ b & a^*} \mat{a^* & b^*\\ -b & a} \eql \mat{aa^* + bb^* & ab^* - ab^*\\ a^*b - a^*b & bb^* + aa^*} \eql \mat{1 & 0\\ 0 & 1} $$ because \(aa^* + bb^* = |a|^2 + |b|^2 = 1\). The squared magnitudes add to 1 because the columns are orthonormal (hence, unit-length).

Next, $$ A \kt{0} \eql \mat{a^* & b^*\\ -b & a} \vectwo{1}{0} \eql \vectwo{a^*}{-b} $$ Thus, by equating \(\alpha = a^*, \beta = -b\), we can generate any vector.


© 2022, Rahul Simha