Loading [MathJax]/extensions/TeX/newcommand.js
\newcommand{\blah}{blah-blah-blah}
\newcommand{\eqb}[1]{\begin{eqnarray*}#1\end{eqnarray*}}
\newcommand{\eqbn}[1]{\begin{eqnarray}#1\end{eqnarray}}
\newcommand{\bb}[1]{\mathbf{#1}}
\newcommand{\mat}[1]{\begin{bmatrix}#1\end{bmatrix}}
\newcommand{\nchoose}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)}
\newcommand{\defn}{\stackrel{\vartriangle}{=}}
\newcommand{\rvectwo}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)}
\newcommand{\rvecthree}[3]{\left(\begin{array}{r} #1 \\ #2\\ #3\end{array}\right)}
\newcommand{\rvecdots}[3]{\left(\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right)}
\newcommand{\vectwo}[2]{\left[\begin{array}{r} #1\\#2\end{array}\right]}
\newcommand{\vecthree}[3]{\left[\begin{array}{r} #1 \\ #2\\ #3\end{array}\right]}
\newcommand{\vecfour}[4]{\left[\begin{array}{r} #1 \\ #2\\ #3\\ #4\end{array}\right]}
\newcommand{\vecdots}[3]{\left[\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right]}
\newcommand{\eql}{\;\; = \;\;}
\definecolor{dkblue}{RGB}{0,0,120}
\definecolor{dkred}{RGB}{120,0,0}
\definecolor{dkgreen}{RGB}{0,120,0}
\newcommand{\bigsp}{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}
\newcommand{\plss}{\;\;+\;\;}
\newcommand{\miss}{\;\;-\;\;}
\newcommand{\implies}{\Rightarrow\;\;\;\;\;\;\;\;\;\;\;\;}
\newcommand{\prob}[1]{\mbox{Pr}\left[ #1 \right]}
\newcommand{\exval}[1]{\mbox{E}\left[ #1 \right]}
\newcommand{\variance}[1]{\mbox{Var}\left[ #1 \right]}
\newcommand{\kt}[1]{\left\vert #1 \right\rangle}
\newcommand{\br}[1]{\left\langle #1 \right\vert}
\newcommand{\bkt}[2]{\left\langle #1 \middle\vert #2 \right\rangle}
\newcommand{\inr}[2]{\left\langle #1 \middle\vert #2 \right\rangle}
\newcommand{\inrs}[2]{\left\langle #1 \: \middle\vert\: #2 \right\rangle}
\newcommand{\inrh}[2]{ \left\langle \vphantom{\huge x} #1 \: \middle\vert \: #2 \right\rangle }
\newcommand{\swich}[3]{\left\langle #1 \middle\vert #2 \middle\vert #3\right\rangle}
\newcommand{\swichs}[3]{\left\langle #1 \:\middle\vert \: #2 \: \middle\vert \: #3\right\rangle}
\newcommand{\swichh}[3]{\left\langle \vphantom{\huge x} #1 \;\middle\vert \; #2 \; \middle\vert \; #3\right\rangle}
\newcommand{\otr}[2]{\left\vert #1 \right\rangle\!\left\langle #2 \right\vert}
\newcommand{\pss}{\large\psi}
\newcommand{\re}{\mbox{Re }}
\newcommand{\im}{\mbox{Im }}
\newcommand{\mag}[1]{\left\vert #1 \right\vert}
\newcommand{\magsq}[1]{{\left\vert #1 \right\vert}^2}
\newcommand{\magsqh}[1]{{\left\vert \vphantom{\huge x} #1 \right\vert}^2}
\newcommand{\isqt}[1]{\frac{#1}{\sqrt{2}}}
\newcommand{\mbx}[1]{\;\;\;\;\;\;\;\;{\scriptsize \color{Gray}{\mbox{ #1}}}}
\newcommand{\ksi}{\kt{\psi}}
\newcommand{\parenh}[1]{\left( \vphantom{\huge x} #1 \right)}
\newcommand{\parenl}[1]{\left(\vphantom{\LARGE x} #1 \,\right)}
\newcommand{\khi}{\kt{\phi}}
\newcommand{\cnot}{C_{\scriptsize NOT}}
\newcommand{\setl}[1]{\left\{\vphantom{\LARGE x} #1 \,\right\}}
Module 2: Highlights (abbreviated)
Complex numbers and vectors:
- Complex numbers:
- Either z = a + ib or z = re^{i\theta}
- Conjugate: z^* = a - ib = re^{-i\theta}
- Euler's: e^{i\theta} = \cos\theta + i \sin\theta
- Rules for arithmetic.
- From which, (complex-valued) functions f(z)
- Complex vectors:
- Complex numbers as vector elements
\kt{u} \eql \mat{1\\ 2-i\\ 3i}
\;\;\;\;\;\;
\kt{v} = \mat{2 \\ 1\\ i}
- Conjugated row-vector:
\eqb{
\br{u} & \eql & \kt{u}^\dagger & \eql & \mat{1 & 2+i & -3i} \\
\br{v} & \eql & \kt{v}^\dagger & \eql & \mat{2 & 1 & -i}
}
- Inner-product conjugates left side:
\inr{u}{v} \eql \mat{1 & 2+i & -3i} \mat{2 \\ 1\\ i} \eql 7+i
\;\;\;\; \mbx{A number}
- Squared-magnitude (not length) of a complex vector:
\magsq{u} = \inr{u}{u}
- Outer-product: column times row

- Scalar rules: \kt{\alpha v} = \alpha\kt{v} and
\br{\alpha v} = \alpha^* \br{v}
- Inner products with linear combinations:
\eqb{
\inrs{u}{\alpha v + \beta w} & \eql & \alpha\inr{u}{v} + \beta\inr{u}{w}
& \mbx{Linearity on the right}\\
\inrs{\alpha u + \beta v}{w} & \eql & \alpha^*\inr{u}{w} + \beta^*\inr{v}{w}
& \mbx{Conjugate linearity on the left}\\
}
Orthogonality, projectors:
- Vector orthogonality (defined as): \inr{u}{v} = 0
- Orthonormal:
- \inr{u}{v} = 0
- And \mag{u} = \mag{v} = 1
- A few important special 2D vectors:
\eqb{
\kt{0} & \eql & \mat{1\\ 0} & \;\;\;\;\;\; & \kt{1} & \eql & \mat{0\\ 1}\\
\kt{+} & \eql & \mat{\isqt{1}\\ \isqt{1}} & \;\;\;\;\;\; &
\kt{-} & \eql & \mat{\isqt{1}\\ -\isqt{1}}
}
- Projections and projectors:
- Let \kt{v_1},\kt{v_2},\ldots be an orthonormal basis.
- The projector for \kt{v_1} (a matrix) is:
P_{v_1} \eql \otr{v_1}{v_1}
- The projection of any \kt{u} on \kt{v_1}:
\eqb{
P_{v_1} \kt{u}
& \eql & \otr{v_1}{v_1} \kt{u} & \mbx{Apply projector} \\
& \eql & \kt{v_1} \; \inr{v_1}{u} & \mbx{Associativity} \\
& \eql & \inr{v_1}{u} \; \kt{v_1} & \mbx{Scalar movement} \\
}
The number \inr{v_1}{u} is the coefficient of projection.
- A vector is the sum of its projections:
\kt{u}
\eql
\parenl{ \inr{v_1}{u} } \: \kt{v_1}
+ \ldots +
\parenl{ \inr{v_n}{u} } \: \kt{v_n}
- Projectors of a basis add up to the identity (completeness relation):
\otr{v_1}{v_1} + \ldots + \otr{v_n}{v_n} \eql I
Operators:
- 3 types of operators: Hermitian, projectors, unitary
- Hermitian: A = A^\dagger
For example
A \eql \mat{1 & -i\\
i & 1}
is Hermitian while
B \eql \mat{i & 1\\
1 & -i}
is not.
- Unitary: when A A^\dagger = A^\dagger A = I
For example
H \eql \mat{\isqt{1} & \isqt{1}\\
\isqt{1} & -\isqt{1}}
is unitary because
H^\dagger H = H H^\dagger = I
But
A \eql \mat{1 & -i\\
i & 1}
is not.
- Projector: given a basis \kt{v_1},\kt{v_2}\ldots\kt{v_n},
a projector for \kt{v_i} is the outer-product
P_{v_1} \eql \otr{v_i}{v_i}
- Generalizing from real counterparts:
- Hermitian generalizes real-symmetric
- Projector works the same in complex/real
- Unitary generalizes real-orthonormal
- "Dagger" properties:
- \br{Ax} = \br{x} A^\dagger = \kt{A x}^\dagger
- \br{A^\dagger x} = \br{x} A
- \inr{w}{Ax} = \inr{A^\dagger w}{x}
- \inr{Aw}{x} = \inr{w}{A^\dagger x}
- (A^\dagger)^\dagger = A
- (\alpha A)^\dagger = \alpha^* A^\dagger
- (A + B)^\dagger = A^\dagger + B^\dagger
- (AB)^\dagger = B^\dagger A^\dagger
- Hermitian properties: if A,B are Hermitian
- A + B is Hermitian.
- \alpha A is Hermitian for real numbers \alpha.
- A's diagonal elements are real numbers.
- A's eigenvalues are real numbers.
- (Spectral theorem): one can find orthonormal eigenvectors
that are a basis.
- A can be written in terms of projectors made from
the eigenvectors: A = \sum_{i=1}^n \lambda_i \otr{v_i}{v_i}.
- Properties of unitary operators: if A, B are unitary
- \inr{Au}{Av} = \inr{u}{v} (preserves inner products).
- |Au| = |u| (preserves lengths).
- A^\dagger and A^{-1} are also unitary.
- The columns of A are orthonormal, as are the rows.
- AB and BA are unitary.
- Operator sandwich:
- \swich{u}{A}{v} = \inrs{u}{Av} = \inrs{A^\dagger u}{v}
- Applied to a projector: \swich{u}{P_v}{u} =
\magsq{\inr{v}{u}} = \magsq{P_v\kt{u}}
- Basis of the moment:
- Vectors exist as mathematical objects without the numbers in them.
- To put numbers to (i.e., "numerify") a vector, a basis must
be selected.
- It's much easier to select an orthonormal basis (any
orthonormal basis).
- We generally use the standard basis.
- But some books will use the eigenbasis, which makes some
calculations easier.
- Review of important and special 2D vectors:
\eqb{
\kt{0} & \eql & \mat{1\\ 0} & & \\
\kt{1} & \eql & \mat{0\\ 1} & & \\
\kt{+} & \eql & \vectwo{ \isqt{1} }{ \isqt{1} }
& \eql & \isqt{1} \mat{1\\ 0} \: + \: \isqt{1} \mat{0\\ 1} \\
\kt{-} & \eql & \vectwo{ \isqt{1} }{ -\isqt{1} }
& \eql & \isqt{1} \mat{1\\ 0} \: - \: \isqt{1} \mat{0\\ 1} \\
}
Useful-to-know relationships between these:
\eqb{
\kt{+} & \eql & \isqt{1} \kt{0} \: + \: \isqt{1} \kt{1} \\
\kt{-} & \eql & \isqt{1} \kt{0} \: - \: \isqt{1} \kt{1} \\
\kt{0} & \eql & \isqt{1} \kt{+} \: + \: \isqt{1} \kt{-} \\
\kt{1} & \eql & \isqt{1} \kt{+} \: - \: \isqt{1} \kt{-} \\
}
© 2022, Rahul Simha