\( \newcommand{\blah}{blah-blah-blah} \newcommand{\eqb}[1]{\begin{eqnarray*}#1\end{eqnarray*}} \newcommand{\eqbn}[1]{\begin{eqnarray}#1\end{eqnarray}} \newcommand{\bb}[1]{\mathbf{#1}} \newcommand{\mat}[1]{\begin{bmatrix}#1\end{bmatrix}} \newcommand{\nchoose}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\defn}{\stackrel{\vartriangle}{=}} \newcommand{\rvectwo}[2]{\left(\begin{array}{c} #1 \\ #2 \end{array}\right)} \newcommand{\rvecthree}[3]{\left(\begin{array}{r} #1 \\ #2\\ #3\end{array}\right)} \newcommand{\rvecdots}[3]{\left(\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right)} \newcommand{\vectwo}[2]{\left[\begin{array}{r} #1\\#2\end{array}\right]} \newcommand{\vecthree}[3]{\left[\begin{array}{r} #1 \\ #2\\ #3\end{array}\right]} \newcommand{\vecfour}[4]{\left[\begin{array}{r} #1 \\ #2\\ #3\\ #4\end{array}\right]} \newcommand{\vecdots}[3]{\left[\begin{array}{r} #1 \\ #2\\ \vdots\\ #3\end{array}\right]} \newcommand{\eql}{\;\; = \;\;} \definecolor{dkblue}{RGB}{0,0,120} \definecolor{dkred}{RGB}{120,0,0} \definecolor{dkgreen}{RGB}{0,120,0} \newcommand{\bigsp}{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\plss}{\;+\;} \newcommand{\miss}{\;-\;} \newcommand{\implies}{\Rightarrow\;\;\;\;\;\;\;\;\;\;\;\;} \newcommand{\prob}[1]{\mbox{Pr}\left[ #1 \right]} \newcommand{\exval}[1]{\mbox{E}\left[ #1 \right]} \newcommand{\variance}[1]{\mbox{Var}\left[ #1 \right]} \newcommand{\kt}[1]{\left\vert #1 \right\rangle} \newcommand{\br}[1]{\left\langle #1 \right\vert} \newcommand{\bkt}[2]{\left\langle #1 \middle\vert #2 \right\rangle} \newcommand{\inr}[2]{\left\langle #1 \middle\vert #2 \right\rangle} \newcommand{\inrs}[2]{\left\langle #1 \: \middle\vert\: #2 \right\rangle} \newcommand{\inrh}[2]{ \left\langle \vphantom{\huge x} #1 \: \middle\vert \: #2 \right\rangle } \newcommand{\swich}[3]{\left\langle #1 \middle\vert #2 \middle\vert #3\right\rangle} \newcommand{\swichs}[3]{\left\langle #1 \:\middle\vert \: #2 \: \middle\vert \: #3\right\rangle} \newcommand{\swichh}[3]{\left\langle \vphantom{\huge x} #1 \;\middle\vert \; #2 \; \middle\vert \; #3\right\rangle} \newcommand{\otr}[2]{\left\vert #1 \right\rangle\!\left\langle #2 \right\vert} \newcommand{\otrh}[2]{\left\vert \vphantom{\huge x} #1 \right\rangle\!\left\langle \vphantom{\huge x} #2 \right\vert} \newcommand{\pss}{\large\psi} \newcommand{\re}{\mbox{Re }} \newcommand{\im}{\mbox{Im }} \newcommand{\mag}[1]{\left\vert #1 \right\vert} \newcommand{\magsq}[1]{{\left\vert #1 \right\vert}^2} \newcommand{\magsqh}[1]{{\left\vert \vphantom{\huge x} #1 \right\vert}^2} \newcommand{\isqt}[1]{\frac{#1}{\sqrt{2}}} \newcommand{\mbx}[1]{\;\;\;\;\;\;\;\;{\scriptsize \color{Gray}{\mbox{ #1}}}} \newcommand{\ksi}{\kt{\psi}} \newcommand{\parenh}[1]{\left( \vphantom{\huge x} #1 \right)} \newcommand{\parenl}[1]{\left(\vphantom{\LARGE x} #1 \,\right)} \newcommand{\khi}{\kt{\phi}} \newcommand{\cnot}{C_{\scriptsize NOT}} \newcommand{\setl}[1]{\left\{\vphantom{\LARGE x} #1 \,\right\}} \newcommand{\smm}[1]{\mbox{\( #1 \)}} \newcommand{\cz}{C_{\scriptsize Z}} \newcommand{\ccnot}{CC_{\scriptsize NOT}} \newcommand{\ccz}{CC_{\scriptsize Z}} \newcommand{\md}{\mbox{ mod }} \newcommand{\divs}{\; \vert \;} \newcommand{\ndivs}{\; \not\vert \;} \newcommand{\gcd}{\mbox{gcd}} \)


A.2     Number theory for Shor's algorithm

 


Overview

 

Highlights of this appendix:

 


Greatest common divisor (gcd) and Euclid's algorithm

 

Mod and div

  • With integer division, as in \(\frac{14}{3}\), there is both a quotient and remainder: $$\eqb{ \frac{14}{3} & \eql & 4 & \;\;\;\; \mbox{ (quotient) } \\ 14 \mbox{ mod } 3 & \eql & 2 & \;\;\;\; \mbox{ (remainder) } \\ }$$

  • When dividing by \(3\), the only possible remainders are \(0, 1, 2\).

  • When dividing by \(M\), the possible remainders are $$ S_M \; \defn \; \setl{0,1,2,\ldots, M-1} $$

  • Consider \(14 \md 3\) and \(8 \md 3\): $$\eqb{ 14 \md 3 & \eql & 2 \\ 8 \md 3 & \eql & 2 }$$ That is, $$ 14 \md 3 \eql 8 \md 3 $$ Both \(14\) and \(8\) have the same remainder when divided by 3.

  • We can think of \(\md 3\) as a mapping: $$ f_3(x) \eql x \md 3 $$ Then, we've seen that $$ f_3(14) \eql f_3(8) $$ That is, \(14\) and \(8\) are equivalent in this mapping
        \(\rhd\) They produce the same result

  • This equivalence can be written in many ways: $$\eqb{ 14 \md 3 & \; = \; & 8 \md 3 \\ 14 & \; =_3 \; & 8 \\ 14 & \; \equiv \; & 8 \;\;\; (\md 3) \\ 14 & \; \equiv_3 \; & 8 \;\;\; \\ }$$

  • In general, if \(a, b, M \in \mathbb{Z}\) (the integers), then we will write $$ a \; \equiv_M \; b $$ if \( (a \md M) = (b \md M)\).
 

Greatest common divisor (gcd):

  • Consider numbers \(m=30, n=75\):
    • \(5\) divides both \(30\) and \(75\).
    • So does \(15\).
    • In fact, \(15\) is the largest common divisor.

  • Formally, for non-zero \(a,b\) $$ \mbox{gcd}(a,b) \eql \mbox{ largest positive integer that divides both \(a\) and \(b\)} $$

  • For our example, we could list the divisors of each: $$\eqb{ \mbox{divisors of } 30 & \eql & \{1, 3, 5, 6, 10, {\bf 15}\} \\ \mbox{divisors of } 75 & \eql & \{1, 3, 5, {\bf 15}, 25\} \\ }$$ And then identify the common divisors: $$ \mbox{common divisors of } 30, 75 \eql \{1, 3, 5, {\bf 15}\} $$ Then find the largest element in here.

  • Alternatively, we could prime-factorize both, identify the common primes, and multiply them: $$\eqb{ 30 & \eql & 2 \times {\bf 3} \times {\bf 5}\\ 75 & \eql & {\bf 3} \times {\bf 5} \times 5\\ }$$

  • There is a faster way: using Euclid's Algorithm.
 

Before getting to Euclid's algorithm, let's make a key observation:

  • Suppose \(m \gt n\) and \(k\) divides both.
    • Then, \(k\) divides any multiple of \(m\)
    • And, \(k\) divides any multiple of \(n\)
    • Thus, \(k\) divides any positive linear combination \((am + bn)\) for integers \(a,b\).
    • Example: \(5\) divides \(330\) and \(150\), so it divides, \(2 \times 330 - 3 \times 150 = 210\).
    • Thus, \(k\) divides \((m - n), (m - 2n), (m - 3n) \ldots \) (as long as they are positive)
    • What is the smallest positive number in this list?
          \(\rhd\) \(m \md n\)
    • So, \(k\) divides both \(n\) and \(m \md n\).

  • Next, \(k\) also divides \(\gcd (n, m \md n)\)
    • Consider this example: \(m=330, n=150\)
    • Then \(m \md n = 330 \md 150 = 30\). $$\eqb{ 330 & \eql & {\bf 2} \times {\bf \underline{3}} \times {\bf \underline{5}} \times 11\\ 30 & \eql & {\bf 2} \times {\bf \underline{3}} \times {\bf \underline{5}} \\ }$$
    • Any number that divides both 330 and 30 (like \(3 \times 5\)) must divide \(\gcd (330,30)\)
    • That's because it's in the product of common primes (the gcd): $$ {\bf 2} \times {\bf \underline{3}} \times {\bf \underline{5}} $$

  • Now recall: \(k\) divides both \(m\) and \(n\)
    • Amongst these \(k\) will be \(\gcd (m,n)\).
    • Remember, \(k\) also divides \(\gcd (n, m \md n)\) (from above).
    • So, \(\gcd (m,n)\) divides \(\gcd (n, m \md n)\).
    • But \(\gcd (m,n)\) is the largest of such \(k\).
    • Thus, $$ \gcd(m, n) = \gcd (n, m \md n) $$

  • Example: \(m=330, n=150\) $$\eqb{ 330 & \eql & {\bf 2} \times {\bf \underline{3}} \times {\bf \underline{5}} \times 11\\ 150 & \eql & {\bf 2} \times {\bf \underline{3}} \times {\bf \underline{5}} \times 5\\ }$$
    • The different \(k\) that divide both \(m=330, n=150\): $$\eqb{ k_1 & \eql & 2 \times 3 \\ k_2 & \eql & 2 \times 5 \\ k_3 & \eql & 3 \times 5 \\ k_4 & \eql & 2 \times 3 \times 5 & \;\;\;\;\; \mbox{(the gcd)}\\ }$$
    • We've shown that each of these \(k\)'s must divide \(\gcd(150, 330\md 150) = \gcd(150,30)\).
    • The largest such is \(2 \times 3 \times 5 = 30\).
    • Which must be at least as large as \(\gcd(150, 30)\).
    • Thus, \(\gcd(330,150) = \gcd(150, 30)\).

  • Thus, we have the key insight: $$ \gcd(m, n) = \gcd (n, m \md n) $$ That is, to apply recursion.
 

Euclid's Algorithm:

  • Example: \(m=75, n=30\):
    • The gcd will divide these numbers: $$\eqb{ & & 75\\ 75-30 & \eql & 45\\ 75-2(30) & \eql & 15 }$$
    • The smallest number is \(75 \md 30 = 15\).
    • The gcd of 75 and 30 must be the gcd of 30 and 15: $$ \gcd(75, 30) \eql \gcd(30, 15) $$
    • We have reduced the problem to calculating \(\gcd(30, 15)\).
    • Applying the same idea: $$ \gcd(30, 15) \eql \gcd(15, 30 \md 15) \eql \gcd(15, 0) \eql 15 $$

  • Example: \(m=102, n=30\):
    • Here, in the first step, we observe: $$ \gcd(102,30) \eql \gcd(30, 102\md 30) \eql \gcd(30, 12) $$
    • Now we are left with computing \(\gcd(30, 12)\): $$ \gcd(30, 12) \eql \gcd(12, 30\md 12) \eql \gcd(12, 6) $$
    • Next, $$ \gcd(12, 6) \eql \gcd(6, 12 \md 6) \eql \gcd(6, 0) $$
    • Then, when one of them is 0, the other is the gcd: $$ \gcd(12, 6) \eql 6 $$
    • Thus, $$ \gcd(102, 30) \eql 6 $$

  • Algorithm (Euclid):
         Algorithm: gcd (m, n)
         Input: integers m, n > 0
    
              // See if parameters need to be swapped.
         1.   if n > m
         2.       return gcd (n,m)
         3.   endif
         
              // The algorithm.
         4.   if n = 0
         5.       return m;
         6.   else
         7.       return gcd (n, m mod n)
         8.   endif
         

  • Analysis:
    • Note that \(m \md n \lt n\).
    • If \(n \leq \frac{m}{2}\), then \(m \md n \;\;\lt \;\; n \;\;\leq \;\; \frac{m}{2}\).
    • If \(n \gt \frac{m}{2}\), then \(m \md n \eql m - n \;\;\leq\;\; \frac{m}{2}\).
    • Thus, the larger number is reduced by at least \(\frac{1}{2}\) each time.
          \(\rhd\) Thus, the running time is at most \(O(\log m)\).
 

In-Class Exercise 1: Apply Euclid's algorithm to find \(\gcd(48,30)\).
 

Coprime:

  • Two numbers \(a, b\) are coprime if \(\gcd(a,b) = 1\).

  • That is, the largest positive common divisor is 1.

  • Example: 8, 15
    • Divisors of 8: \(\{1, 2, 4\}\)
    • Divisors of 15: \(\{1, 3, 15\}\)
    • \(\gcd(8,15) = 1\).

  • Other equivalent terms: \(a,b\) are relatively prime, or mutually prime.
 


Bezout's lemma and the extended Euclid algorithm

 

Proposition A.2.1: (Bezout's Lemma)
Let \(a, b\) be positive integers. Then there exist integers \(r, s\) (possibly negative) such that $$ \gcd(a,b) \eql ra + sb $$ That is, the gcd can be expressed as a linear combination of \(a\) and \(b\), allowing for negative integer coefficients.

Example:

  • Suppose \(a=19, b=8\).
  • Then, \(\gcd(19,8) = 1\).
  • Can we find \(r, s\) such that $$ 1 \eql ra + sb \eql 19r + 8b? $$
  • Bezout's Lemma says, yes, there must be such integers: $$ 1 \eql 19 \times 3 \; + \; 8 \times (-7) $$ That is, \(r=3, s=-7\).

Proof:
Let $$ S \eql \{\mbox{all } ra+sb \mbox{ such that } ra+sb \gt 0 \} $$ and let \(m\) be the smallest element in \(S\).

We'll show:

  1. \(\gcd(a,b) \leq m\)
  2. \(\gcd(a,b) \geq m\)
Which will mean \(m = \gcd(a,b)\) and the proof is complete.
  1. \(\gcd(a,b) \leq m\):
      \(\gcd(a,b)\) divides both \(a\) and \(b\).
    • Thus, it will divide multiples of each, and the sum of such multiples.
    • Thus, it divides any element of \(S\), including \(m\).
    • Because \(\gcd(a,b) \gt 0\), it must be that \(\gcd(a,b) \leq m\).
  2. \(\gcd(a,b) \geq m\):
    • We'll show that \(m\) divides \(a\). Assume to the contrary, which means there will be a remainder.
    • Recall: \(a, m\) are both positive.
    • Let \(a = qm + p\), where \(p \lt m\) (the remainder), and \(p \gt 0\).
    • Substitute \(m = ra + sb\) (for some \(r, s\)): $$ a \eql qm + p \eql qm + ra + sb $$ or $$ p \eql (1-qr) a + (-qs) b $$ This is a linear combination of \(a,b\).
    • By assumption \(p\lt m, p \gt 0\).
    • This means we've found a smaller positive linear combination in \(S\), a contradiction.
    The exact same argument shows that \(m\) divides \(b\) and therefore \(m \leq \gcd(a,b)\).
 

We now show how to compute the numbers \(r, s\) in $$ \gcd(a,b) \eql ra + sb $$

  • First, recall the main idea in Euclid's algorithm:
    • We're given \(m \gt n\) as input
    • Then $$ \gcd(m,n) \eql \gcd(n, m \md n) $$

  • Let's write the above a little differently:
    • Let $$ m \eql k n + r $$ so that \(m \md n = r\)
    • Then $$ \gcd(m,n) \eql \gcd(n, r) $$

  • Example: \(m=19, n=8\) $$\eqb{ \gcd(19,8) & \eql & \gcd(8, 19 \md 8) \\ & \eql & \gcd(8, 3) }$$

  • Next, let's explicitly write the \(m, n, k, r\) values at each step, using subscript \(i\) for the i-th step: $$\eqb{ 19 & \eql & 2 (8) + 3 & \;\;\;\; & \mbox{\(m_1=19, n_1=8, k_1=2, r_1=3\) } \\ 8 & \eql & 2(3) + 2 & \;\;\;\; & \mbox{\(m_2=n_1=8, n_2=r_1=3, k_2=2, r_2=2\) } \\ 3 & \eql & 1(2) + 1 & \;\;\;\; & \mbox{\(m_3=n_2=3, n_3=r_2=2, k_3=1, r_3=1\)} \\ 2 & \eql & 2(1) + 0 & \;\;\;\; & \mbox{\(m_4=n_3=2, n_4=r_3=1, k_4=1, r_4=0\), stop with \(\gcd = g = n_4=r_3\)} }$$

  • Notice how \(r_i = n_{i+1} = m_{i+2}\)

  • If we retain the numbers \(m_i,n_i,k_i, r_i\) at each step, we can work backwards starting from the next-to-last step:
    • Rewrite the next-to-last equation as $$ g \eql 3 - 1(2) \eql m_3 - k_3(r_2) $$
    • Now substitute for \(r_2\) from the second equation $$ g \eql 3 - 1( 8 - 2(3)) \eql m_3 - k_3(m_2 - k_2(r_1)) $$ and simplify (using \(m_3=r_1\)) to $$ g \eql 3(3) - 8 \eql 3(r_1) - m_2 $$
    • Finally, substitute for \(r_1\): $$ g \eql 3(m-2n) - n \eql 3m - 7n $$
    • Thus, we've expressed the \(\gcd\) in terms of the original \(m,n\) as in Bezout's lemma.
 

In-Class Exercise 2: Apply Euclid's algorithm in reverse to find the numbers \(r,s\) such that \(\gcd(48,30) = 48r + 30s\).
 


Solving \(ax \; \equiv_M \; b\)

 

Proposition A.2.2:
If \(\gcd(a, M)=1\) then the equation in \(x\) $$ ax \; \equiv_M \; b $$ has a finite solution.

Proof:
From Bezout's Lemma above, we can express \(\gcd(a,M)=1\) as a linear combination $$ 1 \eql ra + sM $$ Multiple both sides by \(b\): $$ a(br) + M (bs) \eql b $$ Dividing by \(M\) on the left side results in the remainder \(a(br)\). On the right side, we have \(b \md M\).

Thus, $$ a(br) \md M \eql b \md M $$ And so, \(x=br\) is a solution to $$ ax \; \equiv_M \; b $$
 

Proposition A.2.3:
If \(x=c\) is a solution to the equation $$ ax \; \equiv_M \; b $$ then so is \(y = c \md M\).

Proof:
Since $$ y \eql c \md M $$ multiply both sides by \(a\) to get $$ ay \eql ac \md M $$ But the right side is \(b \md M\) since \(c\) is a solution. Thus, $$ ay \eql b \md M $$ which we can write as $$ ay \; \equiv_M \; b $$ Thus, \(y\) is a solution.
 

An example:

  • Suppose we're given \(a=3, M=7\) and wish to solve $$ 3x \; \equiv_7 \; 5 $$

  • Apply reverse-Euclid in Bezout's Lemma, we get $$ 1 \eql 1(7) - 2(3) $$ and so \(r=-2\).

  • This means \(x = br = -10\) is a solution.

  • For the smallest positive solution, we add enough multiples of \(M=7\) to get \(-10 + 2(7) = 4\): $$ 3 \times 4 \; \equiv_7 \; 5 $$

  • Another solution, for example is $$ 3 \times 18 \; \equiv_7 \; 5 $$

  • From A.2.3, \(18 \md 7 = 4\) is also a solution, which we saw earlier.
 

Proposition A.2.4:
If \(\gcd(a,M) = 1\) and $$ ab \; \equiv_M \; a $$ then $$ b \; \equiv_M \; 1 $$ The converse also holds: if \(b \equiv_M 1\), then \(ab \equiv_M a\).

Proof:
The forward direction follows from the previous result. For the reverse direction, because \(b \equiv_M 1\), there is some \(k\) such that \(b = kM + 1\). Then, \(ab = akM + a\) from which \(ab \md M = a \md M\).
 


Modular inverse

 

Proposition A.2.5:
If \(\gcd(a, M)=1\), \(M\gt 1\), and \(a \lt M\) then there is a unique element \(a^\ast\) in \(S_M=\{1,2,\ldots, M-1\}\) such that $$ a a^\ast \; \equiv_M \; 1 $$ The number \(a^\ast\) is the inverse of \(a\) with respect to multiplication modulo-\(M\).

Proof:
Since \(\gcd(a,M)=1\) then, by Bezout's Lemma above, we can write $$ a \eql ra + sM $$ Rearranging, $$ ra - 1 \eql M(-s) $$ Which means \(M\) divides \(ra-1\) or $$ ra \md M \eql 1 $$ Now define $$ a^\ast \eql r \md M $$ Then all we need to do is show that it is unique.

Suppose there exists \(c\) such that $$ a c \; \equiv_M \; 1 $$ Then, because \(a a^\ast \equiv_M 1\), $$ a c \; \equiv_M \; a a^\ast $$ Or $$ c \eql a^\ast \md M $$
 

Computing the modular inverse:

  • Given \(a, M\) such that \(\gcd(a,M)=1\), we would like to compute the inverse \(a^\ast\) such that $$ a a^\ast \; \equiv_M \; 1 $$

  • From Bezout's algorithm, we can compute \(r, s\) such that $$ ra + sM \eql 1 $$

  • Then, $$ ra - 1 \eql (-s) M $$ and thus $$ ra - 1 \; \equiv_M \; 0 $$

  • From which $$ ra \; \equiv_M \; 1 $$

  • And so, \(a^\ast = r\).
 

Example:

  • Suppose we want the modular inverse of \(a=3\) with \(M=7\).

  • We saw earlier that in solving \(\gcd(3,7)=1\) $$ -2(3) + 1(7) \eql 1 $$

  • And so, \(r=-2\) is an inverse.

  • The smallest positive inverse adds a multiple of \(7\) so that the result lies in \(\{0,\ldots,6\}\): $$ -2 + 7 \eql 5 $$ and hence \(5\) is the modular inverse: $$ 3 \times 5 \; \equiv_7 \; 1 $$
 


A special case of the Chinese Remainder Theorem

 

We will only consider this special case:

  • Proposition A.2.6:
    Suppose \(x, p, q\) and \(m\) are integers with \(p,q\) coprime, and that $$\eqb{ x \md p & \eql & m \\ x \md q & \eql & m \\ }$$ Then $$ x \md pq \eql m \\ $$

    Proof:

    • Write $$\eqb{ x & \eql & k_1 p + m \\ x & \eql & k_2 p + m \\ }$$ with the quotients \(k_1, k_2\).
    • Then, equating the two, we see that $$ k_1 p \eql k_2 q $$ We'll call this number \(y = k_1p = k_2 q\).
    • Then, \(y\) is a multiple of both \(p\) and \(q\) and thus a multiple of \(\mbox{LCM}(p,q)\).
    • But because \(p,q\) are coprime by assumption, the LCM is \(pq\).
    • Which means \(k_1p\) (and \(k_2q\)) is a multiple of \(pq\), say \(kpq\).
    • Thus, we can write \(x = k_1p + m\) as $$ x \eql kpq + m $$ Which makes \(x \md pq = m\).
Note: the result holds even when the remainder \(m = 0\). We will need to remember this when proving the correctness of RSA.
 


Fermat's little theorem

 

Proposition A.2.7: (Fermat's Little Theorem)
If \(p\) is a prime then $$ a^{p-1} \; \equiv_p \; 1 $$ for any positive integer \(a\) that is not a multiple of \(p\).

Proof:
Let \(m\) be any positive integer. We'll show that $$ m^p - m \; \equiv_p \; 0 $$ Then, if this is true, it's true for \(a\): $$ a^p - a \; \equiv_p \; 0 $$ or $$ a(a^{p-1} - 1) \; \equiv_p \; 0 $$ By assumption, \(a\) is not divisible by \(p\) and so $$ a^{p-1} - 1 \; \equiv_p \; 0 $$ Or $$ a^{p-1} \; \equiv_p \; 1 $$

Let's now prove $$ m^p - m \; \equiv_p \; 0 $$ by induction for any positive \(m\):

  • It's certainly true for \(m=1\).
  • Assume it's true for \(m=k\).
  • Now $$ (k+1)^p - (k+1) \eql k^p + \nchoose{p}{1} k^{p-1} + \nchoose{p}{2} k^{p-2} + \ldots + + \nchoose{p}{p-1} k^{1} + 1^p - (k+1) $$
  • Every \(\nchoose{p}{i}\) is a multiple of \(p\), and so all the terms involving \(\nchoose{p}{i}\) are multiples of \(p\). (They are multiplied by an integer).
  • Then $$ (k+1)^p - (k+1) \; \equiv_p \; k^p + 1 - (k+1) \; = \; k^p - k $$ But the latter is true because of the induction hypothesis.
 

Example:

  • With \(a=10, p=7\), clearly the conditions are satisfied:
    • 7 is an odd prime
    • 10 is not a multiple of 7

  • Then \(10^(7-1) \md 7 = 10^6 \md 7 = 1\).
 


Continued fractions and convergents

 

Let's start with an example and work through a few calculations, introducing the ideas as we proceed:

  • Consider the number defined by the following operations: $$ 0 + \cfrac1{ 1 + \cfrac1{ 1 + \cfrac1{ 7 + \frac{1}{2}} } } $$

  • We will evaluate this expression by starting at the bottom, working "upwards", and keeping the rational form: $$\eqb{ 0 + \cfrac1{ 1 + \cfrac1{ 1 + \cfrac1{ 7 + \frac{1}{2}} } } & \eql & 0 + \cfrac1{ 1 + \cfrac1{ 1 + \frac{1}{15/2}} } \\ & \eql & 0 + \cfrac1{ 1 + \cfrac1{ 1 + \frac{2}{15}} } \\ & \eql & 0 + \cfrac1{ 1 + \frac{1}{17/15} } \\ & \eql & 0 + \cfrac1{ 1 + \frac{15}{17} } \\ & \eql & 0 + \frac{1}{32/17} \\ & \eql & \frac{17}{32}\\ }$$
Note:
  • Going backwards in the steps above is a way to start with a rational and produce its continued fraction.
  • There is a simpler algorithm for this, described below.
produce
 

In-Class Exercise 3: Evaluate the expression $$ 0 + \cfrac1{ 2 + \cfrac1{ 2 + \frac{1}{6}} } $$
 

  • In general, a continued fraction can be finite or infinite: $$ n_1 + \cfrac{m_2}{n_2 + \cfrac{m_3}{n_3 + \ddots}} $$

  • We will focus on finite continued fractions where the numerators are all 1, such as: $$ n_1 + \cfrac1{n_2 + \cfrac1{n_3 + \cfrac1{n_4 + \frac{1}{n_5}}}} $$

  • In our example \(n_1=0, n_2=1, n_3=1, n_4=7, n_5=2\):

  • Next, define a series of approximating convergents (using our example): $$\eqb{ g_1 & \eql & n_1 + \cfrac1{n_2} & \eql & 0 + \cfrac1{1} & \eql & 1 \\ g_2 & \eql & n_1 + \cfrac1{n_2 + \cfrac1{n_3}} & \eql & 0 + \cfrac1{1 + \cfrac1{1}} & \eql & \frac{1}{2} \\ g_3 & \eql & n_1 + \cfrac1{n_2 + \cfrac1{n_3 + \cfrac1{n_4}}} & \eql & 0 + \cfrac1{1 + \cfrac1{1 + \cfrac1{7}}} & \eql & \frac{8}{15} \\ g_4 & \eql & n_1 + \cfrac1{n_2 + \cfrac1{n_3 + \cfrac1{n_4 + \cfrac1{2}}}} & \eql & 0 + \cfrac1{1 + \cfrac1{1 + \cfrac1{7 + \cfrac1{2}}}} & \eql & \frac{17}{32} \\ }$$

  • Think of the convergents as successively better approximations to the original rational number \(\frac{17}{32}\).
 

In-Class Exercise 4: What are the convergents for $$ 0 + \cfrac1{ 2 + \cfrac1{ 2 + \frac{1}{6}} }? $$
 

Next, let's set about calculating a continued fraction for a given rational:

  • What we'll see is something very similar to Euclid's algorithm, successively using remainders.

  • Let's work through an example: \(\frac{17}{32}\).

  • We're given \(\frac{a}{b} = \frac{17}{32}\).

  • Then, let $$\eqb{ n_1 & \eql & a \mbox{ div } b & \eql & 17 \mbox{ div } 32 & \eql & 0\\ r_1 & \eql & a \mbox{ mod } b & \eql & 17 \mbox{ mod } 32 & \eql & 17\\ }$$ Thus, $$ n_1 + \frac{r_1}{b} \eql 0 + \frac{17}{32} $$ We will set \(r_0 = b\) and write this as: $$ \frac{17}{32} \eql n_1 + \frac{r_1}{r_0} \eql 0 + \frac{17}{32} $$

  • Next, calculate $$\eqb{ n_2 & \eql & r_0 \mbox{ div } r_1 & \eql & 32 \mbox{ div } 17 & \eql & 1\\ r_2 & \eql & r_0 \mbox{ mod } r_1 & \eql & 32 \mbox{ mod } 17 & \eql & 15\\ }$$ Thus, $$ \frac{17}{32} \eql n_1 + \cfrac1{n_2 + \frac{r_2}{r_1}} \eql 0 + \cfrac1{1 + \frac{15}{17}} $$

  • We can now see the logic:
    • The next step is to invert \(\frac{15}{17}\) $$ 0 + \cfrac1{1 + \frac{1}{17/15}} $$
    • And then break out \(\frac{17}{15}\) into a quotient and remainder: \(\frac{17}{15} = 1 + \frac{2}{15}\) $$ 0 + \cfrac1{1 + \cfrac1{1 + \frac{2}{15}}} $$

  • Using our notation, we have calculated $$\eqb{ n_3 & \eql & r_1 \mbox{ div } r_2 & \eql & 17 \mbox{ div } 15 & \eql & 1\\ r_3 & \eql & r_1 \mbox{ mod } r_2 & \eql & 17 \mbox{ mod } 15 & \eql & 2\\ }$$ and thus our expression is $$ \frac{17}{32} \eql n_1 + \cfrac1{n_2 + \cfrac1{n_3 + \frac{r_3}{r_2}}} \eql 0 + \cfrac1{1 + \cfrac1{1 + \frac{2}{15}}} $$

  • The next step is $$\eqb{ n_4 & \eql & r_2 \mbox{ div } r_3 & \eql & 15 \mbox{ div } 2 & \eql & 7\\ r_4 & \eql & r_2 \mbox{ mod } r_3 & \eql & 15 \mbox{ mod } 2 & \eql & 1\\ }$$ to give $$ \frac{17}{32} \eql n_1 + \cfrac1{n_2 + \cfrac1{n_3 + \cfrac1{n_4 + \frac{r_4}{r_3}}}} \eql 0 + \cfrac1{1 + \cfrac1{1 + \cfrac1{7 + \frac{1}{2}}}} $$

  • Finally, because the next step results in a remainder of 0, we stop: $$\eqb{ n_5 & \eql & r_3 \mbox{ div } r_4 & \eql & 2 \mbox{ div } 1 & \eql & 2\\ r_5 & \eql & r_3 \mbox{ mod } r_4 & \eql & 2 \mbox{ mod } 1 & \eql & 0\\ }$$ This leaves the final expression $$ \frac{17}{32} \eql n_1 + \cfrac1{n_2 + \cfrac1{n_3 + \cfrac1{n_4 + \cfrac1{n_5}}}} \eql 0 + \cfrac1{1 + \cfrac1{1 + \cfrac1{7 + \frac{1}{2}}}} $$ with \(n_1=0, n_2=1, n_3=1, n_4=7, n_5=2\).

  • Thus, given a rational \(\frac{a}{b}\), with \(r_0=b\), we compute $$\eqb{ n_1 & \eql & a \mbox{ div } b \\ r_1 & \eql & a \mbox{ mod } b \\ }$$ and then, for \(k\gt 1\) $$\eqb{ n_k & \eql & r_{k-2} \mbox{ div } r_{k-1} \\ r_k & \eql & r_{k-2} \mbox{ mod } r_{k-1} \\ }$$ until such \(k\) where \(r_k=0\).

  • Then, the sequence of integers \(n_1, n_2,\ldots, n_k\) in continued fraction form is equal to the rational \(\frac{a}{b}\).

  • The process ends because, if we examine only the recurrence for the remainder $$ r_k \eql r_{k-2} \mbox{ mod } r_{k-1} \\ $$ the remainders are a strictly decreasing positive sequence just like the one in Euclid's algorithm.
 

In-Class Exercise 5: Work through the recurrence above for the rational \(\frac{13}{32}\).
 

To find the convergents, one can work backwards as in the reverse-Euclid approach:

  • Suppose we have $$ n_1 + \cfrac1{n_2 + \cfrac1{n_3 + \cfrac1{n_4 + \cfrac1{n_5}}}} $$

  • The next approximating convergent comes from removing \(n_5\): $$ n_1 + \cfrac1{n_2 + \cfrac1{n_3 + \cfrac1{n_4}}} $$

  • We want to calculate the integers in this rational number.

  • Define integers \(p_i, q_i\) where the denominator at the level that contains \(n_i\) is $$ n_i + \frac{1}{p_{i+1}/q_{i+1}} \eql n_i + \frac{q_{i+1}}{p_{i+1}} $$ Then, simplifying, we get $$ \frac{ n_i p_{i+1} + q_{i+1} }{ p_{i+1} } $$ But this is \(\frac{p_i}{q_i}\), that is, $$ \frac{p_i}{q_i} \eql \frac{ n_i p_{i+1} + q_{i+1} }{ p_{i+1} } $$

  • Now we can write our backwards recurrence as: $$\eqb{ p_i & \eql & n_i p_{i+1} + q_{i+1} \\ q_i & \eql & p_{i+1} }$$

  • For example, suppose we want to simplify the convergent $$ n_1 + \cfrac1{n_2 + \cfrac1{n_3 + \cfrac1{n_4}}} \eql 0 + \cfrac1{1 + \cfrac1{1 + \cfrac1{7}}} $$

  • First start with $$ n_1 + \cfrac1{n_2 + \cfrac1{n_3 + \frac{q_4}{p_4}}} \eql 0 + \cfrac1{1 + \cfrac1{1 + \cfrac1{7}}} $$ and simplify $$ n_3 + \frac{q_4}{p_4} \eql \frac{p_4 n_3 + q_4}{p_4} \eql \frac{1 \times 7 + 1}{7} \eql \frac{8}{7} \eql \frac{p_3}{q_3} $$

  • After which $$ n_2 + \frac{q_3}{p_3} \eql 1 + \frac{7}{8} \eql \frac{15}{8} \eql \frac{p_2}{q_2} $$

  • And finally $$ n_1 + \frac{q_2}{p_2} \eql 0 + \frac{8}{15} \eql \frac{8}{15} $$

  • We have thus calculated the convergent \(g_3=\frac{8}{15}\).
 

Finally, a powerful result about rationals and continued-fraction convergents:

  • We will state a result whose proof will be deferred to number-theory textbooks:

    Proposition A.2.8:
    Suppose \(x\) and \(\frac{a}{b}\) are rational numbers such that $$ \mag{ x - \frac{a}{b} } \leq \frac{1}{2b^2} $$ Then, \(\frac{a}{b}\) is a convergent in the continued-fraction expansion of \(x\).

  • Let's explore what this means.

  • Consider \(\frac{a}{b}= \frac{8}{15}\) and \(x=\frac{17}{32}\): $$ \mag{ \frac{8}{15} - \frac{17}{32} } \eql \frac{1}{15 \times 32} \lt \frac{1}{2 \times 15 \times 15} $$

  • In some sense, this shows that \(\frac{8}{15}\) is "close" to \(x=\frac{17}{32}\).

  • Then, according to the proposition, \(\frac{8}{15}\) will appear as one of the convergents in the continued fraction expansion of \(x=\frac{17}{32}\).
    (We know this is true from our example.)



© 2022, Rahul Simha