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Abstract

Take n independent copies of a strictly positive random variable X and di-
vide each copy with the sum of the copies, thus obtaining n random probabilities
summing to one. These probabilities are used in independent multinomial trials
with n outcomes. Let Nn (N∗

n) be the number of trials needed until each (some)
outcome has occurred at least c times. By embedding the sampling procedure in
a Poisson point process the distributions of Nn and N∗

n can be expressed using
extremes of independent identically distributed random variables. Using this,
asymptotic distributions as n → ∞ are obtained from classical extreme value
theory. The limits are determined by the behaviour of the Laplace transform
of X close to the origin or at infinity. Some examples are studied in detail.
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1 Introduction

Consider a random experiment with n outcomes having probabilities p1, . . . , pn.
Independent trials are performed until each outcome has occurred at least c times.
Let Nn be the number of trials needed and let N∗

n (< Nn) be the number of trials
when some unspecified outcome has occurred c times.
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To find the distribution of Nn for c = 1 and p1 = · · · = pn = 1
n is usually

called the coupon collector’s problem. The approach by embedding in Poisson point
processes given in Section 2 below gives the relation

Nn∑

i=1

Zi = n max(Y1, . . . , Yn),

where the random variables Nn, Z1, Z2, . . . are independent, the Z’s being Exp(1)
(density e−z for z > 0) and the Y ’s are independent and Exp(1). This implies

E(Nn) = nE(max(Y1, . . . , Yn)) = n

n∑

j=1

1
j
∼ n log n, n →∞,

and the limit distribution

lim
n→∞P (Nn/n− log n ≤ x) = e−e−x

,

see Section 4.1 below. To find the distribution of N∗
n for c = 2 and equal p’s is the

birthday problem. In this case the embedding approach gives

N∗
n∑

i=1

Zi = n min(Y1, . . . , Yn),

where N∗
n, Z1, Z2, . . . are independent, the Z’s Exp(1), and the Y ’s independent and

Γ(2, 1) (we denote by Γ(c, 1) a gamma distribution with density yc−1e−y/(c−1)! for
y > 0). We have

E(N∗
n) = nE(min(Y1, . . . , Yn)) = n

∫ ∞

0
(1 + y)ne−nydy ∼

√
πn/2, n →∞,

and the limit distribution

lim
n→∞P (N∗

n/
√

2n ≤ x) = 1− e−x2
, x > 0,

see Section 5.1 below. Combinatorial approaches to the coupon collector’s problem
or the birthday problem have a long history and can be found in many texts, see
e.g. Feller (1968) or Blom, Holst and Sandell (1994).

In Holst (1995) it is proved that the distribution functions of N∗
n can be partially

ordered in the p’s by Schur-convexity and that N∗
n is stochastically largest in the

symmetric case. A slight modification of the argument shows partial ordering in
the collector problem and that Nn is stochastically smallest in the symmetric case.
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Papanicolaou, Kokolakis and Boneh (1998) studied a “random” coupon collector
problem for the case c = 1 by letting the p’s be random and given by

X1

X1 + · · ·+ Xn
, . . . ,

Xn

X1 + · · ·+ Xn
,

where X1, X2, . . . are independent identically distributed positive random variables.
Applications of the model were given and asymptotic results for E(Nn) as n → ∞
were derived. Note that X1 = · · · = Xn = 1 gives the classical case.

In our paper asymptotic results are obtained for the random coupon collector
problem both for the distribution and the mean of Nn for c ≥ 1, generalizing those
of Papanicolaou et al (1998) for the mean. We prove our results by embedding in
Poisson point processes. A similar approach is used in Holst (1995) to study birth-
day problems. By this device distributional problems on Nn are transformed so that
classical extreme value theory for independent identically distributed random vari-
ables can be applied, c.f. Resnick (1987). In a similar way we study N∗

n for random
p’s given as above. Other recent papers using Poisson embedding on problems of a
similar flavour as ours are Steinsaltz (1999) and Camarri and Pitman (2000).

In the following X1, X2, . . . denote independent copies of a strictly positive ran-
dom variable X with mean µ = E(X) < ∞. We will see that the limit behaviour
of Nn as n → ∞ is determined by the behaviour of the distribution function
FX(x) = P (X ≤ x) for small x, or equivalently by the behaviour of the Laplace
transform gX(s) = E(e−sX) for large s. The limit behaviour of N∗

n is determined
by the behaviour of gX(s) for small s.

The organization of the paper is as follows. In Section 2 the embedding of Nn

in a Poisson point process is constructed. Using this an expression for E(Nn) is
derived. In Section 3 extreme value distributions of Fréchet type (exp(−y−α)) occur
as limiting distributions of Nn and an example with the gamma distribution is ana-
lyzed. In Section 4 extremes of Gumbel type (exp(−e−y)) are considered; examples
discussed involve X having one-point, inverse gaussian and lognormal distributions.
In Section 5 birthday problems are studied and limit distributions of Weibull type
(1− exp(−yα)) are obtained.
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2 Embedding and E(Nn)

Let Π be a Poisson point process with intensity one in the first quadrant of the plane.
Independent of Π let X1, X2, . . . be independent identically distributed strictly pos-
itive random variables with (finite) mean µ. Introduce random “strips” and set

Iit = Π ∩ {(x, s) :
i−1∑

j=1

Xj < x ≤
i∑

j=1

Xj , 0 < s ≤ t},

for i = 1, 2, . . . and t > 0. Here Iit is the set of points of Π in the i:th strip up to
“time” t. Let |Iit| denote the number of these points. As Π is a Poisson process
with intensity one we have

min{t : |Iit| = c} = Yi/Xi,

where the independent random variables Y1, Y2, . . . are Γ(c, 1) and independent of
X1, X2, . . . . The first time the first n strips all contain at least c points can be
written

Mn = max(Y1/X1, . . . , Yn/Xn).

Given X1, . . . , Xn, the projection on the s-axis of the points in these strips is a
Poisson process with intensity

∑n
j=1 Xj . The total number of points in the n strips

up to time Mn can be identified with Nn, because the probability that a point occurs
in the i:th strip is Xi/

∑n
j=1 Xj and the points are independent of each other. Thus

with independent Z1, Z2, . . . all being Exp(1) and independent of Nn, we have the
basic relation:

Nn∑

i=1

Zi = Mn

n∑

j=1

Xj .

Using this different quantities of the distribution of Nn can be expressed in the
random variables X1, X2, . . . and Y1, Y2, . . . .

Theorem 2.1 With notation as above:

E(Nn)/n = µE(Mn−1) +
c−1∑

j=0

c− j

j!
E(Xj

nM j
n−1e

−XnMn−1),

E(Nn)/n = µE(Mn−1) + o(1), n →∞,

E(Nn) < ∞⇐⇒ E(1/X) < ∞,

and for c = 1

E(Nn) = nµE(Mn−1) + 1 = nµ

∫ ∞

0
[1− (1− gX(s))n−1]ds + 1.
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Proof. The embedding implies E(Nn) = E(Mn
∑n

j=1 Xj). Thus symmetry and
independence give

E(Nn) = nE(MnXn) = nE

(
Xn

∫ ∞

0

[
1− P (Mn−1 ≤ s)P (Yn/Xn ≤ s|Xn)

]
ds

)

= nE

(
Xn

∫ ∞

0

[
1− P (Mn−1 ≤ s)

]
ds

)

+nE

(
Xn

∫ ∞

0
P (Mn−1 ≤ s)P (Yn/Xn > s|Xn)ds

)

= nµE(Mn−1) + n

∫ ∞

0
P (Mn−1 ≤ s) E(XnP (Yn > Xns|Xn)) ds.

As Yn is Γ(c, 1) and independent of Xn we have

P (Yn > Xns|Xn) =
c−1∑

`=0

X`
ns`

`!
e−Xns.

Thus ∫ ∞

0
P (Mn−1 ≤ s)E(XnP (Yn > Xns|Xn))ds

=
c−1∑

`=0

E

(∫ ∞

0
P (Mn−1 ≤ s)Xn

X`
ns`

`!
e−Xnsds

)

=
c−1∑

`=0

∫ ∞

0
P (XnMn−1 ≤ s)

s`e−s

`!
ds =

c−1∑

`=0

P (XnMn−1 ≤ V`),

where V` is Γ(` + 1, 1). Hence

c−1∑

`=0

P (XnMn−1 ≤ V`) =
c−1∑

`=0

E


∑̀

j=0

Xj
nM j

n−1

j!
e−XnMn−1




=
c−1∑

j=0

c− j

j!
E(Xj

nM j
n−1e

−XnMn−1).

Combining the results above proves the first assertion. As Mn →∞ a.s. as n →∞
the second assertion follows. It is readily seen that the third assertion holds for any
c if it holds for c = 1.
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Let c = 1. Then the Y ’s are Exp(1) and we have

P (Y/X > s) = E(P (Y > sX|X)) = E(e−sX) = gX(s).

Thus P (Mn−1 ≤ s) = (1− gX(s))n−1, and therefore

E(e−XnMn−1) = E(gX(Mn−1)) = −
∫ ∞

0
gX(s)(n− 1)(1− gX(s))n−2g′X(s)ds =

1
n

,

proving the last formula in the assertion. Furthermore,

E(Mn) =
∫ ∞

0
[1− (1− gX(s))n]ds =

∫ ∞

0
gX(s)

n−1∑

k=0

(1− gX(s))kds.

Therefore E(Mn) < ∞ if and only if
∫ ∞

0
gX(s)ds =

∫ ∞

0
E(e−sX)ds = E

(∫ ∞

0
e−sXds

)
= E

(
1
X

)
< ∞.

Proving the third assertion for c = 1 and therefore for all positive integers c. 2

The distribution function Fc(s) = P (Y/X ≤ s) is important for studying Nn.
The following result will be useful later on.

Proposition 2.1 Let X and Y be independent positive random variables, X with
distribution function FX and Laplace transform gX , and Y being Γ(c, 1). Then for
s > 0:

g
(k)
X (s) = (−1)kE(Xke−sX),

1− Fc(s) = P (Y/X > s) =
c−1∑

k=0

(−1)k sk

k!
g
(k)
X (s) =

∫ ∞

0
FX(x/s)

xc−1e−x

(c− 1)!
dx,

F ′
c(s) = (−1)c sc−1

(c− 1)!
g
(c)
X (s) =

c

s
(Fc(s)− Fc+1(s))

=
1
s

∫ ∞

0
FX(x/s)(x− c)

xc−1e−x

(c− 1)!
dx,

F ′′
c (s) = − 1

s2

[
(−1)c+1 sc+1

(c− 1)!
g
(c+1)
X (s)− (−1)c sc

(c− 2)!
g
(c)
X (s)

]

= − 1
s2

∫ ∞

0
FX(x/s)((x− c)2 − c)

xc−1e−x

(c− 1)!
dx.
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Proof. As Y is Γ(c, 1) we have

P (Y/X > s) = E(P (Y > sX|X)) = E

(
c−1∑

k=0

skXk

k!
e−sX

)
,

and also

P (Y/X > s) = E(P (X < Y/s|Y )) =
∫ ∞

0
FX(x/s)

xc−1e−x

(c− 1)!
dx.

By differentiation the other formulas follows by straightforward calculations. 2

3 Extremes of Fréchet type for Nn

In this section we consider X such that for some α > 0 and for some slowly varying
function L

P (X ≤ x) = xαL(x), x ↓ 0.

Recall that L is slowly varying at 0 if L(tx)/L(x) → 1 as x ↓ 0 for every fixed
t > 0. A special case is the gamma distribution. The limiting distributions of Nn

are extreme value distributions of Fréchet (or Φα) type, c.f. Resnick (1987).

Theorem 3.1 Let an →∞ such that na−α
n L (1/an) Γ(α + c)/(c− 1)! → 1. Then

P (Nn/nanµ ≤ y) → e−y−α
, y > 0,

E(Nn)/nanµ → Γ(1− 1/α), α > 1, and E(Nn) = +∞, α < 1.

Proof. Using Proposition 2.1 we get as s →∞

P (Y/X > s) =
∫ ∞

0
(x/s)α L (x/s)

xc−1

(c− 1)!
e−xdx

∼ s−αL (1/s)
∫ ∞

0

xα+c−1e−x

(c− 1)!
dx = s−αL (1/s) Γ(α + c)/(c− 1)!.

Hence for y > 0

nP (Y/X > any) ∼ ny−αa−α
n L (1/an) Γ(α + c)/(c− 1)! ∼ y−α.

Poisson convergence gives

n∑

j=1

I(Yj/Xj > any) → Poisson(y−α).
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Thus for y > 0

P (Mn/an ≤ y) = P




n∑

j=1

I(Yj/Xj > any) = 0


 → e−y−α

.

From the behaviour of P (Y/X > s) as s → ∞ we have for any integer 0 < k < α
that E((Y/X)k) < ∞. Hence by Resnick (1987, p. 77) E((Mn/an)k) → Γ(1− k/α)
and Theorem 2.1 gives for α > 1

E(Nn)/nanµ = E(Mn−1)/an + o(1/an) → Γ(1− 1/α), n →∞.

If α < 1 then E(1/X) = +∞ implying E(Nn) = +∞. Thus the second and third
assertions are proved.

By the embedding we have

E
(
e−tMn

Pn
j=1 Xj

)
= E

(
(e−t

PNn
j=1 Zi |Nn)

)
= E

(
(1 + t)−Nn

)
.

Therefore for s ≥ 0 and t = es/nanµ − 1 we get

E
(
e−sNn/nanµ

)
= E

(
exp

(
−s · es/nanµ − 1

s/nanµ
· Mn

an
·
∑n

j=1 Xj

nµ

))
.

As

es/nanµ − 1
s/nanµ

→ 1, P (Mn/an ≤ y) → e−y−α
,

∑n
j=1 Xj

nµ
→ 1 in probability,

it follows that

P

(
es/nanµ − 1

s/nanµ
· Mn

an
·
∑n

j=1 Xj

nµ
≤ y

)
∼ P

(
Mn

an
≤ y

)
→ e−y−α

, n →∞.

Thus, by the continuity theorem for Laplace transforms we have for s ≥ 0 that

E(e−sNn/nanµ) →
∫ ∞

0
e−syd(e−y−α

),

from which the first assertion of the theorem follows. 2
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3.1 Example: gamma distribution

Let X be Γ(α, 1). Then

gX(s) = E(e−sX) = (1 + s)−α, s > −1, P (X ≤ x) ∼ xα/Γ(α + 1), x ↓ 0.

In Theorem 3.1 we have µ = α and take

an = [n(α + c− 1) · · · (α + 1)/(c− 1)!]
1
α ,

where an = n
1
α for c = 1. For X1, . . . , Xn independent and Γ(α, 1) the sum X1 +

· · · + Xn is Γ(nα, 1) and independent of (X1, . . . , Xn)/(X1 + · · · + Xn), which has
the symmetric Dirichlet distribution D(α, . . . , α). Hence for α > 1 it follows by the
embedding that

E(Nn) = E(Mn

n∑

j=1

Xj) = E(Mn) ·
[
E

(
1∑n

j=1 Xj

)]−1

= (nα− 1)E(Mn) ∼ n1+ 1
α α[(α + c− 1) · · · (α + 1)/(c− 1)!]

1
α Γ(1− 1/α).

The mean is infinite for α ≤ 1. Note that (Y/c)/(X/α) has an F -distribution.
For the exponential case α = 1, we take an = cn and get the limit

P (Nn/cn2 ≤ y) → e−1/y, n →∞.

The “probabilities” Xk/(X1 + · · · + Xn) for k = 1, . . . , n can be interpreted as
the spacings in a random sample of size n − 1 from a uniform distribution on the
unit interval. This corresponds to a D(1, . . . , 1) prior distribution on the drawing
probabilities. Unconditionally the drawing procedure is a Polya urn scheme with n
balls of different colours at start and replacing each drawn ball together with one
new of the same coulour. A general Polya scheme corresponds to having some α > 0.

4 Extremes of Gumbel type for Nn

In this section we consider distributions such that P (X ≤ x) → 0 faster than any
power as x ↓ 0. Extreme value distributions will be of Gumbel (or Λ) type, see
Resnick (1987).

Assume for the Laplace transform gX(s) = E(e−sX) and its derivatives that for
k = 0, 1, 2, . . . and as s →∞

hk(s) :=
sE(Xk+1e−sX)

E(Xke−sX)
→∞,

hk+1(s)
hk(s)

=
E(Xk+2e−sX)E(Xke−sX)

(E(Xk+1e−sX))2
→ 1.
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Using Proposition 2.1 this implies for Y being Γ(c, 1) that

P (Y/X > s) = 1− Fc(s) ∼ sc−1E(Xc−1e−sX)/(c− 1)!,

F ′
c(s) = sc−1E(Xce−sX)/(c− 1)!, F ′′

c (s) ∼ −sc−1E(Xc+1e−sX)/(c− 1)!.

Thus
(1− Fc(s))F ′′

c (s)
(F ′

c(s))2
→ −1,

and F ′′
c (s) < 0 for s sufficiently large. Then from classical extreme value theory, see

Resnick (1987, Prop. 1.1 and 2.1),

P ((Mn − bn)/an ≤ y) → e−e−y
, (E(Mn)− bn)/an → γ, n →∞,

where Mn = max(Y1/X1, . . . , Yn/Xn) and γ is Euler’s constant, and with the norm-
ing constants given from

1
n

= 1− Fc(bn), an = (1− Fc(bn))/F ′
c(bn).

The limit behaviour of Nn will now be obtained by the embedding.

Theorem 4.1 Let X satisfy the conditions above and E(X2) < ∞. Then with an

and bn as above

P ((Nn/nµ− bn) /an ≤ y) → e−e−y
, (E (Nn/nµ)− bn) /an → γ.

Proof. By the embedding we have

Nn∑

i=1

Zi = Mn

n∑

j=1

Xj .

Using the estimates above it follows that bn →∞ and

b2
n

na2
n

= b2
n ·

(1− Fc(bn))(F ′
c(bn))2

(1− Fc(bn))2
= b2

n ·
(F ′

c(bn))2

(1− Fc(bn))F ′′
c (bn)

· F ′′
c (bn)

∼ −b2
nF ′′

c (bn) ∼ − 1
(c− 1)!

E((bnX)c+1e−bnX) → 0.

Thus

Var

(
bn

an
·
∑n

j=1 Xj

n

)
=

b2
n

a2
n

· Var(X)
n

→ 0,
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and we get that

Mn
∑n

j=1 Xj

nanµ
− bn

an
=

Mn − bn

an
·
∑n

j=1 Xj

nµ
+

bn

an
·
(∑n

j=1 Xj

nµ
− 1

)

has the same asymptotic behaviour as (Mn − bn)/an. Furthermore by Theorem 2.1
and the estimates above

Var

(
Nn∑

i=1

(Zi − 1)/nan

)
= E(Nn)/(nan)2 = (µE(Mn−1) + o(1))/(nan)2 → 0.

Hence

Mn
∑n

j=1 Xj

nanµ
− bn

an
=

∑Nn
i=1 Zi

nanµ
− bn

an
=

∑Nn
i=1(Zi − 1)

nanµ
+

1
an

(
Nn

nµ
− bn

)

has the same asymptotic distribution as

1
an

(
Nn

nµ
− bn

)
,

that is the same as that of (Mn− bn)/an. The convergence of the mean also follows
from Resnick (1987, Prop. 2.1). 2

4.1 Example: constant probabilities

For X ≡ µ we have E(e−sX) = e−sµ, hk(s) = µs and hk+1(s)/hk(s) = 1. Further-
more

1
n

=
c−1∑

k=0

(bnµ)k

k!
e−bnµ,

1
an

= nµ
(bnµ)c−1

(c− 1)!
e−bnµ,

implies

bnµ = log n + (c− 1) log log n− log(c− 1)! + o(1), anµ = 1 + o(1).

Hence
P (Nn/n− log n− (c− 1) log log n + log(c− 1)! ≤ y) → e−e−y

,

E(Nn)/n = log n + (c− 1) log log n− log(c− 1)! + γ + o(1).

For c = 1 this is the result for the classical coupon collector’s problem given in the
Introduction. Recall that Nn is stochastically smallest among all positive distribu-
tions of X when X is constant.
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4.2 Example: inverse gaussian distribution

Let X be inverse gaussian with mean µ = 1 and variance σ2 = 1/2ψ, that is

E(e−sX) = e2ψ−2ψ
√

1+s/ψ,

P (X ≤ x) = Φ
(√

2ψ

(√
x− 1√

x

))
+ e4ψΦ

(
−

√
2ψ

(√
x +

1√
x

))
,

where Φ is the standard normal distribution function. For s →∞ we have

skE(Xke−sX) ∼ (ψs)k/2E(e−sX),

1− Fc(s) =
(ψs)(c−1)/2

(c− 1)!

(
1 + O

(
1√
s

))
E(e−sX),

F ′
c(s) =

(ψs)c/2

s (c− 1)!

(
1 + O

(
1√
s

))
E(e−sX).

Thus, the assumptions of Theorem 4.1 are satisfied. From 1− Fc(bn) = 1/n we get

2
√

ψbn = log n + (c− 1) log log n− (c− 1) log 2− log(c− 1)! + 2ψ + o(1),

an =
1− Fc(bn)

F ′
c(bn)

∼ log n

2ψ
,

and
bn/an =

1
2

log n + (c− 1) log log n− log((c− 1)!2c−1) + 2ψ + o(1).

Recalling σ2 = 1/2ψ we obtain

P (Nn/σ2n log n− bn/an ≤ y) → e−e−y
, E(Nn)/n log n = σ2(bn/an + γ) + o(1).

4.3 Example: lognormal distribution

Let X have a lognormal distribution. Without loss of generality let X = eσZ , where
Z is standard normal and µ = E(X) = eσ2/2. For s > 0 we have

E(Xke−sX) =
1√
2π

∫ ∞

−∞
ekσz−seσz−z2/2dz.

With zs such that
zs

σ
eσzs = s,
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we find after some calculations of saddlepoint type that

E(Xke−sX) ∼ 1√
σzs

e−kσzs−zs/σ−z2
s/2, s →∞.

With yn →∞ such that

y
c−3/2
n

σc−1/2(c− 1)!
e−y2

n/2−yn/σ ∼ 1
n

,

that is roughly yn ∼
√

2 log n, and

bn =
yn

σ
eσyn ,

we obtain
1− Fc(bn) ∼ 1

n
, an = eσyn ∼ (1− Fc(bn))/F ′

c(bn).

This gives the limit

P
(
Nn/eσ2/2neσyn − yn/σ ≤ y

)
→ e−e−y

, n →∞.

4.4 Example: strictly positive support

Let X ≥ d > 0 where d = inf{x : P (X ≤ x) > 0}. Set Xd = X − d. Then

E(Xke−sX) ∼ e−sddk

∫ ∞

0
P (Xd ≤ x/s)e−xdx = dkE(e−sX), s →∞.

Hence hk(s) ∼ sd and hk+1(s)/hk(s) ∼ 1 implying

1− Fc(s) ∼ (sd)c−1e−sd

(c− 1)!
E(e−sXd), F ′

c(s) ∼
d(sd)c−1e−sd

(c− 1)!
E(e−sXd).

The assumptions of Theorem 4.1 are fullfilled and the norming constants can be
determined from

1
n

=
c−1∑

k=0

(bnd)k

k!
e−bndE(e−bnXd), and = 1.

For X ≡ d we get the example with constant probabilities. Other cases are
modifications of it. For example let Xd be Γ(α, 1), then µ = d + α, E(e−sXd) =
(1 + s)−α and the norming constants can be choosen as

bnd = log n + (c− 1− α) log log n + log(dα/(c− 1)!), and = 1,

giving the limit

P

(
d

d + α

Nn

n
− bnd ≤ y

)
→ e−e−y

, n →∞.
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5 Extremes of Weibull type for N ∗
n

In this section we consider N∗
n equals the number of trials until some (unspecified)

outcome has occurred c ≥ 2 times. As in Section 2 we get by embedding

N∗
n∑

i=1

Zi = M∗
n

n∑

j=1

Xj ,

where
M∗

n = min(Y1/X1, . . . , Yn/Xn).

With a proof similar to that of Theorem 2.1 we obtain:

Theorem 5.1 We have

E(N∗
n)/n = µE(M∗

n−1)−
∞∑

j=c+1

j − c

j!
E(Xj

nM∗j
n−1e

−XnM∗
n−1).

In a similar way as before we get asymptotic results for N∗
n from extreme value

theory. A crucial quantity is

Fc(s) = P (Y/X < s) =
∞∑

k=c

sk

k!
E(Xke−sX), s ≥ 0.

If
sF ′

c(s)
Fc(s)

=
scE(Xce−sX)/(c− 1)!∑∞

k=c skE(Xke−sX)/k!
→ c, s ↓ 0,

and an → 0 such that nFc(an) → 1, then for y > 0

P (M∗
n/an ≤ y) → 1− e−yc

, n →∞,

see Resnick (1987, Prop. 1.13, 1.16). Now small modifications of the proof of Theo-
rem 3.1 give limits of Weibull type.

Theorem 5.2 If sF ′
c(s)/Fc(s) → c as s ↓ 0, nFc(an) → 1 and nan → ∞ as

n →∞, then

P (N∗
n/nanµ ≤ y) → 1− e−yc

, y > 0, and E(N∗
n)/nanµ → c Γ(2− 1/c).
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5.1 Example: exponential moments

Suppose that the Laplace transform gX(s) = E(e−sX) is finite in a neighborhood of
the origin. Then

∞∑

k=c+1

sk

k!
E(Xke−sX) = O(sc+1).

Hence
Fc(s) =

sc

c!
E(Xce−sX) + O(sc+1) ∼ sc

c!
E(Xc), s ↓ 0,

and therefore we can take
an = (c!/nE(Xc))1/c.

X ≡ µ and c = 2 give the limit in the Introduction for the birthday problem

P (N∗
n/
√

2n ≤ y) → 1− e−y2
.

Recall that N∗
n is stochastically largest when X is constant.

If X is Exp(1), then µ = 1, an = n−1/c and we get the limit

P (N∗
n/n1−1/c ≤ y) → 1− e−yc

,

cf. Subsection 3.1 and the Polya urn scheme.

5.2 Example: lognormal distribution

Let X = eσZ where Z is standard normal. Then E(Xk) = ek2σ2/2 and we have

∞∑

k=c+1

sk−c

k!
E(Xke−sX) =

∞∑

k=c+1

sk−c

k!
ek2σ2/2E(e−sekσ2

X)

=
∞∑

k=c+1

ek2σ2/2e−k(k−c)σ2

k!
(sekσ2

)k−cE(e−sekσ2
X) → 0, s ↓ 0.

Hence

Fc(s) =
sc

c!
E(Xce−sX) + o(sc) ∼ sc

c!
E(Xc) =

sc

c!
ec2σ2/2, s ↓ 0,

which gives

an ∼
(
c!e−c2σ2/2/n

)1/c
.

and the limit
P

(
N∗

n/n1−1/c(c!)1/ce(1−c)σ2/2 ≤ y
) → 1− e−yc

.
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