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Abstract

Take n independent copies of a strictly positive random variable X and di-
vide each copy with the sum of the copies, thus obtaining n random probabilities
summing to one. These probabilities are used in independent multinomial trials
with n outcomes. Let N,, (N}) be the number of trials needed until each (some)
outcome has occurred at least ¢ times. By embedding the sampling procedure in
a Poisson point process the distributions of NV,, and N} can be expressed using
extremes of independent identically distributed random variables. Using this,
asymptotic distributions as n — oo are obtained from classical extreme value
theory. The limits are determined by the behaviour of the Laplace transform
of X close to the origin or at infinity. Some examples are studied in detail.
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1 Introduction

Consider a random experiment with n outcomes having probabilities pi,...,pn.
Independent trials are performed until each outcome has occurred at least ¢ times.
Let N,, be the number of trials needed and let N, (< N,,) be the number of trials
when some unspecified outcome has occurred ¢ times.
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To find the distribution of N, for ¢ = 1 and p; = --- = p, = % is usually
called the coupon collector’s problem. The approach by embedding in Poisson point
processes given in Section 2 below gives the relation

Nn

3 2= s )
=1

where the random variables N,,, Z1, Zs, ... are independent, the Z’s being Exp(1)
(density e~ for z > 0) and the Y’s are independent and Exp(1). This implies

n
1
E(N,) = nE(max(Yy,...,Y,)) =n g ~ ~mnlogn, n — oo,
— J
7j=1

and the limit distribution

lim P(N,/n—logn <z)=e ¢,

see Section 4.1 below. To find the distribution of N;; for ¢ = 2 and equal p’s is the
birthday problem. In this case the embedding approach gives

Ny,
ZZi =nmin(Yi,...,Y,),
=1

where N}, Z1, Zs, ... are independent, the Z’s Exp(1), and the Y’s independent and
['(2,1) (we denote by I'(c,1) a gamma distribution with density y“~te=Y/(c—1)! for
y > 0). We have

o0
E(Ny) =nE(min(Y1,...,Y,)) = n/ (1+y)"e™dy ~ \/7n/2, n — oo,
0
and the limit distribution

Jim P(N;/Von <) =1- e, x>0,
see Section 5.1 below. Combinatorial approaches to the coupon collector’s problem
or the birthday problem have a long history and can be found in many texts, see
e.g. Feller (1968) or Blom, Holst and Sandell (1994).

In Holst (1995) it is proved that the distribution functions of N;; can be partially
ordered in the p’s by Schur-convexity and that N, is stochastically largest in the
symmetric case. A slight modification of the argument shows partial ordering in
the collector problem and that N, is stochastically smallest in the symmetric case.



Papanicolaou, Kokolakis and Boneh (1998) studied a “random” coupon collector
problem for the case ¢ = 1 by letting the p’s be random and given by

X, X,
X1+ +X, X+ + X,

where X7, X5, ... are independent identically distributed positive random variables.
Applications of the model were given and asymptotic results for E(N,) as n — oo
were derived. Note that X; = --- = X,, = 1 gives the classical case.

In our paper asymptotic results are obtained for the random coupon collector
problem both for the distribution and the mean of N,, for ¢ > 1, generalizing those
of Papanicolaou et al (1998) for the mean. We prove our results by embedding in
Poisson point processes. A similar approach is used in Holst (1995) to study birth-
day problems. By this device distributional problems on NN,, are transformed so that
classical extreme value theory for independent identically distributed random vari-
ables can be applied, c.f. Resnick (1987). In a similar way we study N, for random
p’s given as above. Other recent papers using Poisson embedding on problems of a
similar flavour as ours are Steinsaltz (1999) and Camarri and Pitman (2000).

In the following X7, Xo,... denote independent copies of a strictly positive ran-
dom variable X with mean p = E(X) < co. We will see that the limit behaviour
of N, as n — oo is determined by the behaviour of the distribution function
Fx(z) = P(X < z) for small z, or equivalently by the behaviour of the Laplace
transform gy (s) = E(e™*X) for large s. The limit behaviour of N is determined
by the behaviour of gx(s) for small s.

The organization of the paper is as follows. In Section 2 the embedding of N,
in a Poisson point process is constructed. Using this an expression for E(N,) is
derived. In Section 3 extreme value distributions of Fréchet type (exp(—y~%)) occur
as limiting distributions of /V,, and an example with the gamma distribution is ana-
lyzed. In Section 4 extremes of Gumbel type (exp(—e~¥)) are considered; examples
discussed involve X having one-point, inverse gaussian and lognormal distributions.
In Section 5 birthday problems are studied and limit distributions of Weibull type
(1 — exp(—y®)) are obtained.



2 Embedding and E(N,)

Let II be a Poisson point process with intensity one in the first quadrant of the plane.
Independent of II let X7, X5, ... be independent identically distributed strictly pos-
itive random variables with (finite) mean p. Introduce random “strips” and set

i—1 %
Iy =1IN{(z,s): ZXj <x< ZX]-, 0<s<t},
j=1 J=1

fori=1,2,... and t > 0. Here I is the set of points of II in the i:th strip up to
“time” t. Let |I;| denote the number of these points. As II is a Poisson process
with intensity one we have

min{t : || = ¢} = Y/ X,

where the independent random variables Y7,Ys,... are I'(¢, 1) and independent of
X1,Xo,.... The first time the first n strips all contain at least ¢ points can be
written

Mn = maX(Yl/Xl, . ,Yn/Xn)

Given Xi,...,X,, the projection on the s-axis of the points in these strips is a
Poisson process with intensity 2721 X;. The total number of points in the n strips
up to time M, can be identified with N,,, because the probability that a point occurs
in the 4:th strip is X;/ Z?Zl X and the points are independent of each other. Thus
with independent 71, Zs, ... all being Exp(1) and independent of N,,, we have the

basic relation:
Ny, n
S z=mYy
i=1 j=1

Using this different quantities of the distribution of N, can be expressed in the
random variables X7, Xs,... and Y7, Y5, ....

Theorem 2.1 With notation as above:

c—1 .

E(Ny)/n = pE(My1)+ Y c]%]
i=0 7

E(Ny)/n = pE(M,—1)+o0(1), n— oo,
E(N,) < 0 <= E(1/X) < o0,

E(X}M; e~ M),

and forc=1

BN = mnB(Myo1) 1= e [ (1= (1= gx(5)" s+ 1.



Proof. The embedding implies E(Ny,) = E(M, Y i, X;)

Thus symmetry and
independence give

E(N,) = nE(M,X,) =nE (Xn /OOO [1 — P(My—1 < 8)P(Yy/X, < stn)}ds>

=nE (Xn /Ooo [1—P(M,—1 < s)]ds>
+nE (Xn /Ooo P(My—1 < 8)P(Yy/ Xy > s]Xn)ds)

=nuE(M,—1)+ n/ P(Mp—1 <s) E(X,P(Y, > X;s|X,)) ds
0

As Y, is I'(c,1) and independent of X,, we have

ol oyt
P(Yn > Xns|Xn) =) i e Xns,

=0
Thus

/ P(M,_1 < $)E(X,P(Yy > Xns|X,))ds
0
1

0 )(Z 4
= E (/ P(M,—1 < s)X, n® e_X"sds>
0

C

14
0

~
Il

Z —s c—1
_Z/ P(Xp M1 < 5)° s = P(X,M, 1 <Vp),

£=0
where V; is T'(¢ 4+ 1,1). Hence
c—1 c—1
)(Jﬂ4ﬁ 1 —X,M,_

S Pt < v - 3 (30
/=0 /=0 7=0

c—1

c—J E(XIMI_ e XnMa1y,
il
=0 7

Combining the results above proves the first assertion. As M,, — oo a.s. as n — o

the second assertion follows. It is readily seen that the third assertion holds for any
c if it holds for ¢ = 1.



Let ¢ = 1. Then the Y’s are Fxp(1) and we have
P(Y/X > 5) = E(P(Y > sX|X)) = E(e*%) = gx(s).

Thus P(M,,—1 < s) = (1 — gx(s))" !, and therefore

Be0M) = Blgx (M) = - [ " x(s)n— 1)1~ gx ()" gl (5)ds =

proving the last formula in the assertion. Furthermore,

B(M,) = /0 Tl (1 gx(s)ds = /0 " gx(s) (1 — gx(s))ds.

Therefore E(M,) < oo if and only if

/OOO gx(s)ds = /OOO E(e s =F (/OOO 6—8Xd5> =F (;) < 0.

Proving the third assertion for ¢ = 1 and therefore for all positive integers c.

)

|

The distribution function F.(s) = P(Y/X < s) is important for studying N,,.

The following result will be useful later on.

Proposition 2.1 Let X and Y be independent positive random variables, X with
distribution function Fx and Laplace transform gx, and 'Y being I'(c,1). Then for

s>0: i
a0 (s) = (1) BE(X*eX),

c—1 cflefm

sk o £
1— Fy(s) = P(Y/X > s5) = Z(—l)’“ﬁgg?)(S) = /0 Fx (/) o—gyrde

s c
Fils) = (C1) ok (5) = S (Fels) = Fon(#))
1 oo c—le—m
=5 [ Extaste - T,
Sc—|—1 . e .
R = = | (1 ) - 1 e
00 c—le—a:
:_512/0 P (a/s)((x = 0)* = o) T



Proof. As Y is I'(¢, 1) we have

ol kyk
P(Y/X >s)=E(P(Y >sX|X))=F ( esX> ,

k!
k=0
and also
o] f 1 e T
PY/X >s)=EP(X <Y/s|Y)) = / FX(x/s)Wd:p
0 - .
By differentiation the other formulas follows by straightforward calculations. O

3 Extremes of Fréchet type for N,

In this section we consider X such that for some o > 0 and for some slowly varying
function L
P(X <z)=2%L(z), x]|O0.

Recall that L is slowly varying at 0 if L(tz)/L(z) — 1 as = | 0 for every fixed
t > 0. A special case is the gamma distribution. The limiting distributions of N,
are extreme value distributions of Fréchet (or ®,) type, c.f. Resnick (1987).

Theorem 3.1 Let a,, — oo such that na, “L (1/a,)T(a+¢)/(c —1)! — 1. Then
P(Ny/napu <y) —e ", y>0,
E(Ny)/napp —-T(1—-1/a), a>1, and E(N,) =400, a<l.

Proof. Using Proposition 2.1 we get as s — oo

c—1

(c—1)!

e dx

PY/X > s) = /000 (x/s)* L (x/s)

a+c—1 e~

~ s “L(1/s) /OOO ﬁdm =s “L(1/s)T(a+c)/(c—1)L
Hence for y > 0
nP(Y/X > any) ~ny “%a,“L(1/ap) T(a+c¢)/(c— 1) ~y~ .

Poisson convergence gives

n
Z[(yj/xj > any) — Poisson(y~®).
=1



Thus for y > 0

n
P(Myfan < 9) = P | S I5/X; > ang) =0 | — e
j=1

From the behaviour of P(Y/X > s) as s — oo we have for any integer 0 < k < «
that E((Y/X)*) < co. Hence by Resnick (1987, p. 77) E((M,/a,)*) — T'(1 — k/a)
and Theorem 2.1 gives for av > 1

E(Nn)/nan,u = E(Mn—1>/an + 0(1/an) - F<1 - 1/04), n — oo.

If « < 1 then E(1/X) = 400 implying E(N,) = 4+00. Thus the second and third
assertions are proved.
By the embedding we have

E <e—tMn 2?:1)9') —E ((e*tzﬁi’ﬁ Zinn)) —E((1+1)N).

Therefore for s > 0 and ¢t = e¥/"n# — 1 we get

n
E <e—an/nanu) —Fexp|-s- es/nanp _ 1 _ % . Zj:l X .
s/nanpp an nu

As

s/nanp _ | —a i X
67_&’ P(My/an <y) —e¥ ", @

— 1 in probability,
s/nanpp nu

it follows that

s/nanpu _ noX. —o
P ¢ 71.%.727_1 jgy ~ P %Sy — e Y , N — 0.
s/nap it an nu n

Thus, by the continuity theorem for Laplace transforms we have for s > 0 that
e —a
E(e—an/nanu) N / e~ d(e v "),
0

from which the first assertion of the theorem follows. O



3.1 Example: gamma distribution

Let X be I'(a,1). Then
gx(s) = E(e™) =(1+s)7% s>-1, PX<z)~z%/T(a+1), 2|0
In Theorem 3.1 we have y = a and take
tn = [n(a+c—1)(a+1)/(c- 1)z,

where a,, = na for ¢ = 1. For X1,...,X,, independent and I'(cr, 1) the sum X; +
-+ + X, is I'(na, 1) and independent of (Xi,...,X,)/(X1 + -+ X,,), which has
the symmetric Dirichlet distribution D(q,...,a). Hence for > 1 it follows by the

embedding that
. —1
F| =————
(Zjl X > ]

= (na = D)E(M,) ~n*taaf(a+c—1)-- (a+1)/(c— D]aT(1—1/a).

The mean is infinite for o < 1. Note that (Y/c)/(X/a) has an F-distribution.
For the exponential case a = 1, we take a,, = cn and get the limit

B(N,) = B0, 3" X)) = E(M,)
j=1

P(Np/en? <y) — e Y, n— .

The “probabilities” X;/(X1 + --- + X,) for k = 1,...,n can be interpreted as
the spacings in a random sample of size n — 1 from a uniform distribution on the
unit interval. This corresponds to a D(1,...,1) prior distribution on the drawing
probabilities. Unconditionally the drawing procedure is a Polya urn scheme with n
balls of different colours at start and replacing each drawn ball together with one
new of the same coulour. A general Polya scheme corresponds to having some a > 0.

4 Extremes of Gumbel type for N,

In this section we consider distributions such that P(X < z) — 0 faster than any
power as = | 0. Extreme value distributions will be of Gumbel (or A) type, see
Resnick (1987).

Assume for the Laplace transform gx(s) = E(e™*X) and its derivatives that for
k=0,1,2,... and as s — o0

SE(Xk:+1est) . thrl(S) _ E(Xk+2€st)E(Xkest)
E(Xke_SX) ’ hk(s) (E(Xk+1e—sX))2

hk(s) =

9



Using Proposition 2.1 this implies for Y being I'(¢, 1) that
P(Y/X >5)=1—Fu(s) ~s“1E(X e %) /(¢ — 1)),

Fl(s)=s“1E(X%™X) /(c=1)!, F'(s) ~ —s“1E(XTles%) /(¢ — 1),
Thus
(1= Fe(s) Fe'(s)
(Fe(s))?
and F!(s) < 0 for s sufficiently large. Then from classical extreme value theory, see
Resnick (1987, Prop. 1.1 and 2.1),

— —1,

P((M,, —by)/an <y) — e, (E(M,) —by)/an — v, n— o0,

where M,, = max(Y1/X3,...,Y,/X,) and v is Euler’s constant, and with the norm-
ing constants given from

=1—Fe(bn), an = (1= Fe(bn))/Fi(bn).

1
n
The limit behaviour of N,, will now be obtained by the embedding.

Theorem 4.1 Let X satisfy the conditions above and E(X?) < co. Then with a,
and b, as above

P ((Np/np—by) [an <y) — e_e—y’ (E (Nn/np) = by) [an — 1.
Proof. By the embedding we have

NTL

> -3
Using the estimates above it follows that b, — oo and

B 0= ROEGD? o (FG)? L

Ta% " ( (bn;) " (1 - Fczbn )F”(bn) e (bn)

1
~ —bEE"(b,) ~ —————E((bX) e %) S 0.

Thus

Var (bn P Xj> _ B Var(X)

an n



and we get that

Mn Z;’L:I Xj _ bn

nan s Qn Qn np Qn nuy

Mn_bn . Zj:lXj +bl (Zlej _1>

has the same asymptotic behaviour as (M,, — b,)/ay,. Furthermore by Theorem 2.1
and the estimates above

Np,
v (Z(Zi - 1>/nan> = B(N,)/(nan)® = (E(Myr) + 0(1))/(nan)® — 0.

i=1
Hence
M 351 X; b _ > Zi b i (Zi— 1) +i %—b
Nap b an, NGy b an Nap L4 an \ N "

has the same asymptotic distribution as

1 (N,
L(M,),
Gn \ N

that is the same as that of (M,, — b,)/a,. The convergence of the mean also follows
from Resnick (1987, Prop. 2.1). O

4.1 Example: constant probabilities

For X =y we have E(e™*X) = ¢™** hy(s) = us and hgi1(s)/hi(s) = 1. Further-

more
c

1 c—
— (bnu)kefbn,u 1 (bn:u) ' —bnpt

1
no e H " et

i

implies
b =logn + (¢ — 1) loglogn — log(c — 1)! + o(1), apu=1+0(1).

Hence
P(N,/n —logn — (¢ — 1)loglogn +log(c —1)! < y) — e~ ¢ ",
E(N,)/n =1logn+ (c—1)loglogn —log(c — 1)+~ + o(1).

For ¢ = 1 this is the result for the classical coupon collector’s problem given in the
Introduction. Recall that N, is stochastically smallest among all positive distribu-
tions of X when X is constant.

11



4.2 Example: inverse gaussian distribution

Let X be inverse gaussian with mean p = 1 and variance o2 = 1/21), that is

B(e™*X) = X 2V1Hs/y,
rox <=0 (4 (1= ) oo (v (e )

where ® is the standard normal distribution function. For s — oo we have

SE(XReX) ~ ()2 B (e ),

1= Fu(s) = W (1 +0 (;;)) E(e*%),

Fl(s) = S% (1 +0 (\};)) E(esX).

Thus, the assumptions of Theorem 4.1 are satisfied. From 1 — Fi(b,) = 1/n we get
2y/¢b, =logn + (¢ — 1)loglogn — (¢ — 1) log 2 — log(c — 1)! + 29 + o(1),

. — 1—F.(by,) logn
tOROG) 2

and
1
bn/an = 5 logn 4 (¢ — 1)loglogn — log((c — 1)12°7Y) + 2¢ + o(1).

Recalling 02 = 1/2¢) we obtain
P(No/o*nlogn — bufan <y) — ¢, E(Na)/nlogn = 0*(bn/an +7) + o(1).

4.3 Example: lognormal distribution

Let X have a lognormal distribution. Without loss of generality let X = e°%, where
Z is standard normal and p = E(X) = ¢ /2. For s > 0 we have

1 > oz 2
E(Xke—sX) — ekoz—se —z /2d2’.
V2T J o

With z, such that
Zs g0 — s,
o

12



we find after some calculations of saddlepoint type that

E(Xke—sX) -~ 1 e—kozs—zs/a—zg/Q’ S — 00,
025
With y,, — oo such that
ye 82 1

—y2/2—ynjo =
00—1/2(0—1)!6 n’

that is roughly v, ~ v/2logn, and

Yn
b, = =— %Y,
o

we obtain )
1- Fc(bn) ~ =, ap=¢€7"" ~ (1 - FC(bn))/Fc/(bn)‘
n

This gives the limit

P (Nn/6”2/2ne”y” —yn/o < y) —e " n— oo

4.4 Example: strictly positive support
Let X > d > 0 where d = inf{z : P(X <z) > 0}. Set X4 =X —d. Then

E(XFe™5X) ~ e_dek/ P(Xy < z/s)e %dx = d*E(e™*Y), s— 0.
0

Hence hi(s) ~ sd and hyy1(s)/hg(s) ~ 1 implying

(sd)cflefsd d(sd)cflefsd
(c—1)! (c—1)!

The assumptions of Theorem 4.1 are fullfilled and the norming constants can be

determined from

1—F.(s) ~ E(e™Xa), F!(s) ~

Cc

E(e_SXd).

l B c—1 (bnd)k
n k!
0

e tndp(etnXa)  q,d=1.

B
Il

For X = d we get the example with constant probabilities. Other cases are
modifications of it. For example let X4 be I'(a, 1), then u = d + o, E(e™X) =
(1 + s)™* and the norming constants can be choosen as

bpd =logn + (¢ — 1 — a)loglogn + log(d*/(c — 1)), and =1,
giving the limit

Ny, g
P< d —bnd§y>—>eey, n — oo.
d4+a n

13



5 Extremes of Weibull type for N

In this section we consider N, equals the number of trials until some (unspecified)
outcome has occurred ¢ > 2 times. As in Section 2 we get by embedding

N n
Z Zi =M, Z X,
i=1 =1

where
M; = min(Yl/Xl, e ,Yn/Xn)

With a proof similar to that of Theorem 2.1 we obtain:

Theorem 5.1 We have

E(N;)/n = pE( Z I Cp(XIMY e Xo M),
j=c+1 !

In a similar way as before we get asymptotic results for N;; from extreme value
theory. A crucial quantity is

F.(s)=P(Y/X < s) i E(Xke™X), s>0.
k=c
If
sF!(s) _ sCE(X%™X)/(c —1)! .
F(s) | S, s E(XFe )R

and a, — 0 such that nF.(a,) — 1, then for y > 0

P(M;,:/angy)ﬁl—e_y: n — oo,

see Resnick (1987, Prop. 1.13, 1.16). Now small modifications of the proof of Theo-
rem 3.1 give limits of Weibull type.

Theorem 5.2 If sF/(s)/F.(s) — ¢ as s | 0, nF.(a,) — 1 and na, — oo as
n — 0o, then

P(N!/napu<y) —1—e¥ y>0, and FE(N})/na,u— cT(2—1/c).

14



5.1 Example: exponential moments

—sX)

Suppose that the Laplace transform gx(s) = E(e is finite in a neighborhood of

the origin. Then

> Z’:E(Xke_SX) = O(s“th).
k=c+1
Hence . .
Fu(s) = %E(X%’SX) +O(sTh) ~ %E(XC), 510,

and therefore we can take
an = (c!/nE(X°)V/e.

X = p and ¢ = 2 give the limit in the Introduction for the birthday problem
P(N:/Von<y) —1—e ¥

Recall that N is stochastically largest when X is constant.
If X is Fxp(1), then p =1, a,, = n~¢ and we get the limit

P(N;/m'Ve<y) »1—eV,
cf. Subsection 3.1 and the Polya urn scheme.

5.2 Example: lognormal distribution

Let X = ¢°Z where Z is standard normal. Then E(X*) = ¢**/2 and we have

> Skic k X > Skic k252/9 kaQX
7E(X 6_5 ): Z WG U/E(E_Se )
k=c+1 k=c+1
o0 k202/2 ,—k(k—c)o? o2
= Z ¢ ek' (sekUZ)k_cE(e_Sek Xy—=0, s]o.
k=c+1 ’
Hence
s¢ ¥ s€ S¢ 24279
Fu(s) = SE(X% ") +o(s) ~ S B(X%) = =72, 5|0,
c! c! c!

which gives
Ay ~ (c!6702‘72/2/n> l/c.

and the limit , .
P(N;/nl_l/c(c!)l/ce(l_c)a 2 < y) > 1— eV,
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