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Chapter 1

Introduction

Course Notes on Database Systems



1.1 CS 321: Database Systems

e Prerequisites. CS 313, CS 304, programming in C (you need to know:
essentials of algorithm analysis, how to code tree-type data structures).
No prior knowledge of databases needed.

e Course description. In this course, students will learn what a database
is, and why data management requirements in the real world require
more than just data structures. We will cover the standard relational
model in great detail: the relational model, relational algebra, normal
forms, physical storage and access, transaction processing, concurrency,
recovery, distributed databases. Time permitting, some advanced topics
from among the following will be covered: parallel databases, string pro-
cessing, compression, spatial data processing. Students will implement
assignments in the Oracle database as well as write code to build parts
of a database.

e Course materials.

— Textbook: No textbook.

— Notes/Slides: Copies of slides used in class to be purchased from
Computer Science office.

— Stuff on reserve in Swem:

* R.Elmasri and S.Navathe. Fundamentals of Database Systems.
Benjamin-Cummaings, 1994.

« P.O’Neill. Database: principles, programming, performance.
Morgan-Kaufman, 1994.

* Various Oracle books.
— On-line Oracle documentation.

— Other items on reserve that may be of interest:



* R.Laurini and D.Thompson. Fundamentals of Spatial Informa-
tion Systems. Academic Press, 1992.

* F.Preparata and M.[.Shamos. Computational geometry: an in-
troduction. Springer-Verlag, 1985.

x H.Samet. Applications of Spatial Data Structures. Addison-
Wesley, 1990.



1.2 What is a database?

e Def: A database is a collection of interrelated data.
Q: for what purpose?

e Def: A Database Management System (DBMS) is a collection of inter-

related data and a set of programs to create, access and manipulate the
data

e What is an example of a database? Consider:

— Linked list containing 100 integers.

— 50 lines of C

— operations: add, delete nodes

= is this a DBMS?
— If so, what aspect of the linked list program is a DBMS? = object code, code-

while-executing?

NO! It is not a DBMS!
e There is more to a DBMS:

— Large data size. Modern dbases have gobs of data. e.g. IRS data
— Approx. 100 million taxpayers, 2000 bytes per person
= 100 x 10° x 2000 = 2 x 10! bytes

— Persistence of data. Data still exists after programs complete exe-
cution.
= permanent storage on disk

— Variety of interrelated data.



e Is a file system a DBMS?
NOTE: a file system has
— Large storage capability
— Persistence of data (non-volatile storage)

— Variety of interrelated data
e Consider a typical application:

— University registrar keeps information about students, faculty,
courses offered, classrooms etc. e.g,
x For each student: id, name, major, grades
x For each course: courseid, course name, credits, dept
x For each section: courseid, course name, instructor

x For each faculty: name, dept, courses, office, telephone
— What does the registrar do with the data?

« Answer queries: “What grade did Smith get in CS5267”, “Get
all courses taught by Jones”

* Insert new info: “Smith got a B+ in CS534”, “Classroom Terc
104 not available from 9-10.50”

x Delete some info: “Remove Smith and related data”
e Can a file system suffice for the above application? e.g.

— Store data in various text files

— Write small C programs to scan data for queries, make insertions
and deletions

— Utilities for sorting, pretty-printing, GUI

= If this is what a DBMS is, why a whole course on dbases?

= Why are commercial dbases expensive? (over $1,000,000 for full-size
Oracle).

= Is there more to a DBMS?



1.3 Of Course There’s More to a DBMS

e Control of data redundancy and inconsistency

— Unnecessary duplication of data can cause problems:
= Space wastage: putting a student’s postal address with every oc-
curence of the student’s name.

= update cost: if an address changes, we have to find every occurence
of old address and update it

COURSE | NAME ADDRESS
321 Smith, J | 123 Rappahannock St, Tappahannack, VA 29127
304 Smith, J | 123 Rappahannock St, Tappahannack, VA 29127

423 Smith, J | 123 Rappahannock St, Tappahannack, VA 29127

— Some duplication is necessary
— difficult to eliminate completely
= design becomes convoluted e.g., if we insist course numbers appear only once,
pointers will be needed to course numbers

= deletion is a problem (garbage collection needed)

— Data must be consistent at all times
= Changes must occur completely or not at all
(What happens if an update program crashes before completion?)

e Efficient data access.



— To answer a query about a particular student, should one scan the
whole dbase?

— For large amounts of data, searching can be time-consuming.

— NOTE: Access efficiency is evaluated differently in DBMS
= minimize disk accesses rather than CPU time

e Concurrent access.

— Registrar’s office has many employees that need to access the dbase
simultaneously
= they should not have to take turns at a single terminal
= concurrent access to data is desired

— Need to be careful:
— User 1: delete “Jones took CS 313”7

User 2: “List Jones’ courses”

= need to coordinate actions of different users carefully.
e Security.

— Not every user should be able access all the data
(students able to add/delete grades?)

— Control of access to data is needed without having to duplicate data.
e Integrity constraints.

— Grades need to be in the set {F, ..., A+}.

— GPA’s cannot be negative.

— A student cannot take a nonexistent course.

= A DBMS should enforce broad integrity constraints.



e Backup and recovery.

— Data must be systematically backed up.
— Recovery in system crashes.

— Inserts and updates cannot occur partially
= either complete it or don’t do it at all

e Metadata.

— Data about the data (data types, interrelationships, integrity con-
straints etc).

— directory and catalog information.
e Data and program independence.

— Data should be stored in a program-independent fashion
= changes in program should not affect access to data
= data re-entry should not be needed

e User and programmer interface.

— query language
— GUI

— reduced application development time
(C function library to manipulate data)

— features that allow data to be re-organized for efficient access

e Let’s return to the question: is a file system a DBMS?
= clearly, no.



1.4 What is a Data Model?

e Data Model: An agreed-upon method for abstractly describing the logi-
cal organization of data.

NOTE: the term data model is often incorrectly used in the literature.
e An analogy: architectural blueprints

— Blueprints are standardized: any builder can work on a plan drawn
by any architect.
(conventional symbols for windows, doors, plumbing etc)

— Blueprint ‘standards’ may differ across countries.
e A Data Model is like a blueprint ‘standard’:

— An agreed-upon way to describe how a dbase is to be organized

— It permits actual implementation to be independent of this descrip-
tion.

« Architectural analogy: blueprint does not specify building ma-
terials (can use cement or brick exterior)

x Data model: a data model can be implemented in various ways



o Frample: sets
— Sets are described using notation like:

A + {17,234,88}
B + {45,88,129, 564}

— Operations are defined on sets: union, intersection etc
— However, sets can be implemented (in C) in many ways:

1. arrays
2. linked lists

3. various algorithms for union, intersection etc

e In dbases, a Data Model describes the logical organization of data, along
with operations that manipulate the data.

e In this course, we will cover: the Relational Model.
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1.5 Various people associated with DBMS’s

e Database Administrator

— usually heads a team of dbase professionals
— involved in purchase and installation of a dbase

— decides data organization, access priveleges, integrity constraints,
customization

— oversees users, applications programmers
e Database application programmer

— develops applications for end users
— writes code in a query language (e.g. SQL) and in C/C++

— writes code for GUI-access or web-access to dbase
¢ End user

— uses interface for queries (e.g. a bank teller)

— rarely is able to program in SQL
e DBMS system programmer

— works for a dbase vendor (e.g. Oracle, Sybase etc)

— Various levels: system (low-level), application (GUT’s etc), language
(C++/Java), library/tool developer (specialized applications, e.g.,
GIS)

e Dbase researcher

— works on research problems associated with dbases
= dbase design, query processing algorithms, system issues, per-
formance modeling

11



1.6 Different Ways of Using a Database

e Using a query language interactively, e.q. SQL in Postgres

% psql testi

psql> \d

Database = testl

e e fm—————— e +
| Owner | Relation | Type |
e e fm—————— e +
| simha | acc_type | table I
| simha | accounts | table I
| simha | branch | table I
| simha | managers | table I
| simha | transactions | table I
e e fm—————— e +

pgsl> select * from branch;
branch city
Friendship Washington
Downtown Washington
Downtown New York
Foggy Bottom Washington
Adams Morgan Washington
Chevy Chase Washington
South East Washington

psql> \q

12



e Writing query language code separately, e.g. SQL in Postgres

— Create a file called samplequery:
select * from branch;

— Execute the query in Postgres:
% psql < samplequery
o Writing C code using a C-interface (API), e.g. in Postgres:

— Write a C program in a file called sample.c

#include "libpg-fe.h"
main () {
conn = PQsetdb (pghost, pgport, pgoptions, pgtty, dbName);
str = PQdb (conn);
res = PQexec (conn, "select * from branch");
PQprintTuples (res, stdout, 1, 0, 0);

— Compile and execute sample.c
o Writing internal code

— Source code required
— Most often written in C/C++

— Various levels: physical layer, query layer, parser, application layer

13



1.7 Structure of a DBMS

USERS

Application Query language
tools interpreter

C language Query langauge

interface parser

Query optimization and execution

Relational operators

File system and access methods

Disk and memory management,

DATA

e Application tools:

— GUI interfaces, specialized applications

— Usually written using in C/C++ using library
¢ Query language interpreter:

— Puts out a prompt and reads in queries

14



e Query language parser:

— Developed using a parser generator

— Instead of code generation, generate function calls to lower layer
e C interface:

— Library of C functions to include in C programs

— Calls functions at various layers (depending on library)
e Query optimizer:

— Analyze query and develop execution plan

— Calls relational operators, lower layer functions
e Relational layer:

— Functions that manipulate data in memory

— Implementation of high-level “relational operators”
e File system and access methods:

— Opening, writing and reading files

— Index structures: hashing, B-trees
e Disk and memory management:

— Often, a DBMS uses its own memory management

— Layout of data on disk (clustering of related data)

15



1.8 Databases: Then and Now

e Ancient data storage: stone tablets, scrolls, paper, log books etc.
e Early days of computing: storage on cards, paper tape.

1950’s:

— first commercial uses of computers
— census database

— customer dbase for IBM

1960’s:

— IBM and others develop first few DBMS’s
— Based on files, hierarchical and network data models

— nascent formalization of databases

1970’s:

— Relational dbase model (E.F.Codd)

— significant research in sorting, searching, physical implementation
— query languages: SQL, QUEL, QBE

— several popular dbases: System R (IBM), Ingres (Berkeley)

— transaction processing
e 1980’s:

— Dbase for PC’s
— Many additional features (GUI’s, additional power)

— research on distributed dbases, object-oriented dbases, client-server
systems
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— Today’s dbase giants: Oracle, Sybase, Informix

— preliminary research on non-traditional dbases: geographic and spa-
tial systems, image dbases, scientific dbases

e 1990’s:

— Geographic Information Systems (GIS), spatial databases

% Store maps, city plans, road maps
x Typical queries:
“Find the 10 cities nearest nearest to Richmond”
“Which counties are currently covered by Hurricane Bertha?”
“Find all residential land parcels within 2 miles of the factory”
x Try these websites:
http://www.mapquest.com
http://tiger.census.gov/

— Image databases

% Store images, video
x Typical queries:
“Find all images with a tree in them”
“Find all images that look like the sample image”
“Find all aerial images of the Williamsburg area”
x Try these websites:
http://wwwgbic.almaden.ibm.com
http://www-white.media.mit.edu/vismod/demos/photobook

— multimedia documents, text and document searching

x Documents with text, audio and video
x Typical queries:
“Find documents with video clips of the President”
“Find documents with references to Nuclear Disarmament”

* Try http://www.thomas.gov
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— web interfaces
— parallel dbases
« How to parallelize query processing?

x How to distribute data across processors?

* Load balancing
e Emerging growth areas:

— Non-traditional dbases:

* Geographic and spatial dbases, Image dbases

* Multimedia and temporal dbases (video, audio data), digital li-
braries

* Scientific dbases (Medical dbases, CAD dbases, financial data,
scientific data, DNA dbases)

x Dbase tools: GUI-based query specification

x Object-based, object-relational dbases

18



1.9 What this course is about

e Course syllabus:

Relational Databases:

— What is a database?

— Data Models.

— Relational databases: relational algebra.
— Relational databases: SQL.

— Example: Oracle.

— Database programming in Oracle.

— Physical implementation: file structures.

— Physical implementation: indexing, B-trees, B+-trees, Hashing,
Sorting.

— Query processing.
— Database design: normalization.

— Recovery, concurrency.
Additional topics: one or more of (time-permitting)

— OLAP and business data processing.

— Geographic Information Systems.

— Text and pattern searching, approximate searching.
— Distributed Databases.

— Parallel databases.

— Object-oriented databases.

— Multimedia and temporal databases

— Overview of text and data compression.

19



e Coursework (subject to change):
— Programming Assignment 1: Implement some SQL queries in Oracle
(Oracle is a relational dbase supporting SQL and several tools.)
— Programming Assignment 2: More Oracle programming.
— Programming Assignment 3: Indices, either B-Trees or Hashing.
— Mid-term exam, in-class
— Final project: a dbase application

— Final exam.
¢ Reading/review assignment for first week

— Review binary trees, hashing from any data structures book

20



Chapter 2

Relations and Relational Algebra

Course Notes on Database Systems
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2.1 The Relational Data Model

e Recall what a data model is: a convention for describing the logical
organization of data.

e Other data models: hierarchical and network models.

e Both the hierarchical and network models need a detailed understanding
of the structure of the data to answer queries (even at a logical level).
= main goal of the relational model:
— to describe a logical structure that is simple enough to minimize structural or
navigational information in answering queries (at a logical level)

A second goal:
— to create a mathematically precise framework for the logical representation of

data.

e To make sense of these terms, consider this example:
VALUEBANK has branches in Richmond, Williamsburg, Newport
News.

— Each city has several branches, e.g., in Williamsburg: Monticello
Rd, Jamestown Rd, Route 143.

— Customers have accounts in various branches.
— One obvious approach is hierarchical:
ValueBank

Williamsburg ~ Richmond  Newport News

Smith Jones Brown

T

Rt 143 Jamestown Monticello

22



— Requirements: one needs to add/delete amounts, add/delete cus-
tomers, add/delete branches

NOTE:
— Adding and deleting requires knowledge about how the data is stored

= navigational information required

Reasoning about adding/deleting requires navigational information.

e Okay, but what does this really mean?

— Suppose the hierarchical model City—Customer— Branch was used:

— If all customers in the Jamestown Branch were deleted, we would lose the
information “Jamestown Branch is in Williamsburg”

e In a non-hierarchical or “flat” model, we would store the data as:

CUST BRANCH

Jones  Jamestown || BRANCH CITY

Jones  Monticello || Jamestown Williamsburg
Jones  Route 143 || Monticello Rd Williamsburg
Smith  Monticello || Route 143 Williamsburg
Brown Route 143

Thus, deleting all “Jamestown” customers (from the first table) will not
affect knowledge about the branches.

In other words, as long as we have the second table, any changes to other
parts of the dbase will not affect the “branch location” information.
= not necessarily true in the hierarchical model
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2.2 Relational Model: Some definitions

e First, we need to review some elementary set theory:

— A set is a collection of objects.
— Usually, in math classes, examples consist of sets of numbers, e.g.
A = {17,200,523}, B = {17, 413,703, 804}

— We will consider more general sets, e.g.

NAME = { Smith, Jones }
COLOR = { blue, green, red }

— Recall cross-product of sets: e.g.,

NAMExCOLOR = { (Smith,blue), (Smith,green), (Smith,red),
(Jones,blue), (Jones,green), (Jones,red) }

In general: A x B={(i,j):1€ A,j € B}

— Cross-products extend to more than two sets: e.g.,
— if CAR = {Ford, BMW, Toyota} then { (Smith, Toyota,blue), (Jones,BMW green)
}is a subset of NAMExCARxCOLOR

— NOTE: order matters in a tuple

e Some informal definitions:

— A relation is a “sort-of” cross-product of sets, e.g.,
VEHICLE = NAMExCARxCOLOR

— A relation instance is a particular subset of a relation, e.g.
{ (Smith,Toyota,blue), (Jones, BMW green) }

is an instance of VEHICLE.

— What do we mean by “sort-of”? In a relation, the order of the sets
is not important. Thus, whereas
NAMExCARxCOLOR and NAMExCOLORxCAR

are different sets, they are the same relation.
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— We write the relation VEHICLE as:
VEHICLE (NAME, CAR, COLOR)

NOTE: While some order must be used in practice, the actual order
is not relevant.

— Terminology:

Relation name: VEHICLE
Attributes: NAME, CAR, COLOR

e More formal definitions:

— A relation schema R(Ay, ..., A,) consists of a relation name R and
a list of attributes (or fields) Ay, ..., A,.

— The domain of attribute A; is:
dom(A;) = set of all possible values of attribute A;

e.g.,
dom(CAR) = {GM, Ford, Toyota, ... }

— Values in a domain are not divisible: e.g.
the letter ‘o’ in “Toyota” is not in dom(CAR)

NOTE: commercial systems allow partial string searches, but the
relational theory does not permit domain values to be subdivided.

— A tuplefrom R(Aj, ..., A,) is an element of dom(A;) X ... xdom(A,),
e.g.,
(Smith,BMW red) € dom(NAME)xdom(CAR)xdom(COLOR)

— A relation instance is a set of distinct tuples from a relation schema,
e.g.,
(Smith, Toyota,blue),
(Jones,GM,blue),
(Brown,BMW,white),
(Simpson,Ford,white)

is a relation instance of
VEHICLE (NAME, CAR, COLOR).
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— A special null value is allowed in tuples, e.g.,

(Jones, Honda,null)
to signify lack of knowledge at the current time.

e A relation instance is a set. However, it is common to display or think
of it as a table:

VEHICLE NAME CAR COLOR
Smith Toyota Blue
Jones GM blue
Brown BMW  red
Simpson Ford white
Jones Honda null

Here, the row correspond to tuples and the columns correspond to at-
tributes (or fields).

e Although the term “relation” is broader than a particular instance, it is
often used informally to refer to a particular instance.

o A relational database schema is a collection of relation schemas.

e A relational database instance is a particular instance of a relational
database schema.

e Most installations typically have a number of disparate databases. Each
database usually has a bunch of relation instances.

Thus, an airline might have a reservations database with the following
relations:
— PASSENGER (NAME, SSN, FLT_ID, MILES)
FLIGHT (FLT.ID, FLT_NO, START_APT, END_APT)
AIRPORT (APT, NAME, CITY)
CREW (SSN, FLT.ID)
and may have a separate database for employee information:
~ EMPLOYEE (NAME, SSN, POSITION, SALARY, DEPT)
MANAGERS (DEPT, NAME, MANAGER_SSN)
BENEFITS (NAME, SSN, AMOUNT)
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e We will use the following notation with regard to relation schema
R(Ay, ..., Ay):
— r(R) denotes a relation instance of schema R.

—t =< vy,...,v, > denotes a particular tuple (with value v; for at-
tribute A;.)

— t[A;] denotes the value of the A; attribute in tuple ¢.
Thus, if t =< vy, ..., v, > then t[A;] = v;.
— If B is a subset of attributes, i.e., B C {Ay,..., A,},

t|B] denotes the collection of values in t that correspond to the
attributes in B.

— For example, consider
VEHICLE (NAME, CAR, COLOR).

Suppose t =<Smith,Toyota,blue> and B ={CAR,COLOR}. Then:

* t{CAR] = <Toyota>.
* t|B] = <Toyota,blue>.
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2.3 Constraints on Relations

e For practical reasons, it is useful to allow constraints to be imposed on
relations.

e Domain constraints:
— we would like to define attribute domains as tightly as possible
e.g., dlom(AGE) = {0,...,120} is preferable to dom(AGE) = all integers.

o Key constraints:
First, what is a key?

— Recall: a relation instance is a collection of distinct tuples.

— Thus, if t; and ¢; are any two tuples, then #[A;,..., A,] #
to[ A1, ..., Ayl

— Now, it may be that there is a subset of attributes B C {A;,..., A,}
such that ¢;[B] # t;[B] for every t;,;.
= such a subset of attributes is possibly a superkey. For example,
in
VEHICLE NAME CAR COLOR
Smith Toyota Blue
Jones GM blue
Brown BMW  red

Simpson Ford white
Jones Honda null

with B={NAME ,CAR} no two tuples have the same B-values
(same NAME,CAR combination).

— Def: A superkey on R(Ai,...,A,) is a subset of attributes S C
{A1,..., A} such that ¢;[S] # t;[S] for tuples t;,t; in any relation

instance on K.
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— Important: the superkey quality must hold for all possible relation
instances. For example, suppose we have:

VEHICLE NAME CAR COLOR
Smith Toyota Blue
Jones GM blue
Brown BMW  red
Simpson Ford white
Jones Honda null

At this time, it appears that (NAME, CAR) form a superkey. But
at some later stage we might want to add: <Smith,Toyota,green>.
= (NAME, CAR) is not a superkey.

— Suppose we created the relation
VEHICLE2 (NAME, CAR, COLOR, STATE, LICENSE_PLATE).

Then,
(NAME, CAR, STATE, LICENSE_PLATE)
is a superkey.

— Def: A key K on R(A;,...,A,) is a superkey of R such that re-

moving any attribute from K leaves a set of attributes that is not a
superkey.
= a key is a minimal superkey.

— For example, in
VEHICLE2 (NAME, CAR, COLOR, STATE, LICENSE_PLATE),
the attribute set {STATE, LICENSE_PLATE} is a key.

— NOTE: the value of a key (or superkey) uniquely identifies a tuple
(since every tuple has a unique key value).

— Remember: a key or superkey is a property of attributes, not a
property of a particular relation instance.

— If a relation has many keys, it is convenient to designate one of them
as the primary key. e.g.,

VEHICLE3 (NAME, CAR, COLOR, STATE, LICENSE_PLATE, ENGINE_SERIAL)
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has two keys, {STATE,LICENSE_PLATE} and {ENGINE_SERIAL}.

— In books, it is common to indicate primary keys by underlining the
attributes, e.g.,

VEHICLE3 (NAME, CAR, COLOR, STATE,LICENSE_PLATE, ENGINE_SERIAL)
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Finally, some constraints on keys:

1. Relations with no keys should be avoided.
For example, in
VEHICLE (NAME, CAR, COLOR)

if a person can own two green Toyota’s, then we would not be able
to store both tuples (no duplicates allowed)

= should instead use
VEHICLE (NAME, CAR, COLOR, STATE, LICENSE_PLATE).

2. Primary keys should not contain null values.
= this is a practical constraint: we need the key to distinguish between
tuples

e Referential integrity constraint:

— First, we need the defintion of a foreign key:
x Def: A set of attributes F' of schema R is a foreign key of Ry
with respect to Ry if F' is the primary key for Rs.

*x For example, consider relations
PASSENGER (NAME, SSN, FLT_ID, MILES)
FLIGHT (FLT_ID, FLT_NO, START_APT, END_APT)

Here, FLT_ID is the primary key for FLIGHT.
= FLT_ID is a foreign key in PASSENGER.

— The foreign key (or referential integrity) constraint is: Given a par-
ticular database instance containing relations Ry and Ry in which F
1$ a foreign key in Ry with respect to Rs, then for any tuple t in Ry,
there must exist a tuple s in Ry such that t{F] = s[F].

— Informally, if the value 63 occurs as FLT_ID in PASSENGER, there
had better be a tuple containing such a FLT_ID value in FLIGHT.
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— For example:

PASSENGER NAME SSN FLTID MILES
Bill 221-66-1234 17 2000
Al 306-77-1131 45000
Tom  636-22-9999 12 55000

FLIGHT FLT.ID FLTNO START_APT END_APT
11 F'616 DCA LGA
15 F'335 DCA JFK

Here, the value 63 occurs is not to be found in FLIGHT
= the foreign key constraint on PASSENGER is violated.

— Why the constraint? Essentially, if an attribute like FLT_ID in
PASSENGER is important enough to be a primary key in FLIGHT,

then it likely leads to additional information, which we must be able
to get for every tuple in PASSENGER.

— NOTE: the constraint applies to instances of relations.
e To summarize:

1. Domain constraints: proper typing of values

2. Key constraint 1. A relation should have a key.

3. Key constraint 2: Primary keys can’t have null values.
4.

Foreign key constraint: A relation shouldn’t have a foreign key value
that doesn’t exist in the foreign relation.
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2.4 Relational Algebra: Operations on
Relations

In examples below, we will consider the following dbase for McVALUE AIR-

LINES:

PASSENGER NAME SSN

FLT_ ID MILES

Bill
Al
Bob
Jack
Tom
Trent
Dick
Newt

221-66-1234
306-77-1131
111-22-3333
733-55-1122
636-22-9999
414-28-5850
223-63-7771
828-81-6977

17
63
15
15
12
11
17
12

2000
45000
1600
7700
55000
200
64500
1570

FLIGHT FLT.ID FLTNO START_APT END_APT

11
12
15
17
63

F'616
F71
F'335
F'338
F'15

AIRPORT APT

DCA
LGA
DCA
JFK

DCA

NAME

CITY

LGA
DCA
JFK
DCA
JFK

DCA
LGA
JFK

CREW SSN

National

Kennedy

Washington
La Guardia New York
New York

FLT_ID

011-44-2233
313-62-7711
442-11-3313
722-55-1139
011-44-2223
011-44-2223
313-62-7711
442-11-3313
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EMP NAME SSN POSITION SALARY MGRSSN

Erskine 011-44-2223 Co-Pilot 33,000 313-62-7711
Hillary 313-62-7711 Pilot 39,000 334-56-9876
Newt 442-11-3313 Steward 26,000 313-62-7711
Donna  722-55-1139 Engineer 37,000 334-56-9876
Scott 221-44-8883 Control Tower 29,000 722-55-1139
Liz 119-72-3131 Sales 34,000 334-56-9876
Morris  334-56-9876 CEO 42,960,000 334-56-9876

e UPDATE operations:

— Operations:

1. Insert a tuple into a relation
2. Delete a tuple from a relation

3. Modify a tuple in a relation
— Insert. Consider the McVALUE dbase and the following examples:

1. Insert <Rob, 011-44-2223, Accounts> into EMP
= not allowed: it would violate key constraint on SSN (011-

44-2223 already exists).

2. Insert <Jesse, 666-23-1111, 25, null> into PASSENGER
= not allowed: foreign key constraint violated (25 does not

exist as a FLT_ID in FLIGHT).

3. Insert <666-23-2223, null> into CREW
= not allowed: null not permitted in primary key

4. Insert <George, 554-12-1234, Communications> into EMP
= acceptable

— Similarly, delete’s and modify’s need to satisfy constraints.
e RETRIEVAL operations: the Relational Algebra

— These operations act on relations and produce relations.

— The collection of these operations (or operators) is called the rela-
tional algebra.

e The select operation.
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— Applies to a single relation.
— A condition (boolean expression) is often specified.

— The result is a new relation containing the result of the operation
= all those tuples satisfying the condition.

— Notation: 0 condition> (<relation>) .

— Example: 0crry=New York’ (AIRPORT) . The result is the relation:

APT NAME CITY
LGA La Guardia New York
JFK  Kennedy New York

— Example: O MILES>60000 (PASSENGER)

NAME SSN FLT_ID MILES
Dick 223-63-7771 17 64500

NOTE: the result is a relation, not a tuple.
- Example: O MILES> 90000 (PASSENGER)

NAME SSN FLT.ID MILES
empty

= empty relation (no tuples satisfied the condition)

— Observation: o () is commutative:

0 <cond1> (0<cond2> (R)) = O<cond2> (0<cond1> (R))
= O<cond2> and <condl> (R)

e NOTE:

1. We will often informally write a query in English before working out
the relational algebra needed to satisfy the query.
For example: “Find all employees who are Pilots”
= The solution is:  OpOSITION=Pilot’ (EMP) .

2. Although not strictly part of standard relational algebra, we will
allow new relations to be defined via assignment:
PILOTS := OpoSITION="Pilot’ (EMP).
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3. Comparison operators like “<” apply to attributes whose domains
are naturally ordered (like numbers or strings).

e The project operation.

— Applies to a single relation.
— A list of attributes must be specified.

— The result is a new relation containing the result of the operation
= all tuples, but only those attributes specified in list.

— Notation: Ilcattributetist> (<relation>)

— Example: IInampssy (EMP) . The result is the relation:

NAME SSN

Erskine 011-44-2223
Hillary 313-62-7711
Newt 442-11-3313
Donna  722-55-1139
Scott 221-44-8883
Liz 119-72-3131

— Example: Ilyamg (EMP) . The result is the relation:

NAME
Erskine
Hillary
Newt
Donna
Scott
Liz

— Example: “Create a list of cities served by the airline”. Here, one
solution is:
ITcrry (AIRPORT)

which gives:

CITY
Washington
New York
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— NOTE: the result above is NOT

CITY
Washington
New York
New York

That is, duplicates are removed in the result (since duplicate tuples
are not allowed).
However, many commercial dbases leave duplicates in the result.

e Combining relational operators.

— Since relational operators return relations as results, operators can
be combined.

— For example: “List the names (and only the names) of employees
that are pilots”. This query can be expressed as:

Iname ( OpoSITION=Pilot? (EMP) )
e The union operation.

— Applies to two relations, that are union-compatible (defined below).

— The result is a new relation containing the result of the operation.
= the collection of tuples in both relations.

— Notation: R; U Rs.

— Suppose we have the relation

CANDIDATE FNAME LNAME OFFICE

Bill Clinton  President
Al Gore Vice-President
Bob Dole President
Jack Kemp Vice-President

Consider the query: “List all names, first or last, in CANDIDATE”:

* Neither [IpyamE (CANDIDATE) nor Iliname (CANDIDATE) is
sufficient.

x Instead;
IIgnamE (CANDIDATE) U IlpnamEe (CANDIDATE)
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— NOTE: the two relations must be wunion-compatible: Relations
R4(A4,...,A,) and Rp(By,...,B,) are union-compatible iff Vi :
dom(A;) = dom(B;).

— For union-compatibility, the names of the attributes in R4 and Rp
don’t have to be identical.

— Example: above, we assumed
dom(FNAME) = dom(LNAME)

— But, what about the attribute names of the result?
= The result takes on the attribute names of the first relation.

— Thus, the result of

IIgnamE (CANDIDATE) U IlpnamE (CANDIDATE)
18

FNAME

Bill

Al

Bob

Jack

Clinton

Gore

Dole
Kemp
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e Re-naming attributes:

— Often, it is not satisfactory to use the attribute name from one of the
relations. It is common to extend the relational algebra to permit
re-namaing of attributes:

TEMP(ANYNAME) := Ilpnayme (CANDIDATE) U IljnaymEe (CANDIDATE)

which produces:

TEMP ANYNAME
Bill
Al
Bob
Jack
Clinton
Gore
Dole
Kemp

— Multiple attributes can be renamed, as in:
TEMP(FIRSTN, LASTN, GOAL) := CANDIDATE

e Intersection and Difference operators:

— Intersection and difference are defined on union-compatible rela-
tions.

— RN S = tuples in both R and S.

— Example: “Find names that occur both as passenger and as staff in
the airline dbase”:
IInamE (PASSENGER) N Ilyame (EMP)

— R — S = tuples in R that are notin S.

— Note that U and N are commutative and associative with respect to
each other.

39



e Cartesian product.

— Applies to two relations.
— The result is a new relation.

— Suppose R(Ay,...,A,) and S(By,..., B,,) are two relations. Then
R x S is a relation with attributes Ay, ..., A,, B1,..., By, created as
follows: for each possible pair of tuples from R and S, concatenate
them and place the result in R x S.

- |R x S| =|R||S].

— Example: Consider the following two relations:

R NAME CITY
Lennon NY S FLOWER COLOR
McCartney DC Rose red
Harrison NY Tulip yellow
Starr LA

Then, the cross-product, R x S is:

R xS NAME CITY FLOWER COLOR
Lennon NY Rose red
Lennon NY Tulip yellow
McCartney DC Rose red
McCartney DC Tulip yellow
Harrison NY Rose red
Harrison NY Tulip yellow
Starr LA Rose red
Starr LA Tulip yellow

The results are not necessarily meaningful.
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— Consider another example:

EMP NAME DEPTNO
Armstrong 3
Ellington 3
Bach 1

DEPT DEPTNUM DNAME
3 Jazz
1 Classical

Consider what we get with the following relational expression:

IINaMEDNAME ( ODEPTNO=DEPTNUM (EMP x DEPT) )
First, EMP x DEPT gives

EMPxDEPT NAME DEPTNO DEPTNUM DNAME

Armstrong 3 3 Jazz
Armstrong 3 1 Classical
Ellington 3 3 Jazz
Ellington 3 1 Classical
Bach 1 3 Jazz
Bach 1 1 Classical

Next, ODEPTNO=DEPTNUM (EMP X DEPT) gives

EMPxDEPT NAME DEPTNO DEPTNUM DNAME

Armstrong 3 3 Jazz
Ellington 3 3 Jazz
Bach 1 1 Classical

Finally, after the projection we get:

NAME DNAME
Armstrong Jazz
Ellington  Jazz
Bach Classical

We have answered the query: “List employees along with their de-
partment names”.

— The cross-product operation is rarely used. Instead, a join is com-
monly used.
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e The join operation.

— Applies to two relations.
— The result is a relation.
— Notation (general form): R X_, pditions S

— Recall the previous example

EMP NAME DEPTNO
Armstrong 3
Ellington 3
Bach 1

DEPT DEPTNUM DNAME
3 Jazz
1 Classical

and the query “List employees along with their department names”.
= what we really need to do is scan the EMP relation and, for every
DEPTNO that occurs, we need to look up the DNAME in the DEPT

relation

— This kind of combining of information in two tables using a common
attribute (DEPTNO and DEPTNUM, above) is very common in
dbase applications.

— A special operator, called a join, was created just for this purpose.

- Example (above): The result of EMP MDEPTNO:DEPTNUM DEPT
is:

NAME DEPTNO DEPTNUM DNAME

Armstrong 3 3 Jazz
Ellington 3 3 Jazz
Bach 1 1 Classical

Thus, a join is like a cross-product, except that the join condition
is applied to filter out non-matching tuples.

— The appearance of both DEPTNO and DNUM is a waste (since
both entries are identical for each tuple)
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— The natural join operator (denoted *) removes duplicate attributes
but assumes that the join attributes have the same name. Thus,

DEPT2 (DEPTNO, DNAME) := DEPT
RESULT := EMP % DEPT2

produces

RESULT NAME DEPTNO DNAME

Armstrong 3 Jazz
Ellington 3 Jazz
Bach 1 Classical

— If two or more attributes have same names in R and S then R xS
‘Joins’ on all these common attributes.
= that is, tuples are matched when all these attribute values are equal.

— Joins can be constructed using two nested loops (one for each rela-
tion). For example, consider the natural join of

EMP3 NAME DEPTNO INSTRUMENT

Armstrong 3 127
Ellington 3 313
Bach 1 313

DEPT3 DEPTNO INSTRUMENT DESC

3 127 Jazz trumpet
3 313 Jazz piano

1 474 Classical violin
1 313 Classical piano

The steps in joining are:

* Step 1:
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w¢ Voo

NAME DEPTNO INSTR Join? DEPTNO INSTR DESC

oin’
Armstrong - (ST~ Jazz trumpet
Ellington 313 Yes, the tuples match 3 313  Jazz piano
Bach 1 313 on the join attributes 1 313 Classical piano

joined NAME DEPTNO INSTR DESC
tupl
iﬁ,“?eesu.t L= Armstrong 3 127 Jazz trumpet
x Step 2:
¢¢ Voo
NAME DEPTNO INSTR DEPTNO INSTR DESC
Armstrong m Join? 3 127  Jazz trumpet
Ellington 313 ‘\> Jazz piano
Bach 1 313 No T 313  Classical piano

NAME DEPTNO INSTR DESC

Armstrong 3 127 Jazz trumpet
x Step 3:
i R
NAME DEPTNO INSTR DEPTNO INSTR DESC

Armstrong m Join? 3 127  Jazz trumpet
Ellington 313 \ 3 313  Jazz piano
Bach l 313 No Classical piano

NAME DEPTNO INSTR DESC
Armstrong 3 127 Jazz trumpet

* Step 4:
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w¢ Voo

NAME DEPTNO INSTR DEPTNO INSTR DESC
Armstrong 3 127 Join? Jazz trumpet
Ellington 3 313  Jazz piano
Bach 1 313 No 1 313  Classical piano

NAME DEPTNO INSTR DESC
Armstrong 3 127 Jazz trumpet
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x Step b:

I b
NAME DEPTNO INSTR DEPTNO INSTR DESC
Armstrong 3 127 Join? 3 127 Jazz trumpet
Ellington Jazz piano
Bach 1 313 Yes, the tuples match 1 313 Classical piano
on the join attributes
J
joined NAME DEPTNO INSTR DESC
tupl
iﬁ‘?ﬁsu.t Armstrong 3 127 Jazz trumpet
L » Ellington 3 313 Jazz piano
x Step 6:
I b
NAME DEPTNO INSTR DEPTNO INSTR DESC
Armstrong 3 127 ) 3 127  Jazz trumpet
Ellington Join? 3 313 Jazz piano

Bach 1 313 ‘No\> Classical piano

NAME DEPTNO INSTR DESC

Armstrong 3 127 Jazz trumpet
Ellington 3 313 Jazz piano
. and so on. Finally, EMP3xDEPT3 produces:
EMP3+«DEPT3 NAME DEPTNO INSTR DESC
Armstrong 3 127 Jazz trumpet
Ellington 3 313 Jazz piano
Bach 1 313 Classical piano

— NOTE:

* A join (natural or otherwise) can produce the empty relation, if
no matches occur.

* A natural join between two relations that have no attributes in
common (e.g., R(A, B) and S(C, D)) produces an empty rela-
tion.

* The general join ( X ) is sometimes called a theta-join.
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e The division operator.

— Applies to two relations.
— The result is a relation.

— Let R(A), S(B) and Q(C) be three relations with attribute sets A, B
and C respectively such that

1. BCA

2.C=A-B

Then, Q = R+ S if @) is the largest relation such that @ x S C R.
— Example:

STUDENT NAME COURSE
Louis CS 131
Louis CS 141
Duke CS 131
Johann CS 131
Johann CS 141

ALLCOURSES COURSE
CS 131
CS 141

* Note that one of the conditions for division is satisfied:
{COURSE} ¢ {NAME, COURSE}

x Thus, the result of
STUDENT -+ ALLCOURSES

should have the schema RESULT(NAME).

x Consider
RESULT1 NAME
Duke
The cross-product RESULT1 x ALLCOURSES produces

RESULT1 x ALLCOURSES NAME COURSE
Duke CS 131
Duke CS 141
in which <Duke, CS 141> is not a tuple in STUDENT.
= RESULT1 cannot be the quotient.
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* Consider
RESULT2 NAME
Louis

The cross-product RESULT2 x ALLCOURSES produces

RESULT2 x ALLCOURSES NAME COURSE
Louis CS 131
Louis CS 141

which is a subset of STUDENT.
= is RESULT?2 the largest relation that satisfies this property?

* Consider

RESULT NAME
Louis
Johann

The cross-product RESULT x ALLCOURSES produces

NAME COURSE
Louis CS 131
Louis CS 141
Johann CS 131
Johann CS 141

which is a subset of STUDENT.
= it is the largest such relation.
= RESULT = STUDENT + COURSE.

* Notice that the operation solves the query: “Find the names of

students who have taken all courses”.

« The appearance of “all” in a query is often an indicator that
division may be appropriate.

48



e The outer join operators.

— Similar to a join, but asymmetric.

— Consider this example:

EMP NAME DEPTNO

DEPT DEPTNO DNAME

Armstrong 3
Ellington 3
Bach 5

3 Jazz
4 Country

Here, the join EMP+«DEPT produces:

RESULT NAME

DEPTNO DNAME

Armstrong
Ellington

3 Jazz
3 Jazz

= the tuple <Bach,5> is not represented in the result.

— Sometimes it is desirable to include tuples from one or the other

relations in a join, even if no match occurs

= if no match occurs, use a null

— The left outer join includes all
using null’s where necessary.

The left outer join, EMP %DEPT,

EMP XDEPT NAME

tuples from the “left” relation,

produces:

DEPTNO DNAME

Armstrong 3

Ellington
Bach

Jazz
3 Jazz
5 null

— The right outer join includes all tuples from the “right” relation,

using null’s where necessary.

The right outer join, EMP #DEPT, produces:

EMP ¥DEPT NAME

DEPTNO DNAME

Armstrong 3

Ellington
null

Jazz
3 Jazz
4 Country

— A full outer join is the union of the the left and right outer joins.
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2.5 Examples of Queries

The following examples are based on the McVALUE AIRLINES dbase:

e Example 1:

— Query: “Find the names and social security numbers of all passen-
gers who have accumulated at least 50,000 miles”.

— Analysis: All the information is in PASSENGER. We need to select
a subset of tuples and project only some attributes.

— Solution:
RESULT := IlnamEssy ( OMILES>50000 (PASSENGER) )

— Result:  oyiLesss0000 (PASSENGER) produces

NAME SSN FLT_ID MILES
Tom 636-22-9999 12 55000
Dick 223-63-7771 17 64500

Projecting out NAME and SSN gives:

RESULT NAME SSN
Tom 636-22-9999
Dick 223-63-7771
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e Example 2:
— Query: “List names and ssn’s of all passengers flying on Flight F338”

— Analysis: The names of passengers and flight data are in different
relations, PASSENGER and FLIGHT. We need to match FLT_ID
in these two relations.

= use a join.

— Solution:

RESULT := HNAME,SSN ( OFLTNO=F338 ( PASSENGER * FLIGHT) )

— Result: PASSENGER x FLIGHT produces

NAME SSN FLTID MILES FLTNO START_APT END_APT
Bill 221-66-1234 17 2000 F'338 JFK DCA
Al 306-77-1131 63 45000  F15 DCA JFK
Bob 111-22-3333 15 1600 F'335 DCA JFK
Jack 733-55-1122 15 7700 EF'335 DCA JFK
Tom 636-22-9999 12 55000  F71 LGA DCA
Trent  414-28-5850 11 200 F616 DCA LGA
Dick 223-63-7771 17 64500  F'338 JFK DCA
Newt 828-81-6977 12 1570 F71 LGA DCA

From thiS, OFLTNO=F338 (PASSENGER * FLIGHT) pI‘OdU.CGS

NAME SSN FLT_ID MILES FLT.NO START_APT END_APT
Bill 221-66-1234 17 2000 F'338 JFK DCA
Dick 223-63-7771 17 64500  F338 JFK DCA

The attributes NAME and SSN are projected out to give:

RESULT NAME SSN
Bill 221-66-1234
Dick 223-63-7771

— Note alternative solution:

RESULT := HNAME,SSN ( PASSENGER * Op1TNO=F338 (FLIGHT) )

Q: which one might be more efficient to implement?
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e Example 3:

— Query: “List names and ssn’s of all passengers flying into National
airport”

— Analysis: To see if a particular passenger is flying into National
airport, we’ll have to use the FLT_ID to look up the ENDAPT in
FLIGHT, then use the ENDAPT value to look up NAME in AIR-
PORT.

= a join between PASSENGER and FLIGHT will be needed, as well
as a join between FLIGHT and AIRPORT.

— Solution: Let us break this into four steps:
1. First, we extract National airport from AIRPORT:
NAT := ONAME='National’ (AIRPORT)

NAT APT NAME CITY
DCA National Washington

2. Second, we find all the FLT_ID’s that correspond to flights that
terminate at National:
NAT_FLTS := FLIGHT NENDAPT:APT NAT

NAT_FLTS FLTID FLTNO START_APT END_APT APT NAME

CITY

12 F71 LGA DCA DCA National
Washington

17 F338 JFK DCA DCA National
Washington

3. Third, we only need the FLT _ID’s:
NAT_FLTID := Ilppr1p (NAT_FLTS)

NAT_FLTID FLT.ID
12
17

4. Last, we join with PASSENGER and project out NAME and

SSN:
RESULT := IlxamEssn (PASSENGER + NAT FLTID)
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— Result:

RESULT NAME SSN
Bill 221-66-1234
Tom 636-22-9999
Dick 223-63-7771
Newt 828-81-6977

e Example 4:

— Query: “List all flights (FLTNO) that have either a passenger named
Newt or a crew member named Newt”

— Analysis: We need to find flights containing passengers called Newt
and flights containing a crew member called Newt and put these

together.
= a join between PASSENGER and FLIGHT, a join between EMP,
CREW and FLIGHT, and a union.

— Solution:
1. First, we obtain FLTNO’s of Newt-passengers:

NEWT_PASS := HFLTNO ( ONAME=‘Newt’ (PASSENGER * FLIGHT) )
Note that PASSENGER * FLIGHT gives us:

NAME SSN FLT_ID MILES FLT.NO START_APT END_APT
Bill 221-66-1234 17 2000 F338 JFK DCA

Al 306-77-1131 63 45000 F15 DCA JFK

Bob 111-22-3333 15 1600 F335 DCA JFK

Jack 733-55-1122 15 7700 F335 DCA JFK

Tom 636-22-9999 12 55000 F71 LGA DCA
Trent 414-28-5850 11 200 F616 DCA LGA

Dick 223-63-7771 17 64500 F338 JFK DCA
Newt, 828-81-6977 12 1570 F71 LGA DCA
From which, onyame=Newt (PASSENGER % FLIGHT) pro-
duces

NAME SSN FLT.ID MILES FLT.NO START_APT END_APT
Newt, 828-81-6977 12 1570 F71 LGA DCA
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Projecting out the FLT_NO gives:

NEWT_PASS FLT_NO
F71

2. Next, FLT_NO’s for Newt-crew.
Since neither CREW nor EMP contain FLTNO, we need to get
FLT_ID first:

NEWT_CREW_FID := HFLT_ID ( CREW x ONAME=Newt’ (EMP) )

Note that onaME=Newt (EMP) gives:

NAME SSN POSITION SALARY MGRSSN
Newt 442-11-3313 Steward 26,000 313-62-7711

Then, CREW % oNAME=Newt' (EMP) results in:

FLTID NAME SSN POSITION SALARY MGRSSN
12 Newt 442-11-3313  Steward 26,000 313-62-7711
63 Newt 442-11-3313  Steward 26,000 313-62-7711

Finally, projecting out FLT_ID gives:

NEWT_CREW_FID FLT.ID
12
63

3. Now we can get a list of FLTNO’s by joining with FLIGHT:
NEWT_CREW := [lpprno ( NEWT_CREW_FID + FLIGHT )

NEWT_CREW FLT_NO
F71
F'15

4. Finally, compute the desired result as a union:
RESULT := NEWT_PASS U NEWT_CREW

— Result:

RESULT FLTNO
Fr1
F'15
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e Example 5:

— Query: “List names of crew members who visit all airports”.
— Analysis: The word ‘all’ suggests the use of division.

— Solution:

1. To use division, we first need to create a relation that has NAME
and APT. Since CREW only has FLT_ID’s and SSN’s, we start
by matching FLT_ID’s with airports:

F1 := Ilpprpsrarrapr (FLIGHT)

F2 := llppripenpapr (FLIGHT)
F(FLT_ID,APT) := F1 U F2

This gives:

F FLTID APT
11 DCA
12 LGA
15 DCA
17 JFK
63 DCA
11 LGA
12 DCA
15 JFK
17 DCA
63 JFK

2. Next, we match crew SSN’s against these FLT _ID’s:
CREW_APT := IlggnapT (F * CREW)

First, F «* CREW gives:
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Fx CREW FLT.ID APT SSN

11 DCA 011-44-2233
11 DCA 313-62-7711
12 LGA 442-11-3313
15 DCA 722-55-1139
17 JFK  011-44-2233
17 JFK  313-62-7711
63 DCA 011-44-2233
11 LGA 011-44-2233
11 LGA 313-62-7711
12 DCA 442-11-3313
15 JFK  722-55-1139
17 DCA 011-44-2233
17 DCA 313-62-7711
63 JFK  442-11-3313

Second, the projection of SSN and APT gives:

CREW_APT APT SSN
DCA 011-44-2233
JFK  011-44-2233
LGA 011-44-2233
DCA 313-62-7711
JFK  313-62-7711
LGA  313-62-7711
LGA 442-11-3313
DCA 442-11-3313
JFK  442-11-3313
DCA 722-55-1139
JFK  722-55-1139

Note: some duplicates are removed.

3. For the division, we will need a list of all airports:
APTS := IIapT (AIRPORT)

APTS APT
DCA
LGA
JFK

4. Now we can perform the division:
ALLAPT_CREW := CREW_APT + APTS

This produces:
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ALLAPT_CREW SSN
011-44-2233
313-62-7711
442-11-3313

5. Finally, we associate names:
RESULT := IIxame (ALLAPT_CREW * EMP)

— Result:
RESULT NAME
Erskine
Hillary
Newt
e Example 6:

— Query: “List names and ssn’s of all employees not on any flight”.

— Analysis: it’s easy to find 'flying’ employees from CREW. The re-
mainder can be found by using set difference.

— Solution:

1. First, the employees that fly:
FLIERS := Ilggn (CREW)

This gives:

FLIERS SSN
011-44-2233
313-62-7711
442-11-3313
722-55-1139

2. Next, the list of SSN’s of all employees:
ALLSSN := Ilgqn (EMP)

This gives:

ALLSSN SSN
011-44-2223
313-62-7711
442-11-3313
722-55-1139
221-44-8883
119-72-3131
334-56-9876
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3. Now we can get the ssn’s of nonfliers:
NONFLIERS := ALLSSN - FLIERS

This produces:

NONFLIERS SSN
221-44-8883
119-72-3131
334-56-9876

4. Finally, the names (in addition to ssn’s):
RESULT := IIxamESsy (NONFLIERS + EMP)

— Result:
RESULT NAME SSN
Scott 221-44-8883
Liz 119-72-3131
Morris 334-56-9876
e Example 7:

— Query: “Find the names of all airports that occur only as a
START_APT or only as an END_APT” (thereby identifying a prob-

lem)

— Analysis: Use intersection to find all airports that occur as both.
Remove from union of all airports using set difference.

— Solution:

1. First, project out the airport codes:

START := IlgTaART. APT (FLIGHT)
END .= Ilgnp_apT (FLIGHT)
This gives:
START START_APT END END_APT
DCA LGA
LGA DCA
JFK JFK

2. Next, obtain the relevant airports:
BAD_APTS := (START U END) - (START n END)

Empty result.
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3. Finally, join with AIRPORT to obtain names:
RESULT := IIxamE (AIRPORT % BAD_APTS)

4. Result: The result happens to be empty:

RESULT NAME
empty

e Example 8:

— Query: “Identify all crew members who are listed both as a passen-
ger and a crew member for the same flight”.

— Analysis: this information can be obtained from PASSENGER and
CREW. A natural join matches NAME and FLT_ID, giving us the

result.

— Solution:
RESULT := IInayme (PASSENGER % CREW)

e Example 9:

— Query: “Identify all crew members (SSN’s) who take a flight as a
passenger but not as a crew member”.

— Analysis: the natural join above cannot be projected or selected to
get this result. It forces both NAME and FLT_ID to be matched.

— Solution: use a theta-join (where the join condition is specified):
RESULT := llgsny ( CREW XggN_ssN FLTIDAFLT.ID PASSENGER )

e For more examples, read Elmasri/Navathe, sections 6.3-6.7, or Chapter
2 of O’Neil, or Chapter 8 of Ramakrishnan.

29



2.6 Relational Calculus: Another Way to
Specify Queries

e The relational algebra is a formal language for specifying queries on
relations.

e The relational calculus is another formal language.
e The relational calculus comes in two flavors:

1. tuple relational calculus

2. domain relational calculus
e The difference between relational algebra and relational calculus:

— In relational algebra: expressions are procedural
= expressions provide the order of computations
For example, in

InaMESSN ( OMILES>50000 (PASSENGER) )

one scans PASSENGER and extracts tuples in which MILES>50000.
Then, among these tuples the NAME,SSN attributes are reported.

— In relational calculus: expressions are non-procedural
= expressions only specify the desired result
For example, in tuple relational calculus the above query would be

written as:
{ ©.NAME, 2.SSN | PASSENGER(z) and z.MILES>50000 }

Here x is a tuple-variable.

e General form of a query in tuple relational calculus:

{x.Ay,... . A, | <condition>(x1,...,%Tn, Tnit,---rTm) }
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e What does it all mean? Let’s look at an example.
Consider the example:

{ 2.NAME, #.SSN | PASSENGER(z) and z.MILES>50000}

— Think of the the variable x as a for-loop variable that scans through
tuples in PASSENGER, as in:
for x := <first-tuple> to <last-tuple>

— As 1z scans the tuples, the condition on the right is checked
(z.MILES>50000). If the condition is satisfied, then output the
NAME and SSN attributes to a RESULT relation.

— The condition PASSENGER(z) simply binds the variable z to the
relation PASSENGER.

e Example 2:

— Query: “List names and ssn’s of all passengers flying on Flight F338”

— Solution:

{ z.NAME, z.SSN |
PASSENGER(z) and
( (3y) ( FLIGHT(y) and y.FLT_ID=z.FLT_ID
and y.FLTNO=F338 )

)
}

— Explanation:
Use variable z to scan tuples in PASSENGER. For each such tuple,
use variable y to scan through FLIGHT and check for a match on
FLT_ID. When such a match occurs, check FLTNO=F338.
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e Example 3:

— Query: “List names and ssn’s of all passengers flying into National
airport”

— Solution:

{ x.NAME, z.SSN |
PASSENGER(z) and
( (3y) ( FLIGHT(y) and 2.FLT ID=y.FLT_ID
and (3z) ( AIRPORT(z) and z.NAME="‘National’
and z.APT=y.ENDAPT)

)
}

— Explanation:
Scan through PASSENGER (z) and match FLT_ID’s with FLIGHT

(y). For each such match, scan through AIRPORT (z) and match
ENDAPT of y with ‘National’.

62



2.7 Relational Algebra: Summary

e The tuple relational calculus is simply another formal mechanism for
specifying queries.

e The domain relational calculus is similar (just slightly more cumber-

some).

e The relational calculus (in any flavor) and the relational algebra are
equivalent in terms of expressive power
= Every query that can be expressed in one language can be expressed

in the other.
(Proof: see the book Relational Database Theory by P.Atzeni et al.)

e A query language is said to be relationally complete if it can express any
query that can be expressed in relational algebra.

e Most commercial query languages (like SQL) are relationally complete.

e Are there simple queries expressible in English that are not expressible
in relational calculus?

— Consider the relation:

ANCESTOR NAME PARENT
John, Jr. Robert
Robert Rose
John Rose
Ted Rose

— By tracing back two parents, we see that “Rose” is an ancestor of
“John, Jr.”.

— The query “Find the ultimate ancestor of John, Jr. (oldest in the
chain of ancestors)” is NOT expressible in relational algebra.
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— Intuitively, there are a finite number of ‘variables’ in any relational
calculus expression. By choosing an ancestral chain longer than this
number, we will not be able to perform enough ‘matches’.

e Usefulness of relational theory:

— Neither the relational algebra nor the relational calculus are typically
found in commercial dbases.

— Then why study relational algebra? Several reasons:
1. Commercial query languages like SQL are based on the relational
algebra and relational calculus
2. The query optimizer of a commercial language, typically trans-
lates a user-query into an internal form similar to relational al-
gebra.
= useful in query optimization.
3. It is the first step in formalizing the theory of relations.
= it will be useful later (normalization and schema design).
4. It is compact and mathematically precise
= leads to an accurate characterization of its expressive power.
= many useful properties can be formally proven.

e Recall the hierarchical model from an earlier example:
The Relational Model has become more popular because:
— it is a flat model
— operators on relations return relations and so can be combined easily
— it is powerful enough to express several queries of interest
— it is easy to work with in formal proofs
e What’s missing?
The relational algebra is only a set of operators to manipulate relations.

= need to be able to insert values, print data etc.
= commercial languages do that and more.

64



Chapter 3

SQL: A Query Language
for Relational Databases

Course Notes on Database Systems
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3.1 SQL: A Language for Relational
Databases

e Formal query languagues: Relational algebra and relational calculus.
e Real-world query languages: SQL, QUEL, QBE (among others).

e Most commonly used: SQL (pronounced either “see-kwell” or “ess-cue-
ell”)

e SQL: originally called SEQUEL (Structured English QUEry Language),
1974-1976 IBM.

e ANSI SQL standard, 1986
e SQL2 standard, 1992 — also called SQL-92. (current work on SQL3).
e SQL:
— lets you create and delete relations;
— lets you specify queries on existing relations;
— lets you specify domain, key and foreign constraints;
— has support for security, transaction management and remote access;

e We first consider queries. Then we will look at creating relations, and
other issues such as constraints.
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3.2 The Basic SQL Query

e What is an SQL ‘program’?

— SQL code can be typed interactively into an interpreter.
— SQL code can reside in text files and be compiled (as most high-level
languages are).

— SQL statements can be input from within other programming lan-
guages (like C).

e SQL terminology:

SQL RELATIONAL ALGEBRA
table relation

row tuple

column attribute

e The basic form of an SQL query statement:

select  [distinct] <attribute list>
from <relation list>
[where <condition>] ;

NOTE:

— The SQL keywords above are: select, from, where and distinct.
— select and from clauses are required.
— The where clause and distinct are optional.

— Other optional clauses can be added (such as group by). We will
cover these later.

67



e An example:

select NAME, SSN
from PASSENGER
where MILES > 50000;

NOTE:
— This expresses the query: “Find the names and SSN’s of all passen-
gers who’ve accumulated more than 50000 miles”.

— In relational algebra:
RESULT := lINamessy ( OmiLEsss0000 (PASSENGER) )

— The result is the relation (from the McVALUE Airlines dbase):

NAME SSN
Tom 636-22-9999
Dick 223-63-7771

— In contrast to relational algebra, SQL’s select denotes the ‘project’
operator (II) in relational algebra
= it describes which attributes are desired in the result.

— The where clause corresponds to relational algebra’s ‘select’ (o)
operator.

— The from clause specifies the relations in the query.

— Interpretation:

select the attributes NAME, SSN
from the relations PASSENGER
where this condition holds: MILES > 50000;

— Here, we are using boldface to denote SQL keywords.

— The queries are written consistent with standard style.
= In practice, SQL statements can be written in different ways, e.g.,

select name, ssn from passenger where
miles > 50000;
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e Another example:

— Query: “List names and ssn’s of all passengers flying on Flight F338”

— In relational algebra:

RESULT := HNAME,SSN ( OFLTNO=F338 ( PASSENGER % FLIGHT) )

— In SQL:

select NAME, SSN

from  PASSENGER, FLIGHT

where PASSENGER.FLT_ID = FLIGHT.FLT_ID
and FLIGHT.FLTNO = ‘F338

= This is how a join is done in SQL.
— How to ‘read’ the SQL statement:

*

Note that the relational algebra query can be written as
IINAME, SN (OFLTNO=F338 (
O PASSENGER.FLT ID=FLIGHT.FLT_ID (PASSENGER x FLIGHT))).

Think of computing the cross-product of the relations in the
from clause.

Then, apply the condition in the where clause to each tuple in
the cross-product to select tuples.

Finally, project the attributes in the select clause to get the
result relation.

Observe: the join condition is explicitly specified in the where
clause.

NOTE: in an actual dbase, query optimization will try to prevent
expensive cross-product computations.
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e Duplicates:

— While relational algebra forbids duplicate tuples, SQL allows them.
— To force removal of duplicates: use distinct.

— Example: “List all destination airports”

select distinct END_APT
from FLIGHT

— Result:

END_APT
LGA

DCA

JFK

— In contrast, the query

select END_APT
from FLIGHT

will result in duplicates:

END_APT
LGA

DCA

JFK

DCA

JFK
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3.3 SQL by Example

In examples below, we will use the McVALUE AIRLINES dbase.

PASSENGER NAME SSN FLT_ ID MILES

Bill 221-66-1234 17 2000
Al 306-77-1131 63 45000
Bob 111-22-3333 15 1600
Jack 733-55-1122 15 7700
Tom 636-22-9999 12 55000
Trent  414-28-5850 11 200
Dick 223-63-7771 17 64500
Newt 828-81-6977 12 1570

FLIGHT FLT.ID FLTNO START_APT END_APT

11 F616 DCA LGA
12 F71 LGA DCA
15 F'335 DCA JFK
17 F'338 JFK DCA
63 F'15 DCA JFK
AIRPORT APT NAME CITY

DCA National Washington
LGA La Guardia New York
JFK  Kennedy New York

CREW SSN FLT_ID
011-44-2233 11
313-62-7711 11
442-11-3313 12
722-55-1139 15
011-44-2223 63
011-44-2223 17
313-62-7711 17
442-11-3313 63

71



EMP NAME SSN POSITION SALARY MGRSSN
Erskine 011-44-2223 Co-Pilot 33,000 313-62-7711
Hillary 313-62-7711 Pilot 39,000 334-56-9876
Newt 442-11-3313 Steward 26,000 313-62-7711
Donna  722-55-1139 Engineer 37,000 334-56-9876
Scott 221-44-8883 Control Tower 29,000 722-55-1139
Liz 119-72-3131 Sales 34,000 334-56-9876
Morris  334-56-9876 CEO 42,960,000 334-56-9876
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e Example 1.

— Query: “List names and ssn’s of all passengers flying into National
airport”

— In relational algebra:

NAT := ONAME='National’ (AIRPORT)
NAT_FLTS := Ilpprip ( FLIGHT Xgxp ApT—ApT NAT )
RESULT := llNammssny (PASSENGER * NAT_FLTS)

— In SQL:

select PASSENGER.NAME, SSN

from PASSENGER, FLIGHT, AIRPORT

where AIRPORT.NAME=‘National’
and AIRPORT.APT = FLIGHT.END_APT
and FLIGHT.FLT_ID = PASSENGER.FLT_ID

— Note the qualification of NAME in the select clause:
PASSENGER.NAME

— The following would be ambiguous:

select NAME, SSN

from  PASSENGER, FLIGHT, AIRPORT

where AIRPORT.NAME=‘National’
and AIRPORT.APT = FLIGHT.END_APT
and FLIGHT.FLT_ID = PASSENGER.FLT_ID

NAME appears as an attribute in both PASSENGER and AIR-
PORT.
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3.4 Aliases

e Aliases are permitted (and encouraged) in SQL.
e Example 2.

— Consider the previous query: “List names and ssn’s of all passengers
flying into National airport”

— The SQL for this query can be written as:

select P.NAME, P.SSN
from  PASSENGER P, FLIGHT, AIRPORT
where AIRPORT.NAME=‘National’
and AIRPORT.APT = FLIGHT.END_APT
and FLIGHT.FLT_ID = P.FLT_ID

— Here, the relation name PASSENGER is aliased to P.

— It is considered good style (for clarity and brevity) to alias all rela-
tions:

select P.NAME, P.SSN
from  PASSENGER P, FLIGHT F, AIRPORT A
where A.NAME=‘National’

and A.APT = F.END_APT

and F.FLT_ID = P.FLT_ID
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e Sometimes, aliasing is necessary even when using a single relation:

— Example: consider the relation EMP:

EMP NAME

SSN MGRSSN

— Query: “List employee names along with their manager’s names’

— Solution:

— Analysis:

EMP NAME SSN

John
Paul
George
Ringo

select E1l

111-11-1123 null

222-22-2234 222-22-2234
333-33-3345 111-11-1123
444-44-4456 111-11-1123

.NAME, E2.NAME

from EMP E1, EMP E2

John 111-11-1123
Paul 222-22-2234
George 333-33-3345
Ringo  444-44-4456

— Result:

where E1.MGRSSN = E2.SSN

MGRSSN EMP NAME SSN MGRSSN
null Joh 111-11-1123 | null
D22-22-2234 % P22-22-2234 | 222-22-2234
111-11-1123 George 333-33-3345 111-11-1123
111-11-1123 Ringo 444-44-4456 111-11-1123

E1.NAME E2.NAME

Paul
George
Ringo

e Renaming attributes in results:

Paul
John
John

— Attributes can be renamed in results.

— Example:

Query: “List all destination airports”

select distinct END_APT as DEST_AIRPORT

from

FLIGHT
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3.5

Union, Intersection and Set Difference

e SQL has constructs for union (union), intersection (intersect) and set

difference (except).

e Example 3.

— Query: “List all flights (FLTNO) that have either a passenger named
Newt or a crew member named Newt”

— Solution:

( select
from
where

union
( select

from

where

F.FLTNO

PASSENGER P, FLIGHT F
P.FLT.ID = F.FLT_ID

and P.NAME = ‘Newt’ )

F.FLTNO

EMP E, CREW C, FLIGHT F
E.NAME = ‘Newt’

and E.SSN = C.SSN

and C.FLT_ID = F.FLT_ID );

— Here, we obtained the Newt-passengers:

( select
from
where

F.FLTNO

PASSENGER P, FLIGHT F
P.FLT_ID = F.FLT_ID

and P.NAME = ‘Newt’ )

and ‘union-ed’ it with the Newt-crewmembers:

( select
from
where

F.FLTNO

EMP E, CREW C, FLIGHT F
E.NAME = ‘Newt’

and E.SSN = C.SSN

and C.FLT_ID = F.FLT_ID )

NOTE: a join with FLIGHT was needed to get the FLTNO for each

crewmember.
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e Example 4.

— Query: “List names and ssn’s of all employees not on any flight”.

— First, let’s obtain ssn’s of all nonflying employees:

( select E.SSN
from EMPE)
except

( select C.SSN
from  CREW C );

— This can be refined to solve the original query: (to include names):

( select E.NAME, E.SSN
from EMPE)
except

( select E2.NAME, C.SSN
from CREW C, EMP E2
where C.SSN = E2.SSN );

e intersect (intersection) is similar to union and except, e.g.,

— Query: “List all flights (FLTNO) that have both a passenger named
Newt and a crew member named Newt”

— Solution:

( select F.FLTNO
from PASSENGER P, FLIGHT F
where P.FLT_ID = F.FLT_ID
and P.NAME = ‘Newt’ )

intersect
( select F.FLTNO
from EMP E, CREW C, FLIGHT F

where E.NAME = ‘Newt’
and E.SSN = C.SSN
and C.FLT_ID = F.FLT_ID );
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3.6 Obtaining All Tuples or All Attributes

e To simply obtain all tuples in a relation, omit the where clause.

e Example 5.

— Query: “Obtain a list of employee names”

— Solution:

select E.NAME
from EMP E;

e To obtain all attributes, use x.

e Example 6.

— Query: “Obtain all information about employees”

— Solution:

e Example 7.

select *
from EMP;

— Query: “Obtain all information about airports in New York”

— Solution:

select
from AIRPORT A
where A.CITY = ‘New York’;
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3.7 Nested Queries

e SQL allows you to nest queries.

e Most common ways to nest queries involve the keywords: in, not in,
exists, not exists.

e Example 8.

— Query: “List names and ssn’s of all passengers flying on Flight F338”
— Previous solution:

select P.NAME, P.SSN
from PASSENGER P, FLIGHT F
where P.FLT_ID = F.FLT_ID

and F.FLTNO = ‘F338

— Solution using nested queries:

select P.NAME, P.SSN
from  PASSENGER P
where P.FLT_ID in ( select F.FLT_ID
from FLIGHTF
where F.FLTNO = ‘F338);

— Explanation: think of a tuple-scanning variable for each of the se-
lect’s. For each tuple in the outer select, the entire inner relation is
created and scanned.

= for each tuple in PASSENGER, compute the ‘F338” FLT_ID’s from
FLIGHT and check containment.

— If it seems like a waste to re-compute the inner select here, it is.
= Previous solution is better.
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e Example 9.

— Query: “List flights mistakenly assigned to airports not served by
McVALUE”.

— Solution (for destination airports):

select F.FLTNO
from FLIGHT F
where F.END_APT not in ( select A.APT
from AIRPORT A );

— Note that

select F.FLTNO
from FLIGHT F, AIRPORT A
where F.END_APT <> A.APT;

does not work.
e Example 10.

— Query: “List flights assigned to valid destination airports served by
McVALUE”.

— Solution (for destination airports):

select F.FLTNO
from FLIGHT F
where exists ( select A.APT
from  AIRPORT A
where A.APT = F.END_APT);

— In using exists, the inner select is computed to see if it produces a
non-empty relation.

— Note that each outer tuple is checked against each inner tuple.
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e Similarly, not exists returns true if the nested query result is empty.
e Example 11.

— Query: “List names of passengers who fly into all airports”.
— Solution:

select P.NAME
from PASSENGER P

where not exists (( select A.APT
from  AIRPORT A)
except

( select F.END_APT as APT
from FLIGHT F, PASSENGER P2
where P2.SSN = P.SSN
and F.FLT_ID = P2.FLT.ID ));

— Explanation:

« The first nested query simply obtains a list of all airports:

( select A.APT
from AIRPORT A )

* The outer query scans through PASSENGER.

* The second nested query does a join between PASSENGER and
FLIGHT to obtain each passenger’s airports.

x The passenger in each tuple created in the second nested query
is matched (via P2.SSN=P.SSN) with the outer passenger scan.

« Now, if the list of airports is not complete then the set-difference
will give a non-empty result.

* The non-empty result is checked using not exists.
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3.8 Aggregate Functions

e Consider the query: “Count the number of employees”.

— Relational algebra has no mechanism for counting the number of
tuples.

— Some books define an extended relational algebra that permits count-
ing, computing sums and maximums etc,
= these are called aggregate functions.

e Aggregate functions in SQL.

— SQL supports five aggregate operators:

1. max (<ATTR>)

= the maximum value in column ATTR
2. min (<ATTR>)

= the minimum value in column ATTR
3. sum ([distinct] ATTR )

= the sum of all (unique, if distinct is specified) values in column
ATTR

4. avg ([distinct] ATTR )

= the average of all (unique, if distinct is specified) values in column
ATTR

5. (a) count ([distinct] ATTR )
= the number of (unique, if distinct is specified) non-null values in

column ATTR
(b) count (x)
= the number of tuples
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e Example 12.

— Query: “Count the number of employees”
— Solution:

select count(x)
from EMP;

e Example 13.

— Query: “Count the number of passengers with mileage > 50000”
— Solution:

select count(x)
from  PASSENGER P
where P.MILES > 50000;

e Example 14.

— Query: “Find the average salary of employees that fly.”
— Solution:

select avg (E.SALARY)

from EMP E

where E.SSN in ( select C.SSN
from CREW C);

e NOTE: aggregate functions cannot be used with other attributes in the
same select clause.

— For example, the following is illegal:

select E.NAME, min (E.SALARY)
from EMPE

(because it does not make sense).

— One exception: aggregates can be used with other attributes when
the query contains the group by clause.
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e Example 15.

— Query: “Find the passenger with the most mileage.”
— Solution:

select P.NAME

from  PASSENGER P

where P.MILES = ( select max(P2.MILES)
from PASSENGER P2 );

— Note that the following is illegal:

select P.NAME, max(P.MILES)
from PASSENGER P;

— The keyword all is sometimes used:

select P.NAME
from PASSENGER P
where P.MILES >= all ( select P2.MILES
from PASSENGER P2);
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3.9 The group by Clause

e An aggregate function is computed on all tuples in a relation. For ex-
ample:

select avg(E.SALARY)
from EMPE

computes the average salary of all employees.

e We can obtain the average salary of a particular department using the
where clause:

select avg(E.SALARY)
from EMP E
where E.DEPT='crew’

In this case, the average salary of crew members is reported.

e What if we want the average salary of each department?

One option: write a separate SQL statement for each department.

e Using the group by clause:

select avg(E.SALARY)
from EMP E
group by E.DEPT

This produces a list of average salaries of the departments.

However, only the averages are reported
= cannot match with department names!
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e To match with department names:

select E.DEPT, avg(E.SALARY)
from EMP E
group by E.DEPT

Here, an attribute is allowed in the select clause along with an aggregate
operator.

Rule: attributes that appear in a group by clause may appear in the
select clause.

e Sometimes we need to specify conditions on groups as a whole.

For example, consider this query: “Find the average salaries of those
departments with at least 4 employees”.

The having clause can be used to achieve this result:

select E.DEPT, avg(E.SALARY)
from EMP E

group by E.DEPT

having count (*) > 3

e Consider a more complex query: “List employees in departments with
average salaries larger than 50,000”

Solution:

select E.NAME
from EMP E
where E.DEPT in ( select E2.DEPT
from EMP E2
group by E2.DEPT
having avg(E2.SALARY) > 50000)

e Sometimes we want to join attributes from other relations and want
them to appear along with the aggregate.

Solution: include those attributes in the group by clause.
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Example: “List departments with average salaries larger than 50,000
along with department names”.

Solution:

select E.DEPTNO, D.DNAME, avg(SALARY)
from EMP E, DEPT D

where E.DEPTNO = D.DEPTNO

group by E.DEPTNO, D.DNAME

having avg(SALARY) > 50000;

Note that the attributes that appear in the output also need to appear
in the group by clause.
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3.10 More on SQL

e Pattern search: to perform wildcard searches, use the percentage symbol
and the like keyword, e.g.,

select
from EMP E
where E.NAME like 'Sm%’;

e A list of items can be specified using the in keyword, e.g.,

select
from EMP E
where E.NAME in ("Smith’,’Jones’);

e Output can be sorted by one or more attributes using the order by
clause, e.g.,

select *
from EMP E
order by E.NAME, E.EFNAME

e Comments in SQL are specified by using two dashes. Everything after
the two-dash symbol up to the end of the line is a comment, e.g.,

-- File: testl.sql
-- This file prints out names and SSN’s of employees in Sales

select E.NAME, E.SSN -— Name, ssn attributes
from EMP E -— EMP is aliased to E
where E.DEPT=’Sales’; -- Specify department as Sales
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3.11 Null Values in SQL

e SQL allows null’s as values.
e SQL has a special comparison operator for null’s: the is null operator.
e Example 16.

— Query: “List all the tuples in EMP whose salary field is null”
— Solution:

select
from EMP E
where E.SALARY is null;

e How are comparisons made with a null field?

— Example:

select E.NAME
from EMPE
where E.SALARY < 1000
or E.SALARY > ( select E2.SALARY
from EMP E2
where E2.NAME = ‘Smith’ );

— What happens if Smith’s salary is null?
= What does E.SALARY > null evaluate to?

e Comparison rule for null values:

— For any value z, and operator <op> € {=,<,>,<, > +,—,/,*}:
the expression
r <op> null

evaluates to the value unknown (not an SQL keyword).

— For example, 5.67 <null evaluates to unknown.
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e Logic rules for unknown values:

— Let T denote true, F denote false and U denote unknown.

— The rule (truth-table) for NOT is:

z | NOT(z)
T F
F T
U U

— The truth table for OR is:

ccecemeee%
Ned

caocd ™" g8
el N e e iies IS B IS IES

— The truth table for AND is:

r y |z ANDy
T T T
T F F
F T F
F F F
T U U
F U F
U T U
U F F
U U U
— Thus, for example, ((T AND U) OR T) evaluates to true.
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e How null’s and unknown’s are treated in SQL:

— The where clause must evaluate to true for a tuple to be included
in the result.

— Example: Consider the following relation:

AIRPORT APT NAME CITY
DCA National Washington
LGA La Guardia New York
JFK  Kennedy New York
null Heathrow London
null Gatwick London

The SQL statement:

select A.APT, ANAME
from  AIRPORT A
where A.CITY='London’ or A.APT="LON’;

produces the result

APT NAME
null Heathrow
null Gatwick

whereas the SQL statement

select A.APT, ANAME
from AIRPORT A
where A.CITY=‘'London’ and A.APT='LON’;

produces the empty relation.
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e What about duplicates with null’s? Consider

select A.APT, A.CITY
from  AIRPORT A
where A.CITY='London’;

This produces:

APT CITY
null London
null London

whereas
select distinct A.APT, A.CITY
from  AIRPORT A
where A.CITY=‘'London’;
produces

APT CITY
null London

NOTE: the tuples are considered equal even though equality between
null’s evaluates to unknown.
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3.12 Creating Relations

Relations (tables) are created in SQL using the create table statement.

e FExample:
create table PASSENGER ( NAME char(20),
SSN char(20),
FLT_ID integer,
MILES integer );
e Example:
create table FLIGHT ( FLT.ID integer,
FLTNO char(8),
START_APT char(3),
END_APT  char(3) );
e Example:

create table AIRPORT ( APT char(3),
NAME char(10),
CITY  char(15) );

Tables can be delete using the drop table statement, e.g.,

drop table FLIGHT
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3.13 Specifying Constraints

e Domain constraints are specified by using a check clause in the create
table statement, e.g.,

create table PASSENGER ( NAME char(20),
SSN char(20),
FLT_ID integer,
MILES integer,

check (MILES > 0) );

e Primary keys can be specified by the keywords primary key in the
create table statement:

create table PASSENGER ( NAME char(20),
SSN char(20),
FLT_ID integer,
MILES integer,
primary key (SSN) );

create table AIRPORT ( APT char(3),
NAME char(10),
CITY char(15),

primary key (APT, NAME) );

Recall: primary keys cannot have null values.
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e Specific fields can be prohibited from allowing null’s.

e Specific fields can be prohibited from allowing duplicate values.

e Example:
create table PASSENGER ( NAME char(20) not null,
SSN char(20),
FLT_ID integer,
MILES integer,
primary key (SSN) );
e FExample:
create table FLIGHT ( FLT_ID integer,
FLTNO char(8),
START_APT char(3),
END_APT char(3),

unique (FLT.ID) );

e A foreign key can be specified, e.g.,

create table PASSENGER ( NAME char(20),
SSN char(20),
FLT_ID integer,
MILES integer,

primary key (SSN),
foreign key (FLT_ID)
references FLIGHT (FLT_ID) );
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3.14 Insertion, Deletion and Modification

e A tuple can be inserted into a relation using the insert into statement:

insert into <relation name>
values <attribute values>

Example:

insert into FLIGHT
values (23, 'F723’, 'DCA’, 'OHA’);

e Example:

insert into FLIGHT
values (45, 'F414’, "OHA’, 'DCA’);

e Insertions can be done using the output from select, e.g.,

e FExample:

create table DC_AIRPORTS ( APT char(3),
NAME char(10) );

insert into DC_ATRPORTS select A.APT, ANAME
from  AIRPORT A
where A.CITY="Washington’;
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Deletions are specified using the delete from statement:

delete from <relation name>
where <condition>

Example:

delete from PASSENGER
where MILES < 5;

Example:

delete from PASSENGER
where NAME is null;

Example:

delete from PASSENGER
where FLT_ID not in ( select F.FLT_ID
from FLIGHT F );

Individual or groups of tuples can be modified using the update state-
ment:

update <relation name>

set <modification>
where  <selection condition>

Example:
update PASSENGER P

set P.SSN="828-81-6975’
where P.SSN="828-81-6977" and P.NAME="Newt’;

Example:

update PASSENGER P
set P.MILES = P.MILES + 100
where P.FLT_ID = 12;
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3.15 Insertions, Modifications and Constraints

e Suppose we define a primary key on PASSENGER:

create table PASSENGER ( NAME char(20),
SSN char(20),
FLT_ID integer,
MILES integer,

primary key (SSN) );

Then, the following SQL statements result in error:

— Example using insert:

insert into PASSENGER
values ("Jim’, '221-66-1234", 63, 100);

= can’t allow duplicate primary key values.

— Example using update:

update PASSENGER P
set P.SSN=null
where P.NAME="Newt’;
= can’t allow null’s in primary key attributes.

These inserts and updates are rejected.
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e Consider the following foreign key constraint:

create table PASSENGER ( NAME char(20),
SSN char(20),
FLT_ID integer,
MILES integer,

primary key (SSN),
foreign key (FLT_ID)
references FLIGHT (FLT_ID) );

Then, the following changes violate the constraint:

— Example with insert:

insert into PASSENGER
values (’Jim’, ’455-98-0101", 9, 200)

= FLT_ID=9 does not exist in FLIGHT

= reject insertion.

— Example with delete:

delete from FLIGHT F
where F.FLT_.ID = 11

= All FLT_ID=11 values in PASSENGER point to nothing
= reject deletion?
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e When a foreign key is deleted there are several options that can be
specified in the create table statement:

1. Delete all tuples that refer to the value
= delete all PASSENGER tuples with FLT_ID=11.

create table PASSENGER ( NAME char(20),
SSN char(20),
FLT_ID integer,
MILES integer,

primary key (SSN),

foreign key (FLT_ID)
references FLIGHT (FLT_ID) )
on delete cascade );

2. Don’t allow the deletion of the foreign key
= reject above deletion.

create table PASSENGER ( NAME char(20),
SSN char(20),
FLT_ID integer,
MILES integer,

primary key (SSN),
foreign key (FLT_ID)
references FLIGHT (FLT_ID) );
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3. Set reference to null
= set FLT_ID to null in PASSENGER.

create table PASSENGER ( NAME char(20),
SSN char(20),
FLT_ID integer,
MILES integer,

primary key (SSN),
foreign key (FLT_ID)
references FLIGHT (FLT_ID)

on delete set null );

4. Set reference to a default value
= set FLT_ID to some default value in PASSENGER.

create table PASSENGER ( NAME char(20),
SSN char(20),
FLT_ID integer default 11,
MILES integer,

primary key (SSN),

foreign key (FLT_ID)
references FLIGHT (FLT_ID)
on delete set default );
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e Relations can be deleted with constraint specifications, e.g.,

— drop table FLIGHT cascade
— will delete the FLIGHT relation.

— all references to tuples in FLIGHT will be modified to maintain

referential integrity.

— drop table FLIGHT restrict
— will be dropped only if not referenced.

e Attributes can be added or removed from relations, e.g.,

— alter table EMP add BOSS_NAME char(15);

— adds attribute BOSS_.NAME, a string of max 15 chars.

— alter table FLIGHT drop FLT_ID cascade
— attribute FLT_ID is removed from FLIGHT.

— references are removed.

e Constraints can be named (and later, dropped), e.g.,

create table PASSENGER ( NAME
SSN
FLT_ID
MILES
primary key (SSN),
constraint FLIGHT_ID
foreign key (FLT_ID)
references FLIGHT (FLT_ID)
on delete set default );

alter table PASSENGER
drop constraint FLIGHT_ID
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3.16 Security

e The database administrator can grant access privileges to users and
dbase programmers using the grant statement, e.g.,

— grant insert, delete on PASSENGER to SIMHA
— grant select on PASSENGER to SIMHA
— grant insert on PASSENGER to SIMHA with grant option

e Privileges can be revoked using the revoke statement.
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3.17 Views in SQL

e Suppose we have a relation called EMPLOYEE with attributes:

EMPLOYEE (NAME, SSN, ADDR, SALARY)

— The database administrator does not want programmers to have
access to SALARY information.

— One option: create two relations:

EMP (NAME, SSN, ADDR)
EMP_SAL (SSN, SALARY)

And allow programmers access only to EMP.
— Note: space is wasted.
e Most DBMS’s allow views or virtual relations to be created.
— In the above example, a virtual relation (or view) such as
EMP (NAME, SSN, ADDR)

could be created.

— Programmers will go ahead and program assuming that a relation
called EMP (with attributes NAME, SSN and ADDR) exists.

— System will take commands given on EMP and convert them to
commands on EMPLOYEE.

e Creating a view in SQL (usually done by database administrator):

create view EMP
as select NAME, SSN, ADDR
from EMPLOYEE;
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Later on, a programmer can treat EMP like any other relation:

select NAME, DNAME
from  EMP, DEPARTMENT
where DNO=DNUMBER

e Although a programmer may treat a view as any other relation, updates
are sometimes restricted because of potential ambiguity.

Suppose we have 3 tables:

EMPLOYEE (NAME, SSN)
WORKS_ON (SSN, PNO)
PROD_NAME (PNO, PRODUCT)

For example:

EMPLOYEE NAME SSN
Smith 123456789

WORKS_ON SSN PNO
123456789 5

PROD_NAME PNO PRODUCT

4 Coke
5 Pepsi
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Next, suppose we create a view: EMP_PRODUCT (NAME, PROD-
UCT) (employee name and the product s/he is working on). In SQL:

create view EMP_PRODUCT (NAME, PRODUCT)
as select NAME, PRODUCT
from EMPLOYEE, WORKS_ON, PROD_NAME
where EMPLOYEE.SSN=WORKS_ON.SSN
and WORKS_ON.PNO=PROD_NAME.PNO

Assume that the programmer only sees the relation EMP_PRODUCT

From the table, we see that Smith works on product Pepsi. Suppose
now, Smith is asked to work on Coke. To update, the programmer does:

update EMP_PRODUCT
set PRODUCT=‘Coke’
where NAME=‘Smith’

To realize this modification, the system must actually update the rela-
tions that constitute the view EMP_PRODUCT.

There are two ways of achieving this change:

1. Change PNO to 4 in WORKS_ON.
2. Change PRODUCT to ‘Coke’ for PNO=5 in PROD_NAME.
— Ambiguity!

Note: here the intention is clear, we should change PNO to 4 in
WORKS_ON. But in other cases, it is not so obvious.
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3.18 Embedded SQL and SQL Libraries

e SQL is only a language for manipulating relations.

e Most real applications require other features, e.g., writing to files, win-
dows, adding report-quality word-processing etc.

e Commercial DBMS’s often provide their own languages. For example,
Oracle has its own language.

— Real world applications are written in these languages.

— These languages provide a mechanism for embedding SQL (to ma-

nipulate relations).

e Dbase vendors often provide a mechanism to embed SQL in program-
ming languages such as C. For example,

struct emp_struct {
char name[20];

int ssn;

int dept_no;
¥

struct emp_struct *emp_ptr;

EXEC SQL

select NAME, SSN, DNO from EMPLOYEE where NAME=‘Smith’
END EXEC SQL;
/* Returns a tuple into struct pointed to by emp_ptr */

e In C-embedded SQL, the dbase vendor provides a C compiler that trans-
lates the embedded SQL into appropriate function calls to a relational
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operator library.
= some query optimization can be done at compile time.

e Often, it is desirable to make direct SQL calls from a C program, e.g.,

struct emp_struct {
char name[20];
int ssn;

int dept_no;

+

struct emp_struct *emp_ptr;

call_sql_interp (emp_ptr, ’select NAME, SSN, DNO from EMPLOYEE
where NAME=‘Smith’’);
/* Returns a tuple into struct pointed to by emp_ptr */

= an SQL library is provided (by the dbase vendor).
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3.19 SQL: Summary

e SQL is a language for manipulating relations.

e SQL is based on relational algebra operators, adding ‘syntactic sugar’
where needed.

e SQL isitself usually executed from some other language (via embedding).
e SQL provides:
— Data definition capabilities — commands for defining schemas, rela-

tions, integrity constraints, default specifications.

— Data manipulation capabilities — commands for updating and ma-
nipulating relations (e.g. select command).

— View capabilities — commands for creating views and the support
software to allow programming based on views.

— Authorization — commands for controlling access.
— Integrity checking — mechanisms for automatic integrity checking.

— Transaction control — (to be explained later).
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Chapter 4
Physical Implementation of Databases

Course Notes on Database Systems
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4.1 Introduction

e Consider the following relations and query:

— Relations FLIGHT and AIRPORT:
FLIGHT FLT.ID FLT.NO START_APT END_APT

11 F616 DCA LGA
12 F71 LGA DCA
15 F'335 DCA JFK
17 F'338 JFK DCA
62 F'15 DCA JFK
AIRPORT APT NAME CITY

DCA National Washington
LGA La Guardia New York
JFK  Kennedy New York

— SQL query:

select F.FLTNO

from  FLIGHT F, AIRPORT A

where F.END_APT = A.APT
and A.CITY = "New York’;

e Several implementation questions arise:

— How is the query actually computed?

— How and where are relations stored?
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e A simple (but naive) answer:

— Store each relation in a (Unix) file.
= tuples are stored in order of insertion

— Write C code to perform basic relational algebra operations.
— For example, to compute [Ippr (AIRPORT) :

* read from file airport containing tuples of AIRPORT.
* scan through tuples and extract APT field to create result tuples.
x write RESULT tuples to file result.

e Why is this naive?
— The above method will work but will not be efficient for large data

sets.

— Large data sets imply many disk accesses
= disk accesses are time-consuming
= should try to minimize disk access
= need to understand low-level storage details
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4.2 Hardware Review

Basic system architecture:

Kbytes Mbytes Gbytes
Main
CPU Cache Mermory Disk
very fast fast slow

Cache memory:

e Fast access times (approx 50 nanoseconds per access)
e Expensive
e Little or no software control over cache contents

e Small (KBytes), not large enough for DBMS data

e Volatile
Main memory:

e Moderately fast (100-500 nanoseconds per access)
e Relatively inexpensive

e Plenty of software control (via OS)

e Large enough (MBytes) for code, but not all data,

e Volatile
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Disk:

e Slow (10-100 milliseconds per access)

e Inexpensive

Software control available (via disk controller)

Large data storage (GBytes)

Nonvolatile

= since data must live beyond execution time of dbase tools, data must
be stored on disk.
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4.3 A Typical Disk or Disk System

Track

Platter DISk head g I E

g Disk arm gﬁ::?—

Sector E ﬁqj%l_
AN W |

SINGLE DISK

A bl
Cyllnder rm assem y

DISK SYSTEM

Read/write head moves across magnetic surface.

e Discrete number of tracks (cylinders).
Seek time is the time for the head to move to the desired track.

e FEach track is divided into sectors.

e Platter rotates at high speed.
Latency is the time required for the head to be positioned over the desired
sector.

e A block is the unit of access for a disk
= always read or write an entire block.

e Blocks are also called disk pages.
e Block sizes are usually programmable.

e Blocks have id’s (block addresses).
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e Disk I/O driver can translate between block addresses and the appro-
priate <track,sector> combination.

e Why is a disk access slow compared to a main memory access?
= seek time + latency + block transfer time

e Incorporating tape storage:

— Sometimes, disks are too small (e.g., scientific data)
= use mag tapes
— Tapes are cheap and reliable, but very slow.

— Tapes may require manual handling.

— Tapes are used primarily for backups.
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4.4 Interaction Between Disk and Memory

Main memory

Memory partition
used by dbase

Disk

N
f

/

Disk partition used by dbase

e Data is stored on disks in fixed-size blocks.

e The disk manager manages the allocation of blocks on disk.

— Again, it is possible to use the disk I/O driver in the OS.

— Most DBMS’s prefer to manage allocation on disk.

— It is preferable to allocate contiguous blocks for some files.
= more efficient access is possible

— The disk manager keeps track of free blocks on disk.

e Methods of storing disk blocks:
Consider a file of n blocks that is to be written to disk.

Contiguous allocation:

— Always store blocks of a file contiguously (in adjacent tracks).
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6 7 contiguous tracks

— Advantages: Smaller seek and latency.

— Disadvantages: Difficult to expand file. May not be able store some
large files.

Linked allocation:

— Store blocks anywhere, but link them (keep pointer to next block in
current block).

linked allocation
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— Advantages: Simple. Uses disk space efficiently. Easy to expand
and contract files.

— Disadvantage: Lot of seek time incurred if blocks are all over the
place.

Clustered allocation:

— A compromise: group blocks into clusters and link them.

= clustered blocks are stored contiguously, but clusters can be anywhere
on disk.

cluster

A cluster of blocks is sometimes called an extent.

e For dbase programs to work on the data, data has to be brought into
main memory.

— Blocks are read into main memory from disk.
— Blocks are written to disk from main memory.

— One option is to use the OS memory management system (virtual

memory).
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— Most often, dbases do their own memory management.
= a large buffer in main memory is acquired from the OS and used for
keeping blocks in memory.

e The buffer manager is a program that manages memory for the dbase.

— The buffer manager is defined by its replacement policy.
= when a block is brought into a full memory, some block in memory
has to be written out

— Standard OS replacement policy: Least Recently Used (LRU) (or
some variation of LRU).
— Dbase considerations are often different:

x A DBMS often needs to pin some important, frequently accessed
blocks (such as directory blocks).

x Query analysis and optimization permits some predictability in
disk accesses.
= prefetching can be done (overlap seeks with computation).

* A DBMS needs to force writing a block to disk (for persistence).
— When a particular block is requested (by a higher-level program):

x If the block is already in main memory, return the start address
of the block.

x Otherwise, if memory is full, select a block for replacement and
write it to disk.

* Bring requested block into memory and return start address.

— Sometimes, in client-server mode, a block must also be transferred
to a client.

— The buffer manager keeps track of whether blocks have been written
into (using a dirty bit).

— When concurrency is permitted, the buffer manager allows blocks
to be locked and unlocked.
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4.5 Storing Relations

e A DBMS typically runs its own file system.
e Most often, all tuples in a relation are stored in a file.
e Conceptually, a file is a collection of tuples.

e Physically, a file is a collection of disk blocks
= a disk block may contain one or more tuples.

e Sometimes, a large tuple may span multiple blocks.
e At the physical-level, a tuple is sometimes called a record.
e Two types of records:

— Fized-size records

— Variable-size records.

e Consider the following relation:

create table PASSENGER ( NAME char(6),
SSN char(11),
FLT_ID integer,
MILES integer );

Assume integers are 32-bits (4 bytes) long
= 25 bytes are required for each tuple.
= 2 records/block if blocksize is 64 bytes.
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e Suppose we have the following data (high-level conceptual view):

PASSENGER NAME SSN FLT_ID MILES
Bert 111-22-3333 34 950
Ernie 222-33-4444 56 750
Kermit 444-55-6666 78 950

Low-level conceptual view:

<’Bert’, ’111-22-3333’, 34, 550>
<’Ernie’, ’222-33-4444’, 56, 750>
<’Kermit’, ’444-55-6666’, 78, 950>

Physical view:

4 bytes for FLT_ID integer
I\ 11
|)| | I 11 rec 1
1

\ rec 2
block 1

\ rec 3
block 2 \

\

01000010 Ascii code for 'B’
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4.6 Fixed-Size Records

e Retrieving a field from within a fixed-size record:

— Use the offset of the field within the tuple.
— In the above example, the SSN field’s offset is 20 bytes.

e Storage of fixed-size records in blocks.

— For example, suppose

record size = 56 bytes
block size = 512 bytes

= 9 records per block.

— Typically, one stores the number of records before the records, e.g.,

9 records in block record left-over space
./
9 o
=< =

‘\ 9 x 56 = 504 bytes

. 4 bytes
4 bytes (int)

— Most often, a higher-level program will ask for a particular block of
a particular file: “Get me the first block in file PASSENGER?”, e.g.,

blk_num = 1;
char * buf = (char *) get_block (’passenger’, blk_num);

— A file manager translates the file name and block number within the
file to a disk block number.

— The buffer manager’s job is to retrieve the block and return the start
address.
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— Thus, the 4-th tuple can then be retrieved knowing the record size,
e.g.,

char * tuple = buf + (4 - 1) * rec_size;
// Thus, tuple[261] is the 6th byte of the 4th tuple

e What about deletions?

— Packed-block option: replace deleted tuple with last tuple in block.

Tuple 1 2 3 4

Header

Delete 2nd tuple

Tuple 1 4 3

pack by moving last tuple

« Advantages: Simple.

« Disadvantages: It’s a problem if other programs keep pointers
to tuple-offsets within blocks (as some B-tree algorithms do).

* Another disadvantage: Rearranging the tuples may destroy sort-
order.

— Delete-marker option: use a special bit pattern (if available) to
mark a tuple as deleted, e.g., use all 1’s.
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Tuple 1 2 3

Header

Tuple 1 3

delete marker

* Advantages: Simple. Solves external-pointer problem.

*x Disadvantages: requires special bit pattern.

— Valid bit-array option: for a block that can hold n tuples, use an
n-bit array, where 0=-deleted.

Tuple 1 2 3 4
1j1)1(1|0
Header
Delete 2nd tuple
Tuple 1 3 4
lof110

marked as deleted

*x Advantages: solves external-pointer problem. No special bit-
pattern required.

x Disadvantages: Overhead required for bit-array and overhead
needed during each access.

— Since overwhelming cost is disk access cost, extra computation
within memory (e.g., moving tuples around) is not terrible.
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4.7 Variable-Size Records

e Variable-size records.

— Recall: every tuple in a relation has the same number of attributes.

— Then, how do variable-sized records arise?

— Consider the following relation:

create table

BOOK ( TITLE (
FIRST_AUTHOR  char(50),
(

char(100),

OTHER_AUTHORS  char(500),
RECENT_REVIEW  char(20000) );

Here, some books may have short values for OTHER_AUTHORS
and RECENT_REVIEW.
= waste of space to use 25000 bytes per tuple
= can save space by using variable-size fields
= variable-size records.

e Retrieving a field from within a variable-size record:

Option 1: use special delimiters:

— A special character or string between tuples:

Special delimiter

Unused space

Vs

%

%

4 %
A

[ )
Number of
fields

_

Variable-size fields

— Advantages: Simple.

— Disadvantages: Special delimiter required.
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Option 2: Keep offsets to start of each field:

— The first part of the record has offsets to the various records.

>;/\;

i 1
—1

4

~

—

T
Number of \

fields

=

Offsets

— Advantages: No delimiter required. Null’s can be easily handled

(use zero-offset).

— Disadvantages: Space and time overheads.

e Storage of variable-size records in blocks.
Packed-block method:

— This does not work for variable-size records, since record boundaries

are unknown.

Marker method:

— Use special inter-record markers.

— Advantages: Simple.

— Disadvantages: Special marker symbol required.

Bit-array method:

— Does not work since record boundaries are not known.
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Directory method:

— Store a directory of (rec_offset, rec_length) pairsin each block.

— To obtain k-th record, look up k-th non-zero entry in directory,
compute offset (using rec_offset) and retrieve rec_length bytes.

2nd dir entry Sir;g(%ry <— 35hbytes —>
203,35
2nd tuple
<— 203 bytes

Note: rec_length is needed if a new record is inserted into a larger
available space.

— Advantages: Most flexible scheme. Has all the advantages of the
bit-array method for fixed-size records.

— Disadvantages: Substantially more storage and some computation

during access.

e General problem: what if block size is too small for a tuple?
= a tuple may span several blocks.
= only makes life more difficult.
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4.8 File Systems

e A single block may not be large enough for all the tuples in a relation
= use a file (a collection of blocks).

e Main issues in file design:
— Blocks can be anywhere on disk
= need to keep track of block id’s of blocks in each file.
— Records can be anywhere in file
= need a method for organizing records in a file.

e Operations on files a DBMS file system needs to support:

— Insert a record.

— Delete a particular record.

— Delete records that satisfy a given condition.
— Modify a particular record.

— Scan all records. Often, a scan is initiated (startscan) and records
are obtained one-by-one (scannext).

— Search for records that satisfy a condition.

— Range search: when the condition is a range of values.

— Equality search: when the condition is an equality condition.

— Reorganize. Files that leave deletions in place often need to be

‘packed’.

Think of a file system as a C library of functions that can be called for
the above tasks.
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e Three basic types of files:

— Heap files: records are unordered
— Sorted files: records are ordered by some field.

— Hashed files: records are clustered by a hashing function.
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4.9 Heap Files

e In a heap file, records are unordered.

e File operations using a heap file:

Insert a record:

— Simply insert record in last block, if space available.

— If new block required, request one from disk manager.
Delete a record:

— Option 1: delete record, then ‘pack’ remainder of file

T 1L 1 1.

deleted
record I after packing

il 1 I'mm

*x Advantages: Simple. No space overhead. No space wasted.

* Disadvantages: Time-consuming.
— Option 2: delete record, pack only occasionally.

% ‘Occasionally’ can mean ‘every time total deleted space is larger
than a threshold’.

*x Advantages: Simple. No space overhead. Wasted space can be
controlled.

* Disadvantages: ‘Occasionally’ time-consuming.

— Option 3: delete record, chain deleted space.
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1st block blocks containing free space are linked

Pointer to 1st block containing free space

x Blocks with deleted space can be added to either end of chain.
x Key idea: when new records are inserted, try blocks in chain.

* Advantages: Uses space more efficiently (especially with fixed-
size records).

x Disadvantages: More complex. Long search may be needed for
inserting variable-size records. Space overhead for pointers.

— Option 4: delete record, update directory of blocks.

« Maintain a directory of disk blocks for each file.
*x One entry per block in the directory.

* Directory entry contains (block number, available space).

(block 5, 35 bytes)

* The directory itself may span several blocks (it must be stored
on disk).
x On insertion, check directory for existing blocks with space.

x Since directory entries are typically smaller than tuples, hope-
fully the directory won’t occupy too many blocks.

*x Advantages: Less search required for variable-size tuples. Most
flexible scheme.

* Disadvantages: Space overhead. Occasionally time-consuming.

Scan and any type of search:
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— For heapfiles, any search requires a complete scan.

— Exception: if it is known that only one record exists to match a
condition (e.g., equality search on a key), the search can be stopped
when record is found.
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4.10 Sorted Files

e In a sorted file, records are ordered on some field.
e The field (or group of fields) is usually the primary key of the relation.

e Some DBMS’s (e.g., Postgres, Oracle) use an internal tuple-id (integer)
for each tuple
= files are typically sorted by tuple-id unless otherwise specified.
e File operations using a sorted file:
Equality search on sort field:
— Sorted files were devised to speed up search.

= use binary search on sort field
= if b =# blocks, search time is O(logb) instead of O(b)

— Note: to retrieve blocks in the middle, a directory is required:

WHICH BLOCK | ACTUAL BLOCK NUM

13 4578

— Advantages: Speed.

— Disadvantages: Directory required. Insertion is difficult (see below).
Insert a record:

— Option 1: Make space to insert.
* Find right place to insert a record to keep sorted order.

* Push back remaining records to create space (and write those
blocks back).
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*x Write new record.
« Advantages: Keeps sorted order.

x Disadvantages: Insert is very expensive.
— Option 2: Insert in temporary overflow area.

* Insert record in overflow block(s).

x Periodically reorganize file: sort the overflow blocks, then merge-
sort with main file.

« To search: use binary search in main file, sequential search in
overflow blocks.

* Advantages: Most inserts are fast. Overflow area can be con-
trolled.

* Disadvantages: Frequent changes (inserts/deletes) are time-
consuming. Search may be slow if overflow area is large.

Delete a record:

— Option 1: delete record, then pack file.

* Advantages: No space wasted.

* Disadvantages: Time-consuming.
— Option 2: delete record, pack file occasionally.

*x Advantages: Simple. No space overhead. Wasted space can be
controlled.

* Disadvantages: ‘Occasionally’ time-consuming.
— Note: chaining deleted space is useless since records must be in
sorted order.

Range search:

— If range search is on sort-key, find first tuple and then scan until out
of range.
= cannot be more efficient.

— Range search (or plain search) on any other fields requires a complete
scan.
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4.11 Hashed Files

e In a hashed file, records are distributed among several ‘buckets’.

e Key ideas in simple hashing:

hash value

-----

1110011011100011101010110 ...

______

record
00000 ;
00001 ;
— —= ——=
13 /
11001 —
block block block

11111

hash table

— A hashing function is applied to each record
= a mapping function from the bits in the record to integers
e.g, pick the first 5 bits in the record
= maps records to the integers 0,1, 2,...,31.
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— Each integer is associated with a bucket: the integer is the bucket
number.

— Initially, a block is assigned to each bucket
= as records get added to the bucket they are placed in the block.

— Later, when the first block assigned to a bucket fills up, additional
blocks are used.

— The hash table itself is a (small) collection of blocks.

— Usually: try to pick hashing function so that records spread evenly
across buckets.

— Some buckets could have long overflow chains
= resembles heap file.

— Dynamic hashing methods handle non-uniformity (to be covered
later).

e File operations using a hashed file:
Insert a record:

— Compute hash value and insert in appropriate bucket.
— New disk block may be needed if all disk blocks in bucket are full.

Delete a record:

— Remove record from disk block.
— Return disk block to disk manager if empty.
— No need to keep track of deleted space.

Equality search:

— Compute hash value of equality argument.

— Search disk blocks in corresponding bucket.
= if there are few blocks per bucket, few disk accesses are needed.

— Example:
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11001

| | Smith |

hashvalue ( Smith ) =

Hash
table

11001

=

Smith Smith Smith
Smith Smid Smyth
Smits Smith

Other searches and scans:

— Scan all blocks in hashed file.
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4.12 File Structures: A Summary

e Key ideas in the three file structures:
Suppose b =number blocks in file.
Heap files:

— Plus: Simple. Fast insertion.
— Minus: Any search is slow (O(b)).

— Best if file scans are common or insertions are frequent.
Sorted files:

— Plus: Search on sort-key is fast (O(logb)). Range search is fast (on
sort-key)
— Minus: Insertion is slow. Any other search is slow.

— Best if range search is needed often.
Hashed files:

— Plus: Insertion or search on hash-key is fast. (O(1) if properly
distributed).

— Minus: Complex. Any other search is slow. Space overhead. Un-
balanced buckets degrade performance. Range search is slow.

— Best if equality search is needed on hash-key.
e In practice:

— Sort files are rarely used, since indices such as B*-trees provide for
fast search, insert and range search.

— Hash files are rarely used for direct storage. However they are often
used as temporary files during join computations.

— Unless otherwise specified, heap files are most often used.

— Most systems allow the creation of indices to speed up file access.
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4.13 What is an Index?

e Consider a relation such as EMP (NAME, SSN, SALARY).

scan all data (usually) - O(b)

scan
data Dat
Plain search to ata
answer (heap file)
query
Query:
Find salary of
‘Smith’
b blocks
Index
search
scan only some data - O(1)
scan some
index data ~ ©(log b)
INDEX
(data + Data
programs)

(heap file)

e An index is:

1. Some data extracted (copied) from the data file placed in a useful
data structure (leaving the data file intact).

2. Programs that manipulate the index data.

e Key idea: narrow down the search to a few pieces of the original data
file.
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e Indices usually contain ‘pointers’ to data in the data file.

INDEX

DATA FILE

Smith(7,3)

block 7

Smith ... | 3rd tuple

e A search-key is a value that defines a search:

— In the query “Find the salary of Smith”, the string ‘Smith’ is the

search-key.

— In the query “Find all employees with a salary greater than 100007,
the integer 10000 is the search-key.

— A search-key is the value used in searching.

— Unfortunately, the word “key” is being overloaded here.

— Sometimes, a search-key is also a key for the associated relation.
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e The main idea behind an index can be found in a library card catalog:

L. Indexing field

- —

Epﬁﬁt‘;ﬁ!tgnaly&s of = (compare with search key)
Index entr

Kent, C. [1971] = 4

QA 79.6 H23 <\\ Pointer to item

Since each index entry (card) is smaller than the data (book) itself,
searching the index (card catalog) is faster than search the data file
(library) itself.
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4.14 A Simple Index

e Suppose we have a data file and a search key.

— Create a file of index records.

— Each index record will have a possible search-key value and a pointer
to the appropriate data record.

— A ‘pointer’ to a data record is really the block number of the block
in which the data resides, and the tuple number within the block.

e Example: consider the following relation:

create table BLACKMAIL ( NAME char(20),
DIRTY SECRET  char(480) );

Suppose the block size is 1024 bytes:

— 500 bytes per data record
= 2 data records per block.

— Suppose a pointer requires 5 bytes (4 bytes for block number and 1
byte for tuple number)

= 25 bytes per index record
= 40 index records per block.
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1st block of data
Abel
Abel
Acton
Arthur ™ Adams
Akeem
Caligula 1st block
of index \
Arthur Stole Galahad’s helmet
Attila
//' Zorba
Zorba .
DATA FILE
INDEX FILE

Consider the query: “Find Arthur’s dirty secret.”
Without index:

— Suppose “Arthur” is the 10th record in the data file
= 5 blocks of data file must be read.

Using an index:

— Since “Arthur” is 10th entry
= occurs in block 1 of index
= 1 block of index file, 1 block of data file
= 2 blocks to obtain final record

This may not seem to be much of an improvement. Consider instead the
query: find information about “Ulysses”.

— Suppose “Ulysses” occurs as 30,000-th record
= 15,000 blocks accessed in data file scan (no index).
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= 30,000/40 = 750 blocks accessed in index file
= 751 block accesses using index.

e The impact of sorting:

— Suppose

b
b;

number of data file blocks
number of index file blocks

— The index file is typically sorted
= binary search can be used.

— If data file is sorted, binary search can be used in direct method.
= ratio of performance is O(logb)/O(logb;).

— If data file is not sorted (most common case), then ratio is

O(b)/O(log bi).

e If the data file is sorted, the index can be made smaller by using anchor
records (first record in a block):
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1st block of data
Abel -
Adams ~ Abel
T~ | Adams
Akeem
1st block
of index .
R Anchor records (1st record in block)
_—"" | zeus
Zeus ]
DATA FILE
INDEX FILE

Since only the correct block needs to be located, knowing that a data
item lies between two successive anchor record key-values is enough to
determine the block.

In the example:

— 2 data records per block
= 15,000 anchor records.
= 15,000 index entries
= 15,000/40 = 375 index file blocks

= example of a non-dense index.
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4.15 Types of Indices

e Note: “Indexes” and “Indices” are both valid.

e An index that has one entry for each data record is called a dense index.
Otherwise, a non-dense index.

e The set of attributes corresponding to the search-key is called the index-
ing field.

For example, one can create an index for the combination (NAME, SSN).
Then, the bits corresponding to (NAME,SSN) in each record constitute
the indexing field.

e A primary indez is an index such that the indexing field includes the
primary key of the data file.

Note: in some books, a primary index additionally requires the data file
to be sorted.

e A secondary index is any index that is not a primary index.
For example, consider
STUDENT (NAME, SSN, STUDENT_ID, ADDR).

Then, an index on SSN is a primary index. An index on STUDENT_ID

is a secondary index.

e A clustering index is a secondary index on a non-key set of attributes.

For example, consider

EMP (NAME, DEPTNO, SSN, ADDR)

An index can be created on DEPTNO by clustering together data records
having the same DEPTNO:
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1 7 ~
> = =~ | Worthy 1
- Johnson 1
™~
1 Bird 1
McHale 1
A
19 Jabbar 1
™1 Jones 2
index blocks Riley 2
INDEX DATA FILE

Sometimes, if there are too many values, separate blocks of pointers
(block numbers) are used:

Deptno
1 I
> = | Worthy 1
3 \\ Johnson 1
3 ~
Z \ ~ [Bird 1
5 = McHale 1
™| Jabbar 1
blocks of pointers
to data
™1 Jones
Riley 2
INDEX DATA FILE
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e [nsertion and deletion:
Insertion:
— Index file is sorted
= new index record needs to be inserted in proper place.

— If data file is a heap file, insertion of data record is easy.

New index
record

™~

“
| nse rtl on Eey
New data
record T~
(end of heap
file)
Index Heap file Index Heap file

— For a sorted data file, data record needs to be in correct place.
= either squeeze record in or use overflow blocks. If a non-dense
index is used
= anchor records may change in re-packing
= large part of index may need to be re-built.

— Overflow blocks can be used for index file as well
= periodic re-organization needed.

— In both index and data files, space can be initially reserved for future
inserts.

— Insertion into a clustering index is easy: data file is a heap file. New
block pointers are simply added to collection of pointers.
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Deletion:

— Deletion from data file follows earlier techniques.

— If anchor record is deleted, new anchor record must be designated
and written into index entry.

— Several options for deleting index record:

x Delete and pack
= time-consuming, but no space wastage

x Delete and leave space
= could waste space and later slow down access.

e Primary vs. Secondary indices:

— Recall: a primary index is an index on a primary key.
— A secondary index is an index on any other set of attributes.

— If the data file is sorted by primary key, the primary index can be
made non-dense
= fewer index entries
= binary search on index is faster.

— However, sometimes improvement using a secondary index can be
greater, if the data file is sorted on primary key.

* ratio of performance for primary index is O(logb)/O(logb;).
* ratio of performance for secondary index is O(b)/O(logb;).
where b = # data blocks and b; = # index blocks.
— Example:

x Suppose block size is 1024.

x Suppose we have a data file of 50,000 records of 100 bytes each.
= 1024/100 = 10 records/block
= 5000 blocks
= 2500 blocks on average for linear search

* Binary search of data file: [log, 5000] = 13 blocks.
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*

*

*

*

*

*

Suppose index record is 10 bytes
= 1024/10 = 102 index records per block

5000 data blocks
= 5000 primary index records
= 5000/102 = 50 index blocks
= binary search of index file: [log, 50] = 6 blocks
= search needs 6 + 1 (for data file) block accesses.
Thus, improvement ratio for primary index is 13/(6 + 1) ~ 1.8.

Now, for a secondary index, we need 50,000 index entries
= 50000/102 = 491 blocks
= binary search of index file: [log,491] = 8 blocks.

Data file requires linear search.

Thus, improvement ratio for secondary index is 2500/(8 + 1) ~
277.8.
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4.16 Multilevel Indices

e Consider an index on STUDENT (ID, NAME, ADDR):

10
13
16
19

6
\ data block

22
25
28
31
34
37 \
20

index block

INDEX DATA FILE

Typically: binary search is used on index file.

Key observation: index file is itself a sorted “data” file.
=> can create a primary index on the index:

152



level 2 level 1 1D

1 11 [ g ]
22 4
\
43 . 7
61 \ 10 .
82 \ 13
103] 16
6
124 19
\ data block

145 22
166 25

28

31

34

37 \

40

index block

INDEX DATA FILE

In this case:

— The second index file (level-2) is an index on the first one (level-1).

— Level-2 contains the anchor values of level-1.
— This is called a multilevel index.
e Suppose level-1 has b; blocks and an index block contains f index records:

= One level-2 entry for each of the b; blocks
= b; records in level-2

= b7 blocks in level-2
= level-2 search cost is [log, bﬂ

= total search cost is: [log, %] + 2

(1 block in level-1, 1 block from data file).
= search time is reduced.

e What about a level-37
= b7 blocks at level-2

= b7 records at level-3
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= % + f blocks at level-3

= f,ﬁ’il blocks at level-k.

e When do we stop?
= when level-£ has only one block

#%:1

level k level 2

1

1

22

43

61

82

103

124

145

166

INDEX

level 1

1

4

7

10

13

16

19

22

25

28

31

34

37

40

index block

ID
F» | 1
2
™~ T4
5

"\

data block

DATA FILE

e What is the search cost with a full multilevel index?

= 1 block per level plus data block

o [s

it worth the effort?

— Cost with one-level index: 1+ log, b;.

— Cost with multi-level index: 2 + log b;.
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—Iff>2
= 2+1logsb; < 1+ logyb;.

— Example: b; = 4000, f = 100
= 1+ logy b; = 12 and 2 + loggp b; = 3
= four times faster.

e How much extra space?
= O(b;) additional blocks.

e What about insertions and deletions?
Insertions and deletions are problematic.
Typical options for insert:
— Reorganize entire index with each insert:
= expensive operation but keeps search efficient.

— Leave some space in each (index and data) block for future inserts

= potential wastage of space
= slower search.

— Place new data and index records in overflow area
= slower search.

Delete options are similar to those seen earlier.
e Note:

— Additional levels can be built on any index file, since level-1 is sorted
(even for clustered and secondary indices).

— A multilevel index is sometimes called a ISAM (Indexed Sequential
Access Method) by IBM-types.

— Multilevel indices were used in practice before the arrival of B-trees.

— Some ISAM products are still available.
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4.17 B-Trees: An Introduction

e Recall multilevel indices. For example:

ID
1 1l —]1 N B I B ]
145 22 4
\ \
43 . 7
61 \ 10
A
82 \ 13
103 16
6
124 19
\ data block
145 22 .
166 25
28
31

34
37 \
40

index block

INDEX DATA FILE

— Observe that values like 1 and 145 occur in several places in the
index
= deleting ‘1’ from the index requires several record deletions.

— If deletions are left in place (no packing), some index blocks could
contain many deleted values
= even if data file becomes small, index remains large.

— If re-packing is done for each insertion, O(b;) blocks may be pro-
cessed.

— If overflow blocks are used, then many insertions cause the overflow
blocks to be processed frequently
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= slower search.
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e A B-tree is a type of multilevel index which:

— is dense;

— implements insertion and deletion by dynamic reconstruction of the
index at the time of each insertion/deletion;

— limits the cost of dynamic reconstruction to approximately O(log b;)

block accesses;
— Incurs a search cost of approximately O(log ! b;) block accesses;

— limits the amount of wasted space;

— does not allow duplicate values in the index.
e A B-tree is a collection of blocks (called B-tree nodes) that contain:

— search-key (index) values
— data pointers (block numbers and tuple numbers of data records)
— tree pointers (block numbers of other B-tree nodes)

— some information local to each block (such as the number of key

values in it)
e Every B-tree node of a B-tree of degree m (m > 1):

— (except the root) must have at least m — 1 key values, sorted inside
the node;

— cannot have more than 2m — 1 key values;
— has as many data pointers as key values;
— has one more tree pointer than the number of key values;

— is either a leaf or an internal node.

e Each B-tree node fits into one disk block and the entire B-tree resides
on disk
= when a B-tree is accessed, relevant nodes are brought into main
memory.
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Additionally:

— Internal nodes contain tree pointers whereas leaves do not;

— All leaves are at the same depth from the root.

B-tree node

not a leaf
key value

|_Ol/2 Jé ! S'thI !
21 | Jones g | i [ Smith py | |

7 I Vo
! , i tree pointer i tree pointer
. tree pointer / K P \ i P
1 I \
/ \
|}

number of entries Y

data pointer data pointer

Conceptual view of a B-tree node

Jones Smith

“y  tree pointer

For example, suppose

— block size is 512

— 2 bytes are used for block-specific information
— an index value requires 20 bytes

— a data pointer requires 6 bytes

— a tree pointer requires 4 bytes
Then, we must have
2+2002m —1)4+6(2m — 1) +4(2m) < 512,

Or
m < 8.93.

Thus, pick m = 8.
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e The nodes in a B-tree are arranged in in-order:

Names < ‘Jones’

e — T,
» — el
b —— -

Names > ‘Smith’

/ ‘555 ERRREEEETL T
Abel Davis Hart Muir Rand Snell Suda Wong
# ¥ ¥ VAR ¥ g \ ¥
/ \
// Names between ‘Jones’ and ‘Smith’ \\
in this subtree
e NOTE:

— The root of the B-tree can have fewer than m — 1 values.

— Since 2m —1 is odd, the maximum number of values is either 3,5,7,...

etc.

— Since m > 1, smallest value possible for 2m — 1 is 3.

— In a full node, the m-th value is the called median or middle value.

— It is possible to generalize the definition to allow for an even number
of values. If e values are allowed (e.g. e = 8), the middle value is

defined to be the (e + 1)/2-th value.

e Operations supported by a B-tree:

— Insertion: insert a key-value into the tree.

— Deletion: delete a key-value from the tree.

— Search: search for a particular key-value.

e NOTE:

— A B-tree is used on top of a data file (usually, a heap file).

— Often, the combination of the tree and data file is called a B-tree

file (or, confusingly, B-tree for short).

= the B-tree’s insert function also inserts into the data file:

btree_insert (key, tuple)
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— Search in a B-tree typically means equality search.
— Range searches are inefficient in a B-tree.

e Remember: the tree pointer in a B-tree node is not a memory location
= it is a block number.

e Worst-case height of a B-Tree.

It is possible to compute the worst possible height of a B-tree containing
n nodes without additional detail.

In the worst case, all nodes have only m — 1 values and the root has only
1 value. Thus,

level 0 (root) has 1 node
level 1 has 2 nodes

level 2 has 2m nodes
level 3 has 2m? nodes

level h has 2m"~! nodes

Therefore,

n = 1+2+2m+2m?+...+2m"!
= 14+214+m+m?*+ ... +m"
mh — 1

= 14+2
+m—1

Or, h = O(log,, n).
In fact, h < 1+ log,,n.
e NOTE:

— The m — 1 lower bound translates to “at least 50% full”.

— Any lower bound less than m — 1 is easy to support
= a restriction like “at least 70% full” is possible but difficult.
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4.18 Search in a B-Tree

e Searching in a B-tree follows in-order traversal.

— Start at root block.

— For each block, search sequentially through elements in block until
element is either found or the correct child block is identified.

— If child block pointer is NULL

= 1tem not in tree.

— If item is found
= extract data pointer and retrieve tuple from heap file.

— Otherwise, follow childpointer.

e Example: search for ‘6’ in this tree:

4
2 7 ]9
g ““( T T XL
1 3 5 ||e 8 10 || 12
——-- foUNd
e Example: search for ‘14’
4
2 7 |9
g ‘(
1 3 5 ||6 8 10 || 12

not found
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e What is the complexity of search?
= as many blocks as height of tree (worst case)
= O(log,, n) for search (n blocks of data).
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4.19 Insertion in a B-Tree

e We will learn insertion via an example:

— Consider the case m = 2.
— The key values are integers.
— Insert the following key values in order: 1,7,8,10,9,3,2,5,4,6,11

NOTE:

— m =2 = at least m — 1 = 1 value per node.
— m = 2 = at most 2m — 1 = 3 values per node.
— Median value is 2nd value.

— We will not describe insertion of tuple into heap file.

e Initially: Create (empty) root node:

root

e Insert ‘1’:

— Space available in root block.

root

e Insert ‘7’:

— Fits into root block
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— Insert to right of ‘1’ (in sort-order)

root

e [nsert ‘8’:

— Fits into root block
— Insert to right of ‘7’

root

e Insert ‘10’:

— Root node is full = must split root.

— Median element (‘7°) is bumped up one level (to new root).

— Split nodes are children (left and right) of median element.

— New element (‘10) is added in appropriate split node.

Step 1: Split node:

‘ insert at next level (parent of 1-7-8 node)

left pointer

7

right pointer
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Step 3: Insert median element (with its left and right pointers) at level
above.
= in this case, create new root.

This illustrates the general principle behind insertion:

— First, find the correct leaf for insertion.
= use in-order to navigate to correct leaf.

— Note: check equality within interior nodes.
= if found then insertion is a duplicate.

— If space is available, insert into leaf (maintaining sort order).

— Else, split leaf and ‘push up’ median element
= insert median element into old leaf’s parent.

— In pushing up median element, also move up left and right pointers.
— Add new item in left or right child (according to sort order).

— If parent is full, split parent etc, recursively.
e Insert ‘9’:

— Search for right leaf = ‘8-10" node.

— Space available = insert.

T, maintain sort order

1 8 9 10

e [nsert ‘3’:
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— Search for correct leaf = the ‘1’ node.

— Space available = insert.
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e [nsert ‘2’:

— Search for correct leaf = the ‘1’ node.

— Space available = insert.

e [nsert ‘5’:
— Search for correct leaf = the ‘1-2-3’ block.

— Block is full = split (median element is ‘2’).
— Add new element into correct child = the ‘3’ block:

N

1 3 5

— Insert ‘2’ into parent (the root, in this case):

e [nsert ‘4’:

— Find correct leaf = the ‘3-5’ node.

— Space available = insert.
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e Insert ‘6’
— Find correct leaf = the ‘3-4-5" node.
— Node full = split (median element is ‘4’)
— Add new element to correct child (the ‘5’ child, here):

3 5 6

— Insert ‘4’ into parent:

NOTE:

— The element ‘7" and everything to the right of it (including pointers)
are shifted to the right.

Y

— The (tree) pointer between ‘2’ and ‘7’ is overwritten by ‘4’ and its

two pointers.
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... to get
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e Insert ‘11’:

— Search for correct leaf = ‘8-9-10’ block.

— Block is full = split needed (median element is ‘9°).
— Add new element in correct child = the ‘10’ block:

8

— Insert ‘9’ into parent node (the ‘2-4-7” block)
= ‘2-4-7’ needs to be split (with median ‘4’)

10

11

= create new root with ‘4’.

— Final tree:

10

11
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e What is the complexity of insertion?

— Suppose height of tree is h.

— Need to search for correct leaf (in-order traversal)
= at most h blocks accessed for search.

— In the worst case, a split propagates to root
= h blocks accessed going back up.

— Thus, 2h old blocks read, A old blocks written, h new blocks written.
= 4h disk accesses (worst case)
= O(log,, n) for insert.

NOTE:

— In practice, some blocks are likely to remain in memory.

— Typically, m is large
= height is small.

— For example, suppose m = 100
= if h =4, 2m" 1 = 2,000, 000
= 2 million blocks is a lot of data!

— Access times are O(h).
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4.20

Implementing a B-Tree

e Implementation issues:

— How to store data and pointers in blocks?

— Designing algorithms for insertion and search.

e Recall: B-tree blocks contain

— key values (at most 2m — 1)

— data pointers (at most 2m — 1)

— tree pointers (at most 2m)

It is useful to store additional information:

— A boolean indicating whether the block is a leaf.

— The number of entries (key-values) in a block.

Note: If a block has k£ key values, then it has k£ + 1 tree pointers.

e If the degree m is known in advance, we can use a C-like struct for a

B-tree block with fields, e.g.,

struct btree_node {

int num_entries;
int leaf,

char value [KEYSIZE][2+M-1];

int blocknum [2*M-1];
int tuplenum [2xM-1];

int treep [2*M];
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M = degree

Number of entries

Leaf or interior node?

Values

Together, blocknum and
tuplenum constitute a datapoi
One additional treepointer



Now, typically, the system reads a block into memory and returns its
address. In C, a cast may be used to extract fields:

b = (btree_node *) Disk_Readblock (blocknum);
if (b->leaf) {
. etc

Casting will not be shown in the pseudocode that follows.

The following functions will be used to handle I/O in the pseudocode:

— Di1sk-READBLOCK (bnum)
— This function reads block bnum into memory and returns the
address.

— DI1SK-NEWBLOCK ()

— Creates a new block on disk and returns a block number.
— A separate DISK-READBLOCK is needed to read the block into
memory.

— DI1SK-WRITEBLOCK (bnum) — Writes block bnum to disk.

Example:

. ies=2
block b b\num_entrles

block# 3715
bleaf=0 —=7 0| 2 Jones Smith

__________________ ‘,"'E).treep[Z] =635

block b2 . -
Miro: .
ul [ Rand [ Riley 1 pocks eas
INDEX b2.datap[1] = (3499,3)
DATA FILE
3rd
tuple block#3499
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e Typical function specifications for creating, searching and inserting:

Creating a B-tree:

btree create (tuplesize, keysize, keyoffset)

— tuplesize is the length (in bytes) of the data tuple.
— keysize is the length of the key field.
— keyoffset is the offset (in bytes) of the key field.

— The function initializes the root block and stores (in private data
structures) the tuplesize etc.

— Most often, a file identifier is returned:
fd = btree_create (tuplesize, keysize, keyoffset)

to be used later in searching or insertion:
btree_search (fd, key)

Searching a B-tree:

tuple = btree_search (key)

— key is a particular key value (e.g., the character string ‘Smith’ for a
NAME field).

— The function typically returns the entire tuple (if found) or NULL.
= the function retrieves the tuple from the data file.

Inserting a tuple:

btree_insert (tuple)

— tuple is the tuple to be inserted.

— Often, such functions return the data block (of the heapfile) in which
the tuple was inserted.
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e Pseudocode for btree_create:
(File identifier has been left out of the pseudocode)

© 0N OotE Wi

Algorithm: BTREE-CREATE (tuplesize, keysize, keyoffset)

Input: sizes of tuple and key, offset of key within tuple.
Output: root block, written to disk.
1.

Store size and offset information;

Create heapfile;

Compute max_entries (or degree) in B-tree node;
root_blknum := DiSK-NEWBLOCK(); // Get a block number
root := DISK-READBLOCK (root_blknum); // Read it in
root—leaf := true;

root—num_entries := 0;

Di1SK-WRITEBLOCK (root_blknum);

return,;

e Pseudocode for btree_search:

Stk LN

Algorithm: BTREE-SEARCH (key)

Input: key value to search for.
Output: the corresponding tuple, if found, else null.
1.

T := BTREE-RECURSIVE-SEARCH (root_blknum, key);
// Here, T is a data pointer into the heapfile

if T" = null return null;

b := DiSk-READBLOCK (7.blocknum);

¢ := T .tuplenum;

return i-th tuple in b';
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Algorithm: BTREE-RECURSIVE-SEARCH (bnum, key)

Input: block number bnum and a key.
Output: datapointer if found, null otherwise.

1.

e Al

10.
11.
12.
13.
14.
15.

b := DISK-READBLOCK (bnum);

1 = 1

while ¢ <n and b —value[i] < key
1 = 1+ 1;

if b —value[i] = key
STACK-PUSH (bnum);
return b —datapli];
endif;
// Otherwise, not found; dig deeper
STACK-PUSH (bnum); // Save bnum for insert
if b —leaf = true // Can’t go down = not found
return null
if © < b —num entries // go left
return BTREE-RECURSIVE-SEARCH (b —treepli], key);
else // go right
return BTREE-RECURSIVE-SEARCH (b —treep[i + 1], key);
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e Pseudocode for btree_insert:

Algorithm: BTREE-INSERT (z)

Input: a tuple, z.
Output: Insertion of z in data file and key(z) in B-tree.

1. 2’ := BTREE-SEARCH (z.key);
2. if 2’ # null
3. print ‘Error: key exists’;
4. return;
5. endif
6. 7T := HEAPFILE-INSERT (z);
// T is a datapointer, (block#, tuple#)
7. bnum := STACK-POP();

/] After search, stack has block number of correct leaf
8. BTREE-RECURSIVE-INSERT (bnum, z.key, T, 0, 0);
9. return;
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Algorithm:  BTREE-RECURSIVE-INSERT (bnum, key, 7', leftblock,
rightblock)

Input: block bnum, a key, datapointer T, left and right treepointers
Output: Insertion of data and datapointer into block bnum.

1. b := Disk-READBLOCK (bnum);
2. if b —num _entries < max_entries
3 insert key, leftblock and rightblock into correct place in b;
4. Disk-WRITEBLOCK (bnum);
5) return;
6. endif;
// Otherwise, node needs to be split
7. median := (max_entries + 1) / 2;
8. median key := b —value[median]|;
9. median T := b —datap[median];
10. bnum2 := Disk-NEWBLOCK(); // New right block
11. b2 := DISK-READBLOCK (bnum?2);

// Including new item, we have max entries + 1 items;
12. keep items 1,...,(median-1) in current block, b;
13. place items (median+1),...,(max_entries+1) in b2;
14. Disk-WRITEBLOCK (bnum);
15. DISK-WRITEBLOCK (bnum?2);
// Now insert median (and pointers bnum, bnum?2) in parent
16. if bnum # root_blknum
17.  parent_blknum := STACK-POP();

18. BTREE-RECURSIVE-INSERT (parent_blknum, median_key, median_T,

bnum, bnum?2);
19. else
20. CREATE-NEW-ROOT (median key, median_T, bnum, bnum2);
21. return;
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Algorithm: CREATE-NEW-RoOT (key, T, leftblock, rightblock)

Input: a key, a datapointer, left and right block numbers.
Output: a new root block, written to disk.

1. root_blknum := DISK-NEWBLOCK();

2. root := DISK-READBLOCK (root_blknum);
3. root—num_entries := 1;

4.  root—value[l] := key;

5. root—datap[l] := T;

6. root—treep[l] := leftblock;

7. root—treep[2] := rightblock;

8. Disk-WRITEBLOCK (root_blknum);

9. return;
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4.21 Deletion in a B-Tree

e Deletion is somewhat more complicated than insertion. To see why,
consider:

— Suppose we want to delete ‘6’
= easy — simply delete ‘6’ from ‘5-6’ node:

— Suppose we want to delete ‘9’

« Cannot delete ‘9’ casually.

x A search for ‘11’ would cause problems
= problem is worse for large m.

7 ‘V pointer
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— Suppose we want to delete ‘2’
= need to have at least m — 1 elements
= node will underflow.

e Key ideas used in deletion:
— Rotation: when underflow occurs, try to borrow key values from
sibling via rotation.
— Merging: if rotation cannot be done, merge siblings.
— Replacement: when deleting a value from an interior node, replace
it with another key value.

e Rotation:

— Consider an example where m = 3
= must have at least m — 1 = 2 values per node.

66 || 79 || 83

-------------

64 || 65 67 1]168]]691]70]|] 72

— Deleting ‘64’ violates the lower limit.
— But, right sibling has enough values to re-distribute.
— Values are re-distributed via rotation (including the parent).

— Note: we cannot ignore parent value in rotation (since that would

violate in-order).

66 || 79 || 83

’ B e r L Tk R E P
5 L et T T L T
ks ~~.‘ -~..:’ -.._.:’
'

65 ]| 67 || 68 69 1|70 ]| 72

\\/\ these values violate in—order
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— Instead, parent value must be included in rotation.

pull down from parent

pull up value from sibling

65

66

67

83

.....

— NOTE: both data pointers and tree pointers need to be moved in a

rotation.

e Merging:

— Sometimes, you can’t borrow from a sibling because the sibling
doesn’t have enough:

66

79

83

98

64

65

67

68

— Here, rotation from right sibling would cause right sibling to under-

flow.

— Key idea: since both siblings are ‘borderline’, they both have m — 1

values

= together they have 2m — 2 values
= together with parent value they have 2m — 1 values

= can merge all of these into a single node.
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— Method: pull ‘66’ down and merge siblings:

merge 67 and 68

Shift
_
66 79 83 98
Pull 66
dojv/
65| 66 67 68 67 68
Result:
these elements got shifted left
79 1]1831]] 98
merged node
65 || 66 || 67 68

— But what if pulling down a value from the parent causes underflow

‘66’ was pulled down from parent node

at parent’s level?

= balance or merge at parent’s level ... and so on, recursively.

— Example: delete ‘64’ from this tree:

105

-l

66

112

118

64

65

67

68

Here,

* Deleting ‘64’ causes underflow in ‘64-65’ node.
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* Sibling is borderline
= pull down ‘66’ from parent
= causes underflow in parent node
= try to re-distribute among parent and parent’s sibling.

* Parent’s sibling is borderline
= must merge parent and parent’s sibling.

When we pull down ‘66, we get:

105]]131

-t

79 112|]118

65 || 66 |]|67]|]|68

131

79 | |105] 112} 118

65|66 || 67 || 68

NOTE: if ‘105’ was the only element in the root, we would have one less
level.

NOTE: In the above example (and some that follow), the entire tree is
not shown for lack of space.
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e Replacement:

— Deletion of an interior node value requires replacing the value.
— The value is replaced by the in-order predecessor.

— Finding the in-order predecessor requires a search all the way down
to the leaf level.

— Example (with m = 2): Delete ‘73’ from this B-tree

51 {] 73 || 85
55 || 61 || 66 79 || 81 || 83
64 67 || 69 [| 71 75 || 77

— The in-order predecessor of ‘73’ is the largest element in the left
subtree of ‘73’.
= rightmost element in left subtree.

— Note: an interior value always has a left subtree.
— Replace ‘73’ with ‘71’.

51 (] 71]] 85
55 (]| 61| 66 79 (| 81| 83
64 67 169 || 71 75 || 77

original ‘71’ still in place
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— Note: after replacement, in-order is maintained.
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— Finally, do a regular delete of ‘71’

51 (] 71]] 85
55 (]| 61 || 66 79 (| 81| 83
64 67 || 69 5| 77

— Note: in some cases, the final delete could recursively work its way
up to the root. But it does not use replacement and so must finally
end.

e At last we see why the underflow restriction is m — 1 (as opposed to
something higher)
= if the restriction were higher (such as 70% full), then how would we
merge two nodes that are 70% full?
(It can be done, but it’s harder).

e We will not cover delete any further. For additional details, see the
literature.
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4.22 B+-Trees: Introduction

e Recall the following about a B-Tree:
Index values occur all over the tree

= a range search or sorted scan can be quite expensive.

root

subtree

53

52

subtree

54

leaf scan

=

leaf

e A B+-tree overcomes this problem (at the cost of allowing duplicate

entries).

e Key ideas in a B+-tree:

— Similar structure to that of a B-tree.

— Distinguish between internal and leaf nodes.

— Leaf nodes contain all search keys inserted into tree.

— Leaf nodes are serially connected by a linked list in sorted order.

— Each [eaf node:

x has no tree pointers

« has only search keys and data pointers

x has linked list pointer
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— Each nternal node:

« has search keys
x has tree pointers

x has no data pointers
— Search keys in internal nodes are used only for navigation.
— Search keys in internal nodes are repeated in the leaves.
— Every search key does not occur as an internal value.

— Which search keys get to be in internal nodes as well?
= depends on what’s wrought about by insertions/deletions.

For example:

internal nodes

.........................................................................................................

e Constraints on node contents for a B+-tree of degree m:

— Each internal or leaf node must contain at least m — 1 keys.
— Each internal or leaf node can contain at most 2m — 1 keys.
— Each internal node can contain at most 2m pointers.

— Each internal node must contain one more pointer than the number
of keys.

— Each leaf node must contain as many data pointers as there are keys
in the node.
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NOTE:

— In a full node, the m-th value is the median or middle value.

— In practice, tree pointers can be smaller than data pointers
= internal and leaf nodes can have different degree
= usually internal nodes can pack more keys
= possibly fewer levels than a corresponding B-tree.

— For simplicity, this presentation will use the same degree for both.

— As with B-trees, the above definitions can be extended to trees with
even numbers of keys.
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4.23 Insertion in a B+-Tree

e Key ideas:

— Similar to a B-tree.

— Search for correct leaf using in-order search.

— Must insert in appropriate leaf.

— If leaf is full, split leaf and insert a copy of the median element at
the next level.

e We will learn insertion via an example:

— Consider the case m = 2.
— The key values are integers.

— Insert the following key values in order: 1,7,8,10,9,3,2,5,4,6,11

e Initially: Create (empty) leaf node:

L

e [nsert ‘1’:

— Space available = insert.

L

e [nsert ‘7’:

— Space available = insert (in sort-order).
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Ju=

e Insert ‘8’:

— Space available = insert (in sort-order).

1

e Insert ‘10’:

— Node is full = must split.
— Median element is ‘7’.

— Bump up a copy of median (‘7’) to next level.
— Split nodes are children (left and right) of median element.
— New element (‘10’) is added in appropriate split node.

Step 1: Split node:

RERTEL I A D2 [ () TSR =] 8
L

NOTE: ‘7’ remains in left child = search must use “<” (to reach ‘7’ in
leaf).
Step 2: Add new value (‘10’):
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T A R | = 8 |10
L

Step 3: Insert median element (with its left and right pointers) at level
above.
= in this case, create new root.

root

T A | - = 8 |10
L

As in a B-tree, the general principle behind insertion is now apparent:
— First, find the correct leaf for insertion.
= use in-order to navigate to correct leaf.

— Check if already present in leaf
= if so, then insertion is a duplicate = halt.

— If space is available, insert into leaf (maintaining sort order).

— Else, split leaf and ‘push up’ a copy of the median element
= insert median element into old leaf’s parent.

— Add new item in left or right child (according to sort order).

— In pushing up median element from a leaf, create left and right
pointers.

— In pushing up median element from an internal node, also move up
left and right pointers.

— If parent is full, split parent,..., etc, recursively.

e [nsert ‘9’:
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— Search for correct leaf = the ‘8-10’ node.

— Space available = insert.

root

195



e [nsert ‘3’:
— Search for correct leaf = the ‘1-7’ node.

— Space available = insert.

root
7

| 1 3 7 Pf--------- =| 8 9 10 __l_

e Insert ‘2’:

— Search for correct leaf = ‘1-3-7’ block.
— Node is full = split required (median is ‘3’):

insert at next level

a2 3 b=l7] | [t ~| 8 |9 |10
! 1

leaf level

— Insert ‘3’ into parent (the root, in this case):

3 7
. 5 .
i Bt 2 3 el 7 e =~ 8 9 10 __l_
leaf level =
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e [nsert ‘5’:

— Search for correct leaf = the ‘7’ node.

— Space available = insert.

w123 |}

5

10

1

leaf level

e Insert ‘4’:

— Search for correct leaf = the ‘5-7’ node.

— Space available = insert.

R | 2 3 -2

4

10

i

leaf level
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e [nsert ‘6’:

— Search for correct leaf = the ‘4-5-7’ node.

— Node is full = split (median is ‘57).

— Add new element to correct child (‘6-7" block):

— Insert ‘5’ into parent:

AT

el 1 2| 3 || 4

10

leaf level
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e Insert ‘11":
— Search for correct leaf = the ‘8-9-10" block.
— Block full = split (median is ‘9’).
— Add new element in correct child (the ‘10’ block):

— Insert ‘9’ into parent.

— Node full = split (Median is ‘5’).

— Insert ‘9’ in correct child = the ‘7" block.
— Create new root (‘5).

— Final tree:

= 10

11

o
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e NOTE:

— When a leaf gets split, a copy of the median gets pushed up to the
next level.

— The median itself stays in the left child (by convention).
= searching must use “<”.

— When an internal node gets split, the median itself gets pushed up.
e Searching a B+-tree is almost identical to searching a B-Tree, except:

— Use “<” when searching.

— Must traverse down to leaf to obtain data pointer.

e What was the whole point about a B+4-tree?
= range search is fast!

To search for search keys in the range 4-7:

— Locate the lower limit (‘4’) via search.

— Traverse linked list until you reach (‘77).
= optimal after lower limit is found.

e Complexity of B4-tree operations:
— Identical to B-tree: depends on tree-height.
— Tree height is O(log,, n).
— Search and insertion (and deletion) are O(log,, n).

— Range search costs O(k + log,, n) where k is the number of blocks
containing the desired range.

e Pseudocode: analogous to the pseudocode for the B-tree, the following
functions are defined:

— B+TREE-CREATE (tuplesize, keysize, keyoffset).
— B4+TREE-SEARCH (key).

— B4TREE-RECURSIVE-SEARCH (b, key).
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— B4TREE-INSERT (tuple).

— B+TREE-RECURSIVE-INSERT (b, key, T, leftblock, rightblock).

— B4+TREE-CREATE-NEW-ROOT (key, T, leftblock, rightblock).

Note that leaf-nodes will have next-pointers to link them.

© 0N otE W

Algorithm: B-+TREE-CREATE (tuplesize, keysize, keyoffset)

Input: sizes of tuple and key, offset of key within tuple.
Output: root block, written to disk.
1.

Store size and offset information;

Create heapfile;

Compute max_entries (or degree) in leaf and interior node;
root_blknum := DISK-NEWBLOCK();

root := DISK-READBLOCK (root_blknum);

root—leaf := true;

root—num_entries := 0;

D1sK-WRITEBLOCK (root_blknum);

return;
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Algorithm: B-+TREE-SEARCH (key)

Input: key value to search for.
Output: the corresponding tuple, if found, else null.
1. T := B+TREE-RECURSIVE-SEARCH (root_blknum, key);
// Here, T is a data pointer into the heapfile

2. if T = null return null,;

3. U := Disk-READBLOCK (T .blocknum);
4. 1 := T.tuplenum;

5.

return i-th tuple in b';
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Algorithm: B-+TREE-RECURSIVE-SEARCH (bnum, key)

Input: block number bnum and a key.
Output: datapointer if found, null otherwise.
1. b := DiSk-READBLOCK (bnum);
1 = 1
while ¢ <n and b —value[i] < key
1 = 1+ 1;
if b —leaf = true
if b —value[i] = key
STACK-PUSH (b);
return b —datapli];
else // Not found at leaf level

© 0N otE W

10. return null;

11. endif;

12. // Not a leaf = must search in correct subtree

13. STACK-PUSH (bnum); // Save bnum for insert

14. if ¢ < b —num_ entries // go left

15.  return B+TREE-RECURSIVE-SEARCH (b —treepli], key);
16. else // go right

17.  return B+TREE-RECURSIVE-SEARCH (b —treep[i + 1], key);
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Algorithm: B-+TREE-INSERT (z)

Input: a tuple, z.
Output: Insertion of z in data file and key(x) in B-tree.

1. 2’ := B4TREE-SEARCH (z.key);
2. if 2’ # null
3. print ‘Error: key exists’;
4. return;
5. endif
6. 7T := HEAPFILE-INSERT (z);
// T is a datapointer, (block#, tuple#)
7. bnum := STACK-POP();

// After search, stack has block number of correct leaf
8. B4TREE-RECURSIVE-INSERT (bnum, z.key, T, 0, 0);
9. return;
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Algorithm: B+ TREE-RECURSIVE-INSERT (bnum, key, T, left-
block, rightblock)

Input: block bnum, a key, datapointer T, left and right treepointers

Output: Insertion of data and datapointer into block bnum.

1.
2
3
4.
d.
6
7

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

25

26.

27.
28.
29.
30.

b := DISK-READBLOCK (bnum);
if b —leaf = true
if b.num_entries < max_entries
insert key, leftblock and rightblock into correct place in b;
DiSK-WRITEBLOCK (b);
return,;
endif;
// Else, we must split block
bnum?2 := DISK-NEWBLOCK(); // Get a new block number
b2 := DiSk-READBLOCK (bnum2) // Read it into memory
newblk.next := b —next; // Adjust linked list
b —next := newblk;
median := (max_ entries) / 2;
median key := b —value[median];
Keep items 1,...,median in current block, b;
Put items (median+1),...,max entries in new block bnum?2;
b2 —num entries := b —num entries - median,;
b —num _entries := median;
if key < median key // Key goes into left block
Put key in b in appropriate place and increment num_entries;
else // Key goes into the right block
Put key in b2 in appropriate place and increment num_entries;
DiSK-WRITEBLOCK (bnum);
D1SK-WRITEBLOCK (bnum?2);
// Next, insert the median value at the next level
if bnum # root_blknum
parent_blknum := STACK-POP();

B+TREE-RECURSIVE-INSERT (parent_blknum, median key, null,

bnum, bnum?2)
else
B+TREE—CREATE—21(}T5EW—ROOT (median key, bnum, bnum?2);
return,;
endif // of “if b —leaf=true”

continued ...




Algorithm: B-+TREE-RECURSIVE-INSERT ... continued

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.
41.

42

43.
44.
45.
46.
47.
48.

49.

50

51.

D2.
23.
54.

// If b is not a leaf, we’re inserting into an interior node
if b —»num_entries < max_interior_entries
Insert key in appropriate place and increment entries;
DiSK-WRITEBLOCK (bnum);

return;
endif;
// Otherwise, we need to split this interior node
bnum?2 := DISK-NEWBLOCK(); // Get a new block number
b2 := Disk-READBLOCK (bnum2); // Read it in
median := (max_entries) / 2;
median key := b —value[median];

Keep items 1,...,(median-1) in current block, b;
Put items (median41),...,max entries in b2;
Set num _entries for each block appropriately;
if key < median key // Put key in b
Put key in b in appropriate place and increment num_entries;
else
Put key in b2 in appropriate place and increment num_entries;
DiSK-WRITEBLOCK (bnum);
D1SK-WRITEBLOCK (bnum?2);
// Next, insert the median value at the next level
if bnum # root_blknum
parent_blknum := STACK-PoOP();
B+TREE-RECURSIVE-INSERT (parent_blknum, median key, null,
bnum, bnum?2)
else
B+TREE-CREATE-NEW-ROOT (median_key, bnum, bnum2);
return,;
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Note: the above presentation assumes that there is enough memory to
hold both the block b and the new block newblk. The code can be
modified to obviate this assumption.

Algorithm:  B4TREE-CREATE-NEW-RoOT (key, leftblock, right-
block)

Input: a key, a datapointer, left and right block numbers.
Output: a new root block, written to disk.

1. root_blknum := DISK-NEWBLOCK();

2. root := DISK-READBLOCK (root_blknum);
3. root—num_entries := 1;

4. root—value[l] := key;

5. root—treep[l] := leftblock;

6. root—treep[2] := rightblock;

7.  DISK-WRITEBLOCK (root_blknum);

8. return;
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4.24 Deletion in a B+-Tree

e Since some values appear twice (leaf and internal nodes), is deletion in
a B+-tree complex? Yes and no.

e Three types of deletion:
Lazy deletion:

— Delete only at leaf level.
— Mark corresponding internal node value as deleted (if one exists).

— Do not remove internal value
= it can still be used for navigation.

— Periodically rebuild tree and remove deleted internal values.
Very lazy deletion:

— Mark both internal and leaf values as deleted.

— Periodically rebuild tree and remove both deleted internal and leaf
values.

Full deletion:
— Remove both leaf and internal copies.
Lazy deletion methods:

— Easy to implement.
— Tree can become large.

— Have to be careful about re-insertions of deleted values (otherwise
duplicates might exist in internal nodes).

— Need to keep track for periodic re-building.

Full deletion is harder to implement, but is space efficient. Each delete
takes longer.
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4.25 Lazy Deletion in a B+-Tree

e Consider this example (degree m = 2):

Delete 10, 11, 5, 4, 2, 3, 8 from:

3
112 3|k] 4|5 6 «~10 |11 1
e Delete ‘10’:
— Search for ‘10’.
— ‘10’ is not found in an internal node = no marking needed.
— Direct delete does not cause underflow = delete.
5
3
1]l 23k 4] 5 ~| 6 11
L
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e Delete ‘11’:
— Search for ‘11°.

— ‘11’ does not occur as an internal value.

— Deletion from leaf causes underflow = try to borrow from sibling.

— To borrow, rotate from sibling

= when moving ‘9’ over, copy of ‘8’ is placed into parent:

L
e Delete ‘5’:

— Search for ‘5.
— ‘5’ occurs as internal value = mark internal value.
— Deleting ‘5’ from leaf does not cause underflow.

mark

internal S

value___

3

- 1 2 3 a 4 6 1
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o Delete ‘4’:

— Search for ‘4’.

— ‘4’ does not occur as an internal value.

— Deletion from leaf causes underflow = borrow from sibling.
— Rotate from sibling:
5*
2
o 1 2 e 3 6 2 9 __I_
o Delete ‘27:
— Search for ‘2.
— ‘2’ occurs as an internal value = mark ‘2’.
— Deletion from leaf does not cause overflow.
5*
2*
- 1 3 I 6 - 9 1
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o Delete ‘37:
— Search for ‘3’.

— ‘3’ does not occur as internal value.
— Deletion from leaf causes underflow = borrow from sibling

— Borrow from sibling not possible
= Merge needed.

— Pull-down from parent causes underflow at parent
= borrow from parent’s sibling:

5* 8

S EETE I FR | T B N I T O | Se— o
| ; 1

... not needed at leaf
(should be deleted)

— Marked values are not needed at leaf level (they have no data point-

ers)
= they should be deleted.

5* 8
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o Delete ‘®’:
— Search for ‘8’.

— ‘8’ occurs as an internal value = mark ‘8’.

— Deletion from leaf causes underflow = try borrowing.

— Borrow causes sibling underflow = pull down ‘8* from parent.
— Underflow at parent’s level = try borrowing at parent’s level.
— Borrow not possible at parent’s level = pull down ‘7’.

— Final tree:

5* 7
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4.26 Full Deletion in a B+-Tree

e Consider this example (degree m = 2):

Delete 10, 11, 5, 4, 2, 3, 8 from:

3
112 3|k] 4]5 6 «~10 |11 —
e Delete ‘10’:
— Search for ‘10’.
— ‘10’ does not occur as an internal value.
— Deletion from leaf does not cause underflow.
5
3
1]l 23k 4] 5 ~| 6 ~l 11 ]

214



e Delete ‘11’:
— Search for ‘11°.

— ‘11’ does not occur as an internal value.
— Deletion from leaf causes underflow = try to borrow from sibling.

— To borrow, rotate from sibling
= when moving ‘9’ over, copy of ‘8’ is placed into parent:
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Delete ‘5’:
— Search for ‘5.

— ‘5’ occurs as internal value = mark internal value.

— Deleting ‘5’ from leaf does not cause underflow.

mark 5
internal

ol 1] 2 3] 4 =~ 6| 7 = 8 = 9
L

— Replace internal value with copy of predecessor (rightmost leaf value
in left subtree).
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Delete ‘4’:
— Search for ‘4’.

— ‘4’ occurs as an internal value = mark it.

— Delete ‘4’ from leaf = need to rotate from sibling:

4*

.
i
!
P
id
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e Delete ‘27:
— Search for ‘2.

— ‘2’ occurs as an internal value = mark it.
— Deletion from leaf does not cause underflow.

— After leaf deletion, replace internal value by predecessor (‘1°):
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o Delete ‘37:

— Search for ‘3.

— ‘37 occurs as an internal value = mark it.

— Deletion from leaf causes underflow = try borrowing.
— Borrowing causes underflow in sibling = pull down ‘1°.

— Pulling down ‘1’ causes parental underflow = borrow at parent’s
level.

.
replace with
predecessor .
8
= B R I R | S— =6 |7 S SR— —
delete from leaf -
— Internal value of ‘1’ does not belong in leaf = delete it.
— Replace internal value of ‘3’ with predecessor (‘1’):
7
1 8
N ¥ "3,
411 | I e |7 [ s | | e 9
L
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o Delete ‘®’:
— Search for ‘8’.

— ‘8" occurs as an internal node = mark it.
— Deletion of ‘8’ causes underflow = try to borrow from sibling
— Borrowing from sibling causes underflow = pull down parent.

— Borrowing at parent’s level causes underflow = pull down ‘7’.

o

— Remove deleted internal value from leaf:
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4.27 B-Trees and B+-Trees: A Summary

e B-trees and B+4-trees:

— are versatile indexing methods, usually used instead of plain single
or multilevel indices;

— support search in O(log,, n) time where

m

degree of node
number of index blocks

n

— support dynamic insertion and deletion in time O(log,, n);
— are in-order trees with multiple key values in each tree node;

e B+-trees are usually favored over B-trees in practice.
= range search is faster in a B4-tree.

e Disadvantages?

— Worst-case, each node will be only 50% full
= twice the blocks needed for an ISAM index.

— However, it can be shown that under uniform accesses, block occu-
pancy is more than 65%.

— B*-tree: a variation of a B+-tree that forces a high occupancy (67%).
e Some remaining practical issues:
— Duplicate values:

*x Sometimes, we want to allow duplicate values.

x In a B+4-tree, this can be done by storing duplicate values in
additional leaf nodes

= during deletion, we must be careful to remove all duplicates.
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— Key compression:

* Sometimes, keys can be very long
= few records in each index node
= small m
= not very efficient.

« In many cases, it makes sense to use only a substring in the key
(e.g., a small prefix)
=> compression of key increases m
= more efficient.

* Need to be careful with duplicate substrings from different keys.
— Bulk loading:

« Often, a B+-tree is created on top of an existing heapfile.

« Naive approach to building B+-tree: scan heapfile and insert
items successively.

% Successive insertion can cause many nodes to have low occu-
pancy.
* Better to create initial B4-tree using a bulk loading algorithm.

* Some bulk loading algorithms build the tree bottom-up.
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e Example of bulk-loading (m = 2):
Create a B+4-tree from the keys 1,2,3,...,18.

e First, create the leaf-level nodes in order:

17| 18

m

e Next, create copies of last values in each block: leaf block: 3,...,18.

insert these values at higher levels

ol |

3 6 18
1]z |3 a|s lie [}oer 0 ~ 16 | 17 i18
These values are to be copied into higher levels.
e Values 3,6,9 form first block at next level
3 6 9
e Inserting 12 causes a split:
6
3 9 12
1 2|3 4 516 7 819 10] 11

e Other items are added similarly.
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4,28 Hash Indices: Introduction

e Recall key ideas in hashing;:

hash value

-----

______

record
00000 ;
00001 ;
— —= ——=
13 /
11001 —
block block block

11111

hash table

— A hashing function is applied to each record
= a mapping function from the bits in the record to integers
e.g, pick the first 5 bits in the record
= maps records to the integers 0,1, 2,...,31.

— Each integer is associated with a bucket: the integer is the bucket
number.
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— Initially, a block is assigned to each bucket
= as records get added to the bucket they are placed in the block.

— Later, when the first block assigned to a bucket gets filled up, addi-
tional blocks are used.

— The hash table itself is a (small) collection of blocks.

— Usually: try to pick hashing function so that records spread evenly
across buckets.

— Some buckets could have long overflow chains.

e Hashing can be used for indexing in two ways:

Separate index records:

— For each data record, create an index record.
— Index record: key and data pointer.

— Place data records in data file (heap file).

— Place index records in hashed file.

— Index records are smaller
= overflow chains may be short.

— Note: hash table itself occupies blocks.
No index records:

— Data records are themselves placed in a hashed file.

— Since data records are longer
= overflow chains may be long, if table is unbalanced.
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e Two major problems with simple hashing:

Non-uniformity:

— Distribution of data across buckets is not uniform.
— Possible explanation: poor choice of hash function.

— Also: data could be skewed.
Dynamic Growth:

— Data could grow arbitrarily.

— Fixed number of buckets could overestimate or underestimate actual
number of buckets needed.

— Problem with underestimation: long chains.
— Problem with overestimation: hash table unnecessarily big.

— To change number of buckets in fixed scheme
= all data must be re-hashed (complete re-organization).

e To solve non-uniformity problem:

Select hashing function carefully:

— Try to involve all contributing parts of the key, e.g.,
* Key: 40-char (240-bit) string
* Desired hash value: 16-bits (2!° buckets).
* Add all 2-byte (16-bit) pairs in key.
— Use special properties of numbers, e.g.,
* Suppose z is an irrational number.
* Let f(z) = fractional part of z.

* Then the collection of numbers f(z), f(2z), f(3z), ... is approxi-
mately uniformly distributed.

x Thus, pick an irrational x, multiply hash value k£ by = and use
(portion of) fractional part.
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e To solve dynamic growth problem:
Use a dynamic hashing method, e.g.,

1. Extendible hashing.

2. Linear hashing.
In both methods:

— Index and data file grow as insertions are made.
— Index and data file shrink with successive deletions.

— Number of bits in hash value changes with data size
= initially, use very few bits; later, use more bits.

— Lengths of bucket chains are controlled.
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4.29 Extendible Hashing

e Key ideas in extendible hashing:
— Initially, use a single hash bit
= hash value is 0 or 1.
— No overflow blocks are used.
— When a block overflows, use additional bits to resolve overflow

— Sometimes, the additional bit enlarges the hash table
= the hash table is doubled.

— Sometimes, only new blocks are created.
e Example:

— Consider a key field consisting of an integer.

— Use 6 bits for integer.

— Most significant bit is first hash value.

— Assume 3 data records fit into block.

— No index records (data tuples are placed in hashtable blocks).
Insert the following: 16, 49, 51, 21, 23, 54, 8, 44, 27, 11, 40, 25, 4, 35,

31, 9, 39, 28.
In binary, these values are:

010000 (16), 110001 (49), 110011 (51), 010101 (21), 010111 (23),
110110 (54), 001000 (8), 101100 (44), 011011 (27), 001011 (11),
101000 (40), 011001 (25), 000100 (4), 100011 (35), 011111 (31),
001001 (9), 100111 (39), 011100 (28)

228



e Initially:
— Only one hash bit.

— One data block. hash table
— Both pointers point to same
block. 1

e Insert 010000 (16)

— First bit 0.
= Find 0 block.

hash table
— Space available of -
= Insert into block 1
NOTE:
Index

— Data blocks contain (full) File
data records.

— Index blocks contain hash
table entries.

e Insert 110001 (49)

— First bit is 1. hash table
= Find 1-block. 0
— Space available. 1

= Insert into block.

e Insert 110011 (51)

— First bit is 1. hash table
= Find 1-block. 0
— Space available. 1

= Insert into block.
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key field
AN 010000 | 16
4 .. I /_A
Data N .
File remainder
of tuple
010000 16
110001 49’
010000 16
110001 49
110011 51




e Insert 010101 (21)
— First bit is 0.

= Find 0-block.

— Block full.
= Split block.

— Distribute items.

e Insert 010111 (23)
— First bit is 0.

= Find 0-block.

— Space available.
= Insert item.

hash table

0

1

hash table

0

1
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110001
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e Insert 110110 (54)

— First bit is 1.
= Find 1-block.

— Space available.
= Insert item.

e Insert 001000 (8)

— First bit is 0.
= Find 0-block.

— Block full.

— Block is not shared.
= Increase hash bits.

— Double hash table.
— Split block.

— Distribute items.

hash table

0
1

first hash bit "

e
00
01
10
11
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BRSNS

2nd hash bit

010000

010101

010111

110001

110011

110110

001000

010000

010101

010111

110001

110011

110110

16
21
23

49
51
54



e NOTE:

— Suppose we had inserted 011000 (24) instead of 8.

= 2 bits are not enough to distinguish
= further splitting is required:

Insert 011000 (24)

Need to examine first two bits

001000 8
000
001 010000 16
010 [ 010101 21
011 [ 3| 010111 23
100 " [ o11000 34
101
110
3
111
“:.t
i 110001 49
110011 51
1| 110110 54
depth=1

— To identify the hash-bit level, a depth identifier is usually associated
with each block.

— The depth-id is used to decide if hash table needs doubling.

— If depth-id is less than current hash-length, we only need to split
the block (Table does not need doubling).

— Later examples will not include block-depth in illustrations.
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e (Previous example, continued):
Insert 101100 (44)

— Hash bits are 10.
= Find 10-block.

— Block full.

— Block depth is 1.
= Split block.

— Distribute items.

00
01
10
11
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101100

110001

110011
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e Insert 011011 (27)

— Hash bits are 01.
= Find 01-block.

— Block full.
— Block depth is 2.

= Double hash table.

= # hash bits = 3.
— Split block.

— Distribute items.

000
001
010
011
100
101
110
111
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001000

010000

010101

010111

011011

101100

110001

110011

110110

44

49
51
54



e Insert 001011 (11)
— Hash bits are 001.

= Find 001-block.

— Space available.
= Insert item.

000
001
010
011
100
101
110
111
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001000

001011

010000

010101

010111

011011

101100

110001

110011

110110

44

49
51
54



e Similarly, (it so happens) there is space for the next 5 inserts: 101000
(40), 011001 (25), 000100 (4), 100011 (35), 011111 (31).

Insert +| 001000 8
101000 (40), Xfé 001011 11
011001 (25), 000100 A
000100 (4), 282 : [ 010000 16
100011 (35), o0 [ 010101 21
011111 (31). o11 010111 23
100 [ | = [ 011011 27
101 :‘.x 011011 250
110 [ 011111 3
—+. | 101100 44
101000 407
100011 350
EXY
110001 49
110011 51
110110 54
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e Insert 001001 (9)
— Hash bits are 001.

= Retrive 001-block.

— Block is full.

— Block depth is 2.
= split block.

000
001
010
011
100
101
110
111
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RX

000100

001000

001011

001001

010000

010101

010111

011011

011011

011111

101100

101000

100011

110001

110011

110110

27
25
31

44
40
35

49
51
54



e Insert 100111 (39)
— Hash bits are 100.

= Retrive 100-block.

— Block is full.

— Block depth is 2.
= split block.

000
001
010
011
100
101
110
111
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000100

001000

001011

001001

010000

010101

010111

011011

011011

011111

100011

100111

101100

101000

110001

110011

110110

11

16
21
23

49
51
54



e Insert 011100 (28)
— Hash bits are 011.

= Retrive 011-block.

— Block is full.
— Block depth is 3.

= double hash table.

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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000100

001000

001011

001001

010000

010101

010111

011011

011011

011111

011100

100011

100111

101100

101000

110001

110011

110110

11

16
21
23

39

44
40

49
51
54



e NOTE:
— If directory (hash table) doubling occurs too often
= slow expansion by allowing more overflow blocks in each bucket.

— When expansion occurs, only directory data is moved.
e Problems with extendible hashing:

— A directory (hash table) is needed.

— When directory is doubled
= index data is moved between blocks
= major overhead for large tables.

e Implementation of extendible hashing: we will use an interface identical
to the B-tree interface:

— EXHASH-CREATE (tuplesize, keysize, keyoffset)
— Creates a hashfile and initializes the directory.

— EXHASH-INSERT (tuple)
— Inserts a tuple into the hashfile.
— Note: hashfile will contain whole tuples as opposed to only keys.

— EXHASH-SEARCH (key)
— Returns a tuple of key is found, NULL otherwise.

In addition, functions will be needed for splitting a block and doubling
the directory.

e Before presenting the pseudocode, it will help to review some ideas and
also look at some finer details:

— Recall the concept of depth:

240



3-bit hashvalue TI Local depth=1
3_|Globa| V use 1 bit
000 ] / T| Local depth=3
001 7
010 , use 3 bits
011 / T|
100 // |
101 — use 3 bits
110 ~\ T|
111 +— T
use 2 bits
Hashtable
x How many directory entries point to a data block?
Answer: 2(Global_depth - Local_depth)-
x Or, 2671 if we use G for global depth and L for a block’s local
depth.

* Another way of understanding local depth: the number of hash-
bits you need to examine to distinguish entries in the block from
entries in other blocks.

* When a block is split, its (local) depth increases:

3-bit hashvalue 3-bit hashvalue
3 G=3 3
1|L=1 2
000 ~ 000 ~
T~ T~
001 T 001 T
010 /7 010
011 1 Number of pointers 011 \\ 2
_ o Gt \
- 5 3-1
Split . Number of pointers
- 9 G-L
-5 3-2

— We will use hashtable and directory interchangeably.

— Two ways of implementing a directory:
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(Recall: directory is itself stored on disk)

1.

Linked list of blocks:

Hashtable (directory)

T Data block
101 1
Linked list of directory
blocks

x Given hashvalue, compute which block contains entry, then
get directory block.

x After directory block is obtained, find appropriate entry and
get data block.

* Advantages: Simple, directory is self-contained.

«x Disadvantages: Long list traversal may be needed for single
data searches.
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2. 2-level directory:

Hashtable (directory)

Block 71

B

Data blocks
lock 217

lock 983

lock 155

—
/B

lock 68

l:B

00'(')‘( 217
001 217 -
010 217
71~
Block 83
8 011 217
35, 1000 [ 983 A
101 155
... Block 35
110N\ 68
2nd level
directory 111 68 ]
7th entry

x 1st-level contains pointers to data blocks.
x 2nd-level contains pointers to 1st-level blocks.

*x Fxample: consider hashvalue = 110:
- hashvalue 110 = 641 = Tth entry.

- Since there are 3 entries per dir-block
= 7th entry is in ]_%] = 3rd dir-block.
- Now look up 3rd entry in 2nd-level directory

= block # 35.
- Fetch block # 35 into memory.

- Compute offset (of hashvalue 110) within this block
= 1+ 6 mod 3 = 1st entry in block

= pointer to block 68.
- Finally, fetch data block 68.

* Advantages: Computing offsets is faster than list-traversal.
x If number of entries is a power-of-2, offsets can be computed

using bit-shifts (very fast).

* Disadvantages: Extra level needed.
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* Consider disadvantage:

- Example: 5 million tuples, blocksize=1K, 4 bytes/entry

- 5 million tuples and ~ 10? blocksize
= ~ 5 x 105/10% = 5000 data blocks
- Dir entry needs 4 bytes
= 10%/4 = 250 entries per block
= 5000/250 = 20 directory blocks
= only 20 2nd-level entries

= 1 block is sufficient!
(Thus, 2nd-level blocks can be kept in main memory).

— We will use the 2-level approach and also make a simplifying as-
sumption: the number of entries in a dir-block is a power-of-2.
e.g., block size = 96, entry size = 4 bytes

= 24 possible entries
= but use only 16 = largest power-of-2 less than 24.

— For example (2 entries per block):

Hashtable (directory) Data blocks
Block 217
00, [ 217 F+—-»
01 217 /7'
010 217 A Block 983
___________ -
------- 011 217 /
e 100 983 Block 155
1 Sy
. 101 155 | —
116 N
68 \Block 68
111 68 —

Reason for assumption: doubling the directory becomes easier to
describe
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= one additional block needed for each dir-block.

— Doubling the directory:

« Consider splitting block 155 above
= directory must be doubled.

x Two steps in doubling;:
1. Directly double the directory blocks.
2. Modify 2nd-level appropriately.

217

217

217

217

[ 983 ]~

-1 155

68

68

\:: ﬁ
1., Doubling the

~.directory

IR
IR
IR
W
\\\\\\\
v
IR
A

— Redistributing entries in a split block:

1111

217

217

217

217

217

217

217

217

983

983 :

155

< 155F

68

68

68

68

AN

« Entries are redistributed by considering one additional bit.

— Splitting and doubling are independent of each other
= sometimes a split does not need doubling the directory

e Finally, we present the pseudocode.
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Algorithm: EXHASH-CREATE (tuplesize, keysize, keyoffset)

Input: sizes of tuple and key, offset of key within tuple.
Output: 1st and 2nd level dir blocks, data block written to disk.
1. Store size and offset information;
2. Compute max _data_entries; // Max in a data block
3. Compute max_dir_entries; // Max in a dir block
// Create first data block, for hashbits 0 and 1
blknum := DISK-NEWBLOCK();
b := DISK-READBLOCK (blknum);
b —num _entries := 0;
b —depth := 1; // Local depth set to 1 (one bit)
Di1SK-WRITEBLOCK (blknum);
// Now create first directory block
9. dir_blknum := DISKk-NEWBLOCK();
10. d := Disk-READBLOCK (dir_blknum);
11. d —num entries := 2; // Initially, pointers to 0,1 blocks
12. d —Dblocklist[1] := blknum,;
13. d —Dblocklist[2] := blknum; // Both point to data block
14. Disk-WRITEBLOCK (dir_blknum);
// Now create 2nd level block

e

15. SecL_blknum := DiSK-NEWBLOCK();
16. s := DIsk-READBLOCK (SecL_blknum);
17. s —num_entries := 1;

18. s —entry[l] := dir_blknum;

19. Disk-WRITEBLOCK (SecL_blknum);
// Set Global depth

20. G = 1,

21. return;
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Algorithm: EXHASH-SEARCH (key)

Input: key value to search for.

Output: corresponding tuple if found, null otherwise.

© 00N ootk

— = =
N = O

// Compute hashvalue based on G bits.
h := HASH-VALUE (key, G);
dir_blknum := Compute which block h lies in (use 2nd level);
offset := Compute offset within the dir block;
d := DISK-READBLOCK (dir_blknum);
blknum := d —blocklist[offset] // block number of datablock
b := Disk-READBLOCK (blknum);
for i := 1 to b —»num_entries
Compare key with ¢-th tuple in block b;
if found return tuple;

. endfor;

STACK-PUSH (blknum); // To be retrieved elsewhere

. return null; // Not found
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Algorithm: EXHASH-INSERT (z)

Input: tuple z to be inserted.
Output: insertion of tuple in hashfile.

1
2
3.
4

13.
14.
15.
16.
17.
18.
19.

// First check to see if key already exists in hashfile

if EXHASH-SEARCH (z.key) # null;
print ‘Error: key exists’;
return,;

endif;

// Otherwise, retrieve data block from stack (where search ended)

blknum := STACK-POP ();

b := DiSk-READBLOCK (blknum);

if b -num entries < max_data_entries
d —num entries := d —num entries+1 //Space available
d —data[d —num_entries] = ;
Disk-WRITEBLOCK (blknum);
return;

endif;

// Otherwise a split is needed

if G # b —depth // No doubling needed now
RECURSIVE-SPLIT-INSERT (z);

else // Doubling needed since all bits are being used
DOUBLE-DIRECTORY ();
RECURSIVE-SPLIT-INSERT (z);

endif;

return,;
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Algorithm: DOUBLE-DIRECTORY ()

Input: none.
Output: a new directory, doubled in size.
1. for i := 1 to num_dir_blocks
dnum := Get block number of i-th dir block;
d := DISK-READBLOCK (dnum);
dnum2 := Disk-NEWBLOCK (); // For each doubling
d2 := DISK-READBLOCK (dnum2);
Double bottom half of d into d2;
Double upper half of d into d;
D1sK-WRITEBLOCK (dnum);
: DiSK-WRITEBLOCK (dnum?2);
10. endfor;
11. G := G + 1; // Increment global depth
12. return;

© 0N Ot W

The Split-and-insert algorithm is the most complicated. Before present-
ing the pseudocode, we will present a useful function:
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Algorithm: SET-DIRECTORY-ENTRY (hashval, data_blknum)

Input: a hashvalue and a blocknumber of a data block.

Output: The dir entry corresponding to the hashvalue is set to data_blknum.
// First, find out which dir block and offset

dir_blknum := Compute which block hashval lies in;

offset := Compute offset within the dir block;

// Now set the value

d := DISK-READBLOCK (dir_blknum);

d —blocklist|offset] := data_blknum;

Disk-WRITEBLOCK (dir_blknum);

return,;

N Ot W

Note that when a split occurs, a bunch of identical pointers need to be
split up into two groups:

First pointer
to data block "~ — old block
Middle =& . —_—
Last pointer new block
to data block » »
-
Split data block

We need to compute the First and Last dir entries that will be affected,
as well as the Middle entry (the first entry that will point to the new

block).
= we need block numbers and offsets for these special dir entries.

Finally, the code for Recursive-Split-Insert:
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Algorithm: RECURSIVE-SPLIT-INSERT (z)

Input: A tuple =z.
Output: Insertion of tuple into hashfile.

1.

S Otk LN

10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.
21.
22.

// First, recompute hashvalue, since G might have changed
h := HASH-VALUE (z.key, G);
// Next, compute data block and hashvalues Middle, Last
blknum := Find data block corresponding to h;
b := DISK-READBLOCK (blknum);
First := b —depth * 2(¢ - b—>depth);
Last := First + 2@~ b—>depth);
Middle := First + 2(¢ - b—>depth)—1;
// Get a new block and reset half the dir entries
bnum2 := Disk-NEWBLOCK ();
// Make all entries from Middle to Last point to new block
for h2 := Middle to Last
SET-DIRECTORY-ENTRY (h2, bnum?2);
b := DiSsk-READBLOCK (blknum);
b2 := DIsSk-READBLOCK (bnum2);
Distribute the tuples among the two data blocks;
Set num_entries appropriately in each data block;
// Now insert the new tuple in the right block
if h < Middle // Try to place in old block
if b -num_entries < max_data_entries
Insert = in b, increment b —num_entries;
else if b —depth # G // Regular split
RECURSIVE-SPLIT-INSERT (z);
else // Directory doubling needed
DOUBLE-DIRECTORY ();
RECURSIVE-SPLIT-INSERT (z);
endif;

continued...
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Algorithm: RECURSIVE-SPLIT-INSERT ... continued

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

else // Try to place in new block
if b2 —num entries < max_data_entries
Insert = in b, increment b —num_entries;
else if b2 —depth # G // Regular split
RECURSIVE-SPLIT-INSERT (z);
else // Directory doubling needed
DOUBLE-DIRECTORY ();
RECURSIVE-SPLIT-INSERT (z);
endif;
endif;
return;
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4.30 Linear Hashing

e Key ideas in linear hashing:

— Avoid using a directory altogether.
= faster and avoids copying overhead during expansion.

— Tradeoffs:

« Needs contiguous allocation of blocks, e.g., block numbers 550
to 3010.

« Long overflow chains are possible in pathological cases.

— Let h; denote the hashing function that uses bits 0,...,2 — 1.
= e.g., hy uses b bits.

— At any given time, two successive functions are in use, e.g., hy and

hs.
— Start with two empty data blocks (0 and 1).
— Start with Ay and hq as a pair of hash functions.
— Need two block pointers: Current and Last.
— Initially, Current = 0, Last = 1.
— When a block overflows:

x We do not necessarily split that block.
x Instead, we split the Current block.
x Current is incremented.

« This way, blocks get split in turn, even if a split is triggered by
another block overflowing.

x Use an overflow block for the block that overflows. (Does not
have to be contiguous).
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— When Current = Last and a split occurs:
* Shift hash functions up by one (from h;, hit1 to hit1, hit2).
x Last := largest h; value.
— When searching, use h;,1 for blocks numbered before Current. Use
h; otherwise.

e FExample:

— We will assume the contiguous blocks start at 0. (For the general
case, simply add offset).

— Consider example used in extendible hashing with one difference:
first hash-bit is least significant bit.

— 6-bit integers.
— Assume 3 data records per block.

— No index records.
Insert the following: 16, 49, 51, 21, 23, 54, 8, 44, 27, 11, 40, 25, 4, 35,
31, 9, 39, 28.
In binary, these values are:

010000 (16), 110001 (49), 110011 (51), 010101 (21), 010111 (23),
110110 (54), 001000 (8), 101100 (44), 011011 (27), 001011 (11),
101000 (40), 011001 (25), 000100 (4), 100011 (35), 011111 (31),
001001 (9), 100111 (39), 011100 (28)
e Initially:
— Two empty blocks, 0
with block numbers 0 )
Current -7
and 1.
— Use functions hy and
1
hy.
— Current := 0. Last -
— Last := 1.
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e Insert 010000 (16):
— Apply ho to 010000.

- ho(OlOOOO) =0 (IOW— Current ---==4

est order bit).
= Retrieve block 0.

— Block 0 > Current
= no need to use h;y.

— Space available.
= Insert item.

o Insert 110001 (49):
— Apply hg to 110001
— ho(110001) = 1 (low-
est order bit).
= Retrieve block 1.

— Block 1 > Current
= no need to use h;.

— Space available.
= Insert item.

e Insert 110011 (51):
— Apply hg to 110011:

— ho(110011) = 1.
= Retrieve block 1.

— Block 1 > Current
= no need to use h;.

— Space available.
= Insert item.

0 010000 16

1
Last -------1

0 010000 16
Current ---7

1 110001 49
Last -------5

0 010000 16
Current ---

1 110001 49
Last - 110011 5L

256



e Insert 010101 (21):

— Apply hg to 010101.

0 010000 16
— ho(010101) = 1. Current -1
= Retrieve block 1.
— Block 1 > Current 1 110001 49
= no need to use h;. Last -] 110011 51
— Space available. 010101 21
= Insert item.
e Insert 010111 (23):
— Apply hg to 010111. 0 oaes 16
— ho(010111) = 1. Current -+
= Retrieve block 1.
— Block 1 > Current 1 110001 49 010111 230
= no need touse hy. | . 110011 51
— Block full 010101 21
= Create overflow i
block.
— Split Current block. 00 010000 16
— Increment Current. gftcskpmat
01 110001 49 010111 23
Current ---- 110011 51
Last ------- 010101 21
10 -
split block
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e Insert 010100 (20):
— Apply hy to 010100.

00 010000 16
— ho(010100) = 0. 010100 207
— Block 0 < Current
= must use hj. 01 110001 49 010111
_ hl (010100) = 00. Current ---=+ 110011 51
= Retrieve block 00. Last - = 010101 21 _
— Space available. 10
= Insert item.
e Insert 110110 (54):
— Apply hg to 110110. 00 ) 16
— ho(110110) = 0. 010100 20
— Block 0 < Current
= must use hj. 01 110001 49 010111
_ h1(110110) = 10. Current ---==+ 110011 51
= Retrieve block 10. Last - = 010101 21
— Space available. 10 [ 110110 54
= Insert item.
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e Insert 011000 (24):
— Apply hy to 011000.

00 010000 16
— ho(011000) = 0. 010100 20
— Block 0 < Current 011000 24>
= must use hj. 01 110001 49 010111
— h1(011000) = 00. Current -~={ 110011 51
— Retrieve block 00. Last - 010101 21 _
10 110110 54

— Space available.
= Insert item.
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e Insert 101100 (44):
— Apply hg to 101100.
— ho(101100) = 0.
— Block 0 < Current

= must use hj.
— hy1(101100) = 00.
= Retrieve block 00.

— Block full =
1. Create overflow
block (for block
00).
2. Split Current
block (block 01).
3. Distribute

items among split
blocks (using hq).

— Clurrent = Last =

1. Last := largest
hi value.
= Last := 11.
2. Current = 00
(first block).

3. Use functions
hl, h2 Nnow.

00 010000 16 101100
Current ] 010100 20
011000 24
01 110001 49
010101 21
10 110110 54
11 110011 51
010111 23

..........
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e Insert 011011 (27):

— Functions to use:

h17h2-
— Apply hy to 011011.
— hy(011011) = 11.

— Block 11 > Current
= no need to use hy.
= Retrieve block 11.

— Space available.
= Insert item.

Current -~

010000

010100

011000

01

110001

010101

10

110110

11

110011

010111

----------

011011
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e Insert 001011 (11):
— Apply hy to 001011.
~ h1(001011) = 11.

— Block 11 > Current
= no need to use hs.
= Retrieve block 11.

— Block full =

1. Create overflow
block (for block
11).

2. Split Current
block (block 00).

3. Distribute
items among split
blocks (using hs).

— Increment Current.

000 010000 16
011000 24
001 110001 49
010101 21
Current ----=1
010 110110 54
011 110011 51 001011
010111 23
Last - 011011 27
100 010100 20
101100 44
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e Insert 101000 (40):

— Apply hy to 101000.
— h1(101000) = 00.

— Block 00 < Current
= must use hs.

~ h2(101000) = 000.

= Retrieve
000.

— Space available.
= Insert item.

000 010000
011000

101000

001 110001
010101

block Current -

010 110110

011 110011
010111

Last - 51T011
100 010100
101100
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e Similarly (it so happens), space is available for the next 4 items:

Insert
011001 25),

(
000100 (4),
100011 (35),
011111 (31)

000 010000 16
011000 24
101000 40
001 110001 49
010101 21
Current --+{ 011001 257
010 110110 54
011 110011 51 001011
010111 23 100011
Last - 011011 27 011111
100 010100 20
101100 44
000100 4
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e Insert 001001 (9):
— Apply hy to 001001.
— hy(001001) = 01.

— Block 01 > Current
= don’t use hs.
= Retrieve block 01
(block 001).

— Block full =
1. Create overflow
block (for block
001).
2. Split Current
block (block 001).

3. Distribute
items among split
blocks (using hs).

— Note: overflow and
split can be done to-
gether.

— Increment Current.

000

010000

011000

101000

001

110001

011001

001001

010

110110

Current ---4=

011

110011

010111

[T

011011

010100

101100

000100

101

010101
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e Insert 100111 (39):
— Apply hy to 100111.
— hy(100111) = 11.

— Block 11 > Current
= don’t use hs.
= Retrieve block 11
(block 011).

— Block full =

1. Create overflow
block (for block
011).

2. Split Current
block (block 010).

3. Distribute
items among split
blocks (using hs).

— Note: block 010 is
empty after distribu-
tion.

— Increment Current.

000 010000 16
011000 24
101000 40
001 110001 49
011001 25
001001 9
010 empty block
011 110011 51 001011
Current ---= 010111 23 100011
Last -------= 011011 27 011111
100 010100 207 e
101100 44 100111
000100 4
101 010101 21 overflow block for
block 011
110 110110 54
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e Insert 011100 (28):
— Apply hy to 011100.
— h1(011100) = 00.
— Block 00 < Current
= must use hs.

— hy(011100) = 100.
= Retrieve block
100.
— Block full =
1. Create overflow
block (for block
100).
2. Split Current
block (block 011).

3. Distribute
items among split
blocks (using hs).

— Clurrent = Last =

1. Last := largest
ho value.
= Last := 111.

2. Current := 000
(first block).

3. Use functions
hz, h3 now.

e Implementation of linear hashing: we will use an interface identical to

the B-tree interface:

— LINHASH-CREATE (tuplesize, keysize, keyoffset)

000 010000 16
011000 24
Current ----= 101000 40
001 110001 49
011001 25
001001 9
010
011 110011 51 100011
011011 27
001011 11
100 010100 20 011100
101100 44
000100 4
101 010101 21
110 110110 54
111 010111 23
011111 31
Last - 100111 39
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— Creates a hashfile and initializes the directory.

— LINHASH-INSERT (tuple)
— Inserts a tuple into the hashfile.
— Note: hashfile will contain whole tuples as opposed to only keys.

— LINHASH-SEARCH (key)
— Returns a tuple of key is found, NULL otherwise.
In addition, functions will be needed for overflow and splitting.

We will assume that DISK-ALLOCATE-CONTIGUOUS-BLOCKS allocates
a large group contiguous blocks on disk and that successive calls to
DiSK-GET-CONTIGUOUS-BLOCK return consecutive block numbers.

Each block b will contain the following local-to-the-block fields:

— b —num _entries: the number of tuples currently in the block.

— b —next: a block number of the next block in the chain.
(b —next = 0 if no chain exists.)
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Algorithm: LiNHASH-CREATE (tuplesize, keysize, keyoffset)

Input: size of tuple and key, offset of key within tuple.
Output: First and Last data blocks, written to disk.

1. Store size and offset information;

Compute max_entries;

3. DISK-ALLOCATE-CONTIGUOUS-BLOCKS ();

4.  First := DIsk-GET-CONTIGUOUS-BLOCK ();

5. Last := DISK-GET-CONTIGUOUS-BLOCK ();

6. Current := 0;

7. b := Disk-READBLOCK (First);

8. b —num_entries := 0;

9. b —next := 0;

10. Disk-WRITEBLOCK (First);

11. b := Disk-READBLOCK (Last);

12. b —»num_entries := 0;

13. b —next := 0;

14. Disk-WRITEBLOCK (Last);

15. I = 0; // Start with h] = h().

16. return;
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Algorithm: LINHASH-SEARCH (key)

Input: search key.
Output: tuple, if found.

1. hashval := h; (key);

if hashval < Current // Use second hash function

3 hashval := hyyy (key);

4. bnum := First + hashval;

5. b := DISK-READBLOCK (bnum);

6. for: := 1to b —num entries

7 Compare key with i-th tuple in block b;

8 if found

9. return tuple;
10. endfor;
11. if b —next # 0 // search rest of chain, if any
12.  return LINHASH-RECURSIVE-SEARCH (key, b —next);
13. return null;
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Algorithm: LINHASH-RECURSIVE-SEARCH (key, blocknum)

Input: search key, start block number.
Output: tuple if found.

1.

2
3
4
d.
6.
7
8
9

b := DiSk-READBLOCK (blocknum);
for i := 1 to b —num_entries

Compare key with ¢-th tuple in block b;

if found

return tuple;

endfor;
if b —next # 0 // search rest of chain, if any

return LINHASH-RECURSIVE-SEARCH (key, b —next);
return null;
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Algorithm: LINHASH-INSERT (tuple)

Input: tuple to be inserted.
Output: insertion of the tuple into the hash file.

1.

© 0N otE W

e e
O O W= O

hashval := h; (key);
if hashval < Current
hashval := hyyy (key);
bnum := First 4+ hashval;
b := DISK-READBLOCK (bnum);
if b —num_entries < max_entries
b —num _entries := b —num entries + 1;
Insert tuple into block b;
DiSK-WRITEBLOCK (bnum);
else if b —next = 0 // Need to create a chain
LINHASH-CREATE-OVERFLOW (bnum, tuple);
LINHASH-SPLIT-CURRENT (); // Must split
else // Chain exists; split only if overflow occurs.
LINHASH-RECURSIVE-OVERFLOW (b —next, tuple);
endif;
return;
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Algorithm: LINHASH-CREATE-OVERFLOW (blknum, tuple)

Input: block number to chain from, tuple to be inserted.
Output: insertion of the tuple into the hash file.

1.

e S Al

b := DiSk-READBLOCK (blknum);

newblk := b —next := DISK-NEWBLOCK ();
DiSK-WRITEBLOCK (blknum);

b := DiSK-READBLOCK (newblk);

b —num_entries := 1,

b —next := 0;

Insert tuple into b;

Disk-WRITEBLOCK (newblk);
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Algorithm: LINHASH-RECURSIVE-OVERFLOW (blknum, tuple)

Input: blknum where tuple is to be inserted.
Output: insertion of the tuple into the hash file.

1.

2
3
4
5
6.
7
8
9

10.
11.
12.
13.
14.

b := DiSk-READBLOCK (blknum);
if b —num_entries = max_entries
if b —next # 0
LINHASH-RECURSIVE-OVERFLOW (b —next, tuple);
else
LINHASH-CREATE-OVERFLOW (blknum, tuple);
LINHASH-SPLIT-CURRENT ();
endif;
else
b —num_entries := b —num_entries + 1;
Insert tuple into block b;
Disk-WRITEBLOCK (blknum);
endif;
return;
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Algorithm: LINHASH-SPLIT-CURRENT ()

Input: none.
Output: Split the block pointed by Current.
1. blk := First + Current;
b := DIisk-READBLOCK (blk);
3. mnewblk := DISK-GET-CONTIGUOUS-BLOCK ();
4. b2 := Disk-READBLOCK (newblk);
5. Distribute entries of b (including chain) among b and b2;
6. Write all these blocks to disk;
7. Current := Current + 1;
8. if Current = Last
9. I := I+1;// Now use hyy1 and hyyo;
10. Current := 0;
11.  Last := 2It1 —1;
12. endif;
13. return;
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4.31 Hash Indices: Summary

e Key ideas common to hashing methods:

— Hashing is used for equality search on a key.

— Apply hashing function to a key to obtain bucket #.

— Store data record in bucket.

— A bucket may be a single block (hopefully) or a chained list of blocks.
— Dynamic methods

« reduce occurence of long chains;
x allow regulated growth of hash index;

% use varying numbers of hash-bits;

— Poor choice of hashing function can result in skew (non-uniform
distribution across buckets).

e Deletions:

— Deletions are approximately the “reverse” of insertions.

— Deletions result in empty blocks
= return empty blocks.

— In extendible hashing: directory occasionally collapses.
— In linear hashing: use lower pair of hash functions when appropriate.

— In practice: hashing is often used for temporary files created during
joins.
= deletion not used often.
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e Extendible vs. linear hashing:

Ezxtendible hashing:

— Advantages:

* Always splits overflows
= at most one block accessed during search.

— Disadvantages:

x Uses a directory.

« Directory space may be wasted if directory doubles too often.
= e.g., pathological case: continual insertions into bucket 0.

Linear hashing:

— Advantages:

x Does not use directory.

x Splitting is decoupled from insert bucket.
— Disadvantages:
x Needs contiguous allocation of blocks.
«x Long chains are still possible in pathological cases.

e NOTE:

— Neither method works well with poor choice of hash function.

— If contiguous allocation not possible
= can implement a directory version of linear hashing.

— Although examples started with using a single bit, most often, initial
hash values start with more bits (e.g., 8 bits).

— Hash files are slow for scans, range search.
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4.32 External Sorting

e Popular sorting techniques:

— Insertion sort.
— Heapsort.
— Mergesort.
— Quicksort.

These are all internal sorting methods
= data is in memory.

e In an erternal sorting problem:

— Data is too large to fit into main memory.
— Data must be sorted in pieces.
— Data is usually a heapfile of records.
— Desired end result: a sorted file (sorted on some key).
e Key ideas in external sorting:
— Individual blocks can be easily sorted
= read them in and use an internal sorting method.

— Create runs:

* A run is a group of sorted blocks in sort order (a sorted piece of
a file).

x Runs can be created by merging data from several blocks in
memory.

— Merge shorter runs into longer runs.

— Finally, merge runs into final sorted result.
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4.33

Binary Merge-Sort

e The basic idea in merging can be conceptually explained as follows:

e.g., Merge the two strings ‘afgikmn’ and ‘cdehq’ in alphabetical order

Step 1

Step 2

Step 3

carf g i k mn

.
.
by -

<crd e h q

pick the smaller ot the two values
at the head of each string

a
frg i k mn
//
a C
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Step 4

______ 'g I k mn
/
a cde
Step 5
frg i k mn
/
acdef
. and so on.

e Now suppose we have two sorted files (runs) that need to be merged:
Suppose record structure is (SSN, ID#, NAME) and we are sorting by
ID+#:
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ssn id# name
5 20 67
File 1 12 25 117
(sorted) 13 36 125
11 61 81
File 2 : 34 72 140
(sorted) 37 =2
Sereseresoseseened = | 11 34 37
conceptual
representation
Conceptually,
. 5 12 13 20 25 36 67 117 | 125
File 1
. 11 |34 |37 61 |72 |74 81 | 140
File 2

To merge these runs, we bring in two blocks at a time into memory:

12

13

34

37

Input buffers

11

12

Output buffer

Main memory

Write output block:
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13

34

37

Input buffers

Output buffer

Main memory

5 12 13 20 | 25 | 36 67 117 | 125
11 34 37 61 72 74 81 140
I5 |11 [12

Disk

After ‘13’ is in the output buffer, we must read next block from File 1:

20

25

36

34

37

Input buffers

13

20

25

Output buffer

Main memory

5 12 13 20 25 36 67 117 | 125
11 34 37 61 72 74 81 140
5 11 12
--------------------- Disk
write to disk

Write next output block:
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36 5 12 13 20 25 36 67 117 | 125
34 37 11 34 37 61 72 74 81 140
Input buffers
5 11 12 13 20 25
Output buffer
................. Disk
Main memory
After ‘36’ is copied to output buffer, read next File 1 block:
57 117151 | 5 12 |13 20 125 136 | [67 [127] 125
37 11 34 37 61 72 74 81 140
Input buffers
34 36 5 11 12 13 20 25
Output buffer
Disk

Main memory

Next:

— Copy over ‘37.

— Write current output block.

— Read next File 2 block.
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67 117 | 125 5 12 13 20 25 36 67 117 | 125
61 72 74 11 34 37 61 72 74 81 140
Input buffers B S
34 36 37 5 11 12 13 20 25 34 36 37
Output buffer Tl =
--------------- Disk
Main memory
Next:
— Create next output block: ‘61-67-72’.
— Write output block.
— Copy ‘74’ over to output buffer
= must read next File 2 block.
117 [ 125 B oo v 20 | 25-].36 67 | 117|125
81 140 ’ 11 34 37 61 72 74 ) 81 140
Input buffers 61 67 72
74 L1E 1T 122 13 [20 [25 | [34 [36 [37

Output buffer
Disk

Main memory

Continue in this fashion until finally:
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125 5 12 |13 20 | 25 |36 67 | 117 | 125
140 11 |32 |37 61 |72 |74 81 | 140
Input buffers iTe1 [67 |72 | [ 74 |81 [117] [125 140
125 | 140 i[5 11 |12 13 120 125 132 [36 |37
Output buffer B e I
_____________________ Disk sorted output file ==+

Main memory

e What does this have to do with sorting a single file?
Key idea:

— Break up file into smaller (sorted) runs.

— Merge runs until a single file emerges.
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e FExample:
Unsorted file:

61 [36 |5 34 [11 |72 |[12 [125[81 |[67 140 [37 |[78 [117
First sort individual blocks:
5 |36 |61 |[11 [34 [72 |[12 81 [125|[37 [67 [140 |[78 [117
Next, repeatedly apply binary merges:
— Divide file into groups of two blocks
= 3 groups.
— Sort each group using binary merge.
= 3 sorted groups (runs).
— Divide runs into groups of two runs
= 2 groups.
— Sort group using binary merge.
= final result.
5 ]36 |61 || 11 [34 |72 '12 81 [ 125 || 37 |67 140'78 117
—
s
5 [11 [34 |[36 [61 [72 ”12 37 |67 |[81 [125[140
B -
Qnerged
5 11 |12 |[34 [36 [37 |[61 [67 |72 |[8T [125 [140
Cmerged
5 11 |12 |[34 [36 [37 |[61 [67 |72 |[78 [8r [117 |[125 [140
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e How many steps (phases) does it take to sort a file of n blocks?

For example, suppose n = 400:

— Phase 0: sort individual blocks in file.

— Phase 1: Create groups of 2 blocks and merge within groups.
= 200 groups (2 blocks each)
= 200 runs after merging (2 blocks each).

— Phase 2: Group 200 runs into groups of 2 runs, then merge.
= 100 groups (2 runs each, of size 2 blocks)
= 100 runs (4 blocks each) after merging.

— Phase 3: Group and merge:
= 50 groups (2 runs each, of size 4 blocks)
= 50 runs (8 blocks each) after merging.

— Phase 4: 25 runs.

— Phase 5: 13 runs (integral number of runs).

— Phase 8: 2 runs.
— Phase 9: 1 run
= one sorted file.

How many phases?
= 10 (=1+49).
= In general, 1 4 [log, n| phases.
NOTE: we can avoid Phase 0 (sorting block contents during Phase 1).

In each phase: all blocks are read once, written once
= 2n[log, n| block accesses.

e How much memory is needed?
= 2 blocks for input, 1 block for output
= only 3 blocks!

Q: Can we do better by using more memory?
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4.34 M-way Merge Sort

e A binary merge is easily generalized to an M-way merge:

— Merge M input streams.

— Use M input blocks and 1 output block.
e Example

— 2 records per block.

— M=4 runs.
= 4 input buffers, 1 output buffer.

_ main memory

11 |34 |61 72 |[73 80 Run 1

4‘6 117 |[18 86 |[88 [92 |[98 [105| Runz
mer

5 [12 |[13 [40 |[e5 [67 Run 3

10 |39 |[43 [55 Run 4
""""""""""" 4 input buffers
15 6 :

_______________________

Next:

— Write ‘5-6" block.
— Copy ‘10’ and ‘11’ to output buffer.
— Write ‘10-11’ block.
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— Copy ‘12’ to output buffer.

— Read next block from Run 3.

34 |[61 [72 |[73 |80
17 |i[18 186 |[88 [92 |[98 [ 105
20 |65 67
35 |[23 |55
12
15 6 10 |11
Next:
— Copy ‘13’ over to output buffer.
— Write output buffer (‘12-13” block).
— Copy ‘17’ to output buffer.
— Read next block from Run 2.
34 |[61 [72 |[73 |80
86 |[88 [92 ][98 [105
20 |65 67
35 |[43 |55
17
T5 6 [0 [z |[12 [13
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...and so on, until all runs are exhausted.

e Using an M-way merge to sort a file:

Consider a file with n blocks.

— Divide file into groups of M blocks each.
— Merge each group into a sorted run
= [{7] runs.
— Create groups of M runs.
— Merge each group into a single run...

— ... and so on, until a single sorted file remains.
For example, suppose n = 400, M = 4:

— Phase 1: Create groups of 4 blocks
= 100 groups
= 100 runs (of 4 blocks each) after merging.

— Phase 2: Create groups of 4 runs
= 25 groups
= 25 runs (of 16 blocks each) after merging.

— Phase 3: 7 runs.
— Phase 4: 2 runs.
— Phase 5: 1 run (sorted file).

In general: [log;, n] phases.
= 2n[log,; n| block I/O’s.

Example: 200 Mb file, 1 Mb memory, 2K blocksize.
= 500 blocks of memory, 50000 file blocks
= 499-way merge
= 2 phases
= 2 X 2 x 50000 block accesses
= 200,000 block accesses.
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4.35 Sorting: Improvements

e In an M-way merge, how do we select the least element from the input
buffers?

— Naive approach: scan through blocks and find minimum each time.
— What if M is large?
— Better: use a heap
= min-selection takes O(logy, M).
e Partially sorted files:

— Often, files are almost sorted (e.g., an initially sorted file after some

random insertions and deletions).
— What is the cost of sorting such a file?

— Consider a fully-sorted file (worst-case):
= merge-sort doesn’t distinguish
= takes as long as sorting any other file.

— The problem: indiscriminate grouping.

e An alternative grouping method (that creates runs of variable length):
the snowplow method.

Example: M=2
Initially, the (single) file is on disk:
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block #1 2 3
5 7 9 13 12 8

6 15 18 | 25 4 19

4 5 6
(all blocks in the same file)

input buffers
output buffer

memory

Read first two blocks in memory, merge, and output first block:

12 | 8

5 7 5 7 1st output block

Now read in next block and create next output block (‘8-9’):

VERE
9 |18 5 115 1[T8 [ 1[Z T
8 19 517 g 19

Copy ‘12’ to output buffer and read in next block:
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smaller than largest element output so far

{67 |15

13 18 | 25 4 19

12 5 7 8 9

The ‘6’ in ‘6-15 is smaller than the largest item already output
= must end the current run and start a new one with ‘6.

End current run with ‘12-13’ and read in next block:

6 15
18 25 7 5
6 15 5 7 8 9 12 13
Output ‘6-15’ and read in next block
= ‘4’ is less than ‘15’
= run must end.
4 19
18 25
S ! 8 9 12 |13 Run #1
6 15 Run #2
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Finally, create the last run:

294

5 7 8 9 12 | 13
6 15
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Run #1

Run #2
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e What good is this approach?
— A sorted file will pass through this method untouched (to result in
a single run = a sorted file).

— A mostly-sorted file will result in a few long runs.

— Note: merging runs of uneven length is no different from merging
runs of identical length.

But consider a file sorted in reverse order
= a new run every M blocks (M = # of input buffers)
= average run length is M.

e What is the average length of a run?
= somewhere between n (all blocks) and M.

Let us obtain an approximate answer with some simplification:

— Assume key values are real numbers in [0, 1].
— Assume uniform distribution of inputs.

— Consider a snowplow plowing a circular road while it’s snowing:

0

— The circular road is the interval [0, 1] bent around.

— Associate a key value with each snowflake.
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— Each snowflake falls at its designated place on the circle:
= e.g., the value 0.5 falls at the top of the circle.

— The snowplow plows at a constant rate, the same rate at which snow
falls.

— When the plow reaches the 0-mark:

* A new run is started
* In the old run, the plow picked up numbers (snowflakes) that
were increasingly larger.
x Smaller numbers fall behind the plow as it moves
= they must be picked up in the next round.

— A run (of numbers in order) corresponds to the amount of snow
removed in one round.

— Now consider a cross-section:

snow removed —*

—

plow snow on road

— Rate of snowfall equals rate of removal
(rate of data input to memory equals output rate).
= a constant rate.

— How much snow is removed in one round?

x The plow always sees the maximum height immediately in front
of it
= plow removes one rectangle.
— But snow on track is one triangle
= snow removed = 2 X snow present
= run length = 2 x buffer space
= average run length = 2.
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Thus, the average run length is twice as long as the run lengths you get

from the standard (grouping) method.

e Merging runs of different lengths:

— Runs of different lengths can be merged in different ways.

— Example: consider

— Here are two ways of doing a binary merge:

rl r2

r3

run r1

r4
40

48 blocks
=96 1/0’s

52 blocks
=104 1/O’s

Total I/O’s: 8+96+104 = 208.

1 block
run r2 3 blocks
run 73 8 blocks
run 74 40 blocks

rl r2
1
4 blocks r3
=81/0’s 8

r4
40

12 blocks
=241/0'’s

52 blocks
=104 1/0O’s

Total I/O’s: 8+24+104 = 136 1/O’s

— The problem reduces to constructing optimal weighted binary trees

= use Huffman encoding algorithm for binary case.
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e Parallelism in I/O:

— Suppose multiple disks are available

= can read and write simultaneously.

— Use 2 sets of input buffers and 2 s
— If M + 1 buffers are available, cho

ets of output buffers.
ose K such that

242K < M+1

K <

= at best a K-way merge.
— Example: M =6 = K = 2.

e FExample:

M -1
2

Consider an example with K = 2. A block is read from each run.

File 1 File 2
5 12 [13 ). |5 [22 [23 | [20 [25 [36 |i[67 |1L7[125]
T (34 |37 L. | 11 34 |37 | [ 61 [72 J74 | [ 81 [140]

i | ™ Four input buffers

.................................

“~}--- Two output buffers

Main memory

Disk

Next, while the first output block is being written, the next input block

is read:
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13 5 12 13 20 25 36 67 117 | 125
34 37 11 34 37 61 72 74 81 140
20 |25 |36 3 1 T
5 11 12
Disk
13 Concurrent transfers
Main memory
Write the ‘13-20-25" block while reading in the ‘67-117-125’ block.
67 117 | 125 5 12 13 20 25 36 67 117 | 125
34 37 11 34 37 61 72 74 81 140
36 5 11 12 13 20 25
34 | 36
Disk
13 |20 | 25
Concurrent transfers

Main memory

Write the ‘34-36-37" block while reading in the ‘61-72-74" block:
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67 117 | 125 5 12 13 20 25 36 67 117 | 125
61 72 74 11 34 37 61 72 74 81 140
5 11 12 13 20 25 34 36 37
34 | 36 37
Disk
Main memory
Write the ‘61-67-72’ block while reading in the ‘81-140’ block:
117 | 125 5 12 13 20 25 36 67 117 | 125
74 11 34 37 61 72 74 81 140
81 140 5 11 12 13 20 25 34 | 36 37
61 67 72
Disk
61 67 72

Main memory

Finally,
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5 12 |13 20 | 25 | 36 67 | 117 | 125
11 |34 | 37 61 |72 | 74 81 | 140

5 11 | 12 13 120 |25 34 |36 |37
61 |67 |72 74 |81 | 117 125 | 140

74

81

117

125

140

Disk /

Main memory
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Chapter 5

Query Processing and Optimization

Course Notes on Database Systems
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5.1 Query Processing: Introduction

e Consider the following relations:

PASSENGER (NAME, SSN, FLTID, MILES)
FLIGHT (FLT.ID, FLT_NO, STARTAPT, ENDAPT)
AIRPORT (APT, NAME, CITY)

and the following query: “List passengers flying into National airport
that have at least 1000 miles along with their mileage”.

In SQL:

select P.NAME, P.MILES
from  PASSENGER P, FLIGHT F, AIRPORT A
where P.MILES > 1000

and P.FLT ID = F.FLT_ID

and F.ENDAPT = A APT

and A.NAME = ‘National’;

In relational algebra:
IpNaMEPMILES (OMILES>1000 (P * ONAME=National’ (F *A) ) )

or

IIpNAMEPMILES ( OA NAME=National’ (A) * F x OwmiLES>1000 (P) )

(among several ways).

303



An SQL query is parsed by the parser to create a query tree, which is
then executed by the query processor.

SQL
Lexical analysis &
parsing, "| parser
construction of
query tree l
query
Implementation
of relational processor
operators i
. . Y
Files, indices, physical
Disk/Memory Iayer
management.

A typical query tree produced by the parser:

project JU  Attributes: MILES , NAME

select O  Condition: P.MILES>1000

and P.FLT ID=F.FLT_ID
and F.ENDAPT = A.APT
and A.NAME = ‘National’

cross product X

N\,
\F

cross product

P
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NOTE:

— There are several ways of executing the same query tree.
— An ezxecution plan specifies an order.
— A parser provides a simple tree.

— The query processor creates a better tree and an execution plan.

e For our example, assume the following sizes (with 1 Kb blocksize)

PASSENGER, 50 bytes per tuple (20 tuples per block)
100,000 tuples (5000 blocks)

FLIGHT 20 bytes per tuple (50 tuples per block)
50,000 tuples (1000 blocks)

Assume: each block access takes 20 ms (milliseconds).

For example, a scan of PASSENGER requires 5000 x 20 ms = 100
seconds.
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5.2 Implementing Selection

e First consider a single equality search, e.g.,

ONAME=‘Smith’ (PASSENGER)

1. Linear search on a heapfile:

— 5000 blocks scanned (worst-case)
= 100 seconds.

— If NAME is a key:
= 2500 blocks (average)
= 50 seconds.

2. Binary search on a sorted file (sorted by NAME):

— Binary search takes [log, n| for a file of n blocks.
= [logy 50007 blocks
= 13 blocks
= 13 x 20 ms
= 260 ms.

3. B+-tree index on NAME:

— Suppose 100 index entries fit into a block
= 2m — 1 = 100 (m = degree)
= m = 50.

— Leaf level has as many entries as tuples
= 100,000 entries
= 1000 leaf blocks (best-case: all packed)
= 2000 leaf blocks (worst-case)

— How many B+-tree levels needed (worst-case)?

= Recall: 2m*~! at level k
= we want least value of k such that 2m*~! > 2000
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= k = 3 (levels 0,1,2,3)
= 4 levels

— Access time?
= 5 accesses in all (data block requires 1 access)
= 5 X 20 ms
= 100 ms.

4. Hash index on NAME:
— Assume each chain has 2 blocks (1 overflow block).
= 1 block access for directory, 2 for data
= 3 block accesses

= 3 X 20 ms
= 60 ms.

e Single range search, e.g.,

OMILES>1000 (PASSENGER)

Suppose 2000 customers (tuples) satisfy the condition MILES > 1000.

1. Scan
= 100 seconds.

2. Hash index is useless in this case.
3. Sorted file (sorted on MILES):

— [logy n] accesses to get first tuple
= 13 blocks (from before)

— Scan from first tuple onwards.
= 2000/20 = 100 blocks (20 tuples per block).

— Total:
= 113 blocks
= 113 x 20 ms
= 2.26 seconds.
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4. B4-tree on MILES:
— Since MILES is not a key, we need to distinguish between clus-
tered and unclustered versions of the tree.

— In an unclustered version, the data file is not sorted nor is there
a sort-index on the data file.

— The problem with no clustering:

Index File
Leaf level of tree

1000]1013J1115 2116|2711} 3103
4 _\

/ >

]

Data File (unsorted)
* Worst-case, each index entry could point to a different data
block.

x In our example: 2000 data tuples satisfy MILES > 1000
= worst-case 2000 data blocks retrieved.

— Cost for unclustered version:
x 4 block accesses to get to first leaf tuple
* 20 index blocks scanned at leaf level (at 100 index entries per
block)
x 2000 blocks to retrieve tuples from data

Total:
= 2024 blocks
= 2024 x 20 ms
= 40.48 seconds.
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— In a clustered version, the data file is sorted:

Index File
Leaf level of tree

10001013}1115 2116|2711|3103 e
L Ju=

Data File  (sorted)

— Cost for a clustered version:
= data will lie in successive blocks
= 100 blocks accessed
= 124 blocks overall (including tree blocks)
= 124 x 20 ms
= 2.48 seconds.

— Important: must be careful when using an unclustered B+-tree
for range search:

« Range search is effective in a B+4-tree when the number of
identical values is small.

x Otherwise, range search can be more costly than a scan.

309



e Select’s with multiple conditions — CNF representation:

— The select condition is a boolean expression, e.g.,
(MILES > 1000) and (NAME = ‘Smith’)

— Every boolean expression in relational algebra consists of terms of
the form:

* <attr> op <value>, or
x <attr> op <attr>.

where op is a comparison operator (=, <, >, <, >).

— A boolean expression is a collection of terms joined by boolean op-
erators (and, or, not).

— Any boolean expression can be re-written in Conjunctive Normal
Form (CNF).

— A CNF boolean expression is a collection of conjuncts that are
and’ed:

(conjunctl) and (conjunct2) and (conjunct3) ...

where each conjunct only has or’s or not’s, e.g.:

conjunct3 = (terml or term2).

Thus, for example, the non-CNF expression
(AGE<15 and HEIGHT>6) or WEIGHT >400

is transformed into the CNF expression:
(AGE<15 or WEIGHT>400) and (HEIGHT>6 or WEIGHT>400)

e Implementing select for CNF’s without or’s:

Consider a CNF expression with only terms as conjuncts:

(terml) and (term2) and (term3) ...

Example:

O (MILES > 1000) and (NAME = ‘Smith’) (PASSENGER)
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Assume:

— 45 Smiths (3 blocks)

— only one tuple satisfies the condition.

1. Unsorted heapfile:
= scan required
= 5000 blocks scanned
= 100 seconds.

2. Sorted file (on NAME):

— Use binary search to find first Smith tuple
= 13 blocks.
— Scan remaining Smith-tuples and check MILES condition
= 3 blocks.
— Cost:
= 16 blocks
= 16 X 20 ms
= 320 ms.

3. Sorted file (on MILES):

— Use binary search to find first 1000-mile tuple
= 13 blocks.
— Scan remaining 1000-mile tuples for Smith’s
= 100 blocks scanned (2000 customers satisfy condition)

— Cost:
= 113 blocks
= 113 x 20 ms
= 2.26 seconds.
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4. Hash index on NAME:

— Search hashvalue(‘Smith’) bucket for MILES condition
= at least 3 blocks, probably more, say 6.
— 1 block for directory access.
— Cost:
= 7 blocks
= 7 x 20 ms
= 140 ms.

5. A hash index would not be used on MILES (useless for range search).
6. B+-tree index on NAME:

— 4 tree blocks during search, 1 possible additional block at leaf
(45 Smith index tuples must fit into 2 blocks).

— Unclustered version
= 45 Smith tuples
= 45 data blocks (worst-case)
= 50 blocks overall
= 50 x 20 ms
= 1 second.

— Clustered version
= 3 data blocks
= 8 blocks overall
= 8 X 20 ms
= 160 ms.
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7. B4+-tree index on MILES:

— 4 tree blocks accessed, 20 on leaf level.

— Unclustered version:
= 2000 blocks (worst-case)
= 2024 blocks overall
= 2024 x 20 ms
= 40.48 seconds.

— Clustered version:
= 100 data blocks
= 124 blocks overal
= 124 x 20 ms
= 2.48 seconds.

8. Suppose a B+-tree is available for each attribute:

— Use the more selective value (NAME;, in this case).

e expressions with or’s:

— Disjunctions (or’s) are difficult to optimize.

— Example:
O (MILES > 1000) or (NAME = ‘Smith’) (PASSENGER)

— If no index is available on MILES
= scan required
= why bother with an index on NAME (since scan is required)?
= during scan, also check NAME=‘Smith’.

— If indices are available on both
= use indices to retrieve on each condition
=> union the results.
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5.3

Implementing Projection

e Two actions are required in implementing projection:

1. Scan through relation and extract desired attributes.

2. Remove duplicates.

Example: Consider EMP (NAME, SSN, CITY) and the query IlgiTy

(EMP) :

NAME SSN

CITY

New York

London

London

Delhi

Paris

London

New York

Paris

e Observe:

— Step 1 (projection) is straightforward.

Blocksize = 100

CITY = 23 bytes
NAME,SSN = 15 bytes

t

projection without
duplicate removal

2 tuples per block

CITY CITY
New York New York
London London
Londpn - Delhl
Delhi after duplicate Scl

removal
Paris
London
New York
Paris

4 tuples per block

— Step 2 (duplicate removal) requires more work.

— Often, parts of Step 2 are integrated into Step 1.

— Sometimes duplicate removal is not needed (if not specified with a

distinct in SQL).

e Duplicate removal via sorting;:
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— Suppose we want to remove duplicates from a file:

x Sort the file.
x Scan sorted file and remove duplicates by comparing successive
tuples.
— Note: the first set of runs (for sorting) can be created during Step
1 (while writing the output of projection).

— Cost estimate:

= 2n[log,; n| block accesses for sorting
— Example:

IInamE (PASSENGER)

Suppose

* M = 100 (100 blocks of input buffers).

* The NAME field is 20 bytes long
= 50 tuples per block
= 2000 blocks for projected file.

— Cost:
= 2 x 2000 x [log;g,2000]
= 8000 block accesses
= 8000 x 20 ms
= 2.66 minutes.

— Using the snowplow method would be faster:
= run sizes approximately 2/ = 200 blocks
= 2000/100 such runs
= only one additional pass required (100 input buffers)
= 4000 block accesses
= 4000 x 20 ms
= 1.33 minutes.
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e Duplicate removal using Hashing:

— Basic idea:

1. Scan file and hash records into a hash file.

2. Scan individual buckets are remove duplicates.

— Note: hashing has to be carefully implemented (using a lot of mem-

ory)
e.g., In above example: file has 2000 blocks (100,000 tuples)

x Worst-case: 2 block accesses for each insertion
=- 100,000 insertions
= 200,000 block accesses
= 200,000 x 20 ms
= 66.66 minutes
= wrong way to use hashing.

— If M buffers are available, use a hash function with M buckets and
allow overflow
= hash file blocks are written only when full
= block accesses ~ number of file blocks

— In practice, slight non-uniformity will cause slightly higher 1/0.

— Example: 2000 blocks
= 2000 (approx.) hash file blocks.
= 2000/100 = 20 blocks per bucket (19 overflow blocks)

= each bucket fits into memory entirely
= duplicates can be removed in one scan
= 2000 + 2000 block accesses

= 4000 x 20 ms

= 1.33 minutes.

— Note: creating the hash file can be done on-the-fly as the projection
is being computed.

— An advantage of sort-based projection: a nice side-effect is that the
result is sorted.
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5.4 Implementing Joins

e Joins vs. cross-products:

— Every join can be expressed as a cross-product, e.g.,
PASSENGER % FLIGHT

is the same as
OPASSENGER.FLT_ID = FLIGHT.FLTID (PASSENGER x FLIGHT)

— SQL parsers typically only report cross-products.

— Cross-products are large
= system should recognize a join where possible.

e We will use the following example:

PASSENGER * FLIGHT

where

PASSENGER has np = 5000 blocks, 20 tuples per block
rp = 100,000 tuples

FLIGHT has nr = 1000 blocks, 50 tuples per block
rr = 50,000 tuples

e Several ways to implement a join:

. Simple nested loops.

. Block-nested loops.

1
2
3. Nested loops with indices.
4. Sort-merge join.

5

. Hash-join.
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e Simple nested loops.

— Scan tuples in one file and for each one, scan the other file to find
matching tuples.

— For example, suppose we scan PASSENGER in the outer loop:

Algorithm: Simple Nested Loops

for each tuple z € PASSENGER
for each tuple y € FLIGHT
if . FLT_ID = y.FLT_ID
put joined tuple in result

W=

— What is the cost?
= 100,000 tuples of PASSENGER (in 5000 blocks)

= 100,000 scans of FLIGHT (1000 blocks per scan)
= 100,000 x 1000 = 10® blocks (of FLIGHT)
= 10% 4+ 5000 blocks overall
= 555.58 hours!
— What if FLIGHT were the outer relation?
= 50,000 tuples of FLIGHT (in 1000 blocks)

= 50,000 scans of PASSENGER
= 50,000 x 5000 blocks of PASSENGER

= 25 x 10% + 1000 blocks overall
= 1388.89 hours!
= it’s worse!

— Using simple nested loops is a really stupid way of implementing a
join.
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e Block-nested loops:

— Consider reading the first block of PASSENGER.

— When we read the first block of FLIGHT, we can join all possible
combinations in each block:

Smith . 12
T 34
Jones 12// ~17
| — Teo
Brown 17T |  all possible
matches
in the blocks

First PASSENGER block

First FLIGHT block

— Then, we read the next block of FLIGHT and find all possible
matches in the first block of PASSENGER. Then, the next block

of FLIGHT

.. and so on until all blocks of FLIGHT are joined with the

— Then, the next block of PASSENGER is read and joined with the
first, then second, then third ... etc blocks of FLIGHT.

— ... And so on until all of PASSENGER has been scanned.

— In pseudocode:

1.
2.
3.
4.

Algorithm:

Block-Nested Loops

for each block € PASSENGER
for each block € FLIGHT

if a pair in each block matches
put joined tuple in result

— Why does this work?
= each pair of tuples needs to be tried against each other only

once.
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— Cost:
= 5000 blocks of PASSENGER
= 5000 scans of FLIGHT
= 5000 x 1000 blocks
= 5,005,000 blocks overall
= 27.78 hours
— In general: np +np *np.

— How much memory has been used?
= 2 input buffers (1 for each file).

— Can we do better with more buffers?

— Example: suppose we have M = 100 input buffers.
= use K buffers for PASSENGER and M — K for FLIGHT.
Suppose PASSENGER is outer relation:
*x Read first K blocks of PASSENGER.
* Scan through all of FLIGHT and match tuples.
* Read next K blocks of PASSENGER.
* Scan through all of FLIGHT and match tuples.
* ... and so on.
— Cost?
= 42 groups of PASSENGER (exact: [%2])
= [5£] scans of FLIGHT
= [Z2] * np blocks
= totally np + [Z£] * np
— What choice of K is optimal?
= as large as possible: K = M — 1
— In our example:
= 5000 + [255%] * 1000 blocks

= 56000 blocks overall
= 56000 x 20 ms

= 18.6 minutes

= a great improvement!
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— Can we do better?
= use FLIGHT as outer relation
= 1000 + [130%] x 5000 blocks

= 56000 blocks overall
= same as before.

— Note: suppose FLIGHT had 90 blocks: With PASSENGER outside:

= 5000 + [2539] 90 blocks

= 9590 blocks. With FLIGHT outside:
= 90 + [§3] * 5000 blocks

= 5090 blocks (almost half the time)
= use smaller relation in outer loop.

e Nested loops with indices:

— If there’s an index on the join attribute, we can use it.
— Example: suppose we have an index on PASSENGER.
— Use PASSENGER as inner relation:

Algorithm: Nested Loops with Indices

for each block in FLIGHT
for each tuple in the current block
extract key;
search for corresponding tuple in PASSENGER using index
place joined tuple if match occurs
endfor

A

— Cost:
+* FLIGHT is scanned once
= nr = 1000 blocks.

« For each tuple of FLIGHT, we probe index
= rr X number of blocks per access

x The actual cost depends on the type of index.
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1. B+-tree index for PASSENGER:
= 5 blocks per access
= 50000 x 5 blocks of PASSENGER
= 251,000 blocks overall
= 1.39 hours.
2. Hash index for PASSENGER:
= about 2 blocks per access
= 101,000 blocks overall
= 33.7 minutes.

In general if ap blocks are required by the index, then the total cost

1S
ng + rp * ap blocks.
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e Sort-merge Join

— Key idea:
* Sort PASSENGER.
x Sort FLIGHT.
x Set up sorted files as if they were going to be merged.

*x Process a merge, but only produce as output joined tuples.

— How to merge?

*x Read first block of PASSENGER.

*x Read first block of FLIGHT.

x Match all the tuples that can be matched.

x Suppose last tuple of PASSENGER block has FLT_ID=6.
x Suppose last tuple of FLIGHT block has FLT_ID=13.

* Are there any other tuples in FLIGHT that need to be matched
with FLT_ID=67
= No!
= Don’t need to look further in FLIGHT.
— Example of sort-merge join:

Recall the relations: PASSENGER (NAME, SSN, FLT _ID, MILES)
and FLIGHT (FLT_ID, FLT_NO, START _APT, END_APT).
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T B I e e 5
o1 | 1 i 1 i f1
i | 2 12
Pz | 17 ' 2 3
p3 | 3 2 14
o4 4 3 5
3 f6
PS 4 4 f7
p6 4 4 f8
07 4 4 fo
5 f10
P8 4 6 f11
p9 4 6 f12
p10 4
pll 6
pl2 6
File 1 File 2

Let pl,p2, ... denote the PASSENGER tuples and f1, f2, ... denote
the FLIGHT tuples.

1. First, we output <p1,f1>, <p2,f1>.
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2. Then, read the second FLIGHT block and
output <p3,£5>, <p3,f6>:

ol 1 1 f1

g 2 2

P2 ! 5 2 3

p3 3 \ 2 f4

TR s .t .

N3 | f6

PS 4 4 | f7

p6 4 4 8

o7 4 4 fo

5 f10

p8 4 6 f11

p9 4 6 f12
p10 4
pll 6
pl2 6

File 1 File 2
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3. Read the second PASSENGER block and
output <p4,f7>, <p4,£8>, <p5,f7>, <p5,£f8>, <p6,f7>, <p6,£8>.

o1 1 1 f1
2 f2
P2 1 2 3
p3 3 2 f4
: = 3 L 15
p4 | 4 i - 5
: : : Vf7
p6 | 4 ———1— T —N+4 18
07 4 4 fo
5 f10
p8 4 6 f11
P9 4 6 f12
p10 4
pll 6
pl2 6
File 1 File 2
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4. Read next FLIGHT block and
output <p4,f9>, <p5,f9>, <p6,f9>.

" L 1 f1

2 f2
P2 ! 2 3
p3 3 2 f4
04 4 f5

: f6
p5 | 4

5 3
3
i \ 4 i
p6 4 \ 4 8
------------------------------------------- S

p7 4 4 :

5 L f10
P8 4 6 111
P9 4 6 L f12
p10 4
pll 6
pl2 6

File 1 File 2
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5. Read next PASSENGER block
= the item ‘4’ continues
= must go back to start of ‘4’ in FLIGHT
= a reversal!
Output <p7,£7>, <p7,£8>, <p8,f7>, <p8,f8>, <p9,f7>, <p9,f8>.

ol 1 1 f1

2 f2

P2 1 2 3

p3 3 2 f4

p4 4 3 15

i3 | f6

p5 4 i :

4 L f7

p6 4 /5 4 f8

p7 4 /? 4 L

i / 5 f10

P8 | 4 6 f11

po | 4 i 6 f12
p10 4
pll 6
pl2 6

File 1 File 2
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6. Read next FLIGHT block and

output <p7,£f9>, <p8,f9>, <p9,f9>.

pl
p2

p3

p4

p5

p6

P8 |

p9 |

pl0
pll

pl2

p7 |

File 1
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File 2

fl
f2
f3
f4

5
f6
f7
f8

1
| 110
11
| 112



7. Read next PASSENGER block
= ‘4’ continues
= must go back to first ‘4’ in FLIGHT
= another reversal!
Output <p10,£7>, <pl10,£8>.

ol 1 1 f1
2 f2
P2 1 2 3
p3 3 2 f4
i | f6
PS 4 i | f7
p6 4 / | 18
p7 4 o
f10
P8 4 f11
po 4 f12
e —— //// -------
p10': 4 /
pllé 6
p12§ 6
""""""""" Filel File 2
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8. Read next FLIGHT block and
output <p10,£9>, <pil,fl1>, <pli,f12>, <p12,fl1>, <pl12,f12>.

ol 1 1 f1
2 f2
P2 ! 2 3
p3 3 2 f4
" 4 3 f5
3 6
PS 4 4 7
p6 4 4 f8
07 4 4 f9
|5 : f10
P8 4 / 6 11
po 4 % 6 L f12
oo 74"""5//""""""""""'""""""""""':
p10': 4 %
p11i 6 L~
p12§ 6 /
""""""""" Filel File 2
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— Cost:
« If there are enough buffers
= reversal not needed.

« Typically, reversal does not occur often
= only one scan through each sorted file.

* Time needed for sorting: 2nplog,; np + 2nplogy; np.
x Time needed for merging: np + np.
= Total: 2nplog,,; np + 2nplogy, nr + np + ng.

x Suppose M = 100 in our example:
= 2 x 5000 logloo 5000+2 x 1000 logloo 1000+5000+ 1000 blOCkS

= 30,000 blocks
= 10 minutes (best so far).

— Note:
% Some runs of a particular FLT_ID could span several blocks
= hopefully all fit into memory simultaneously.

x If ‘runs’ of a particular value occur
= try to reserve memory for these runs.

x It is possible to speed up the process:
1. Sort both files simultaneously.
2. During each merge of the sort process, perform joins.

«x The sort-merge join is very general
= it can be applied to any join condition.

* A join on multiple attributes can be handled by sorting on the
combination.
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e Hash joins:

— Key ideas:
x Use a single hash function on the join attributes.

« Hash the first file into a hash file using the function.

« Hash the second file into the same file using the same hash func-
tion.

x Records that are candidates for joining must lie in the same
bucket.

x Process the hash file bucket by bucket.

x Read in a bucket and search for matches.
— Some details:

* If we use too many buckets, we will be doing a lot of 1/O.
= worst-case: 2 [/O’s per tuple inserted
= inserting 100,000 tuples means 100,000 block accesses!
(at least one block access per tuple inserted).
= Optimal number of buckets is M (memory size).
* Assuming uniform distribution across buckets

= each bucket has “ZZE blocks.

x To process a bucket, the bucket has to fit into memory.
= better to have =2 < M
= M > /np + np ideally.

x It is not always possible to guarantee this condition
= need a way to process a large bucket
= use hashing again!
— An example: consider a join of EMP and DEPT on the attribute
DEPT_ID.
Initially, the hashtable is empty:
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NAME  DEPT_ID

Jim 17
Bob 35
Sue 17
Pam 17
Raj 35
Joe 41
EMP

DEPT_ID DNAME

35

Crew

17

Sales

28

Maint.

41

Bags

DEPT

hashtable

First, the file EMP is hashed (on DEPT_ID):

NAME  DEPT_ID
Jim 17
Bob 35
Sue 17
Pam 17
Raj 35
Joe 41

EMP

After hashing EMP

hashvalue(41)

DEPT_ID DNAME

35

Crew

17

Sales

28

Maint.

41

Bags

DEPT

5

hashvalue(17)

hashvalue(35)

hashtable Joe 41
Jim 17

- Sue 17

Pam | 17

— Bob 35

Raj 35

Then, the file DEPT is hashed into the same hash file:
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hashtable Joe |41
NAME  DEPT_ID 41| Bags
Jim 7 hashvalue(41)
Bob 35
Sue 17 DEPT_ID DNAME |~ Jim | 17 17 | Sales
Pam 17 35 | Crew hashvalue(17) ] Sue |17
Ra) 35 17 | Sales Pam | 17
Joe 14l 28 | MaINt, | =—
41 | Bags After hashing DEPT
EMP hashvalue(35) 4—>1 Bob 35
DEPT Raj |3
35 | Crew

Now, the buckets are processed one by one, e.g, bucket for ‘41’:

Joe |41

41 | Bags write joined
tuples to
result file

Result file (of join)

Main memory Disk
Process bucket for ‘17’:
Jim
17 Joe 41 | Bags
Sue | 17 Jim 17 | Sales
Pam 17 Sue 17 | Sales
i write joined Pam 17 | Sales
17 | Sales tuples to
: result file
Result file (of join)
Main memory pisk T

And so on until all buckets have been processed.
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— To process a large bucket:

*x Read in tuples from bucket and hash them to a temporary file.
x Use a different hashing function than before.

x Why? The same hashing function as before will only duplicate
the bucket.

* Again, process the new ‘sub-buckets’ one by one.

x Hopefully the second hashing operation will create smaller buck-
ets that fit into memory.

x Worst-case, the procedure may have to be repeated.
e Memory Management in a DBMS:
— The above discussion shows us why it’s better for a DBMS to manage

memory by itself.

— In a block-nested join, once a block for the outer relation has been
processed, it is not needed again
= better to throw it out immediately and use the memory for the
inner relation.

— In other methods, we have explicitly assumed fixed buffer sizes (M)
= DBMS memory management.
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5.5 Query Optimization: Overview

e Key functions in query optimization:

— Enumerate several query plans.
— Evaluate the cost of each plan.

— Select the best such plan.
e Enumerating plans:

— A query plan includes:
x A query tree.

* Methods assigned to implement operators (e.g., Sort-merge for
a given join).
x An order of execution whenever different orders are possible.
— Plans are enumerated by considering alternative ways of handling a
query.
— In general, enumeration is combinatorially explosive
= heuristics must be considered.

— It helps to use heuristic rules for specific operators, e.g., push select’s
past j01ns.
e Evaluating the cost of a particular plan:
— Use a metric such as the number of block accesses to evaluate I/O
cost.

— Use techniques for cost estimation of relational operators (described

earlier).

— Put together the total cost for a plan.

337



e Consider the following example:

select NAME, FLT_NO
from  PASSENGER P, FLIGHT F
where P.FLT_ID=F.FLT_ID

and MILES>1000

and NAME=‘Smith’

The query tree produced by the parser typically looks like:

T NAME, FLT_NO

O MILES>1000, NAME='Smith’
P.FLT_ID =F.FLT_ID

X

/N
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e Several options are possible with the above query:

1. Operator methods:

— Use block-nested join with FLIGHT (F) as outer relation.

— Compute both ¢ and II on the fly (as results are produced by
the join)

T (onthe fly)

G  (onthefly)

X block—nested join

/

P F

Cost estimation:

— Recall cost of block-nested join:

= np + [ 3757 |np blocks

= 1000 + [255°11000 blocks
= 51506 blocks.
— No cost for computing o or II.

— Total: 51506 blocks
= 51506 x 20 ms
= 17.1 minutes.
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2. Methods:

— Push the “MILES>1000" condition past the join to PASSEN-
GER.

— Use B+-tree (unclustered, say) for select.
— Use block-nested join with FLIGHT as outer relation.

— Compute remaining operators on the fly.

T (onthefly)

O  (onthefly)
NAME='Smith’

X block—nested join

MILES>1000 /
]

B+-tree
(unclustered) ‘

P

Cost:
— 2000 tuples (of PASSENGER) satisfy MILES>1000
= (worst-case) 2000 data blocks, 4+20 tree blocks (tree and

leaf-level)
= 2024 blocks accessed.

— 2000 tuples (of PASSENGER) satisfy MILES>1000

= 100 blocks produced as a result
= these 100 blocks will be joined with FLIGHT’s 1000 blocks.

— Block nested join with FLIGHT:
= 1000 + [4]1000 blocks
= 3000 blocks.

— No cost for remaining select’s and project.
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— Total: 5024 blocks
= 5024 x 20 ms
= 1.67 minutes.

— Note: we could use FLIGHT as inner relation
= 100 + [+ 11000 blocks

= 2100 blocks
= 4124 blocks overall
= 1.37 minutes.

— NOTE: an important point:

* In the above analysis, we used the fact that 2000 tuples satisfy
“MILES>1000".

* How did we know this?
x In practice, an estimate of the number of tuples is required.
« Example: suppose the MILES field has 50 unique values
= 100,000 tuples / 50 = 2000 tuples have one value (uniform distribu-
tion).
= forms a very crude estimate.
Better: use min(MILES) and max(MILES).
E.g., suppose min(MILES)=0, max(MILES)=1020
= (1020-1000) /1020 fraction of tuples will have MILES>1000

= ~ 0.0196 x 100,000 tuples have MILES>1000
= ~ 1960 tuples.
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3. Methods:

— Push the other select down (NAME=‘Smith’).
— Assume hash index exists on NAME.
— Block nested join with FLIGHT as inner relation.

7‘15 (on the fly)
O (onthefly)

‘ MILES>1000
X

block—nested join

/

NAME='Smith' O F
Hash index ‘
P
Cost:
— 45 tuples satisfy NAME=‘Smith’
= 3 blocks

= 4 blocks overall (including directory block).
— Block-nested join with FLIGHT as inner relation:

= 4 + [5£]1000 blocks

= 1004 blocks.

— Total: 1008 blocks
= 20.2 seconds.
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4. Methods:

— Push both select’s down.

— Assume hash index exists on NAME.

— Check MILES>1000 on the fly.

— Block nested join with FLIGHT as inner relation.

T (on the fly)
T (on the fly)
X

block—nested join

/

NAME='Smith’ O F
MILES>1000 ‘
Hash index on
NAME P
Cost:
— 45 tuples satisfy NAME=‘Smith’
= 3 blocks

= 4 blocks overall (including directory block).

— Assume only 1 tuple satisfies both conditions
= 1 block in result.

— Block-nested join with FLIGHT as inner relation:
= 1+ [55]1000 blocks
= 1001 blocks.

— Total: 1005 blocks
= 20.1 seconds.
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5. Methods:
— Push project past joins.
— However, FLT_ID is needed
=- cannot project it out.
— Use sorting to remove duplicates.
— Use Hash index for “NAME=‘Smith” condition.
— Check “MILES>1000” on the fly.

 FLT_ID
NAME, FLT 10 11 IT FLT 1D, FLT NO
on-the—fly on-the—fly
MILES>1000 O E

on-the—fly

NAME='Smith’ O
Hash index

Cost:
— Consider the cost to sort FLIGHT:
= 2np[log,, nr]| blocks
= 2 x 1000[log;ny 1000] blocks

= 4000 blocks
= already more expensive than some previous methods!

— Lesson: does not always help to push projects.
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e Sometimes, it does help to push project:

select NAME, FLT_NO
from  PASSENGER P, FLIGHT F
where P.FLT_ID=F.FLT_ID

In this case, consider the following two plans:

1. Methods:

— Use a block-nested join with FLIGHT as outer relation.
— Compute projection on the fly.

NAME, FLT_NO
T (on the fly)

X block—nested join

/N

P F

Cost:

— Total: 51506 blocks (see prior analysis)
= 17.1 minutes

2. Methods:
— Push projects down
= must retain join attributes (FLT_ID).
— Project NAME, FLT_ID from PASSENGER.
— Project FLT_NO, FLT_ID from FLIGHT.
— Use sorting to remove duplicates.

— Use sort-merge join (since results of project are sorted).
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NAME, FLT_NO
T (onthefly)

X sort-merge join

7N\

NAME, FLT_ID T T FLT_NO, FLT_ID

Cost:

— To project attributes of PASSENGER
= scan PASSENGER
= 5000 blocks.

— To project attributes of FLIGHT
= scan FLIGHT
= 1000 blocks.

— Assume (NAME,FLT_ID) take up 25 bytes.
= 40 tuples per block
= 2500 blocks.

— Assume (FLT_ID,FLT_NO) take up 10 bytes.
= 100 tuples per block
= 500 blocks.

— To remove duplicates in PASSENGER result:
= sort result (and remove duplicates on the fly)
= 2 x 2500 log;(, 2500 blocks
= 10000 blocks.

— Total for projection of PASSENGER:
= 10000 + 5000 = 15000 blocks.

— To remove duplicates in FLIGHT result:
= sort result (and remove duplicates on the fly)
= 2 % 500log;y, 500 blocks
= 2000 blocks.
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— Total for projection of FLIGHT:
= 2500 4+ 500 = 3000 blocks.
— Sort-merge join
= 2500 + 500 blocks
= 3000 blocks.
— Total: 15000 + 3000 + 3000
= 21,000 blocks
= 7 minutes.
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5.6 Relation Statistics

e A DBMS usually keeps some statistical meta-data on each relation, for
example:

— Cardinality of each relation.
— Number of blocks.

— Number of distinct key values in each index (e.g., total number of
entries in a B-tree).

— Heights of tree indices.

— Max and Min values of numeric attributes.
e The statistics are used to estimate quantities used in query optimization.
e FExample:

— Suppose maz(MILES)=50,000 and min(MILES)=0.
— Suppose total number of tuples is 100,000.
— How many tuples satisfy MILES>10,0007

— Use uniform distribution:

20000 — 10000 % 100,000 = 80,000 tuples.

e Other estimates are harder:

— For example: how many tuples are there in the join
PASSENGER *x FLIGHT?

— In this case, we know that FLT_ID is a key for FLIGHT
= each tuple of PASSENGER joins with at most one tuple of
FLIGHT
= number of tuples in join = number of PASSENGER tuples.

— Often, arbitrary “fudge factors” are used.
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5.7 Manual Intervention

e A DB Administrator (DBA) can take steps to improve the performance
of some “tough” queries:

— Decide to create or remove indices.
— Decide types of indices.

— Use tools or system options to re-organize data on disk.
e A DBA needs to understand the system workload:

— Frequently-used queries and how frequently they are used.
— Updates and update frequencies.

— User requirements (complaints).
= identify the important queries (users?) and focus on them.

e [t may be tempting to define an index on every attribute used in the
important queries
= indices make (read) access faster.

However, indices also:

— take up space (often as large as the relation itself)
= drains virtual memory (code/data), clutters up disk (data)

— are bad for insertions
= compare insertion using a B-tree versus insertion into a heapfile.

Fast updates are desirable in some applications, e.g., banking.
e General rules of thumb in index creation:

— Create indices for attributes that occur in multiple queries.

— Avoid creating indices for small relations.
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— If some updates are important, be careful about creating indices for
attributes involved in the update.
Note: hash indices allow for fast insertion

— If a B+-tree index is defined on non-key attributes, consider using
a clustered index.

— For equality selections, use a hash index provided range searches are
not required.
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Chapter 6

Database Schema Design

Course Notes on Database Systems
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6.1 Database Schema Design: Introduction

e A Database Administrator (DBA) is responsible for designing the schema
of a relational database
= need to decide which attributes go into which relations.

e Other DBA responsibilities:

— Analysis of user needs.
— Performance.

— Security and access (for users as well as dbase programmers).
e We will focus on schema design.
e Schema design usually proceeds in two phases:

1. Use informal guidelines to create an initial design.

2. Use formal guidelines to improve initial design.
e Consider an airline employee dbase:

— Schema S1:

EMP (NAME, SSN, FLT_ID, START_APT, END_APT, DEPTNO, DNAME, MGRSSN)

— Schema S2:

EMP (NAME, SSN, DEPTNO)

CREW (SSN, FLT_ID)

FLIGHT (FLTID, START_APT, END_APT)
DEPT (DEPTNO, DNAME, MGRSSN)

Which schema is better?

e Review of terminology:
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— superkey — any group of attributes that can uniquely identify a
tuple in any instance.

e.g., for a particular instance (FNAME, LNAME) may appear to be
a key — but it can’t be guaranteed.
= (FNAME, LNAME) is a poor choice for a key.

— key — a minimal superkey, e.g.,
(NAME, SSN) is a superkey (but not a key)
(SSN) is a key (and also a superkey)

— primary key — one key designated for general use.

— foreign key — a set of attributes in relation R that is the primary
key for relation S.

— Domain constraint — proper typing of values.

— Key constraint 1 — no two tuples can have identical keys
If a tuple is found that violates the condition, then either

* the tuple should be rejected or,
* the key is not truly a key (i.e., a bad choice)
— Key constraint 2 — no primary key value can be null.

— Referential integrity constraint — can’t have a tuple whose for-
eign key values don’t exist in the foreign relation instance.

For example, consider

EMP1 (NAME, SSN, FLTID, START_APT, END_APT, DEPTNO)
DEPT (DEPTNO, DNAME, MGRSSN)

e.g. <John, B, Smith, ... , 9> and DEPTNO=9 does not exist at
present.
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6.2 Informal Guidelines

1. Try to make user interpretation easy.

For example, compare

e Schema S1:

EMP (NAME, SSN, FLTID, START_APT, END_APT, DEPTNO, DNAME, MGRSSN)

e Schema S2:
EMP (NAME, SSN, DEPTNO)
CREW (SSN, FLT.ID)
FLIGHT (FLT_ID, START_APT, END_APT)
DEPT (DEPTNO, DNAME, MGRSSN)

Perhaps S1 has too much information (to absorb) per tuple

2. Try to reduce redundancy.

Suppose there are only a few departments
= MGRSSN and DNAME are unnecessarily repeated too often in
EMP.

NAME ... | DEPTNO | DNAME | MGRSSN

Abel e | D Crew 111-22-3334
Aitken e | 3 Ticketing | 222-33-4445
Al Khwarizmi | ... | 5 Crew 111-22-3334
Archimedes 5 Crew 111-22-3334
Zeno e | 3 Ticketing | 222-33-4445
Zuse e | D Crew 111-22-3334

On the other hand, S2 repeats DEPTNO in DEPT
= DEPTNO (integer) is smaller than DNAME (string) and MGRSSN

(string)
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3. Try to avoid update anomalies

Consider the schemas:

e Schema S1:

EMP (NAME, SSN, FLT_ID, START_APT, END_APT, DEPTNO, DNAME, MGRSSN)

e Schema S2:

EMP (NAME, SSN, DEPTNO)

CREW (SSN, FLT_ID)

FLIGHT (FLT.ID, START_APT, END_APT)
DEPT (DEPTNO, DNAME, MGRSSN)

Both have same attibutes. Unfortunately, S1 can create problems called
update anomalies.

e Insertion anomalies

(a) Consider inserting “John Smith works in Dept. 57, i.e.,
<John, Smith, 123456789, ... , 5, <dname>, <mgrssn> >.

Every time a tuple of this sort is entered, we have to check that
DNAME is correct
= we have to scan the whole relation (worst-case)

(b) Consider creating a new department: DEPTNO=9, DNAME="Security’
(with no employees yet)
Only one way to insert this info
= create NULL values for employee info
= but that means a NULL primary key value (SSN)!

e Deletion anomalies
If we delete the last employee in the ‘Crew’ department, e.g.

<John, Smith, 123456789, ... , 5, ‘Crew’, ... >

then we will lose the information
“Department 5 is the Crew department”.

355



e Modification anomalies
Suppose we change the manager of department 5
= we have to change MGRSSN for all department 5 employees
= full scan of database

Thus, schema S1 has many problems. On the other hand:

e S1 — has 1 relation.

e 52 — has 4 relations.

e For many queries, we will need more joins using S2.

e SQL code with S2 will be more complicated because of the extra
joins
(One solution: use S2 but create views based on needed joins)

4. Try to avoid too many NULL values.

e This may occur in ‘fat’ relations (with too many attributes).
e Space is wasted.
e Problems occur when using aggregate functions like count or sum.
e NULLSs can have different intentions:
(a) The attribute does not apply.
(b) Value is unknown, and will remain unknown.

(c) Value is unknown at present.

5. Beware of the Spurious Tuple Problem.

Consider the following two schemas:

e Schema S1:
EMP (NAME, HOME_APT, SSN, FLT_ID)

e Schema S2:
EMPNEW (NAME, SSN, FLT_ID)
HOMEBASE (NAME, HOME_APT)

First, let us see how a relation in S1 can be converted to relations in S2,
e.g., consider this data:
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EMP NAME HOME_APT SSN FLT_ID
Smith  National 111-22-3333 18
Smith JFK 222-33-4444 48
Jones La Guardia  333-44-5555 119

To create EMPNEW:
EMPNEW := lIxawmE, ssn, Frrap (EMP)

Thus,

EMPNEW NAME SSN FLT ID
Smith  111-22-3333 18
Smith  222-33-4444 48
Jones  333-44-5555 119

Similarly, to create HOME_BASE:

HOMEBASE := llxamE, HOME APT (EMP)

In this case,

HOMEBASE NAME HOME_APT
Smith  National
Smith JFK
Jones La Guardia

Now, suppose we are using S2 and we want to recreate S1 (say, as a
view):

EMP := EMPNEW x HOME_BASE.

We get the following join:

EMP NAME HOME_APT §SSN FLT_ID
Smith  National 111-22-3333 18
Smith JFK 111-22-3333 18 *
Smith JFK 222-33-4444 48
Smith  National 222-33-4444 48 *

Jones La Guardia 333-44-5555 119
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Here, the *-tuples are spurious!

What happened? Since NAME is not a key, a careless join produced
wrong results.

Summary of problems:

e Insertion, deletion and modification anomalies.
e Too many NULLs.

e Spurious tuples.

= We need a theory of schema design
= functional dependencies and normalization
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6.3 Functional Dependencies

e First, some convenient notions (and notation):

— Suppose our relational database has attributes Ay, ..., A,.
— Let R denote the schema R = (Ay, ..., A,).

— Typically, of course, we will have several relations,
e.g., EMP(Ay, A3, Ag), DEPT(Ay, A7, As) ... etc.

— However, we will pretend there is a relation with all the attributes,
i.e., with schema R = (Ay, As, ..., A,).

e Definition. A functional dependency (FD) between two sets of
attributes X and Y, denoted by X — Y, specifies a certain relationship
or connection between X and Y. Specifically, it says:
if ¢; and t9 are any two tuples in any instance of R such that

then

Intuitively, X — Y means: if you know the X-values of a tuple, then
that uniquely determines the Y -values.

Note: X and Y can be single attributes or groups of attributes.

e FExample:
Consider the relational database schema:
EMP (NAME, SSN, FLT_ID, START_APT, END_APT)
Suppose
X = {SSN}
Y = {NAME}
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Then X — Y, i.e., SSN uniquely determines NAME

From the definition, if we are given two tuples £; and 5, e.g.,
t, = <111-22-3333,... Smith,...>
ty = <111-22-3333,....Smith,...>

where

#[Y] = to[Y] (i, t:[NAME] = t,[NAME)).

Thus, we can’t have two tuples with the same SSN and different
NAME’s.

Similarly, the functional dependency

{FLTID} — {START_APT, END_APT}

is a reasonable assumption or a reasonable constraint to declare.

Functional dependencies are specified to capture dependencies for all
instances.

[t may just happen that employee names (NAME) are all different for a
particular instance.

= we may be led to believe that {NAME} — {FLT_ID}.

But, later on, another ‘Smith’ might join the airline
= this would be a poor choice of a FD.

A FD s a property of the meaning of attributes

= it should hold for all possible instances.
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e FD’s for specific relations.

Although we have defined FD’s on the universe of attributes, we will
often discuss FD’s within particular relations.

For example, the database schema might be:

(NAME, SSN, FLTID, START_APT, END_APT, DEPTNO, DNAME, MGRSSN).

We might have the relation

FLIGHT (FLT.ID, START_APT, END_APT)

Here, we can identify the FD

{FLT_ID} — {START_APT, END_APT}

in FLIGHT.

e Sometimes a diagram is used to show FD’s, e.g.,

NAME, SSN, FLT_ID, START_APT, END_APT

| | A ‘ T T

Here the FD’s shown are:

{SSN} — {NAME, FLTID}
{FLTID} — {START_APT, END_APT}

e Summary:

— A FD is defined between sets of attributes.

— The FD X — Y says “The X-attributes completely determine the
Y-attributes”.
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6.4 Sets of Functional Dependencies

e Consider the following example:

EMP (NAME, SSN, FLT_ID, START_APT, END_APT)

NAME, SSN, FLT_ID, START_APT, END_APT

| I ‘ T T

The obvious FD’s are:

{SSN} — {FLTID}
{FLTID} — {START_APT,END_APT}

Let F' denote the above collection of FD’s.

From F', we can infer
{SSN} — {START_APT, END_APT}.

Why? Because, SSN uniquely determines FLT_ID and FLT_ID uniquely
determines {START_APT, END_APT}.

Also, the following FD’s are examples of trivial FD’s inferred from F'.

{SSNY} 5 {SSN}
{SSN, NAME} — {NAME}

e Definition. Suppose F is a set of FD’s. Then, F'*, the closure of F

is the set of FD’s that includes F' and all the FD’s that can be inferred
from F'.
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6.5 Inference Rules for FD Sets

e NOTE the following:
1. When we say X — Y, X and Y are subsets of the universe of
attributes.

2. For convenience, we will sometimes drop the set notation and com-
mas within sets.
Suppose F' is the set of FD’s:

XY
X = Z.

Then, from F we can infer:
X -=>YZ.

Here, Y Z denotes the union of Y and Z.

For example, F' is

X ={SSN} — {NAME

} =Y
X ={SSN} — {FLTID}=Z

From which we conclude
X = {SSN} — {NAME, FLTID} = YU Z =Y Z

e From above, we can devise a rule: if X — Y and X — Z, then X — Y Z.

Such a rule is called an inference rule.
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e Standard inference rules for FD’s:

1. Reflexive rule. If Y C X then X — Y.
e.g. {SSN, NAME} — {NAME}

2. Augmentation rule. If X — Y then XZ — Y Z for any group of
attributes Z.
e.g.

{SSN}

{NAME}
{START_APT}

N < A
I

Then, {SSN} — {NAME} implies
{SSN, START_APT} — {NAME, START_APT}

3. Transitive rule. If X —Y andY — Z then X — Z.
e.g., the FD’s

{SSN} — {FLTID}
{FLTID} — {END_.APT}

together imply
{SSN} — {END_APT}.

4. Decomposition rule. If X — Y Z then X — Y.

e.g. the FD
{SSN} — {NAME, FLT ID}

implies
{SSN} — {NAME}.
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5. Union rule. If X - Y and X — Z then X - Y Z.
e.g. the FD’s

{SSN} — {NAME}
{SSN} — {FLT.ID}

imply
{SSN} — {NAME, FLT_ID}.

6. Pseudotransitive rule. If X =Y and WY — Z then WX — Z.

e.g. consider the relation

OVERTIME (NAME, SSN, RANK, FLT_ID, START_APT, END_APT, BONUS)

The FD’s

{FLTID} — {START_APT, END_APT}
{RANK, START_APT, END_APT} — {BONUS}

imply
{RANK, FLT_ID} — {BONUS.

e One can use Rules 1-6 to determine F'*.

e It turns out that Rules 1-3 are sufficient to completely determine F'*.
Rules 1-3 are called Armstrong’s Rules in honor of the person who

proved this result.

o Fquivalent FD sets.

— For most FD-sets F', the closure F'" is probably quite large.

— While we are interested in the theoretical implications of F'* for any
F, we are rarely going to compute F'*.
= Working with F' turns out to be good enough.

— Definition. FD-sets F and F are equivalent if E* = F7, ie., if
their closures are equal.

— If F is a set of FD’s smaller than F and yet £ = F7, then it is
easier to work with £.

— If E* = F* we also say that F covers F or is a cover for F.
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6.6 Attribute Set Closures

e If X is an attribute set, we are often interested in all attributes (func-
tionally) determined by X.
i.e., what is the largest Y for which X — Y7

For example, consider

EMP (NAME, SSN, FLT_ID, START_APT, END_APT)

NAME, SSN, FLT_ID, START_APT, END_APT

| | M‘T _________________ T A

Here, SSN determines all the other attributes.
= {SSN}* = {NAME,SSN,FLT ID,START _APT,END_APT}

e Definition. If F' is a set of FD’s and X is a set of attributes, then

X1 is the closure of X under F if X is the largest set of attributes
functionally determined by X using inference rules on FD’s in F.

e Algorithm for determining X .
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Algorithm: ATTRIBUTE-SET-CLOSURE (X, F)

Input: Attribute set X, FD set F.
Output: Closure of X, X*.

1. Xt .= X;

2. repeat

3 old Xt = X

4. for each FD Y — Z in F do
5. if Y C X' then

6 Xt = XtUZ;

7. until old Xt = XT;

8. return XT;

For example, suppose F' is:

{SSN} — {NAME}
{FLTID} — {START_APT, END_APT}
{SSN} — {FLTID}

and suppose we want the closure of X={SSN, NAME} under F.

— Initially, X* := {SSN, NAME}.
— In the first iteration of the outerloop, in line 3 old X = {SSN,
NAME}.

— Then, the FD {FLT_ID} — {START_ID, END_APT} is processed
in the for-loop.
= since {FLT_ID} is not in X, it is ignored.

— Then, the FD {SSN} — {FLT_ID} is processed
= it results in X* = {SSN, NAME, FLT_ID}.

— After the first iteration of the repeat-loop, X*={SSN, NAME,

FLT_ID} and old_X+:{SSN, NAME}
= must continue.
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— In the second iteration, the FD {FLT_ID} — {START_ID, END_APT}
is processed in the for-loop.
= it results in Xt = {SSN, NAME, FLT_ID, START APT,

END_APT}.

— After the second iteration of the repeat-loop, X*={SSN, NAME,
FLT ID, START_APT, END_APT} and old X*={SSN, NAME,

FLT_ID}
= must continue.

— No changes in third iteration
= stop.

Finally, X* = {SSN, NAME, FLT_ID, START_APT, END_APT}.
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6.7

Normal Forms

Normal forms are properties of relations.

There are many normal forms: First Normal Form (1NF), Second Nor-
mal Form (2NF), Third Normal Form (3NF), Boyce-Codd Normal Form
(BCNF), etc.

We say a relation is in zNF if its attributes satisfy certain properties
(via their FD’s).

Generally, these properties are desirable.
For example, if we desire the 3NF for a relational database:

— We will test the relations in the database to see which are in 3NF.

— Those that are not in 3NF will be decomposed into smaller rela-
tions (smaller in numbers of attributes) until we have each relation
satisfying the 3NF properties.

In the real world, most people try to achieve at least 3NF.

It is slightly better to achieve BCNF (Boyce-Codd Normal Form), but
3NF is considered ‘not bad’.

The end result is: if a database is in BCNF (or 3NF), many anomalies
are avoided.

FD’s were designed to test for Normal Forms.

It is easier to understand normal forms by first considering a simpler
version — normal forms for primary keys.

Recall some definitions and notation:
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— A prime attribute — an attribute belonging to some candidate key
(not necessarily the primary key).

— A nonprime attribute — not belonging to any candidate key.

370



6.8 INF: First Normal Form

e Definition. A relation is in INF if:

1. the value of any attribute in any tuple is a single value, and

2. domains of attributes contain only atomic values.

e Example of relations not satisfying 1NF:

multiple—valued attribute

PASSENGER  NAME SSN FLT ID MILES
Smith 111-22-3333 17 {/ 40000
Jones 222-33-4444 {12,53,119} 64000
Brown 333-44-5555 27 575

= Does not satisfy first part of definition.

Nested structure

PASSENGER NAME SSN FLT_ID START-APT

Smith 111-22-3333 17 { National

Jones 222-33-4444 {13TTUUGREKTT
} 53 JFK .
119 National :

Brown 333-44-5555 27 Logan

= Does not satisfy second part of definition (contains nested relations).
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e [t is easy to transform the above relations to satisfy 1NF by:

1. adding tuples or

2. creating new relations

For the first example:

PASSENGER NAME SSN FLT ID MILES
Smith 111-22-3333 17 40000
Jones 222-33-4444 12 64000
Jones 222-33-4444 53 64000
Jones 222-33-4444 119 64000
Brown 333-44-5555 27 575
Added tuples
For the second example:
PASSENGER NAME SSN FLT ID FLIGHT FLT ID START-APT
Smith 111-22-3333 17 17 National
Jones 222-33-4444 12 12 JFK
Jones 222-33-4444 53 53 JFK
Jones 222-33-4444 119 119 National
Brown 333-44-5555 27 27 Logan

e INF is nowadays taken for granted (i.e., later formulations of relational

theory assume relations to be in 1INF).

= we will assume all relations are in 1NF.

e Sometimes, raw data not in INF is called unnormalized data.
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6.9 2NF: Second Normal Form

e Definition. A FD X — Y is a partial dependency if there exists an
attribute A € X such that

X—-—A =Y.

We say that Y is partially dependent on X.

Example: consider the following relation with primary key {SSN,
FLT ID}

OVERTIME (NAME, SSN, FLT_ID, BONUS)

and suppose that bonuses are based on flight duration, and on the crew
member’s rank and salary.

Here we can identify some FD’s such as

{SSN, FLTID} — {BONUS}
{SSN} — {NAME}

Now, neither one of

{SSN} - {BONUS}
(FLTIID} — {BONUS}

1s true.

Thus, {SSN, FLT_ID} — {BONUS} is not a partial dependency.

But, {SSN} — {NAME}
= NAME is partially dependent on the primary key {SSN,FLT ID}
= {SSN, FLT_ID} — {NAME} is a partial dependency.

e Definition. A relation schema is in 2NF if no nonprime attribute is
partially dependent on the primary key
(in other words, depends on part of the primary key).
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e Thus, in the above example, OVERTIME is not in 2NF.
(It is, however, in INF).

e Why is this a problem?
Suppose an instance looks like:

OVERTIME NAME SSN FLT.ID BONUS)
Smith  111-22-3333 17 450
Jones  222-33-4444 28 375

Suppose we want to insert the tuple

<Brown, 111-22-3333, 18, 950>.

Because we have the FD: {SSN} — {NAME} we will have to check that

<Brown, 111-22-3333,...>

is valid, i.e., that it matches other SSN,NAME values for SSN=111-22-
3333

= we have to scan the whole relation (worst-case) to check

= insertion anomaly.

Note that
<Brown, 111-22-3333,...>

is not valid.

Similarly, if Flight # 28 is deleted
= we will lose the information “222-33-4444 is the SSN of Jones”
= deletion anomaly.

This relation also has a modification anomaly:
= if Smith changes name to Brown
= have to propagate change to all relevant tuples.
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To solve the problem, consider the decomposition of

OVERTIME (NAME, SSN, FLT_ID, BONUS)
into

OVERTIME (SSN, FLT_ID, BONUS)
PERSONAL_INFO (SSN, NAME)

These relations are in 2NF, with the important FD’s:

{SSN, FLTID} — {BONUS}
{SSN} — {NAME}

There are no partial dependencies of nonprime attributes on primary

keys
= the new set of relations is in 2NF.
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6.10 3NF: Third Normal Form

e Definition. The FD X — Y is a transitive dependency in relation
R if there exists a set of attributes Z in R such that

1. X —>Zand Z —-Y
2. Z is not a subset of any key of R

Example: consider the relation
EMP (NAME, SSN, POSITION, DEPTNO, DNAME, MGRSSN).

— Observe that EMP is in 2NF since no partial dependencies exist at
all (and hence partial dependencies on the primary key don’t exist).

— Next, consider these FD’s (there are others):

{SSN} — {DEPTNO}
{DEPTNO} — {MGRSSN}

Note that DEPTNO is not part of any key.
= there is a transitive dependency of MGRSSN on SSN.

e Definition. A relation R is in 3NF if

1. it is in 2NF and,

2. no nonprime attribute is transitively dependent on the primary key.

In the above example:

— EMP is in 2NF

— MGRSSN is a nonprime attribute transitively dependent on the pri-
mary key SSN.

= EMP is not in 3NF.
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e Why should we care about 3NF?
Consider the following instance of EMP:
EMP NAME SSN POSITION DEPTNO DNAME MGRSSN

Smith .. 5 Crew 111-22-3333
Jones .. 6 Ticketing 222-33-4444

Suppose we insert the tuple <Brown,...,5, Security, 333-44-5555>

= we would have to check that the DEPTNO matches the MGRSSN
(wrong in this case)

= scanning the database

= insertion anomaly.

Similarly, if Smith’s DEPTNO changes to 6
= we will have to also insert the correct MGRSSN in Smith’s tuple
= modification anomaly.

A deletion anomaly also occurs, if we delete Smith’s tuple and Smith is
the last Crew employee

= we will lose the information “Dept# 6 is Crew”

= deletion anomaly.

e To solve a 3NF problem, we can decompose relations.

In the above example:

E1 (NAME, SSN, POSITION, DEPTNO)
E2 (DEPTNO, DNAME, MGRSSN)

Note:

1. E1 and E2 are in 3NF.
2. EMP can be recovered by joining E1 and E2.

3. The join will not create spurious tuples.
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6.11 General Definitions of 2NF and 3NF

e We have defined 2NF and 3NF using primary keys.
e General definitions based on any candidate key are desirable.

o 2NF':

— Primary key wversion: A relation schema R is in 2NF if every
nonprime attribute A in R is not partially dependent on the
primary key.

— General version: A relation schema R is in 2NF if every nonprime
attribute A in R is not partially dependent on any key of R.

Consider the following example:

AIRCRAFT_PARTS (MANUF, CODE, PART ID, DESCR, URL, PRICE).

Here,

— The airline keeps information about aircraft parts.

— PART_ID is the primary key
= it is a a unique number assigned by the airline to each part.

— Each part is manufactured by a single manufacturer (MANUF) and
the manufacturer uses a code (CODE) to identify the part
= the combination {MANUF, CODE} is a key.

— The URL is the (internet) address of the manufacturer’s webpage.

Now, each manufacturer has a web page
= we have the FD {MANUF} — {URL}
= a dependency from part of a key to something else.

Then, AIRCRAFT_PARTS is in 2NF according to the primary version
of the definition (no partial dependency on the primary key).
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But the partial dependency on MANUF causes the general definition to
fail
= AIRCRAFT_PARTS is not in 2NF.
e We want the general definition to hold, because otherwise we will have
to check the FD {MANUF} — {URL} for every insertion.

We can decompose

AIRCRAFT_PARTS (MANUF, CODE, PART_ID, DESCR, URL, PRICE).
into

PARTS (MANUF, CODE, PART.ID, DESCR, PRICE)
WEBSITES (MANUF, URL)

This schema is in 2NF.

e Thus we see how our elaborate definitions of normal forms helps us catch
problems in seemingly innocuous schemas (like AIRCRAFT_PARTS).

o 3NI:

— Primary key version: A relation R is in 3NF if
1. it is in 2NF, and

2. no nonprime attribute is transitively dependent on the primary key
of R.

— General version: A relation R is in 3NF if
1. it is in 2NF, and

2. no nonprime attribute is transitively dependent on any key of R.

Now observe this:

- If X C {4,...,A,} is any key then X — Y for any ¥ C
{Ay,..., Ay}
— Suppose for some relation R

1. X is the primary key.
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2. Y is some other key.
3. Z is transitively dependent on Y, i.e., there are FD’s

Y —-Wand W — Z.

But X — W since X is a key.
= Z is transitively dependent on X (the primary key)
= the two 3NF' definitions are identical.

For example, consider

AIRCRAFT_PARTS (MANUF, CODE, PART ID, EMAIL, URL, PRICE).

Then, the FD {EMAIL} — {URL} may be a reasonable choice

= there is a transitive dependency PART_ID — {EMAIL} — {URL}.
But, since {MANUF, CODE} is a key

= {MANUF, CODE} — {PART.ID} trivially

= {MANUF, CODE} — {EMAIL} — {URL}

= transitive dependency on a nonprimary key.
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6.12 BCNF: Boyce-Codd Normal Form

e Consider the relation
PARTS (MANUF, CODE, URL).

Suppose that each manufacturer has a webpage form that depends on
the part being ordered
= a different URL for each part.

We can identify the natural FD:
{MANUF, CODE} — {URL}.

Note that we also have the FD:
{URL} — {MANUF}

since a given URL can only correspond to a unique manufacturer.
Is PARTS in 2NF?

— Recall: no nonprime attribute should have a partial dependence on
a key.

— Here, a manufacturer has different URL’s
= no dependence of URL on MANUF.
= it passes the 2NF test
Is PARTS in 3NF?

— It is in 2NF.
— Recall: we should not have any transitive dependence on a key.

— Now, {MANUF, CODE} is the only key
= URL is the only attribute left
= can’t have a transitive dependency with only one nonprime at-
tribute.

= PARTS is in 3NF.
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e So, what is the problem?

Unfortunately, PARTS (MANUF, CODE, URL) has all the anomalies
(insertion, deletion and modification).

— The FD {URL} — {MANUF} is the real problem.

— Suppose, we delete the tuple
<Boeing, 3395, http://www.boeing.com/parts/737/wing>.

If this is the only Boeing tuple in the relation, we will lose Boeing’s
URL
= deletion anomaly.

It is easy to check that insertion and modification anomalies are also
present.

e The problem appears to be:

— In 2NF: we did not allow FD’s from parts of keys to nonprime
attributes.

— Here we have an FD from an attribute to part of a key.

e One option is to introduce the following rule for every relation:

1. it should be in 3NF
2. there should be no FD X — Y such that Y is part of a key.

Unfortunately, this rule is too restrictive.
e.g., consider

AIRCRAFT_PARTS (MANUF, CODE, PART ID, DESCR, PRICE).

Here,

— PART_ID is the primary key.
— {MANUF, CODE} is another key.
— The FD {PART ID} — {MANUF} follows.
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Thus, if we disallow relations of this sort, we will be essentially barring
all non-primary keys from having multiple attributes.
= may be too restrictive in practice.

e Let us try to soften the rule:

1. it should be in 3NF
2. for every FD X — Y, such that Y is part of a key, X should itself
be a key.
That is, we do allow part of keys to be dependent on things — provided
those things are keys.

This is a reasonable assumption because:
— If X is a key, we would likely have to check uniqueness anyway (and
that’s all we have to do — using the unique keyword in SQL).

— Deletion causes less of an anomaly, e.g., in
AIRCRAFT_PARTS (MANUF, CODE, PART_ID, DESCR, PRICE).

the FD {PART_ID} — {MANUF} is not important.
Deleting the only tuple with ‘Boeing’, e.g.,
<Boeing, 423, 12, Coat-rack, $50>,

we lose the information “Part_id 12 is made by Boeing”.

But, if we delete the tuple
<Boeing, 423, Coat-rack, $50>

we are really saying “Boeing is the only company who makes the
coat-racks we use, and we don’t need coat-racks”
= it’s OK to lose “Part_id 12 is made by Boeing”.

e The softened rule above needs a small modification:

Observe that in the above example, we have the FD

{PARTID} — {MANUF}.
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This passes our new test.

However, the following is also an FD:

{PART_ID, PRICE} — {MANUF}.

This fails the test because {PART_ID,PRICE} is not a key.

However, it is a superkey (contains a key).

e Final form:

Definition. A relation R is in Boyce-Codd Normal Form (BCNF) if:

1. it is in 3NF
2. for every FD X — Y such that Y is part of a key, X is a superkey.

384



6.13 3NF and BCNF: An Alternate Definition

e First recall the 3NF definition:
1. 2NF

2. no transitive dependency from a key to a nonprime attribute should
exist.

Here, a transitive dependency means:

—X—=YandY =+ 7
— Y is not part of any key
— X is a key

— Z is a nonprime attribute

Now, since X is a key, the FD X — Y must be true for any Y.
Thus, the condition is really saying (given X is a key) that for Y — Z:

— (a) Y is not part of any key
— (b) Z is a nonprime attribute
Next, recall that 2NF is essentially:
— if Y — Z then Y cannot be a proper subset of a key.

Combine this with the first item (a) in 3NF and write (b) separately:
A relation R is in 3NF if for every FD Y — Z either

1. Y is a superkey, or

2. Z is a prime attribute.

e This is an alternate definition of 3NF which does not mention 2NF'.
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e Note that if Z is a prime attribute, we allow ¥ — Z even if Y is not a
superkey, e.g. in

PART (MANUF, CODE, URL)

we allowed {URL} — {MANUF} because {MANUF} is a prime at-
tribute (it is part of the key {MANUF, CODE}).
But BCNF does not allow this.

Hence, an alternate definition of BCNF is:
A relation R is in BCNF if for every FD Y — Z, Y is a superkey of R.

— This definition does not use 3NF.
e NOTE:

— We must be careful to rule out trivial dependencies from considera-
tion:

* The dependency X — A where attribute A € X is called a
trivial dependency.

* Example: {SSN, NAME} — {SSN}.

x We rule out trivial dependencies because they occur with any
subset of attributes.

— Suppose Y = {A;, ..., A;} is a subset of attributes and X — Y.
*x We know that X — A; for i =1, ..., k by the decomposition rule.

« Thus, the BCNF definition can also be stated as: a relation s in
BCNEF if every nontrivial dependency is one in which a superkey
determines an attribute.
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— Informally, the only functional dependencies in a BCNF go from
keys to other attributes.

— Example:
* Suppose X is a superkey and X — A in a BCNF relation, R.
x Suppose B is some other attribute.

* Consider the following tuples:

R X A B
Tz a b
z a 7

* The value X = z determines the value A = a.
* But could we have different B-values?

x Different B-values raise the familiar problem of X — A anoma-
lies.

* But since R € BOCNF, X is a superkey and so X — B (simply
by being a superkey).
x Thus, the B-value must be b.

x Since we can’t have duplicate tuples, it won’t be allowed.

e Finally, observe that

Risin BONF = Risin 3NF
= Risin 2NF
= Risin INF
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6.14 Another View of Normal Forms

e If the discussion so far has been confusing, let us try to explain normal
forms a little differently.

e First, some simplifications:

— Let us only consider relations with a single key — a primary key.

— Assume this key has several attributes.

Note: this simplification is only for conveying the key idea behind normal
forms. In practice you would have to use the full definition.

o Let R(Ay,...,Ag) be a relation with primary key {A;, Ay, As}.

e 2NF says: FD’s like A5 — Aj are not allowed.
= a proper subset of a key should not be on the left side of an FD:

R (Al, A2, A3, A4, A5, A6)

L

e 3NF says:

1. at least 2NF, and

2. FD’s like A4 — Ag are not allowed.
= an FD between non-key attributes is not allowed:

R (AL, A2, A3, A4, A5, Af)
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e Next, BCNF:

Unfortunately SNF allows an FD like A; — A3, where Aj is nonprime
and Ajs is part of the key:

R (AL, A2, gf, A4, A5, A6)

We saw why this was a problem in the BCNF example.

On the other hand we did not want to be too restrictive: if A; happened
to be a key we would allow it:

R (A1, A2, A3, A4, A5, A6)

e The key ideas above are generalized to allow for:

— multiple keys in a relation

— keys consisting of groups of attributes.
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6.15 Decomposition and its Problems

e We have seen that it is desirable to have relations in BCNF (or at least
3NF).

e We have seen how to test for BCNF and 3NF.
e But how do we create a BCNF (or 3NF) database?

— One approach: Ad-hoc

« Create relations intuitively
« Test each for BCNF

— More formal approach:

* Start with a single large relation with all attributes
x Systematically decompose relations not in BCNF

x Repeat until all relations are in BCNF
e Unfortunately, decomposition can create problems:

— Dependencies may be lost after decomposition.
— Joins of decomposed relations may create spurious tuples.

— Joins of decomposed relations may lose tuples.

e Note: thus far, we have identified problems with individual relations
= we have not placed constraints among multiple relations.
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6.16 Dependency Preservation

e Suppose we decompose R = (A1, ..., Ay) into relations Ry, ..., Ry,.

e Of course, we should have attribute preservation, i.e., attributes
should not be lost in the shuffle:

RiUR,U...R, =R

e Unfortunately, FD’s can be lost, e.g.,

— Suppose F'is a set of FD’s containing the dependency
{PART.ID} — {PRICE}.

— Suppose also that {PART_ID} is put in relation Rs and {PRICE}

is put in relation Ry
= we can’t check the dependency.

e In the above example, the lost FD would be OK, if the dependency were
somehow not important
= we need to consider the closure of FD’s.

e Definition. Let F' be a set of FD’s and suppose R is decomposed into
relations Ry, ..., R,,. Let E be the set of FD’s in Ry,..., R,;,. Then the
decomposition is dependency preserving if £t = Ft.

e Fact: It is always possible to decompose any relation R into 3NF rela-
tions Ry,..., R, such that the decomposition is dependency preserving.
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6.17 Nonadditive and Lossless Decompositions

e Suppose we decompose R into Rq,..., R,,. Later, we wish to recover R
(perhaps as a view).

— The natural join on Ry,..., R,, should return R.

— If we’re not careful, this join can create spurious tuples
e.g, consider the relation r with schema R =(CAR,OWNER,COLOR):
CAR OWNER COLOR

Toyota Smith blue
Ford Jones blue

Suppose we decompose this into 1 and r9 with schemas R;=(CAR,COLOR)
and Ry=(OWNER,COLOR).

How? Let 1 = Igar,coror(r) and r» = IlowNer,coror(r):

CAR COLOR OWNER COLOR
Toyota blue Smith blue
Ford blue Jones blue

What happens when we join r; and ro7

CAR  OWNER COLOR
Toyota Smith blue
Toyota Jones blue *
Ford Smith blue *
Ford Jones blue

= Spurious tuples!

e A decomposition of R into Ry,..., R, is nonadditive if for every in-
stance r of R, the natural join of the corresponding instances rq,...,r,
is equal to r, i.e.,

TikTrok ...y =T
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where r; = Ilg,(r).
Note: nonadditive is the same as ‘creates no spurious tuples’.
Sometimes, one can inadvertently lose tuples in a join.

Example:

Suppose EMP (SSN, NAME, FLT_ID, DEPTNO) has too many NULLs
in the DEPTNO attribute (because many employees have no assigned

department).
EMP SSN NAME FLT_ID DEPTNO
111-22-3333 Smith 12 NULL
222-33-4444 Jones 55 6
333-44-5555 Brown 119 NULL

= One solution is to decompose EMP into two relations:

EMP1 (SSN, NAME, FLT_ID)
DEPT (SSN, DEPTNO)

e.g.,
EMP1 SSN NAME FLT.ID DEPT SSN DEPTNO
111-22-3333 Smith 12 999.33-4444 G
222-33-4444  Jones 55
333-44-5555 Brown 119
Here,

— Only those employees assigned to a department will have department
numbers

= DEPT is small.
— Both EMP1 and DEPT are in BCNF.

— The decomposition is nonadditive and dependency preserving.

Consider the join EMP1 « DEPT:
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EMP1 « DEPT SSN NAME FLTID DEPTNO
222-33-4444  Jones 55 6

= the ‘Smith’ and ‘Brown’ tuples are lost!
= we have to be careful in letting joins replace relations.

e We call a decomposition is lossless if it does not lose tuples in recovering
the original relation.

e Note:

— Nonadditivity and losslessness are two sides of the same coin.
— We will use the term lossless to refer to both.
— Some books use additive to refer to both.

e It would be useful, if given a decomposition, to test whether the decom-
position is lossless.

e A useful fact. A decomposition of R into Ry and Ry is nonadditive
with respect to a set of FD’s F', if and only if either one of the FD’s

— leRQ —)Rl—RQ
—RiNRy — Ry — Ry
is in F'T.
Intuition:

— Observe: the attributes R; N Ry are in both R; and Ry
= these are the join attributes.

— Suppose the FD Ri N Ry — R; — Ry holds.
This is the same as Ry N Ry — Ry — (R1 N Ry)
= R1N Ry is a key for R;.
= weird, unwanted tuple combinations can’t occur.

e In the R=(CAR,OWNER,COLOR) example:
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We joined

CAR COLOR OWNER COLOR
Toyota blue Smith blue
Ford blue Jones blue

to get

CAR OWNER COLOR
Toyota Smith blue
Toyota Jones blue *
Ford Smith blue *
Ford Jones blue

Note that {COLOR} is not a key for either relation.
Here, Ri=(CAR,COLOR) and Ry—=(OWNER,COLOR) and,

R1 N R2 - COLOR
R1 - R2 - CAR
R2 - R1 - OWNER

Clearly, the neither of FD’s

{COLOR} — {CAR}
{COLOR} — {OWNER}

hold
= the decomposition is not nonadditive.
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6.18 Algorithms for Decomposition of
Relations

e First, recall that an FD set E covers FD set F if ET = F* ie., the
closure of F' is the closure of F’
= if F is smaller it will be easier to work with
= 1t is useful to determine the minimal cover for an FD set F.

e Minimal covers can be defined in a number of ways:
— F is an FD-minimal cover of F' if E covers F' and no other FD set

covers F' that has fewer FD’s than F.

— F is an attribute-mainimal cover of F if E covers F' and no other FD
set covers F with fewer attributes.

— FE is a left-minimal cover of F if E/ covers F' and no other FD set
covers F' with smaller left-hand-sides.

Note:

— Computing an attribute-minimal cover is a hard (NP-complete)
problem
= no fast algorithm is known.

— Computing FD-minimal covers and left-minimal covers is fairly
straightforward.

— Left-minimal covers are all that’s needed for 3NF decompositions.
e Key ideas in finding a left-minimal cover:

— Consider the relation
EMP (NAME, SSN, FLT_ID, START_APT, END_APT).

and the FD set F'
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(1) {SSN, NAME} — {FLT.D, START_APT}
(2) {SSN} — {FLTID}

(3) {FLTID} — {START_APT}

(4) {SSN} — {NAME}

(5) {SSN, NAME} — {FLT.D}

Note that, given (2) and (4), we don’t need (5) since the combination
of (2) and (4) will imply (5).

— The first step is to break up the FD’s so that the right-hand-sides
are only single attributes:

{SSN, NAME} — {FLT_ID}
{SSN, NAME} — {START_APT}
{SSN} — {FLTID}
{FLT_ID} — {START_APT}
{SSN} — {NAME}

— Next, see if left-hand-side attributes can be removed.
* For example, consider the FD {SSN, NAME} — {FLT_ID}.
* The left-hand-side here is {SSN, NAME}.
* Suppose we remove SSN: {SSN, NAME} - {SSN}.
* Can we replace the earlier FD with {NAME} — {FLT_ID}?

x To check, we compute the attribute closure of the new left-hand-
side, i.e., check whether ({SSN, NAME} - {SSN})* contains the

right-hand-side { FLT_ID}.
« In this case, {NAME}" does not contain {FLT ID}
= cannot remove {SSN} from {SSN, NAME} — {FLT_ID}.

e Definition: An FD X — Y where Y has more than one attribute is
called a multiple-RHS FD.

e Algorithm for computing a minimal cover:
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Algorithm: LEFT-MIN-COVER (F)

Input: An FD set F'.

Output: A left-minimal cover E.
1. FE = F,

2. for each multiple-RHS FD X — A A... Ay in E

3 E = F— {X — AlAQ...Ak};

4. for ¢ < 1to k

5 E = FU{X — A;};

6. endfor

// All multiple-RHS FD’s have been replaced by single-RHS FD’s

for each FD X — Ain F

7.
8. X* := ATTRIBUTE-SET-CLOSURE (X, £ — {X — A});
9

. if Ae X+
10. E = F—-{X — A},
11. endfor

// Now, we are rid of unnecessary FD’s. Next, reduce left-hand-sides
12. foreach FD X - Ain F

13. for each attribute B € X

14. D = E—-—{X > AlUu{(X —B) —» A};

15. (X — B)" := ATTRIBUTE-SET-CLOSURE (X — B, D);
16. if Ae (X - B)*

17. E = F-—{X — A},

18. E = FU{(X —B) — A};

19. endif

20.  endfor

21. return E;

e The following algorithm decomposes a relation R into a set of 3NF re-
lations Ry, Rs, ... that are dependency-preserving and nonadditive.
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Algorithm: 3NF-DECOMPOSITION (R, F)

Input: Relation R = (Ay, ..., A;) with FD set F.
Output: 3NF decomposition Ry, Ro, ...
1. E := LErFT-MIN-COVER (F);
2. for each left-hand-side X; in F
3 R, = {Xi};
4. for each X; —+ A; in I
5) RZ = RZ U {Aj};
6

endfor
// At this point we have a collection of relations Ry, ..., R,
Rn+1 = @;

for each A; ¢ Ry U...UR,
Roy1 = Rop U{Ai}
10. return Ry, ..., R,1;

© o N

e Why does this work?

— First note that all the FD’s find their way (see lines 4-5) into the
decomposition
= it is dependency-preserving.

— Are the resulting relations in 3NF?

* Consider a transitive dependency X — Y — Z in the original
relation.

x The FD X — Z will be removed in minimal cover since X — Y
and Y — Z are sufficient to generate Z € Z*.

* Thus, the decomposition (lines 4-5 above) will not create a rela-
tion with attributes (X,Y, Z) and thus transitive dependencies
will be removed.

— Is the decomposition nonadditive?

« Note this general property: if R is a relation and X — Aisan FD
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then the decomposition R — A and R’ = (X, A) is nonadditive.

Why? Because a join of R — A and R only involves X and since
X determines A, no spurious tuples will be created.

« In the above algorithm, all decomposition steps are of the above
type.

e An algorithm for decomposing a relation into a collection of nonadditive
BCNF relations.

Algorithm: NONADDITIVE-BCNF-DECOMPOSITION (R, F')

Input: Relation R, FD set F.
Output: A nonadditive BCNF decomposition Ry, Ro, ...
1. Ry,..,R; := 3NF-DECOMPOSITION (R, F);

2. while 4 R; € Ry, ..., R not in BCNF

3 if X — Y is an FD in R; that violates BCNF
4. Rz = Rz - Y;

5. k = k+1;

6 Ry = (X,Y);

7 endif

8. return Ry, ..., Ry;

Intuition:

If X — Y isin some R; and it violates BCNF
= X is not a superkey of R; (definition of BCNF)
= we create a relation B, = X UY

Here X — Y implies X is a superkey for Ry
= since Y is removed from R;, it does not cause the BCNF violation.

e Unfortunately, we can’t always decompose R into BCNF relations that
are both dependency preserving and nonadditive.

— The nonadditive property is preserved by the above algorithm.
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— It may produce a decomposition that is not dependency-preserving.
— In general, it is impossible to achieve both.

— Example: consider the relation
PARTS (MANUF, CODE, URL)

where each part has a unique URL.

x The FD’s are:

{MANUF, CODE} — {URL} (unique URL for each part)
{URL} —  MANUF (knowing a URL tells you the manufacturer)

x The PARTS relation is not in BCNF since we have a dependency
from an attribute (URL) to part of a key (MANUF).
* Any decomposition will have to separate URL from MANUF.

* This means the FD {MANUF, CODE} — {URL} cannot be

preserved in the decomposition
= no BCNF decomposition of PARTS can be dependency-
preserving.
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6.19 Formal Schema Design: A Summary

e We saw that ad-hoc designs led to anomalies with insertions, deletions
and modifications.

e To analyze relations, we developed the theory of normalization:

— Definition of functional dependency (FD).
— Properties of FD'’s.

— Computation of attribute closures.

— Definition of Normal forms (primary and general versions).

e In practice: try to achieve BCNF. If not possible, live with 3NF.
If your design is not in 3NF
= you have a weird schema.

e Also need to check for nonadditivity and dependency preservation.

e Before using a join to replace existing relations, check to see tuples don’t
get lost.

e Sometimes, a BCNF decomposition or a 3NF decomposition can lead to
inefficiencies
= many queries require expensive joins.
In this case, one sometimes permits BCNF and 3NF violations for effi-
ciency reasons
= violations can be checked separately at leisure.

e Some issues we have not covered:

— Formal proofs asserting the correctness of algorithms.

— Finding minimal FD-sets with other definitions of minimality.
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— General mechanisms for testing nonadditivity (an algorithm called
the Tableau Chase Method).

— Multivalued FD’s and 4NF.

— Other dependencies and normal forms.
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Chapter 7

Transaction Processing: Recovery and
Concurrency Control

Course Notes on Database Systems
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7.1

What is a Transaction?

e To explain what a transaction is, we’ll first consider an example:

— Consider the McVALUE Airlines database with the following addi-
tional relations: CORP_ACCOUNTS and BILLING:

CORP_ACCOUNTS CORP_ID CNAME BALANCE

3 IBM 649,314
19 Intel 213,617
7 GM 65,973

42 DuPont 143,112

BILLING PNAME CORP.ID BALANCE

Sam 19 615
Joe 7 700
Sue 42 419
Pam 0 445

BILLING contains the outstanding balance for individual passen-
gers. CORP_ACCOUNTS contains the amount owed by some cor-
porate clients.

— Some individuals belonging to a corporation can have their ticket
charged to the corporate account.
For example, Joe’s outstanding balance is $700 — it can be charged

to his corporate (GM’s) account by transferring the amount $700 to

65,973.
= Joe’s balance becomes 0, GM’s balance becomes 66,673.

— A corporate id of 0 indicates no corporate affiliation.

— An embedded SQL program to achieve corporate billing looks like
this:

EXEC SQL DECLARE SECTION
varchar pass_name [50]; // Passenger name
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int cid; // Corporate id
int amount; // Amount outstanding
EXEC SQL END DECLARE SECTION
// Read in passenger name from screen (not shown)
amount = O;
EXEC SQL  SELECT B.CORP_ID, B.BALANCE // Get the guy’s
INTO :cid, :amount // Corp_id and balance
FROM BILLING B
WHERE B.PNAME = :pass_name;
if (cid > 0) { // Corporate employee?
EXEC SQL  UPDATE BILLING // Zero-out balance
SET BALANCE = 0O
WHERE PNAME = :pass_name;
EXEC SQL  UPDATE CORP_ACCOUNTS // Add to corporation
SET BALANCE = BALANCE + :amount
WHERE CORP_ID = :cid;

— For example, if the passenger name entered is “Joe”, the relations
are updated to:

CORP_ACCOUNTS CORP_ID CNAME BALANCE

3 IBM 649,314
19 Intel 213,617
7 GM 66,673 —
42 DuPont 143,112

BILLING PNAME CORP_ID BALANCE

Sam 19 615
Joe 7 0 —
Sue 42 419
Pam 0 445

e Let us observe the interaction between main memory and disk when this
change is made:

1. Initially, data is only on disk:
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CLIENT MEMORY SERVER MAIN MEMORY DISK

Block in BILLING file
pass_name

| | 700| tuple for "Joe"
cid

amount

UL

tuple for
GM 65973

Block in CORP_ACCOUNT file

2. Read in passenger name (“Joe”) from keyboard:

CLIENT MEMORY SERVER MAIN MEMORY DISK
Block in BILLING file
pass_name Joe
| | 700| tuple for "Joe"
ad [ ]
anount ||

tuple for
GM 65973

Block in CORP_ACCOUNT file

3. After first SQL statement, Joe’s corporate id (7) and outstanding
balance ($700) are read into the client variables cid and amount:

CLIENT MEMORY SERVER MAIN MEMORY DISK
Block in BILLING file
pass_name Joe
| . l l__?OO'__, ___________________________ | | 700| tuple for "Joe"
w el
700
amount
tuple for
GM 65973

Block in CORP_ACCOUNT file
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4. After second SQL statement, Joe’s balance is zeroed out:

CLIENT MEMORY SERVER MAIN MEMORY DISK

Block in BILLING file

pass_name Joe
o\ . - 0 | tuple for "Joe"
. .
700
amount
tuple for
GM 65973

Block in CORP_ACCOUNT file

5. For third SQL statement, the block containing GM’s tuple in
CORP_ACCOUNTS is first fetched:

CLIENT MEMORY SERVER MAIN MEMORY DISK

Block in BILLING file

pass_name Joe
0 0 | tuple for "Joe"
a ]
700
amount
65973 tple for 65973

Block in CORP_ACCOUNT file

Then, it is updated and written to disk:
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CLIENT MEMORY SERVER MAIN MEMORY DISK

Block in BILLING file

pass_name Joe
0 0 tuple for "Joe"
|| [ ]
700
amount
66673 tuple for 66673

Block in CORP_ACCOUNT file

e Note: the method of immediately writing (Immediate- Write Method) to
disk every update can be very inefficient for multiple updates to a block.

— For example, consider the following SQL statement:

update CORP_ACCOUNTS
set BALANCE = BALANCE x 0.9;

— Next, suppose a block contains 50 tuples
= 50 disk writes for each block
= 1 second per block (at 20 ms per access)

— It’s better to postpone writing a block until either:

1. Memory space is needed for other blocks
= must write some block to disk.

2. All the work for the block is done.

Thus, an alternative scenario (Deferred-Write Method) for the BAL-
ANCE example is:

e Initially, data is only on disk:
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CLIENT MEMORY SERVER MAIN MEMORY DISK

Block in BILLING file

pass_name

| | 700| tuple for "Joe"

cid

UL

amount

tuple for
GM 65973
Block in CORP_ACCOUNT file

e Read in passenger name (“Joe”) from keyboard:

CLIENT MEMORY SERVER MAIN MEMORY DISK

Block in BILLING file

pass_name Joe

I:I | | 700| tuple for "Joe"
cid
ot ||

tuple for
GM 65973
Block in CORP_ACCOUNT file

e After first SQL statement, Joe’s corporate id (7) and outstanding bal-
ance ($700) are read into the client variables cid and amount:

CLIENT MEMORY SERVER MAIN MEMORY DISK

Block in BILLING file

pass_name Joe

700 . 700| tuple for "Joe"
o [T e e L
amount 700 )

tuple for
GM 65973
Block in CORP_ACCOUNT file
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o After second SQL statement, Joe’s balance is zeroed out only in memory:

CLIENT MEMORY SERVER MAIN MEMORY DISK

Block in BILLING file

pass_name Joe
0 700| tuple for "Joe"
. .
700
amount
tuple for
GM 65973

Block in CORP_ACCOUNT file

e For third SQL statement, the block containing GM’s tuple in CORP_ACCOUNTS
is first fetched:

CLIENT MEMORY SERVER MAIN MEMORY DISK

Block in BILLING file

pass_name Joe
0 700| tuple for "Joe"
7 || [ [ 709w
cd
700
amount
65973 tple for 65973

Block in CORP_ACCOUNT file

e After all modifications are made, the updated blocks are written to disk:

CLIENT MEMORY SERVER MAIN MEMORY DISK

Block in BILLING file

pass_name Joe
o |\ .. ) 0 tuple for "Joe"
H ]
700
amount
66673 tpie for 66673

Block in CORP_ACCOUNT file
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e In either scenario, an important question arises: what happens if the
system crashes before updates to disk are complete?

— In the first scenario, system could crash after ‘0’ is written to Joe’s
tuple, but the corporate tuple is untouched
= inconsistent data left in system.

— In the second scenario, system could crash during either disk write’s
= inconsistent data or incomplete execution.

e Thus, we would like the embedded SQL program to change the database
completely or not at all.

e Definition: Computations that are required to execute completely or
not have any effect on the database are called transactions.

e Typically, most transactions are of short duration (like the above exam-
ple). However, some can be long, e.g.,

update CORP_ACCOUNTS
set BALANCE = BALANCE x 0.9;

(affects all the data in one relation).

e More formally, a transaction is a piece of code that has the ACID
properties:

— Atomicity: Either a transaction completes its changes to the
database or it does not modify the database at all.

— Consistency: A transaction should not violate integrity constraints
on the data.

For example, an account transfer transaction should maintain the
total to be the same as it was before the transaction.
= programming should be correct.

— Isolation: If transactions X4 and Xp run concurrently, then the
effects to the database should be the same as if they ran in some
serial order (either X4, Xp or Xp, X4).
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— Durability: When a transaction completes, its effects on the
database must be guaranteed to be written to disk.

e Definition: when a transaction “completes its work”, we say it commits.
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7.2 Specifying Transactions in SQL

e SQL provides commands for managing transactions.
e Transaction processing commands in SQL:

— commit or commit work

— declare that a transaction’s work is completed.

— rollback or rollback work

— cancel a transaction

— set transaction [...]

— set isolation properties (how exclusively it locks its data).

e For example, let’s consider a small variation of our running example:

— Transfer a particular passenger’s balance to his/her corporate ac-
count.

— A corporation’s outstanding balance is not allowed to be higher than

$100,000.
— The following embedded SQL program is a transaction that achieves
the task:
EXEC SQL DECLARE SECTION
varchar pass_name[50] ; // Passenger name
int cid; // Corporate id
int cbalance; // Corporate balance
int amount; // Amount outstanding

EXEC SQL END DECLARE SECTION
// Read in passenger name from screen (not shown)
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amount = 0;
EXEC SQL SELECT B.CORP_ID, B.BALANCE // Get the guy’s
INTO :cid, :amount // Corp_id and balance
FROM BILLING B
WHERE B.PNAME = :pass_name;
if (cid > 0) { // Corporate employee?
EXEC SQL  UPDATE BILLING // Zero-out balance
SET BALANCE = 0
WHERE PNAME = :pass_name;
EXEC SQL SELECT C.BALANCE // Fetch corp. balance
INTO :cbalance
FROM CORP_ACCOUNTS C
WHERE CORP_ID = :cid
if (cbalance + amount <= 100000) {
EXEC SQL  UPDATE CORP_ACCOUNTS // Add to corporatior
SET BALANCE = BALANCE + :amount
WHERE CORP_ID = :cid;
EXEC SQL  COMMIT; // Commit transactior
}
else { // Cancel transaction
EXEC SQL  ROLLBACK;
kL

— Note: start of transaction is implicit.

415



7.3 Transaction Processing: The Read-Write
Model

e The read-write model is a way to abstract away SQL detail and concen-
trate on what matters in a transaction:

— when data is written to and from disk;

— when data is written to and from main memory.

e SQL details we’d like to avoid: data types, the particular SQL statement
(e.g., select vs. update), the names of the relations, etc.

e Define the following commands of the read-write model:

— diskread(z) - read block containing data item z from disk.

— diskwrite(z) - write block containing data item z to disk.

— memread(z) - read or use data item z from block in memory.
— memwrite(z) - write into item z in memory.

— commit - commit the current transaction.

— rollback - rollback or cancel the current transaction.

The idea is:

— We only care about knowing whether a value is being changed in
memory or whether it’s changed on disk.

— We don’t really care whether the value is an int, float, char or what-
ever.
= we will use algebraic labels like x.

e Consider the previous example:

— Let the balance in Joe’s billing tuple be called .
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— Let Joe’s corporate balance in CORP_ACCOUNT be called y.

Let’s identify corresponding read-write statements in the embedded SQL
program:

EXEC SQL DECLARE SECTION

varchar pass_name[50]; // Passenger name

int cid; // Corporate id

int cbalance; // Corporate balance
int amount; // Amount outstanding

EXEC SQL END DECLARE SECTION

// Read in passenger name from screen (not shown)

amount = O;

EXEC SQL SELECT B.CORP_ID, B.BALANCE // diskread(x)
INTO :cid, :amount // memread(x)
FROM BILLING B
WHERE B.PNAME = :pass_name;

if (cid > 0) {

EXEC SQL  UPDATE BILLING // memwrite(x)
SET BALANCE = 0 // diskwrite(x)
WHERE PNAME = :pass_name;

EXEC SQL  SELECT C.BALANCE // diskread(y)
INTO :cbalance // memread(y)

FROM CORP_ACCOUNTS C
WHERE CORP_ID = :cid
if (cbalance + amount <= 100000) {

EXEC SQL  UPDATE CORP_ACCOUNTS // memwrite(y)
SET BALANCE = BALANCE + :amount
WHERE CORP_ID = :cid; // diskurite(y)
EXEC SQL COMMIT; // commit
+
else { // Cancel transaction
EXEC SQL ROLLBACK,; // rollback
+
kL
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If we drop the SQL, we get the following program using the read-write

model:

diskread(x)

memread ()

if (condition 1) {
memwrite(x)
diskwrite(x)
diskread(y)
if (condition 2) {

memread(y)

memwrite(y)
diskwrite(y)

commit

}
else {

rollback
}

// Get Joe’s balance from disk

// Read from memory

// if cid>0
// Zero out Joe’s balance in memory
// Write Joe’s block to disk

// Get GM tuple

// Check total balance

// Write new GM balance in memory
// Write it to disk

Note: using Deferred- Write the diskwrite’s can be done later:

diskread(z)
memread ()
if (condition 1) {
memwrite(z)
diskread(y)
memread(y)
if (condition 2) {
memwrite(y)
commit

// Get Joe’s balance from disk
// Read from memory
// if cid>0
// Zero out Joe’s balance in memory
// Get GM tuple

// Check total balance
// Write new GM balance in memory
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}

else {
rollback
}
diskwrite(z) // Write Joe’s block to disk
diskwrite(y) // Write GM’s block to disk

}

e Using the read-write model helps us discuss algorithms for recovery and
concurrency without the clutter of SQL.
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7.4 Recovery: The Problem

e Recovery refers to the problem of recovering from a failure, usually a
system failure.

e Various kinds of failures:

1. System crash: (hardware or operating system).

— For example, an operating system may seize if too many pro-
cesses are spawned.

2. Logical errors, interrupts and traps, e.g.,
— Division by zero.
— Bugs in C (embedding SQL) that cause a core dump.
— User-driven interrupts.

3. Programmed rollbacks (when rollback is executed).

4. Major system failures, e.g.,

— Disk failures
— Power outages.
— Sabotage.

Whatever the reason for the failure, we want to make sure the ACID
properties hold for all transactions.

e The recovery problem: how to ensure that ACID properties hold in the
presence of failures.

e In general,

— For a transaction that commits, we want to ensure that changes to
the database are made on disk.

— For a transaction that does not, we want to ensure that it doesn’t
affect the database on disk.
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7.5 Recovery: The Shadow Paging Method

e Note: in disk I/O jargon, a block is often called a page.
e Key ideas in shadow paging;:

— Bring data blocks into memory.

— Make all writes to memory blocks first (memwrite’s).

— Write modified blocks to new locations on disk.

— Retain old versions (shadows) in their current locations on disk.

— After new version is completely written to disk, mark old version as
deleted.

— A transaction is allowed to commit only after the new version is
successfully written to disk.

— If a failure occurs before or during writing the new version, then
simply use old version upon recovery (reboot).

— Thus, moments before committing, both old and new versions are
on disk
= At the moment of committing, simply choose between the two ver-
sions.

e Example:

— Consider the following modifications to the FLIGHT relation:

UPDATE FLIGHT

SET FLT_NO = ’F12’
WHERE FLT_ID = 155;
UPDATE FLIGHT

SET FLT_NO = ’F63’
WHERE FLT_ID = 773;
COMMIT;
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— Suppose the tuple for FLT _ID=155 has FLT_NO="F13’ and the tu-
ple for FLT _ID=773 has FLT_NO="F45’. Thus, the desired actions

are:
Change 'F13’ to 'F12’
Change 'F45’ to 'F63’

— If x denotes the 155-tuple and y denotes the 773-tuple, then the
read-write version can be written as:

diskread(z)
memread (z)
memwrite(x)
diskread(y)
memread (y)
memwrite(y)
diskwrite(x)
diskwrite(y)

— Assume that FLIGHT is stored as a heapfile and that we have the
block numbers for the two tuples of interest.

— We will not show client memory in this example.
— Let us now trace through the changes made using shadow paging:

1. Initially, the blocks are on disk. The directory is read into mem-

ory.
SERVER MAIN MEMORY DISK
8 8 51
8 | current Block 51
- containing F12 tuple
new (.. | F13 |
table pointers
Heapfile directory 32
Block 32
- containing
F45 tuple | F45 |
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2. Bring block 51 into memory for an update:

SERVER MAIN MEMORY

8 current

new

51

|F13|

)
N

|F13|

3. Copy existing directory into new directory

SERVER MAIN MEMORY
29

8 current

29 | new

4. Create new block, copy old block data, and modify data:

51

|F13|

423

8
51

|

51

|F13|

DISK

DISK

32

|F45|

32

|F45|




SERVER MAIN MEMORY

8 current
29 | new

48

|F12|

DISK
8 51

|F13|

32

|F45|

5. Similarly, read in block 32 (for the F45-tuple) and create new
data block for second modification:

SERVER MAIN MEMORY

8 current

29 | new

new
block
created

48

||=12|

96

|F63|

DISK
8 51

51

. |F13|

||

32

|F45|

6. Next, write modifications to disk, while maintaining old blocks

(shadows):
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SERVER MAIN MEMORY

29

current

new

7. Write new directory to disk:

SERVER MAIN MEMORY

29

current

new

29

8. Set pointer to new directory and commit transaction:

SERVER MAIN MEMORY

29

9. Delete old blocks:

current

new

425

DISK
48 -
| F12 | | - |
96 -
= = (735 |
DISK
48 ° - -
51
|F12| |F13| |F12|
32
............................ 29
— | e [ >
%9
= [ 763 | B 745 |
DISK
) 8 o 48
51
[Fi7] | F13 ] o
32
- ! 32
= = (735 |




SERVER MAIN MEMORY DISK
29 48 48

29 | current

new | F12 | | F12 |

96 9%

|F63| |F63|

— What happens in case of a failure?

1. CASE 1: Failure occurs before any diskwrite’s take place

x Thus, failure occurs before transaction commits
= must not make changes to database.

x Failure occurs before diskwrite’s
= no changes made
= atomicity condition satisfied.

2. CASE 2: Failure occurs during diskwrite’s.

« E.g., failure occurs just after block 48 is written but before
block 96 is written.
« Failure occurs before transaction commits
= must preserve old data (no changes to database).
x On reboot or recovery, old page table is retrieved
= old version of data is preserved.
3. CASE 3: Failure occurs after blocks are written but before or
during writing of directory.
* Failure occurs before commit
= must preserve old data.

x Since current still points to old data
= old directory table is used on reboot.

4. CASE 4: Failure occurs after commit.
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* Since failure occurs after commit
= must preserve changes to database.

« Upon recovery, new directory will be read
= changes will be preserved.

« Note: deletion of old blocks can be done after recovery from
failure (garbage collection).

e Problems with the shadow paging method:

— It forces page-level concurrency:

« Consider multiple transactions accessing the same block.

x It’s possible that several different transactions want to modify
the same block, e.g.,

A block

Sam | 19 | 615 <~— Transaction X1 modifies this to 0
Joe 7 700
Sue 42 | 419 <—— Transaction X3 modifies this to 425

Pam | O 445 <~— Transaction X2 modifies this to 0

« If the transactions run concurrently, but only some commit and
others rollback, then one shadow and one new version is not
enough.

x Only option: allow only one transaction to modify a block
= limits concurrency if others have to wait.

— Shadow paging creates problems for indices like B-trees:

x Recall: B-trees have datapointers into the heapfile.

« If we're changing the heapfile
= must modify corresponding datapointers in B-tree
= must keep shadow of index
= can be expensive to implement (lots of disk accesses).

— Shadow paging can be inefficient:
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* Forcing all the diskwrite’s to occur together causes an 1/0O bot-
tleneck.

* Does not overlap CPU and I/O work.

« If several transactions modify a block, page-level concurrency
forces serialization
= block is read and written once for each transaction’s shadow

paging.

e Shadow paging is rarely used; it serves as a benchmark for comparison
and to better illustrate other methods.
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7.6 Log-Based Recovery

e Recall the key idea in shadow paging: “We’re doing OK as long as
there’s enough information on disk to recover from failure before starting
diskwrite’s.”

— In shadow paging, the “information” was the fully-preserved old
version itself.

— In log-based recovery, the “information” is a log: a list of modifica-
tions made to the database.

e The meaning of “log” here is the same as in “Captain’s Log.”
e Key ideas in log-based recovery:

— When a transaction does a memwrite(z), it puts the old value of
x and the new value of x in a log file — the log.

— The log is written to disk before the operation diskwrite(z) occurs.

— If there’s a failure during diskwrite(z):

* We can undo changes to the database by recovering old values
from the log.

x We can redo the write by writing the new value from the log.

— We make sure a transaction’s log records are written to disk before
it is allowed to commit.

e The log is usually itself a relation with several attributes, e.g.,

LOG (TYPE, TRANS ID, DATA_ITEM, OLD, NEW)

where

— TYPE is either “start”, “data”, “commit” or “rollback.”

— TRANS_ID indicates which transaction is logging the information.
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— DATA_ITEM is the datapointer (blocknumber, tuple and offset) of
the data tuple being modified.

— OLD is the old value that we’re writing over.

— NEW is the new value to be written.

Thus, log entries are really tuples in the log relation.

e We will add operations to the read-write model to indicate log operations:

1. memwrite_log(<type>,<t_id>, <data_item>, <old-value>, <new-

value>) — this function adds a record (log entry) to the log with the

values indicated in the parameters.

For example, the call

memwrite_log(’data’, 117, z, 'F13’, 'F12)

causes the tuple

<data, 117, z, F13, F12>

to be written to the log.

2. diskwrite_log — this function causes the log to be written to disk.

e The key ideas in the log-based recovery can now be explained:

— Consider a transaction with TRANS_ID=117 that writes to the data
item = and changes its value from 'F13’ to 'F12’.

— In the read-write model:

1.

© 0N oUW

memwrite_log(’start’, 117)
diskread(x)

memread (z)

memwrite(z)
memwrite_log('data’,117,2,’F13’’F12’)
diskwrite_log

diskwrite(z)
memwrite_log(’commit’,117)
diskwrite_log

430



10. commit

— Let’s illustrate the steps:
1. Initially:

SERVER MAIN MEMORY

DISK

log
buffer

2. After memwrite_log(’start’,117):

SERVER MAIN MEMORY

DISK

log start, 117
buffer

3. After diskread(z) and memread(z):
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SERVER MAIN MEMORY DISK

log start, 117
buffer

____________________________________________________________________________________ |F13|

|F13|

4. After memwrite(z):

SERVER MAIN MEMORY DISK

log start, 117
buffer

|F12| |F13|

5. After memwrite_log(’data’,117,x,’F13’’F12’):

SERVER MAIN MEMORY DISK

log start, 117
buffer
data, 117, x, F13, F12

|F12| |F13|
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6. After diskwrite_log (which must precede diskwrite(z)):

SERVER MAIN MEMORY DISK
log start, 117 start, 117
buffer
data, 117, x, F13, F12 data, 117, x, F13, F12
| F12 | | F13 |

7. After diskwrite(z):

SERVER MAIN MEMORY DISK
log start, 117 start, 117
buffer
data, 117, x, F13, F12 data, 117, x, F13, F12
| F12 | __________________________________________________________________________________ | F12 |

8. After memwrite_log(’commit’) and diskwrite_log:
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SERVER MAIN MEMORY

log start, 117
buffer

data, 117, x, F13, F12

commit, 117

|F12|

DISK

start, 117

data, 117, x, F13, F12

| commit, 117

9. Finally, the transaction is allowed to commit.

|F12|

— A failure can occur at any time during the execution of transaction

117:

1. Failure occurs during the execution of lines 1-5:

* No changes are made to the database

= failure can be ignored (leave it to user to restart trans-

action).

2. Failure occurs after line 6.
x Log contains the records

<’start’, 117>

<data’, 117, x, 'F13", 'F12’>

x On recovery, we know the intention was to write 'F'12’ over

'F13’.

« This could have happened during Line 7.

x However, transaction did not commit
= must ensure old value remains in database
= go to location z in data file and write "F13’ (old value).

3. Failure occurs after Line 9.
*x Log contains the records:

<’start’, 117>

<data’, 117, x, 'F13", 'F12’>

<’commit’, 117>

434




x This could have happened only after data was written
= changes already made
= nothing to be done.

e Note: when a failure occurs, we won’t know at which line of code it
occurs

— We will only be able to look at the log.
— action to be taken depends on the state of the log:

1. Log is empty
= Failure could have occurred in lines 1-6
= Do nothing.

2. Log only contains

<start’, 117>
<’data’, 117, x, 'F13’, 'F12’>

= Failure could have occurred in lines 7-9
= undo changes made.
3. Log contains

<’start’, 117>
<’data’, 117, x, 'F13’, 'F12’>
<’commit’, 117>

= Transaction commits.
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7.7 Log-based Recovery: Writing Options

e Recall: a diskwrite(z) always occurs after memwrite(z).

e There are three ways in which diskwrite’s are usually handled:

1. The Immediate- Write Method:

— do a diskwrite right after the corresponding memwrite.

— Example: consider a transaction that writes to items x and y

diskread(z) // Get ‘F13’ block
memread (z)

memwrite(z) // Write ‘F12’
diskwrite(z) // Write block to disk
diskread(y) // Get ‘F45’ block
memread (y)

memwrite(y) // Write ‘F63’
diskwrite(y) // Write block to disk
commit // Commit after all write’s

— Note: all diskwrite’s occur before a transaction commits.
2. The Deferred- Write Method:

— Always postpone all diskwrite’s for a transaction to after the
transaction commits.

— Example:
diskread(z) // Get ‘F13’ block
memread (z)
memwrite(z) // Write ‘F12’
diskread(y) // Get ‘F45’ block
memread (y)
memwrite(y) // Write ‘F63’
commit // Commit before write’s
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diskwrite(z) // Write ‘F12’ block
diskwrite(y) // Write ‘F63’ block

3. Flexible- Write Method:

— Here, diskwrite’s may occur both before and after a transaction
commits.

— This method is the most flexible (it encompasses both Immediate-
Write and Deferred-Write).

— Example:
diskread(z)
memread (z)
memwrite(x)
diskread(y)
memread (y)
diskwrite(x)
memwrite(y)
commit
diskwrite(y) // Another write after commit

// One write before commit

— Flexible-write’s allow for better management of concurrency in

1/0.

e Rule: A log entry for item z must written to disk before its correspond-
ing diskwrite starts.

e There are three ways of permitting a transaction to commit with respect
to when diskwrite’s are done:

1. R-NU: a transaction is required to commit before its first diskwrite
occurs.

2. U-NR: a transaction may commit only after all its diskwrite’s are
complete.

3. R-U: a transaction may commit at any time, provided its log entries
are first written to disk.
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Note that some commit-methods may be used with some of the writing
methods but not necessarily all of them:

Commit Method
Write Method R-NU U-NR R-U

Immediate-Write | No Yes Yes
Deferred-Write Yes No Yes
Flexible-Write No No Yes

Why this is so will become clear when we consider recovery.

e [Let’s now consider the three commit-methods in some detail:

1. R-NU [Redo - No Undo]

— A transaction’s diskwrite’s begin only after it commits
= a Deferred-Write takes place.

— Example:
memwrite_log(’start’,117)
diskread(x)
memread (z)
memwrite(z)
memwrite log('data’,117,x,’F13’’F127)
memwrite_log(’commit’;117)
diskwrite_log // before commit
comimit
diskwrite(z) // deferred write

— Upon recovery after failure, the log can be in one of three states:
(a) Log is empty
= nothing to be done.
(b) Log contains

<’start’, 117>
<’data’, 117, x, 'F13’, 'F12’>
<’commit’, 117>
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= transaction committed, but changes may not have been
made
= redo transaction.

— Note: no undo was needed.

— Note: if a transaction is long and many, many records are writ-
ten to the log buffer in memory, it may be necessary to write
parts of the log to disk (to make space)

= Log entries may contain entries for uncommitted transac-
tions
= ignore these transactions since diskwrite’s did not begin.

2. U-NR [Undo - No Redo]

— In this case, a transaction’s diskwrite’s must be done before it
commits.

— Example:
memwrite_log(’start’)
diskread(x)
memread (z)
memwrite(z)
memwrite log('data’,117,x,’F13’’F127)
diskwrite _log // before commit
diskwrite(z)
memwrite_log(’commit’,117)
diskwrite _log // before commit,
commit

— Upon recovery after failure, the log can be in one of four states:
(a) Log is empty
= nothing to be done.
(b) Log contains
start’, 117>

= No diskwrite’s occurred
= No action taken.
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(c) Log contains

<’start’, 117>
<data’, 117, x, 'F13, 'F12’>
= A diskwrite may have occurred, but the transaction did
not commit
= must undo transaction
= write old values back to data items (using log entries).

(d) Log contains

<’start’, 117>
<data’, 117, x, 'F13", 'F12'>
<’commit’, 117>

= transaction committed

= data got written (since commit occurs later)

= nothing to be done.

— Note: no redo is needed.
3. R-U [Redo-Undo]

— A transaction may commit at any time, provided its log is writ-
ten to disk first.

— Example: consider a transaction that modifies items = and y
memwrite_log(’start’, 118)
diskread(x)
memread (z)
memwrite(z)
memwrite log('data’, 118, x, 'F13’, 'F12’)
diskread(y)
memread (y)
diskwrite_log // Log for x must be written first
diskwrite(z) // z is written before commit
memwrite(y)
memwrite_log('data’, 118, y, 'F45’, 'F63’)
memwrite_log(’commit’, 118)
diskwrite_log
commit
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diskwrite(y) // y is written after commit

— Upon recovery from failure, the log can be in one of five states:
(a) Log is empty
= no action.
(b) Log contains
<’start’, 118>
<data’, 118, x, 'F13, 'F12'>
= A write (of ) may have occurred but transaction didn’t

commit
= undo effect by writing old value (’F13’) to z.

(c) Log contains

<’start’, 118>

<data’, 118, x, 'F13, 'F12’>

<data’, 118, v, 'F45', 'F63'>
= Write’s to  or y may have occurred without a commit
= must undo effect by writing old values.

(d) Log contains

<’start’, 118>

<’data’, 118, x, 'F13’, 'F12’>
<’data’, 118, y, 'F45’) 'F63’>
<’commit’, 118>

= transaction committed, but all write’s may not have com-
pleted
= redo transaction.
(e) Note: in the last case, we don’t know which write’s were
successful and which weren’t
= must redo entire transaction.

e Rollback’s: sometimes a transaction issues a rollback
= a log entry of the type <’rollback’, 118> is written.

Example: consider the earlier example of transferring balance from
BILLING to CORP_ACCOUNT.
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— Consider the read-write version of the program.
— We will add log-based recovery to this code.
— We will use the redo - no undo scheme.

— Suppose transaction id is 243.

memwrite_log(’start’, 243)

diskread(z) // Get Joe’s balance from disk
memread () // Read from memory
if (condition 1) { // if cid>0

memwrite(z) // Zero out Joe’s balance in memory

memwrite _log('data’, 243, x, ...)

diskread(y) // Get GM tuple

memread (y)

if (condition 2) { // Check total balance

memwrite(y) // Write new GM balance in memory

memwrite_log('data’, 243, y, ...)
memwrite_log(’commit’, 243)
diskwrite_log
commit

¥

else {
memwrite_log(’rollback’, 243)
diskwrite_log

rollback
}
diskwrite(z) // Write Joe’s block to disk
diskwrite(y) // Write GM’s block to disk

}

Thus, for example, upon recovery from failure the log may contain
<’start’, 243>

<’data’, 243, x, ...>
<’rollback’, 243>
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In this case, no action is needed since write’s occur after commit and
here, the transaction didn’t commit.
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7.8 Log-Based Recovery: Summary and Odds
& Ends

e A summary of the rules used in recovery:

— The log entry <’data’,...,x,...> must be written to the log buffer
when memwrite(z) occurs.

— All log entries up to the most recent one for = are written to disk
before a diskwrite(z) occurs.

— All log entries pertaining to a transaction are written to disk before
it commits.

— Three ways of organizing the logging/disk-writing process:

1. Redo - No Undo:
«x Make a transaction’s diskwrite’s occur only after it commits.
x Upon recovery:
- Redo committed transactions.
- Ignore uncommitted or rolledback transactions.
2. Undo - No Redo:

x Allow a transaction to commit only after its diskwrite’s are
completed.

x Upon recovery:
- Undo uncommitted or rolledback transactions.
- Ignore committed transactions.
3. Redo - Undo:
x Allow diskwrite’s to occur before and after commit.
x Upon recovery:
- Redo committed transactions.

- Undo uncommitted or rolledback transactions.

444



e Redo followed by Undo:

— In some systems that use Redo-Undo, the following is done upon
recovery:

x First, redo all transactions.
x Then, undo uncommitted or rolledback transactions.

— Why? If all transactions are redone, then the system is brought to
the same state it was in before the crash.
= if software problems caused the crash, the crash could be made to
repeat

= useful in learning what caused the crash.

e Failures during recovery:
— What if there’s another failure right in the middle of of the recovery
process?
— Recovery must be designed so that it can be re-started at will.

— Since both the old and new values are stored for each modified data
item, we can always both redo and undo after multiple failures
during recovery.

e In practice:

— Most systems use Redo-Undo since it is the most flexible scheme.

— Writing of data can be done independently
= CPU and I/O overlap can be arranged.

— Most systems have separate processes for writing data and logging
= these processes communicate to synchronize.

e Checkpointing:

— Suppose 10,000 transactions have executed when we get a failure
and suppose, of these, 9807 transactions committed.
= redo required for 9807 transactions and undo required for 193 trans-
actions.
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— Recovery can take longer if number of transactions is higher (e.g.,
109).
— To reduce the work in recovery, checkpointing is used.
— Key ideas in checkpointing:
% Old transactions which were successfully run long ago shouldn’t
have to be redone.
* Introduce checkpoints at regular intervals.
x For each checkpoint:
- Hold off starting the execution of new transactions.
- Let current transactions run to completion.
- Write all log entries to disk.
- Write all data blocks in memory to disk.

- Write a <’checkpoint’> entry to the log and write that entry
to disk.

- Resume normal operation.
x Then, upon recovery, we don’t have to worry about log entries
prior to the most recent checkpoint.
x Example:

<start’, 117>
<’data’, 117, ...>
<’commit’, 117>
<’checkpoint’>
<start’, 243>
<’data’, 243, ...>
Here, only transactions after the checkpoint are examined for

redo or undo.
e Safety in numbers:

— To increase reliability, many systems maintain a copy of the log.

— While one copy is being updated, the other is archived to tape or
some other device.
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7.9 Concurrency Control: Introduction

e What do we mean by “concurrency”?

— We mean: executing transactions concurrently.

— Think of it as concurrently running several embedded SQL programs
(perhaps from different users).

— Concurrent execution can mean

x executing programs on different processors of a multiprocessor,
or

x interleaving the execution of different programs on a single pro-
Cessor.

— In either case, shared data is accessed and access to shared data is
interleaved.

— Example: recall the relations CORP_ACCOUNTS and BILLING:
CORP_ACCOUNTS CORP.ID CNAME BALANCE

3 IBM 649,314
19 Intel 213,617
7 GM 65,973

42 DuPont 143,112

BILLING PNAME CORP.ID BALANCE

Sam 19 615
Joe 7 700
Sue 42 419
Pam 0 445

BILLING contains the outstanding balance for individual passen-
gers. CORP_ACCOUNTS contains the amount owed by some cor-
porate clients.

— Consider the following interleaving of transactions N4 and Np (only
SQL shown):
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Np

// Read GM’s balance
SELECT BALANCE

INTO :cbalance

FROM CORP_ACCOUNTS
WHERE CNAME = ’GM’;

// Find out which companies have

// as much or less balance
SELECT COUNT (%)

INTO :num

FROM CORP_ACCOUNTS

WHERE BALANCE < :cbalance;

// Read in Joe’s balance, corp.id
SELECT BALANCE, CORPID

INTO :amount, :cid

FROM BILLING

WHERE PNAME = ’Joe’;

// Add Joe’s balance to GM’s
UPDATE CORP_ACCOUNTS

SET BALANCE = BALANCE + :amount
WHERE CORP_ID = :cid;

— In practice, interleaving occurs at the machine-instruction level.

e Why permit concurrency?

— If all transactions are of short duration (e.g., 1 ms to 10% ms), forcing

serialization is feasible.

— Consider serializing long and short transactions, e.g.,

Ny

// Obtain average mileage
SELECT AVG(MILES)

INTO :avg

FROM PASSENGER;

448

SELECT MILES

INTO :miles
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In the serial order Ny — Np, Np waits a long time for N4 to
complete.

— Both can be interleaved, allowing Np to complete early, with little
noticeable increase in the time to complete V4.

e What about guaranteeing Isolation (the I in the “ACID” properties)?

— A transaction must be given the illusion that, once it starts execu-
tion, it alone reads or modifies the data it accesses until it’s done.

— Thus, for example, given a concurrent execution of transactions V4
and Np, then after the concurrent execution, the data should be
in the form it would be in if either serial execution N4 — Ny or
Np — N4 took place.

e An execution history of a concurrent execution is the particular inter-
leaving of instructions that occurs for a particular concurrent execution
of a set of transactions.

e A concurrent execution history satisfies isolation if it results in changes
to the data equivalent to changes wrought by some serial execution of
the transactions involved.

e NOTE: we could define isolation to mean “same order as order of arrival”
but that would severely limit concurrency (see above example).

e Clearly, for a group of transactions that don’t modify the data, any
execution history will do the job (satisfies isolation).

e Also, transactions that modify disparate data can run concurrently in
any way, e.g.,
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Ny

Np

// 107% discount for passengers
UPDATE BILLINGS
SET BALANCE = BALANCE x 0.9

e Consider the following interleaving:

Ny

// 1% discount for corp’s
UPDATE CORP_ACCOUNTS
SET BALANCE = BALANCE x 0.99

Initially, say, Joe has $700

// Count passengers in BILLINGS

SELECT COUNT (%)
INTO :num
FROM BILLINGS

// Find Joe’s balance
SELECT BALANCE

INTO :amount

WHERE PNAME =’Joe’

// 107 discount for passengers
UPDATE BILLINGS
SET BALANCE = BALANCE * 0.9

Output by N4: 700%0.9=630.

Is this execution history equivalent to some serial history?

Yes. It is equivalent to:
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NA NB

Initially, Joe has $700

// 107 discount for passengers
UPDATE BILLINGS
SET BALANCE = BALANCE * 0.9

// Count passengers in BILLINGS
SELECT COUNT (%)

INTO :num

FROM BILLINGS

// Find Joe’s balance
SELECT BALANCE

INTO :amount

WHERE PNAME =’Joe’

Output by N4: 700%0.9=630.

It is NOT equivalent to:

NA NB

Initially, Joe has $700

// Count passengers in BILLINGS
SELECT COUNT (%)

INTO :num

FROM BILLINGS

// Find Joe’s balance
SELECT BALANCE

INTO :amount

WHERE PNAME =’Joe’

// 10% discount for passengers
UPDATE BILLINGS
SET BALANCE = BALANCE * 0.9

Output for Ny: $700

Note: isolation property is satisfied since it is equivalent to at least one
serial ordering.
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e Q: Is it possible that every concurrent execution history is equivalent to

some serial history?
Ans: No.

e Before we describe problems with concurrency, let’s revisit the Read-
Write model for purposes of analysing concurrency problems:

— From the point of view of concurrency, we don’t care whether data
is modified in memory or disk.

— If data is modified in memory, the recovery system will make sure it
will be modified on disk.
= we don’t distinguish between diskwrite(z) and memwrite(z)

= simply use write(z) to denote both.
— Similarly, we will use read(z) to denote “reading some item z.”

— In the code examples that follow, the read-write commands will be
indicated as comments.
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e Problems with un-controlled concurrent execution:

Arbitrarily executing transactions concurrently can create strange be-
havior.

1. The Case of the Unrepeatable Read:

NA NB

// Read in Joe’s balance, corp.id
SELECT BALANCE, CORP_ID

INTO :amount, :cid

FROM BILLING

WHERE PNAME = ’Joe’;

// Read GM’s balance
SELECT BALANCE // read(z)
INTO :cbalance

FROM CORP_ACCOUNTS

WHERE CNAME = ’GM’;

// Add Joe’s to GM’s balance
UPDATE CORP_ACCOUNTS // write(x)
SET BALANCE = BALANCE + :amount
WHERE CORP_ID = :cid;

// Companies having < GM’s balance

SELECT COUNT(x) // read(x)
INTO :num

FROM CORP_ACCOUNTS

WHERE BALANCE < :cbalance;

N4’s output doesn’t include GM!

— In either serial execution (N4 — Np or Ng — N4), GM will
be counted among corporations that have balance less than or
equal to GM’s balance.

— However, in the above interleaving, it won’t be counted
= execution history is not serializable.

— In the read-write model:
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Na

Np

// Read GM’s balance
read (z)

// Read GM’s balance again

read (x)

// Write into GM’s balance
write ()

Second read is not the same as the first!

— Thus, the history does not satisfy the isolation property for V4.

— From Ny4’s point of view: “I’m re-reading the same data and it’s

different!”

— The problem of unrepeatable reads is sometimes called a Read-

Write conflict:

N_A N_B
read()O\RW conflict
write(X)
read(x)
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2. The Case of the Dirty Read.

Ny

// Read Joe’s balance, corp.id
SELECT BALANCE, CORP_ID

INTO :amount, :cid

FROM BILLING

WHERE PNAME = ’Joe’

// Set Joe’s balance to 0
UPDATE BILLING // write(x)

SET BALANCE = O

WHERE PNAME = ’Joe’;

// Transfer balance, if allowed
SELECT BALANCE

INTO :cbalance

FROM CORP_ACCOUNTS

WHERE CORP_ID = :cid;

if (:amount + :cbalance < 100,000)

{

UPDATE CORP_ACCOUNTS

SET BALANCE = BALANCE + :amount

WHERE CORP_ID = :cid;
COMMIT;
}
else {
ROLLBACK // rollback
1

// Count # people with O-balance
SELECT COUNT(x) // read(z)

FROM BILLING

WHERE BALANCE = 0;

Joe gets counted

— The problem is easily seen in the read-write model:
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NA NB

// Set Joe’s balance to 0
write (z)

// Read Joe’s balance as 0
read (z)

// Did not commit
rollback

— Np reads a value written by an uncommitted transaction.

— In either serialization, this would not happen
= does not satisfy isolation property.
— The problem of reading an uncommitted write, the Dirty Read
problem, is also called a Write-Read conflict:

N_A N_B
write(x) \WR conflict

read(x)
rollback
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3. The Case of the Lost Update:

Ny

// Read Joe’s balance, corp.id
SELECT BALANCE, CORP_ID

INTO :amount, :cid

WHERE PNAME = ’Joe’;

// Set Joe’s balance to 0
UPDATE BILLING // write(x)
SET BALANCE = 0

WHERE PNAME = ’Joe’;

// Transfer balance, if allowed
SELECT BALANCE

INTO :cbalance

FROM CORP_ACCOUNTS

WHERE CORP_ID = :cid;

if (:amount + :cbalance < 100,000)

{
UPDATE CORP_ACCOUNTS

SET BALANCE = BALANCE + :amount

WHERE CORP_ID = :cid;
COMMIT;
}
else {
ROLLBACK // rollback
}

// 10% discount to all passengers

UPDATE BILLING // write(x)
SET BALANCE = BALANCE % 0.9

— The problem is easily seen in the read-write model:
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NA NB

// Joe gets 10% discount
write (z)

// Joe’s balance is set to 0O
write (z)

rollback

— If N4 rolls back, Np’s update is lost.

— In either serial execution Np’s update would have worked
= isolation property not satisfied.

— The lost update problem is sometimes called a Write- Write con-

flict:
N_A N_B
write(x)
Write(x WW conflict
rollback

e To summarize:

— There are problems when one transaction writes into a data
item (write(z)) and another reads (read(z)) or writes (another
write(z)) into the same item.

— Three types of conflicts: RW (Read-Write), WR. (Write-Read) and
WW (Write-Write).
Note: RR (Read-Read) causes no problem.

— The three problems we saw (Unrepeatable Read, Uncommitted-

Write Read, Lost Update) are examples what can go wrong when
these conflicts occur.

— These are the only types of conflicts we need to analyze for the
purposes of concurrency.
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7.10 Concurrency Control: Conflict
Serializability

e Note:

— In our examples, we have interleaved at a high-level (alternating
SQL statements).

— In practice, interleaving occurs at the machine instruction level.

— However, from a data item’s point of view, access (read or write)

is strictly interleaved.
= we will consider the read-write model in the sequel.

e Sometimes, an execution history is called a schedule.
Usually,

— execution history is used in the past tense (as in comparing histories
of transactions that already executed concurrently).

— schedule is used to discuss construction of a future interleaving of a
group of transactions.
e Definition: Two particular instances of read or write operations are
conflicting if
1. they belong to different transactions;
2. they operate on the same data item; and,
3. at least one of them is a write.

e Definition: The execution order of two steps of a concurrent schedule
can be interchanged or swapped if

1. the steps are consecutive in the schedule;

2. each step involves a different transaction; and,

3. the two operations (in the two steps) are non-conflicting.
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e FExample:

Ny

Ng

1.
2. | read(x)
3.
4.
5. | read(z)
6.
7. | write(z)

read(y)
write(y)

read(z)

write(z)

— Steps 1 and 2 can be swapped (both are reads).

— Steps 4 and 5 can be swapped (they read or write different items).

— Steps 3 and 4 cannot be swapped (same transaction).

— Steps 5 and 6 cannot be swapped (operations conflict).

e Definition: A schedule (or history) is conflict-serializable if it can be

transformed by a series of swaps into a serial schedule.

e Key idea: swaps don’t affect the outcome
= outcome is same as a serial schedule

= isolation property will be satisfied.
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e Example (conflict-serializable schedule):

N_A N B  Swap N_A N_B Swap N_A N_B
.
read(x) \r/\?rail?e(()% read(x)
write(x) prot A e e ; write(x)
..................... I.’QQC!.(.X.)...- : read(X) *: read(y)
write(x) ¢ ready) | T read(x)
read(y) 4 : write(x) ""\i\}'r'i't'é'('i()"*"i
Write(yy T write(y) iwrite(y) b 5
write(y) writety) T write(y)
Swap
N_A N_B N_A N_B
e
read(x) Swap read(x)
Wf"ae(gl);) write(x)
Jeaoly) | read(y) .
' . Schedule is
write(y) A read(x) * write(y) read(x) conflict-serializable
""""""""""" et write(x)
write(y) write(y)

e Example (non-conflict-serializable schedule):

N_A N_B

read(y)
read(y) _4
write(y) Cannot swap in either direction
write(y)

write(y)

Not conflict—serializable

Note, however, that the last write overwrites all previous y values.
= the schedule is equivalent to
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N_A N_B

read(y)
read(y)
write(y)
write(y)

write(y) <«— Overwrites previous values

Thus, a non-conflict-serializable schedule may still be serializable.

Nonetheless, conflict-serializability at least guarantees isolation (if the

transactions commit).

e Testing for conflict-serializability by trying all possible swaps is too in-
efficient,
e.g. with 100 transactions
= too many serial orders to consider.

e The Precedence Graph Method:

— Step 1: Given transactions Ny, N, ..., N, and a schedule, construct
the following graph:

x Step 1A: Represent each transaction by a vertex.

Example:
Ny Np Ne¢ Np
1. | read(x)
2. write(x)
3. write(x)
4. write(y)
5. read(z)
6. read(z)
7. write(z)

Then, the vertices are:
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(9

* Step 1B: Draw an edge from N; to N; if any of the following is
true:

1. N; executes a write(z) before N; executes a read(z) (for

some ).

2. N; executes a read(z) before N; executes a write(z) (for

some ).

3. N; executes a write(z) before N; executes a write(z) (for
some ).
Example:
- Add edges from N4 to Ng and N¢ because the read(x) in line 1 conflicts
with the write’s in lines 2 and 3.
- Add an edge from N¢o to Ny because the write in line 2 (N¢) conflicts
with the write in line 3 (Npg).
- Add an edge from Np to Np because the read in line 6 (Ng) conflicts
with the write in line 7 (Np).

- Similarly, add an edge from N to Np because the the read in line 5
conflicts with the write in line 7.

— Step 2: Check to see if the graph has a cycle (a traversal along edges
in which a vertex is repeated).
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Example: No cycles.

— Step 3: If it has no cycles, it is conflict-serializable; otherwise it is

not.

Example: The schedule is conflict-serializable.

Why does this work? Here’s the key idea:

— An edge from N; to N; indicates that at least one of NV;’s instruc-

tions (read or write) cannot be swapped to before at least one of

N;’s instructions.

= N; must appear after N; in a serialization created by swaps.

— Consider a cycle like Ny — Ny — N3 — Nj.

— This says “INy must appear after itself”.

= a contradiction!

— Thus, cycle = not conflict-serializable.

— Finally, if there are no cycles, a serialization is possible, using a

topological sort.

e Example of a schedule that’s not conflict-serializable:

N4 Np N¢ Np
1. | read(x)
2. write(x)
3. write(x)
4. write(y)
5. read(z)
6. read(z)
7. write(z)
8. | read(z)

(This example is the last one with one additional line — line 8.)

The precedence graph now has an edge from Np to Ny:
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There is a cycle: N4 — Np — Np — Ny
= not conflict-serializable.

e Recall: we considered precedence graphs because trying swaps was too
inefficient.

— Is the precedence graph method efficient?
— If the graph has E edges, it can be built in time O(F).
— Cycle-testing can be done in time O(FE).

e Problems with testing for conflict-serializability:

— In practice, we cannot obtain schedules in advance (since scheduling
is usually done by the operating system).

— Another problem: not all conflicts are covered, e.g.,

Na Np
write(x)
read(z)
commit
rollback

x Here, N4 reads a value of z written by a transaction that later
fails to commit
= the problem of reading an uncommitted-write.
* Yet, this schedule is conflict-serializable (can be swapped to
NB — NA)
* Conflict-serializability is only guaranteed to work if the transac-
tions commit
= not practical, since we can’t predict commits.
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Nonetheless, conflict-serializability is a useful theoretical tool that is used

in proving that other (more practical) schemes work.

e Note: in the above example, if N rolls back, we really need to roll back

N4 (because it read Np’s writes)

= a cascading rollback.

e Definition: A schedule is recoverable if at the time of a transaction’s
commit, the transactions that wrote into data it has read have commit-

ted.
N_A N_B
write(x)
read(x)
commit
commit

Recoverable

N_A N_B
write(x)
read(x)
commit
commit

Not recoverable

— Thus, for example, if N4 writes into Np’s data and Npg is about to
commit, then if N4 has not committed the schedule is not recover-

able.

— If N4 rolls back, Ng will have to be rolled back as well.

e Definition: A schedule is strict if at the time of a transaction’s read or

write, any other transaction that wrote into the data item has already

committed.

N_A N_B

write(x)

read(x)
commit
commit

Not strict

N_A N_B
write(x)
commit
read(x)
commit

Strict

— For example, if Np reads data written into by N4, N4 has already

committed

= the data written was safe.
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— Thus, a strict schedule is recoverable but not vice versa.
— However, a recoverable schedule can allow for greater concurrency.
— Note: strict schedules don’t incur cascading rollback’s.

— In practice, strict schedules are used (even though they are less
flexible).
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7.11 Concurrency Control Via Locking

e In practice, transaction schedules cannot be constructed ahead of exe-
cution time to ensure serializability.

— Transactions are executed as processes or threads.

— Operating System (OS) does the interleaving
= OS might create a non-serializable history.

e A different (and practical) approach to serializability:

— Allow OS to perform scheduling.

— Introduce safeguards so that OS schedule is always serializable.
e Observe:

— Lack of serializability occurs because of Read-Write, Write-Read or
Write-Write conflicts.

— Thus, we can try to prevent these conflicts.
e Key ideas:

— Use locks on data items.

— A transaction that wants to use item x must lock z
= No one else can touch z until the transaction unlocks .

— Transactions that encounter a locked item simply wait until item is
unlocked.

Thus, locking attempts to prevent conflicts.
e In the read-write model, we introduce the following commands:

— lock(z) — put a lock on data item x.
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— unlock(z) — unlock data item x (provided a lock on it was acquired

earlier).
e Example:
N_A N_B N_A N_B
read(x) lock(x)
read(x) read(x)
read(y) ) lock(x) blocked
. write(x) write(x)
write(x) . unlock(x)
galr;rg)o read(x) continue
read(y)
write(x)
Not serializable Serialization via locking

Here, N4 managed to acquire the lock on z first. If Np acquired it first:

N_A N_B N_A N B
read(x) lock(x)
read(x) blocked lock(x)
read(y) read(x)
_ write(x) read(y)
write(x) write(x)
continue read x) unIOCk(X)
write(X)
unlock(x)
Not serializable Serialization via locking

e Read and write locks:

— As currently defined, locks also serialize reads.
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N_A N_B

lock(x)
blocked lock(x)
read(x)
unlock(x)
continue  read(x)
unlock(x)

— It’s better to use separate locks for reading and writing:
* readlock(z) — lock for reading.
* writelock(z) — lock for writing.

— Associate a counter with each locked item.

— When a transaction N4 does a readlock(z):

« If any other transaction has a writelock on x, make N4 wait.

« If the only locks on z are readlock’s, increment the counter
associated with x and allow N4 to proceeed.

— When a transaction N4 does a writelock(z):

« If anyone else has a lock on x, make N, wait.
« Otherwise, grant N4 the writelock and allow it to proceed.

— When a transaction N4 executes unlock(z):

x If Ny had a writelock on z, release the lock.

x If N4 had a readlock on x, decrement the counter. If the counter
is zero, there is no lock on x.

e Implementing locks:

— If a separate lock is used for each data item
= lots of locks needed.

— E.g., suppose a database has

20 relations
100,000 tuples per relation (average)
5 attributes per relation (average)
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= 10" possible locks!
— Of course, not all locks will be active at any given moment.

— A common approach is to decide apriori how many distinct locks to
support, e.g. 1024 locks

= use a 10-bit hash value for each data item.
— Recall: a data item is an address: blocknumber, offset and size.

— From these, create a 10-bit hash value and index into a hash table
(lock table).

Example: blocknumber=1732, offset=29 , 6 hash bits

Hashingfunction (1732, 29) = 110011 (6 bit value)

Additional info (data item, read/write etc)

list of blocked transactions

7 Na Ne Nb

110011 -

.40
<
D
.

[ transaction that holds the lock

Lock table

— Note: the actions readlock(z), writelock(z) and unlock(z) must
be atomic

= usually implemented via semaphores.
e Other details about locks:

— A transaction must not be allowed to block on itself:

writelock(z)
write(z)
writelock(z)
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— The system must make sure every transaction releases its locks after
a commit or rollback.

— A transaction should only be able to unlock something it’s locked
before.

e Deadlock:

— Sometimes, transactions can deadlock.

Ny Ng
readlock(x)
read(r)
writelock(y)
write(y)
readlock(y) // blocked
writelock(z) // blocked

We will consider deadlocks later.
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7.12 2-Phase Locking

e Unfortunately, locking by itself does not guarantee serializability, e.g.,

NA NB

readlock(x)

read(z) // Conflicts with Np’s write

unlock(x)
writelock(z)
write(z) // Conflicts with N4’s read
unlock(x)

readlock(x)

read(z) // Unrepeatable read

unlock(x)

— By a series of swaps, we cannot serialize this schedule
= it has the RW-conflict (unrepeatable read problem).

— The problem is: N4 unlocked z and allowed Np to write z.

— In 2-Phase Locking, this temporary unlocking is not allowed.

e Key ideas in 2PL (2-Phase Locking):
— A transaction is never granted a lock after it executes its first un-
lock.
— Thus, a transaction has two successive phases:

x Fxpanding phase: acquire locks, but do not unlock anything.

x Shrinking phase: unlock items, but do not request any locks.

— If 2PL were used in the previous example:
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NA NB

readlock(x)

read(z) // Do not release lock
writelock(z) // blocked
read(r)
unlock(z)
write(x) // continued
unlock(z)

= isolation satisfied.
e 2PL and deadlock:
— A 2PL schedule can still deadlock, e.g.,

NA NB

readlock(x)
writelock(y)
readlock(y) // blocks on y-lock

writelock(z) // blocks on x-lock

e Fact: a deadlock-free 2PL schedule is always conflict-serializable.
Proof sketch:

— For simplicity, consider 3 transactions N4, Ng, No and assume only
write conflicts.

— Suppose we have a deadlock-free 2PL schedule that is not conflict-
serializable.

— Since it’s not conflict-serializable, the precedence graph has a cycle,
e.g.,

— The Ny — Npg edge indicates: N4 has a write(z) prior to Np’s
write(z) (for some z).
= This means N4 must have unlocked z before Np’s write(z).
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= After this point, N4 cannot have locks on anything
= It has no conflicts after this (since, if N4 has a conflict, it mustlock).

— Similarly, the Ng — N¢ edge indicates: Np has a write(y) before
N¢’s write(y) (for some y).

— Finally, the No — N4 edge indicates: N¢ has a write(z) before
N4’s write(z) (for some z).

— But, N4 must place a lock before its write(z)
= this lock comes after the unlock(z)
= contradiction!

e Deadlock-free 2PL:

— A simple modification is sufficient to remove deadlock:
A transaction that is blocked must release all the locks it has ac-
quired.

— Thus, a transaction either gets all its locks or none at all.

— Example:

Ny Np
readlock(x)

writelock(y) // Acquired
readlock(y) // blocked
release all locks

write(y)
writelock(z) // Acquired
write(z)
unlock(z)
unlock(y)

readlock(x) // Try again

readlock(y)

read(z)

read(y)

unlock(x)

unlock(y)
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e Strict 2PL:

— Recall: a strict schedule is one in which a transaction N4 reads a
value written by Np only if Np has committed at the time of reading.

— To enforce “strictness” in 2PL:
Allow locks to be released by a transaction only after it either com-
mits or rolls back.

— Example:
Ny Np

writelock(z)

readlock(x) // blocked
write(z)
commit
unlock(z)

read(z)

unlock(x)

Here, N4 reads only committed data
= the problem of reading an uncommitted-write can’t occur.

e In practice, one of two methods is used:

1. Strict deadlock-free 2PL, or
2. Strict 2PL with a deadlock detection and resolution method.

e Note:

— It is possible for a schedule to be deadlock-free but not strict (if

locks are released before commit).

— It is possible for a strict schedule to deadlock (blocking can occur

well before commit).
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7.13 Deadlocks

e Two approaches to the deadlock problem:

1. Deadlock prevention:

— Make sure it can’t happen.

2. Deadlock detection and resolution:

— Allow deadlock to occur.

— Find a way to detect it when it occurs.
— Break the deadlock when found.

e Deadlock prevention using unique priorities:

— Key ideas:

* Each transaction is given a unique priority number (integer).

x Typically, a transaction’s priority is related to its time of cre-

ation.

Creation time Trans ID
10100001 1011
(8 hits) (4 bits)

= 2587 (decimal)

4096 (maxvalue)
- 2587

1509 -=— priority

Here, a transaction’s creation time (8-bit) is concatenated with
its ID (4-bit) to create a 12-bit string. This is subtracted from
the maximum value of the 12-bit string (4096) to get the priority.

* The older the transaction (i.e., smaller the creation time), the

higher (i.e., larger) the priority.

* Since priorities are unique, for any two transactions N4 and Np,

either
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1. priority(N4) < priority(Np), or

2. priority(N4) > priority(Np)

but not both (priority(/N4) = priority(Np) is not possible).
x Note that to prevent deadlock, we need to prevent circular wait

— e.g., “N4 is waiting for N which is waiting for N which is waiting for N,” is a

circular wait.

« The solution to circular wait: rollback one of the waiting trans-
actions.
x Which transaction to rollback?
— Use priorities to determine whether a transaction should be rolled back or whether

it should be allowed to wait.

x Since decisions are made at lock-request time, we are usually
faced with the following scenario:

- Np tries to acquire a lock already held by N 4.
- Should Np be allowed to wait?
- Or should it be rolled back?
*x Two methods are used:
1. Wait-die method:
If priority(/Np) > priority(Ny)
Allow Np to wait
Else
Roll back Np, releasing its locks
Restart Np later (with its old priority)
Endif

2. Wound-wait method:
If priority(/Np) > priority(Ny)
Roll back N4, releasing its locks
Restart N4 later (with its old priority)
Else
Allow Npg to wait

478



Endif

— Examples:

1. Wait-die:

(a) priority(Np) < priority(N4)

No deadlock prevention

N_A

N_B

readlock (x)

readlock (y)

writelock (y)

writelock(x)
Deadlock

(b) priority(Np) > priority(/N4)

No deadlock prevention

N_A

N_B

readlock (x)

readlock (y)

2. Wound-wait:

writelock (y)

writelock (x)
Deadlock

(a) priority(Np) < priority(N4)
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Wait—die method

N_A

N_B

readlock (x)

readlock (y)
Allowed to wait

N_A continues

writelock (y)

writelock(x)
Not allowed to wait

Roll back
Release all locks

Wait—die method

N_A

N_B

readlock (x)

readlock (y)
Not allowed to wait

Roll back
Release all locks

writelock (y)

writelock(x)




No deadlock prevention Wound-wait method
N_A N_B
readlock (x)

N_A N_B
readlock (x)

writelock (y) writelock (y)

readlock (y) readlock (y)

. Forces N_B to Roll back
writelock (x) roll back — Release all locks
Deadlock
(b) priority(Np) > priority(/N4)
No deadlock prevention Wait-die method
N_A N_B

N_A N_B

readlock () readlock (x)

writelock (y) writelock (y)
readlock (y)
Allowed to wait writelock(x)

Forces N_Ato
roll back

readlock (y)
writelock (x)

Deadlock Roll back
Release all locks

— Note: no deadlock is possible in either scheme (wait-die or wound-
wait).
Proof sketch (for wound-wait): Let N’ be the oldest (highest-
priority) transaction in system. Then, N’ never waits and instead
preempts any contending transaction

= N’ will eventually complete. Then, second oldest will com-
plete...then, third oldest...and so on.

e Deadlock detection:

— Key ideas:
x The dbase lock manager maintains a wazt-for graph:
- One vertex for each transaction.

- If N; blocks while waiting, for a lock held by N, then place
an edge from vertex N; to vertex N;.

« Every time a transaction is blocked, update the wait-for graph.
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* Check whether wait-for graph has a cycle.

« If it has a cycle = deadlock has occured.

x Select a transaction in the cycle to roll back and roll it back.

— Example:

N_A

N_C

Wait—for graph

@

Initially

writelock (x)

Lock granted

writelock (y)

Lock granted

writelock (z)

Lock granted

readlock (y)
Blocked
- waiting for N_B

Add edge N_AtoN B

D

readlock (z)

Blocked
— waiting for N_C

@ Add edge

readlock (x)

Blocked
- waiting for N_A

— Which one to roll back? Various options:

* Roll back youngest transaction.

* Roll back transaction with fewest writes.

* Roll back shortest-running transacation.

e Deadlock suspicion:

Add edge

(O

— A simple alternative to deadlock prevention or deadlock detection

and resolution.

— Every time a transaction blocks, start a timer.
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— If timer goes off
= transaction has waited too long
= suspect deadlock
= roll back transaction.

— Plus: Timeout’s are simple to understand and easy to implement.

— Minus: The method is too conservative (long-waiting transactions
are unnecessarily rolled back).
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7.14 The Phantom Problem and Other Issues

e Recall how locking works:

— To read or write to a data item:

* Obtain address of item (blocknumber, offset).
x Compute hash-value.
* Look up hash-value in lock table (using hash-value as index).

x Obtain lock on hash-value entry.

— Example: consider the SQL statement

select MIN (BALANCE)
from CORP_ACCOUNTS
where BALANCE > 100000;

— At a very low level, this is typically implemented as:

for each tuple t in CORP_ACCOUNTS
(blk, offset) := GET-BLOCK-AND-OFFSET (t.BALANCE);
readlock (blk, offset, t. BALANCE);
read (blk, offset, t. BALANCE);
if it’s less than MIN then MIN := t.BALANCE;
endfor
Release all locks // 2nd phase of 2PL

— Note: locking could be done at file-level, but this would reduce
concurrency.

e The Phantom problem:

— Consider the execution of transactions N4 and Np:
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NA NB

// Find lowest balance larger
// than 100,000

SELECT MIN (BALANCE)

INTO :lowest

FROM CORP_ACCOUNTS

WHERE BALANCE > 100000;

INSERT INTO CORP_ACCOUNTS
VALUES (39, ’SONY’, 101000);
// Lock is granted on new tuple

// Find lowest balance larger
// than 100,000 (again)
SELECT MIN (BALANCE)

INTO :lowest

FROM CORP_ACCOUNTS

WHERE BALANCE > 100000;

// Unrepeatable read!

— We get the unrepeatable read problem even if 2PL is used.
— Why?
* The locking that occurs for Np’s INSERT does not interfere with
Np’s readlock’s.
x At a low level, N really does the rough equivalent of:
b = GET-LAsT-BLOoCK (CORP_ACCOUNTS);
t = GET-FIRST-EMPTY-SPACE (CORP_ACCOUNTS);
writelock (t);
Write new values;
unlock (t);

The hash-value computed for the new tuple need not conflict
with any of the hash-values computed by N4’s readlock’s

= Np does not wait

= repeatable-read problem.

— Thus, an insert can cause strange effects even with 2PL
= the Phantom problem.
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e One solution: perform locking at the file-level.

— However, this reduces concurrency.

e Predicate Locking:

— Predicate locking allows sets of tuples to be locked.
— Each set is defined by a predicate.
— Example:

x Consider the predicate
(BALANCE > 100000).

« Lock all tuples which satisfy this condition, e.g.,
LOCK CORP_ACCOUNTS (BALANCE > 100000);

* Now, inserts (or reads or updates) can be checked against pred-
icates.
x Maintain a table of predicates and allow table entries to be
locked.
— Predicate locking is general and useful but very expensive to imple-
ment.

x It’s hard to compare long predicates to determine if they clash
(if one should lock out the other), e.g.,

P1 = (BALANCE > 100000) and (MILES < 1000) or
( (NAME < ’G’) and (FLTNO > 17) )

P2 = (NAME <’G’) or (BALANCE >100000) and
(MILES < 1000) and (FLTNO > 17)

— Predicate locking is not used in practice, although the concept has
led to variations that are used.

e Precision locks:

— A variation of predicate locks.
— Predicates are created as in predicate locks.

— Predicates are not compared.
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— When a write occurs, the relevant predicates are computed using
the given data (old and new values) to see if there’s a conflict.

— Inserts are treated similar to writes.
e Key-range locking:

— Another variation of predicate locking.
— Performed on queries, updates or inserts involving keys.

— A file is divided into groups based on pre-selected ranges of the key,
e.g.,

group 1: 0 < FLT_ID < 10
group 2: 11 < FLT_ID < 20

— This is really the same as defining the predicates:

Pl = (0 < FLTID < 10)
P2 = (11 < FLTID < 20)

— The rest is the same as predicate locking, except that numeric ranges
are much easier to deal with
= key-range locking can be implemented efficiently.

— Inserts beyond the ends are handled by defining special ranges:

(00 < FLTID < 0)
(current maximum < FLT_ID < o0)

e Multiple-Granularity Locking:

— A compromise between locking whole files or sets of files and tuple-
level locking.

— It uses the “containment property” for the hierarchy of objects we
find in any database system:
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System

Dbasel Dbase2 Dbase3

EMP DEPT FLIGHT PASSENGER  AIRPORT CORP_ACCOUNTS BILLING

AN KA OR

All tuples in FLIGHT X

— Suppose we want to lock FLIGHT for an UPDATE:
Should the whole system be locked? Should all of Dbase2 be locked?

— Suppose we want to access z and y in Dbase3:
Should all of Dbase3 or BILLING be locked?

— Define new locks:

* readintent (z) — declare an intent to read something in the
subtree of object z, e.g., readintent (Dbase3).

* writeintent (z) — declare an intent to write something in the
subtree of object z, e.g., writeintent (Dbase3).

— Also, allow readlock and writelock to apply to higher-level objects
(files, databases).

— When a transaction wishes to lock something, it must lock top-
down, stating its intentions along the way (using readintent and
writeintent).

e Example:
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Ny Np N¢
writeintent(Dbase3)
writeintent(BILLING)

)

writelock(z
write ()
writeintent(Dbase3)
writelock(BILLING)
// Blocked
writeintent(Dbase3)
writeintent(BILLING)
writelock(y)
// Not blocked
write(y)

e Permitted combinations that can be held on an object:

readintent read writeintent write
readintent | yes yes yes no
read yes yes no no
writeintent | yes no yes no
write no no no no

Example: if N4 has a writeintent on object z, then if Np does a
readlock on z, it will block.
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7.15 Transactions in SQL

e Generally speaking,
— the more careful we are about locking, the less concurrency we per-
mit;
— the less we're fussy about locking, the more the potential concur-
rency;

e SQL allows the user to decide what level of protection (and therefore,

concurrency) a transaction wants.
e SQL allows the user to define one of four levels of protection:

set transaction isolation level
[ read uncommitted |
read committed |
repeatable read |
serializable |

— An isolation level determines the protection a transaction receives.

— In particular:

Isolation Lost Dirty Unrepeatable Phantom
Level Update Read Read Problem
read uncommitted | yes yes yes yes
read committed no no yes yes
repeatable read no no no yes
serializable no no no no

— Thus, a transaction that has set the isolation level to read com-
mitted will not experience the lost update problem, but might ex-
perience an unrepeatable read.
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— Serializable is the strictest (but allows for the least concurrency).

e Guidelines in choosing the isolation level:

— Use read uncommitted for casual browsing of data (nothing guar-
anteed).

— Use serializable for any write’s.

— Use read committed for computing approximate statistics (max,
count, etc).

Note:

— Default is serializable.

— To use read uncommitted, a transaction must be read-only.
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Chapter 8

Oracle

Course Notes on Database Systems

491



8.1

Oracle: An Introduction

e What is Oracle?

= Oracle is a commercial database product.

Oracle consists of:

1. A DBMS server:
— Parses and executes SQL.
— Executes “stored” PL/SQL code.
— Handles query processing and optimization.
— Handles disk I /0, file system and memory management (paging).
— Provides concurrency, recovery and security.
2. Database tools:
— DBA tools: svrmgrl (line mode) and svrmgrm (window mode).
% System startup and monitoring.
x Add/delete users, set priveleges for users.
x Control space usage.
— SQL interpreter: sqlplus
x Prompt user for SQL input and connect to server.
x Pass SQL queries to server and retrieve results.

« Other features: formatting, transaction processing, Oracle
extensions to SQL.

* PL/SQL compiler.

— A dbase programming language: PL/SQL
* An (almost) full programming language.
x Syntax and keywords based on Ada.

« Standard libraries for process control, transaction processing,

1/0.
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— A window-based programmable user-interface: OracleForms
x Can set up window-based environment for end-users.
* Customizable and programmable.

— Other tools:
% A report-generating and formatting tool: OracleReport.
* A tool for designing web-based interfaces: Webserver.
x A tool for handling spatial data.

« Tools for distributed data, parallel execution of server, graph-
ics and multimedia.

e Oracle is designed to work in client-server mode:
= the tools operate as server clients.

client server

"select * from EMP" encoded version of

"select * from EMP"
USER SQLPLUS

results

ENAME SSN
Smith 222-33-6666
Jones 333-44-5555

e Oracle supports all of SQL/92 (the most recent ANSI SQL standard).

e Oracle on Unix:

— Oracle is usually under a directory called /home/dba/.

— The directory structure in the standard installation looks like:
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/home/dba —— .../oracle

home directory of user "oracle" (DBA)

L ../oradata

where all the data is

L .Japp ——— . /oracle/product/7.3.2
software home directory for oracle products
../bin executables and librarie
.Isqlplus sqlplus executables, libr:
.Iplsql PL/SQL demos
..I[rdbms server demos, libraries

..[forms45 Oracle forms
..Jorainst Documentation
.Isvrmgr DBA tools

../precomp Precompilers
e Oracle files and tablespaces:

— Oracle keeps data in a bunch of tablespaces:
= a tablespace is a group of related data
For example, all students have their data in tablespace STUDENT97.

— Each tablespace consists of a number of (unix) files.

— A relation is placed in a tablespace and may spread across several
files.

— The files are in /home/dba/oradata/.
— Each user is required to have a:
x Default tablespace: where the user’s data is stored.

* Temp tablespace: for intermediate computations (e.g., sorting).
— Standard tablespaces: SYSTEM, TEMP, TOOLS, USER.

e Oracle processes: an Oracle server installation will have several processes
running simultaneously:

494



— DBWR: Database writer — for disk 1/0.
— LGWR: Log writer — for writing recovery information.

— SMON, PMON: System monitor and process monitor — to handle
connections, client-server communication.

— Server processes.

e Oracle handles its own memory management: a huge piece of main mem-
ory (System Global Area) is kept for:

— Data and catalogs.
— Current and “stored” SQL and PL/SQL.

— Memory for indexing, processing, recovery.
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8.2 Oracle Datatypes

e Oracle has several datatypes, among which are:

— CHAR(n) — Fixed-length character string.

* n is the length.
x Default length is 1.
* Length must be between 1 and 255 bytes.

x Fixed amount of space is allocated.
— VARCHAR2(n) — variable-length character string.
* n is the maximum length (must be specified). 1 < n < 2000.

% Space usage depends on length of string.
*x Use VARCHAR2 where possible.

— VARCHAR(n) — currently same as VARCHAR2.

* VARCHAR2 and VARCHAR correspond to the ANSI definition
of VARCHAR.

* VARCHAR may change with the next change in ANSI stan-
dards.

— NUMBER(m,n) — fixed and floating point numbers.

* m is the total number of digits.
x n is the number of digits after the decimal point.

* NUMBER(%*,n) specifies decimal accuracy but unlimited size.
+ Numbers are in the range 107130 to 10'2°.

— INTEGER - integers.

— DATE - to store a dates (year,month,day,time).
« Date range: Jan 1, 4712 BC to Dec 31, 4712 AD.

* A library of date-manipulation functions is provided.
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— LONG - to store large amounts of text data.
x Up to 2GB of text data.

x Only one LONG column is permitted per relation.

* LONG attributes cannot be used in the where subclause and in
certain other places.

— RAW(n) — to store non-text data.
x n 18 size of field: 1 < n < 255.

* RAW data is not converted into any format.

— LONG RAW - to store images, graphics etc.

e For comparison, here are some standard datatypes in SQL/92:

CHAR, VARCHAR, NCHAR, NATIONAL CHAR, BIT,
NUMERIC, DECIMAL, DEC, INTEGER, INT, SMALL-
INT, FLOAT, REAL, DOUBLE PRECISION, DATE,
TIME, TIMESTAMP.
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8.3 Oracle and SQL

e Oracle provides the tool sqlplus to execute SQL statements:

— You can type SQL statements at the Sqlplus the command line di-
rectly:

% sqlplus <username>/<password>
SQL> select * from EMP;

— Alternatively, you can place SQL statements in a file and execute
them by specifying the file name, e.g.,

% Suppose the file test1.sql contains the the string “select * from EMP”.

x To execute the SQL:
SQL> Q@testl.sql

e Sqlplus has number of Oracle-specific commands and features:

— Use help to obtain a complete list of commands.

— The command describe tells you the structure of a table, e.g., to
find out the definition of relation EMP:

SQL> desc EMP
— Output can be directed to a file using spool, e.g.,
SQL> spool testl.output

SQL> Q@testl.sql
SQL> spool off

— Sqlplus supports the definition and use of variables, e.g.,
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define name_var = ’Smith’
select E.SSN

from EMP E

where E.NAME = ’&name_var’;

If a variable name is used without definition, e.g.,

select E.SSN
from EMP E
where E.NAME = ’&name_var’;

then Sqlplus prompts the user for the value.

— Sqlplus has features for rudimentary screen 1/0, e.g.,

clear screen
accept name_var prompt Enter an employee name:

select E.SSN
from EMP E
where E.NAME = ’&name_var’;

e Oracle SQL differs from standard SQL in some ways, e.g., Oracle uses
minus instead of except for set difference.

e Some additional useful facts:

— Use ¢;’ (semi-colon) to see the last command executed.
= command is in server’s SQL buffer
= already parsed and ready for execution.

— Use ‘\" (backslash) to execute last command.

— Use ‘!’ (exclamation) before Unix command to execute a Unix

command.

— To see a list of tables that you have created:
select table_name from user_tables;
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— System tables that may be useful to you: all_tables, all_users,
dba_free_space, dba_tablepsaces, dba_users.
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8.4 PL/SQL: Introduction

e Consider the following relation:

TRAVEL FLT_NO DEST NEAREST AIRLINE
139 Montreal New York Air Canada
452 Brussels London Sabena,
339 London New York British Airways
116 Macau Hong Kong Macau Air
322 Hong Kong Tokyo Japan Air Lines
43 Tokyo San Francisco USAir
31 San Francisco New York McValue

— Suppose we are given a destination and we want to produce a list of
flights starting from New York to that destination.

— We can’t do this in SQL.
= cannot compute transitive closure in SQL
= alternative programming language needed.

e Most DBMS’s extend SQL with their own programming language.
e In Oracle: PL/SQL (Procedural Language extensions to SQL):
— PL/SQL has (almost) the full power of many programming lan-
guages (like C).
— PL/SQL’s syntax and keywords are modeled on Ada.

— PL/SQL has dbase-specific constructs such as cursors and anchored
declarations.

— PL/SQL has pre-defined libraries for I/O, process control and inter-
process communication.

e “Hello World” in PL/SQL:

— There is no separate tool for PL/SQL.
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— PL/SQL can be entered at the command line of Sqlplus or run as a
file.

— Suppose the file testl.pl contains:

begin
dbms_output.enable;

dbms_output.put_line(’Hello World’);
end;

/

— Then, the Sqlplus commands

SQL> set serveroutput on;
SQL> @testl.pl
Hello World

cause the file to be executed.

e In general a PL/SQL program will have the following structure:

declare

/* variables, if any, are declared here */
begin

/* code */
exception

/* exception handling code -- optional */
end; /* Note the semi-colon */
/ /* Note the forward-slash */

e Datatypes in PL/SQL: all of Oracle’s SQL datatypes are available in
PL/SQL, and with the same names, e.g.,

char, varchar2, number, date, boolean, long,
raw
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Example: the following are declarations in PL/SQL:

declare
1 integer;
x number (10,3) ;
ename varchar2(50);
begin
null;
end;

e Anchored declarations:

— Suppose [ have the following declaration:

emp_name varchar2(50) ;

— Later, we want to make comparisons with a variable called mgr_name.
— One option:

emp_name varchar2(50);
mgr_name varchar2(50);

— Instead, it’s better to let the type of mgr_name depend on emp_name
using an anchored declaration:

emp_name varchar2(50);
mgr_name emp_name,TYPE;

— Anchored declarations are even more useful in creating variables to
hold tuples.

— For example, suppose we have created (in SQL) a table called
Travel:
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create table Travel ( Flt.no  integer
Dest varchar(50)
Nearest varchar(50)
Airline  varchar(50) );

To declare variables of the same types as above in PL/SQL:

fltnum Travel.F1lt\_no%TYPE;
which_airline Travel.Airline,TYPE;

— It is even possible to define a variable to hold a complete tuple:

declare
travel_tuple Travel/,ROWTYPE;
begin
dbms_output.put_line (travel_tuple.Airline);

end;
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8.5 PL/SQL: Control Statements

e Like any standard high-level programming language, PL/SQL has con-
ditional constucts:

1f <cond> then
/* statements */
end if; /* Note the space between end and if */

if <cond> then

/* blah-blah */
else

/* rah-rah */
end if;

if <cond> then
/* sl x/
elsif <cond>
/* 82 x/
elsif <cond>
/* 83 x/
else
/* s4 x/
end if;

e Loops:

— The simplest loop in PL/SQL is of this form:
loop
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if <cond> then exit;
end loop;

— To simulate a C-while loop, for example

i=1;
while (i <= n) {

use the following PL/SQL loop:
i:=1;
loop
if (i > n) then exit;
end loop;

— Similarly, for example, the following C-forloop

for (i=1; i<=n; i++) {

can be simulated in PL/SQL as:

1 :=1;
loop
if (i > n) then
exit;
else
i:=1+1;
end if;
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end loop;

e Note: several variants of loops exist in PL/SQL (see the manual).
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8.6 PL/SQL: Cursors

e SQL by itself provides no for-loop like mechanism to iterate through the
tuples of a relation.

e Yet, it is very useful to be able to retrieve tuples one-by-one for process-
ing.

e Most DBMS vendors provide such mechanisms — often called cursors.
e Oracle provides cursors in PL/SQL as well as in the C interfaces.

e What exactly is a cursor?

— To understand cursors, first consider a list of items in C++, e.g.,

struct list_item {
} item_type;
class list {

// Access functions

void start QO); // Initialize walk through list
item item_next (); // Return current item

boolean list_empty (); // Is the list empty?

boolean at_end (); // Are we at the end?

+;
— This 1list class would be used as:

list A;
item_type item;
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if (! A.list_empty ) ) {
A.start ();
while (! A.at_end () ) {
item = A.next (;

— Note that the class 1list is a generalization of a simple for-loop
variable.

— A cursor is similar:
« Cursors provide ways to determine if a relation is empty, to start
a scan and determine if the scan has ended.
x A cursor is an “object” that scans a relation.
% Several cursors can be defined for a single relation.

x Each cursor applies to only one relation.
— In PL/SQL, you can:

« Declare a cursor.
x Open a cursor.
x Use a cursor repeatedly.

* Close a cursor.

e Example: consider the relation

travel (Flt_no, Dest, Nearest, Airline).

Let’s write a PL/SQL program to “curse” through the relation:

DECLARE

CURSOR travel_cursor IS /* Declaration of cursor */
SELECT =*
FROM Travel;
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travel_tuple Travel’,ROWTYPE;
BEGIN

DBMS_OUTPUT .ENABLE;
OPEN travel_cursor;

/* Fetch first tuple from travel relation */
FETCH travel_cursor INTO travel_tuple;

IF travel_cursor/FOUND THEN
DBMS_OUTPUT.PUT (’First FLT\_NO found is: ’);
DBMS_OUTPUT.PUT_LINE (travel_tuple.Flt\_no);
ELSE
DBMS_OUTPUT.PUT_LINE (’Empty relation’);
END IF;

CLOSE travel_cursor,

END;

Note:

— If the above code is in a file called test2.pl, it can be run from
Sqlplus:

SQL> set serveroutput on;
SQL> Q@test2.pl

— The program doesn’t do much: it only fetches one tuple.

— PL/SQL keywords are capitalized for reading convenience.

e Let’s now write a more interesting program: to print out all the tuples
in Travel.
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DECLARE
CURSOR travel_cursor IS /* Declaration of cursor */
SELECT =*
FROM Travel,;

travel_tuple Travel/,ROWTYPE;
i INTEGER;

BEGIN
DBMS_QOUTPUT .ENABLE;

IF travel_cursor’%ISOPEN THEN

DBMS_OUTPUT.PUT_LINE (’Error: cursor already open’);
ELSE

OPEN travel_cursor;
END IF;

/* Now curse through Travel x*/

i:=1;

LOOP
FETCH travel_cursor INTO travel_tuple;
IF travel_cursor,NOTFOUND THEN

EXIT;

END IF;
DBMS_OUTPUT.PUT (’Tuple #’);
DBMS_QUTPUT.PUT (i);
DBMS_QUTPUT.PUT (’: ?);
DBMS_OUTPUT.PUT (travel_tuple.Flt\_no);
DBMS_OUTPUT.PUT (travel_tuple.Dest);
DBMS_QUTPUT.PUT (travel_tuple.Nearest);
DBMS_OUTPUT.PUT_LINE (travel_tuple.Airline);
i:=1+1
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END LOOP;
CLOSE travel_cursor;

END;

e Thus, the key steps in using a cursor are:

1. Declaring a cursor via an SQL select, e.g.,

CURSOR travel_cursor IS /* Declaration of cursor */
SELECT =*
FROM Travel;

2. Opening a cursor, e.g.,

IF travel_cursor’ISOPEN THEN

DBMS_OUTPUT.PUT_LINE (’Error: cursor already open’);
ELSE

OPEN travel_cursor;
END IF;

Note: it’s always wise to check whether another cursor has been
opened on the same relation.

3. Using FETCH to obtain successive tuples.
4. CLOSE-ing a cursor.

e Note that the select in a cursor declaration can be quite powerful, e.g.,

CURSOR travel_cursor IS /* Declaration of cursor */
SELECT *
FROM Travel
WHERE Travel.Airline = ’McValue’
ORDER BY Travel.Dest;
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This cursor will only retrieve those tuples satisfying the where condi-
tion.

Similarly, a cursor can be limited to a few attributes (via a projection):

DECLARE
CURSOR travel_cursor IS /* Declaration of cursor */
SELECT Dest, Nearest
FROM Travel
WHERE Travel.Airline = ’McValue’;

travel_tuple travel_cursor)ROWTYPE
/* travel_tuple only has 2 fields */

e The following special attributes are automatically available with any
cursor, e.g., for travel_cursor:

travel_cursor% FOUND Check if a tuple was retrieved
travel_cursor%XANOTFOUND = See if nothing was retrieved
travel _cursor%ISOPEN Is the cursor already open?

travel_cursor%ROWCOUNT How many tuples are returned?

The last attribute counts the number of tuples that matched the defining
select in the cursor definition.
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8.7 PL/SQL: Procedures and Functions

e PL/SQL supports the definition and use of procedures and functions.

e FExample:

PROCEDURE print_tuple_num (i IN INTEGER) IS
/* Local variables are declared here */
BEGIN
DBMS_OUTPUT.PUT (’Tuple #°);
DBMS_QUTPUT.PUT (i);
DBMS_OUTPUT.PUT (’: ’);
END;

DECLARE
BEGIN
print_tuple_num (i);

END;

Note:

— The general definition of a procedure has this structure:

PROCEDURE <name> ( <parameters> )
<local variables>

BEGIN
<body>

EXCEPTION
<exception code>
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END;

— Each parameter, apart from having a data type, also has an input
type: either IN, OUT or IN OUT.

— Example:

PROCEDURE procl (x IN INTEGER, y OUT INTEGER, z IN OUT INTEGER)

e Functions can be defined which return a value. The general form is

FUNCTION <name> ( <parameters> )
RETURN <return type>
IS
<local variables>
BEGIN
<body>
EXCEPTION
<exception code>
END;

For example:

FUNCTION circle_area (radius IN REAL)
RETURN REAL

IS
area REAL;
BEGIN
area := 3.141 * radius * radius;
RETURN area;
END;
e Packages:
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— A collection of functions and procedures can be encapsulated in a
package that other developers can use.

— PL/SQL’s package is weaker than C++’s class.
= encapsulation, but no dynamic creation.
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8.8 Oracle and C

e Oracle (as does almost every dbase vendor) provides two mechanisms

for programming in C and accessing the dbase:

1. Using the Oracle Call Interface:

— A library of C functions.

— Functions for executing SQL, directing output and taking input

from user-defined C variables.

— Currently, Oracle supports only some loaders.
= Use the loader 1d in /opt/SUNWspro/bin.

2. Using precompilers:

— SQL-statements can be inserted in a C program.

— The C precompiler parses the SQL blocks.

— Precompilation allows for some compile-time optimizations.

e Oracle also has language support for Ada, Fortran and Cobol.

e First, we’ll focus on the OCI SQL library.

e To create your C program that interfaces with Oracle, you will need the
following includes:

#include
#include
#include

#include
#include
#include
#include

<stdio.h>
<ctype.h>
<string.h>

<oratypes.h>
<ocidfn.h>
<ociapr.h>
<ocidem.h>

/ *
/ *
/ *

/ *
/ *
/ *
/ *
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Standard C library */
Standard C library */
Standard C library */

Definitions of Oracle datatypes, constan
Variable types for local data */
Definitions of function calls */
Constants used in demo programs. Useful



8.9 Oracle OCI: Setting up a Connection

e The first thing your C program will do is to set up a connection with
the Oracle server.
= username and password need to be specified

e The library function olog(...) is used to set up a connection.

e The file ORACLE_HOME/rdbms/demo/ociapr.h contains the definition:

sword olog (struct cda_def *1lda, ubl* hda,
text *uid, sword uidl,
text *pswd, sword pswdl,
text *conn, sword connl,
ub4 mode) ;

which makes very little sense.
e Oracle defines its own data types in place of standard C data types:

— Example: the data type text = is really char *, a character string.

— Example: the data types sword and uword correspond to signed int
and unsigned int in C.

— Here are some of the more important ones:

ORACLE C

text * char *

sbl,ubl char

sb2,ub2 signed and unsigned 2-byte int’s
sb4 ,ub4d signed and unsigned 4-byte int’s
sword, uword signed and unsigned int’s
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— Note: most often you will use sword instead of int.

— Use these declarations for variables used in OCI calls. For example,
to pass the integer num_rows to a call that requires ub4, do a cast:

int my_mode = 5;

ub4 mode_in_call;

mode_in_call = (ub4) my_mode;

/* Now mode_in_call can be used in the function call */

— These weird type names have been defined so that the definitions can
vary from system to system (in the file oratypes.h) while keeping

function definitions the same (in ocidfn.h).

e Every OCI program must have certain global variables:

/* Global variables x/

Lda_Def 1lda; /* Logon data area */
Cda_Def cda; /* Cursor data area */
ub4 hda[HDA_SIZE/sizeof (ub4)]; /* Host data area */

— The logon data area is for Oracle (the OCI client) to place your
connection ID, error codes relating to function calls etc.

— The cursor data area is for Oracle to keep track of current locations

of cursors.
Note: a cursor is a programming technique unique to dbases.

— The host data area is also used by Oracle for information related to
your program.

— How does Oracle know the addresses of these variables?
= you are going to pass these on to Oracle very early.

— Note: multiple Ida’s and cda’s may be used for multiple connections.

[See the documentation].
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e A typical olog call looks like:

(text *) "Smith";
(text *) "S93JfilIE";
if ( olog (&lda, (ubl *)hda, username, -1, password, -1,
(text *) 0, -1, OCI_LM_DEF) ) {
/* olog does not return 0 */

text * username

text * password

printf ("Function call failed\n");
exit (0);
¥

/* Else, olog returned O => successful connection */

o Let’s take a closer look:

if ( olog /* Returns 0 if successful */
(&1da, /* Pass address of lda */
(ubl *)hda, /* Pass address of hda */
username, /* Give username */
-1, /* If username is not null-terminated,
give length */
password, /* Give username */
-1, /* Length, if not null-terminated */
(text *) O, /* For use in a networking application */
-1, /* Length for above */
OCI_LM_DEF) /* Blocking or non-blocking mode */
) A

Thus, the only “real” information is: username and password.
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e Note: the C code contained the password. A more intelligent way to
handle this problem:

text username[20];
text password[20];
printf ("username: "); gets( (char*) username);
printf ("password: "); gets( (charx) password) ;
if ( olog (&lda, (ubl *)hda, username, -1, password, -1,
(text *) 0, -1, OCI_LM_DEF) ) {
printf ("Connection failed. Exiting...\n");
exit (1);
+

e To close a connection, use ologof (...):

if (ologof (&lda) ) {

printf ("Error during log out\n");
exit (1);
+
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8.10 Oracle OCI: Executing SQL from C

e An SQL statement in a C program is executed with three steps:

1. Cursor definition: every SQL query is associated with a cursor.
Thus, a cursor is first associated with a connection using the oopen

call:

oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1);

2. Parsing: the function oparse is used to parse an SQL string:

text * sqlquery = "select NAME, SSN from EMP";
oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1);
oparse (&cda, sqlquery, -1, FALSE, VERSION_7);

3. Ezecution: the function oexec is then used to execute the query:

text * sqlquery = "select NAME, SSN from EMP";
oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1);
oparse (&cda, sqlquery, -1, FALSE, VERSION_7);

oexec (&cda);

e A closer look at these functions:

1. The oopen function:

oopen (&cda, /*
&lda, /%
(text *) 0, /x
1, /%
1, /%
(text x) 0,

The cursor global variable we’ve defined */
The current connection identifier */
Remaining parameters can be ignored. */
They are for compatibility with earlier */
Oracle versions */
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-1);

Thus, the oopen call really tells Oracle “Here’s a cursor variable

that I want you to associate with my current connection”.

2. The oparse function:
oparse ( &cda, /*
sqlquery, /x
(sb4) -1, /x
FALSE, /*

VERSION_7) /%

NOTE:

Ptr to CDA specified by OO0PEN */
String containing sql query*/
Length of SQL statement, if not
NULL terminated */

Value 0 => parse NOW

Value 1 => parse later */

Value 2: version info */

— This function causes Oracle to parse the SQL query in the string

sqlquery.

— It is possible to request deferred parsing for efficiency reasons.

— The deferred parsing will force parsing at the time of execution.

— The SQL statement can be a Data Definition statement (e.g., a

create table statement) in which case it is executed if you did

not defer parsing.

3. The oexec statement:

oexec (&cda); /* Simply specify the cursor associated

with the query */

NOTE:

— The oexec function can be used for queries, updates and inserts.

— Oracle recommends using other functions for queries only.

e What about output from the query?
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— When oexec is called, the query is executed and the results are
placed in a temporary buffer.

— To actually obtain the data, there are two steps:

1. Use the odefin call to indicate where you want the result placed
(in your C variables).

2. Use the function ofetch repeatedly to get one tuple at a time.
e Getting results into C variables using odefin:

— Consider the following SQL statement:

select NAME, FLT_ID
from PASSENGER

— Suppose that NAME is VARCHAR(50) and FLT_ID is an INTE-
GER.

— In the C program, we would create the following string:

text * sqlquery = "select NAME, FLT_NO from PASSENGER"

— This SQL statement would be parsed using oparse:

text * sqlquery = "select NAME, FLT_NO from PASSENGER";
oopen (&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1);
oparse (&cda, sqlquery, -1, FALSE, VERSION_7);

— Now, we want the output (NAME and FLT_NO) to be placed in C
variables of our choice.

— Accordingly, define the C variables:

#define PNAME_LEN 50
text pname[PNAME_LEN];
sword fltnum;

— Unfortunately, Oracle requires that three additional variables be de-
fined for each such attribute:
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text pname[PNAME_LEN]; /* Passenger name */

sb2 ind_pname; /* An indicator code for function calls */

ub2 retc_pname; /* A return code - to indicate errors */

ub2 retl_pname; /* The length of the value returned */
sword fltnum; /*Flight number */

sb2 ind_fltnum;
ub2 retc_fltnum;
ub2 retl_fltnum;

Thus, for any variable x, you need ind_x, retc_x and retl_x de-
fined.

— Next, use the odefin call to tell Oracle your intentions for each
variable:

odefin (&cda, 1, (ubl*) pname, (sword) PNAME_LEN, SQLT_STR,

-1, &ind_pname, (text *) 0, -1, -1,
&retl_pname, &retc_pname) ;

odefin (&cda, 2, (ubl*) &fltnum, (sword) sizeof (int), SQLT_INT,

-1, &ind_fltnum, (text *) 0, -1, -1,
&retl_fltnum, &retc_fltnum) ;

— Let’s look at one of these in a little more detail:

odefin (
&cda, /* The cursor associated with the query */
1, /* Position of NAME in select query:

NAME is the *first* attribute in
select NAME, FLT_NO from ...
Use 2 for FLT_NO */
(ubl%*) pname, /* Address of the C variable
- cast to ublx */
(sword) PNAME_LEN, /* Size of space allocated for result */
SQLT_STR, /* It’s a string type: SQLT_STR is a
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pre-defined constant in ocidfn.h */

-1, /* Not used */

&ind_pname, /* Did a row-fetch work? */

(text *) 0, /* Not used */

-1, /* Not used */

-1, /* Not used */

&retl_pname, /* Length of data returned to be put here */
&retc_pname) /* A return code */

— After the addresses of your C variables have been handed over to
Oracle, tuples can be fetched one at a time using ofetch:

ofetch (&cda); /* Provide the cursor identification */

e A complete example: consider the relations:

ACCOUNTS (SSN, ACC_.CODE, ACCNUM, BRANCHNUM, AMOUNT)
CUSTOMER (SSN, NAME, ADDR, CITY, STATE)

Goal: print each customer’s name and balance.

— First, include’s and global variables:

#include <stdio.h> /* Standard C library */
#include <ctype.h> /* Standard C library */
#include <string.h> /* Standard C library */

#include <oratypes.h> /% Definitions of Oracle datatypes */

#include <ocidfn.h> /* Variable types for local data */
#include <ociapr.h> /* Definitions of function calls */
#include <ocidem.h> /* Constants used in demo programs */
Lda_Def 1lda; /* Logon data area */
Cda_Def cda; /* Cursor data area */

ub4 hda[HDA_SIZE/sizeof (ub4)]; /* Host data area */
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— Second, let’s define a function called connect that handles username
and password:

void connect () {
text username[20];
text password[20];
printf ("username: "); gets( (charx) username);
printf ("password: "); gets( (charx*) password);
if ( olog (&lda, (ubl *)hda, username, -1, password, -1,
(text *) 0, -1, OCI_LM_DEF) ) {
printf ("Connection failed. Exiting...\n");
exit (1);

— Define the SQL statement that produces the desired result:

text * sqlquery
= "select C.NAME, A.AMOUNT from ACCOUNTS A, CUSTOMER C
where A.SSN=C.SSN";

— Next, define the variables in which we want the results:

#define CNAME_LEN 50
text cname[CNAME_LEN] ; /* Customer name */

sb2 ind_cname; ub2 retc_pname; ub2 retl_pname;
sword amount /* Amount */

sb2 ind_amount; ub2 retc_amount; ub2 retl_amount;

— Next, connect, define a cursor, parse the SQL statement and alias
the C variables.

connect ();

oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1);
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oparse (&cda, sqlquery, -1, FALSE, VERSION_7);

odefin (&cda, 1,
-1, &ind_cname, (text *) 0, -1, -1,
&retl_cname, &retc_cname);

odefin (&cda, 2,
-1, &ind_amount, (text *) 0, -1, -1,
&retl_amount, &retc_amount) ;

(ubl*) cname, (sword) CNAME_LEN, SQLT_STR,

(ubl*) &amount, (sword) sizeof(int), SQLT_INT,

— Now execute and fetch resulting tuples one by one:

oexec (&cda);

do {

+

ofetch (&cda);

/* Check whether anything was returned
-- look at the .rc field of cda */

if (cda.rc == NO_DATA_FOUND) break;

printf ("%s %d \n", cname, amount);

while (1);

— Close cursors and log off:

oclose (&cda);

ologoff (&lda);

The complete code is:

#include
#include
#include

#include

<stdio.h>
<ctype.h>
<string.h>

"oratypes.h"

/* Definitions of Oracle datatypes, constants
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#include "ocidfn.h" /* Variable types for local data */
#include "ociapr.h" /* Definitions of function calls */
#include "ocidem.h" /* Constants used in demo programs. Useful */

#define VERSION_7 2

Lda_Def 1lda; /* Logon data area */
Cda_Def cda; /* Cursor data area */
ub4 hda[HDA_SIZE/sizeof (ub4)]; /* Host data area */

void connect ()
{

text username[20];
text password[20];

printf ("username: "); gets( (charx) username);
printf ("password: "); gets( (charx) password) ;
if ( olog (&lda, (ubl *)hda, username, -1, password, -1,
(text *) 0, -1, OCI_LM_DEF) ) {
printf ("Connection failed. Exiting...\n");
exit (1);
+

text * sqlquery = (text *) "select C.NAME, A.AMOUNT from simha.ACCOUN

#define CNAME_LEN 50

text cname[CNAME_LEN] ; /* Customer name */
sb2 ind_cname; ub2 retc_cname; ub2 retl_cname;
sword amount; /* Amount x*/

sb2 ind_amount; ub2 retc_amount; ub2 retl_amount;

int n;
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void main ()

{

connect ();

if (oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1) ) {
printf ("oopen failed \n"); exit (0);
+

if (oparse (&cda, sqlquery, -1, FALSE, VERSION_7)) {
printf ("oparse failed \n"); exit (0);
+

if (odefin (&cda, 1, (ubl*) cname, (sword) CNAME_LEN, SQLT_STR,
-1, &ind_cname, (text *) 0, -1, -1,
&retl_cname, &retc_cname)) {
printf ("first odefin failed \n"); exit (0);
+

if (odefin (&cda, 2, (ublx) &amount, (sword) sizeof(int), SQLT_INT,
-1, &ind_amount, (text *) 0, -1, -1,
&retl_amount, &retc_amount)) {
printf ("second odefin failed \n"); exit (0);

+

if (oexec (&cda)) {
printf ("oexec failed \n"); exit (0);

do {
ofetch (&cda);
/* Check whether anything was returned
-— look at the .rc field of cda */
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if ( (n > 100) || (cda.rc == NO_DATA_FOUND) ) break;

cname [retl_cname + 1] = ’\0’;
printf ("%s %d \n", cname, amount);
n++;

} while (1);

printf ("%2d tuples found\n", n);

oclose (&cda);
ologof (&lda);

To obtain the complete code, see the file “simha/321/oracle/testl.c.
e Suppose we want to have the user input values to be used in queries:

— Consider these relations:
CUSTOMER (SSN, NAME, ADDR, CITY, STATE)
ACCOUNTS (SSN, ACC_CODE, ACCNUM, BRANCHNUM, AMOUNT)

— Suppose we want the user to input a customer name and obtain the
amounts in his/her accounts.

— In SQL, for customer Ray we would write this query as:

select A.AMOUNT
from CUSTOMER C, ACCOUNTS A
where A.SSN=C.SSN and C.NAME = 'Ray’;

— However, in our C program we want to be able to read in the value
'Ray’ from the keyboard:

char * cname;

printf ("Enter customer name: ");

gets ( cname );

/* We need to use cname in the SQL statement */
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e Defining and using placeholders in Oracle OCI:

— Oracle allows SQL statements to contain so-called placeholders or
temporary variables.

— These placeholders can be aliased to a C variable which can contain
desired values.

— The aliasing is done using either the obndrv or obndrn function
calls.

— For the above example:

text * sqlquery
= (text *) "select A.AMOUNT \
from ACCOUNTS A, CUSTOMER C \
where A.SSN=C.SSN and C.NAME= :1";

#define CNAME_LEN 50
text cname[CNAME_LEN]; /* Customer name */
sb2 ind_cname;
sword amount; /* Amount */
sb2 ind_amount; ub2 retc_amount; ub2 retl_amount;

/* Connect, open a cursor and parse the SQL statement */
connect ();

oopen(&cda, &lda, (text *) 0, -1, -1, (text *) 0, -1)
oparse (&cda, sqlquery, -1, FALSE, VERSION_7)

/* Use obndrn to bind cname to ":1" x/
obndrn (&cda, 1, (ubl*) cname, CNAME_LEN,
SQLT_STR, -1, &ind_cname, (textx) 0, -1, -1);

/* Alias the output */

odefin (&cda, 1, (ubl*) &amount, (sword) sizeof(int), SQLT_INT,
-1, &ind_amount, (text *) 0, -1, -1,
&retl_amount, &retc_amount);
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/* Now read in the customer name */
printf ("Enter customer name: "); gets ( (charx) cname);

oexec (&cda);

/* Fetch tuples from result */
do {
ofetch (&cda);
if (cda.rc == NO_DATA_FOUND) break;
printf ("%s %d \n", cname, amount);
} while (1);

— Note that an SQL placeholder is a string preceded by a colon.
— SQL placeholders are of two types:

1. Numeric placeholders: these are integers (starting from 1), e.g.,
text * sqlquery
= (text *) "select C.NAME \
from CUSTOMER C \
where C.NAME= :1 and C.CITY = :2";

Numeric placeholders are always bound using the obndrn call,
e.g., for the above example:
#define CNAME_LEN 50
#define TOWN_LEN 50
text cname [CNAME_LEN] ;
text ccity[CITY_LEN];
obndrn (&cda, 1, (ubl*) cname, CNAME_LEN,
SQLT_STR, -1, &ind_cname, (text*) 0, -1, -1);

obndrn (&cda, 2, (ublx) ccity, CITY_LEN,
SQLT_STR, -1, &ind_ccity, (textx) 0, -1, -1);
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2. String placeholders: these are strings used for identification (and
have nothing to do with C variables).
text * sqlquery
= (text *) "select C.NAME \
from CUSTOMER C \
where C.NAME= :cname and C.CITY = :town";

String placeholders are always bound using obndrv:
#define CNAME_LEN 50
#define TOWN_LEN 50
text cname [CNAME_LEN];
text ccity[CITY_LEN];
obndrv (&cda, (ublx) ":cname", -1, (ubl*) cname, CNAME_LEN,
SQLT_STR, -1, &ind_cname, (textx) 0, -1, -1);

obndrv (&cda, (ublx) ":town", -1, (ublx) ccity, CITY_LEN,
SQLT_STR, -1, &ind_ccity, (textx) 0, -1, -1);

— Let’s take a look at obndrv:

obndrv (
&cda, /* The cursor reference */
(ublx) ":city", /* Placeholder string */
-1, /* If not null-delimited */
(ublx*) ccity, /* Address of C variable */
CITY_LEN, /* Space allocated */
SQLT_STR, /* Variable type */
-1, /* Not used */
&ind_ccity, /* For return code */

(textx) 0, -1, -1); /*x Not used */

— An example of using placeholders can be found in “simha/321/oracle/test2.c.

e OCI summary:
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— Oracle OCI is a library of C functions that let you pass in SQL
statements for execution.

— Use olog, ologof to set up a connection.
— Use oopen and oclose to open and close cursors.
— Use odefin to SQL results into C variables.

— Use obndrv and obndrn to use C variables as part of SQL state-
ments.

— Use oparse and oexec to parse and execute a query.
— Use ofetch to retrieve one tuple at a time from the results.

— Other functions are available — see manual.
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8.11 Embedded SQL: Using the Oracle C
Precompiler

e An alternative to using an SQL library is to use a precompiler and embed
SQL in a C program.

The precompiler is a translator provided by Oracle that converts a C
program with embedded SQL into a C program with function calls.

Embedded SQL makes it easy to declare C variables for input and out-
put.

Embedded SQL allows SQL’s datatypes to be declared like C variables,
e.g.,

varchar cname[50]; /* An SQL type */
char custname[50]; /* Standard C type */

Embedded SQL makes it easy to declare and fetch from cursors, e.g.,

EXEC SQL DECLARE cust_cursor CURSOR FOR
SELECT C.NAME, A.AMOUNT
FROM ACCOUNTS A, CUSTOMER C
WHERE A.SSN=C.SSN and C.NAME = :custname;

EXEC SQL OPEN cust_cursor;

e Let’s examine a complete program:

This program reads in a customer’s name and prints out the amounts
owned by this customer.
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#include <stdio.h>
#include <string.h>

#include "sqlca.h" /% You need this include */
#define UNAME_LEN 20
#define PWD_LEN 20

varchar username [UNAME_LEN]; /* Note the varchar data type */
varchar password[PWD_LEN];

char usern[UNAME_LEN];

char passw[PWD_LEN];

/* We will obtain these attributes from a query */
varchar cname[50]; /* Corresponds to SQL’s VARCHAR */
int amount; /* Corresponds to SQL’s INTEGER */

char custname[50];

/* Must declare error handling function. */
void sql_error();

main()

{

printf ("username: "); gets( (char*) usern);
printf ("password: "); gets( (charx) passw);
/* Connect to ORACLE--

* Copy the username into the VARCHAR.

*/

strncpy((char *) username.arr, usern, UNAME_LEN);

/* Set the length component of the VARCHAR. */
username.len = strlen((char *) username.arr);
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/* NOTE the structure of varchar: fields .arr and .len */

/* Copy the password. */
strncpy((char *) password.arr, passw, PWD_LEN);
password.len = strlen((char *) password.arr);

/* Register sql_error() as the error handler. */
EXEC SQL WHENEVER SQLERROR DO sql_error ("ORACLE error--\n");

/* Connect to ORACLE. Program will call sql_error()
* 1f an error occurs when connecting to the default database.
*/

EXEC SQL CONNECT :username IDENTIFIED BY :password;

printf ("\nConnected to ORACLE as user: %s\n", username.arr);

printf ("\nEnter customer name: ");
gets(custname) ;
printf ("Customer name entered: %s\n", custname);

/* NOTE the use of a C variable as placeholder */
EXEC SQL DECLARE cust_cursor CURSOR FOR

SELECT C.NAME, A.AMOUNT

FROM simha.ACCOUNTS A, simha.CUSTOMER C

WHERE A.SSN=C.SSN and C.NAME = :custname;

EXEC SQL OPEN cust_cursor;
printf ("Amounts owned by Customer %s: \n'", custname);
for (5;) {

EXEC SQL WHENEVER NOT FOUND DO break;

EXEC SQL FETCH cust_cursor
INTO :cname, :amount;
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/* NOTE the availability of Oracle datatypes for use in C */
printf ("%s %4d\n", cname.arr, amount);

b

EXEC SQL CLOSE cust_cursor;

EXEC SQL COMMIT WORK RELEASE;
exit (0);

void sql_error (char *msg)

{
char err_msg[128];
size_t buf_len, msg_len;

EXEC SQL WHENEVER SQLERROR CONTINUE;

printf ("\n%s\n", msg);

buf_len = sizeof (err_msg);
sqlglm(err_msg, &buf_len, &msg_len);
printf ("%.*s\n", msg_len, err_msg);

EXEC SQL ROLLBACK RELEASE;
exit(1);

e NOTE:

— While not always necessary, it’s best to enclose those variables that
store parts of tuples in an embedded SQL block:

EXEC SQL BEGIN DECLARE SECTION;
varchar cname[50];
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int amount;
EXEC SQL END DECLARE SECTION;

— Pointers to character arrays can be used instead of declaring a fixed
size of type varchar:

EXEC SQL BEGIN DECLARE SECTION,;
char *cname;
int amount;

EXEC SQL END DECLARE SECTION;

char *custname;
custname = (char *) malloc (50*sizeof(char));

EXEC SQL DECLARE cust_cursor CURSOR FOR
SELECT C.NAME, A.AMOUNT
FROM simha.ACCOUNTS A, simha.CUSTOMER C
WHERE A.SSN=C.SSN and C.NAME = :custname;
EXEC SQL OPEN cust_cursor;

for (5;) {
EXEC SQL WHENEVER NOT FOUND DO break;
EXEC SQL FETCH cust_cursor
INTO :cname, :amount;
printf ("%4d\n", amount);
}

However, it’s best to use varchar where possible.
— It is often inefficient to fetch only a tuple at a time.

* Consider the following relation:
EMP (NAME, SSN, AGE)

with millions of tuples.
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* Each tuple fetch may occur across a network (client-server mode)
= very time-consuming.
x It’s better to retrieve batches of tuples.

* First, declare an array (of your desired batch size) of variables
to receive the output of the SQL statement:
EXEC SQL BEGIN DECLARE SECTION;
varchar ename[20] [60]; /* Batch size 20, ename size is 5C
varchar ssn[20] [12];
int age[20];
EXEC SQL END DECLARE SECTION;

NOTE: arrays of pointers and multidimensional arrays are not
allowed.
x Next, declare the cursor:
EXEC SQL DECLARE emp_cursor FOR
SELECT E.NAME, E.SSN, E.AGE
FROM EMP E;

x Each fetch from the cursor will retrieve a batch:
for (;;) {
EXEC SQL WHENEVER NOT FOUND DO break;
EXEC SQL FETCH emp_cursor;
+

x It is possible that fewer than 20 items are retrieved
= could be near end of table.

* The precompiler-defined variable sqlca.sqlerrd[2] keeps track
of the number of tuples returned so far.
x Thus, the following method tells you how many rows were re-

turned:
n=0;
for (5;) {

EXEC SQL WHENEVER NOT FOUND DO break;
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EXEC SQL FETCH emp_cursor;
rows_returned = sqlca.sqlerrd[2] - n;
n = sqlca.sqlerrd[2];

— Note: batches can be used for insert’s, update’s and delete’s as well.
e Compilation and execution:

— The C/C++ precompiler in Oracle is called proc (for Pro-C).

— The suffix used for embedded SQL (in C) programs is .pc, for ex-
ample, testpcl.pc.

— Now, as part of compilation, a C file will be generated. Thus, if you
have a C file called testl.c then DO NOT name your Pro-C file
test1l.pc

= compilation will overwrite your testl.c file.

— Consider the file testpcl.pc.

— You can compile this file as follows:

% proc testpcl.pc

However, you are likely to get linking errors.

— Oracle recommends that you use their pre-defined makefile for com-
pilation.

— Copy over their proc.mk makefile and use it as:

% make -f proc.mk EXE=testpcl 0BJ=testpcl.o

— Observe that several files are produced as the result of compilation:
* testpcl.c — this is a plain C file which has the embedded SQL
replaced by incomprehsible C code.
* testpcl.o — an object file.

* testpcl — an executable.
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— Unfortunately, you don’t get much help with errors.

Two kinds of compilation errors are produced:

1. Pre-compiler errors: these are likely errors in the embedded SQL.

2. C compiler errors: errors found in the “intermediate” C file
testpcl.c.

e What does the mysterious “intermediate” file look like?

For example, the declaration

varchar cname[50];

becomes

/* varchar cname[50]; */
struct { unsigned short len; unsigned char arr[50]; } cname;

Similarly, the statement:

EXEC SQL OPEN cust_cursor

becomes

struct sqlexd sqlstm;
sqlstm.sqlvsn = 8;

sqlstm.arrsiz = 3;

sqlstm.stmt = sq0002;

sqlstm.iters = (unsigned int )1;
sqlstm.offset = (unsigned int )28;

sqlcxt ((void **)0, &sqlctx, &sqlstm, &sqlfpn);
if (sqlca.sqlcode < 0) sql_error("ORACLE error--\n");
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Thus, it has been translated to the function call sqlcxt.
e Embedded SQL in C: a summary

— SQL statements can be embedded in a C program.
— C variables can be used to determine values in SQL statements.
— C variables can be used to receive the results of SQL queries.

— A precompiler translates the source into a regular C program, which
is then compiled by a regular C compiler.
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8.12 Useful SQL Functions in Oracle

e Oracle provides a number of useful functions to manipulate various data
types.

e Type help functions in sqlplus for descriptions.

e Numeric functions:

Consider the following relation:

create table PATIENT ( NAME VARCHAR(50),
AGE INTEGER,
WEIGHT  FLOAT,
HEIGHT FLOAT,
BALANCE NUMBER(S,2) );

The following numeric functions can be used: ceil, floor, mod, power, round,

— Example:
select round (P.WEIGHT, 2)
from PATIENT P;
— Example:
select P.NAME, sign (P.BALANCE)
from PATIENT P;
— Example:

select P.NAME, PWEIGHT, P.HEIGHT
from  PATIENT P
where floor (P.WEIGHT) > 10;

e Character functions:

The following functions operate on strings and return strings:
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— initcap: capitalize first letter of string, e.g.,

select initcap (E.NAME)
from EMP E;

— replace(strA, strB, strC): Replace every occurence of string
strB with strC in the string strA, e.g.,

select replace (E.POSITION,’man’,’person’)
from EMP E
where E.POSITION = ’Chairman’;

— soundex: for phonetic searches:

select E.NAME
from EMP E
where soundex (E.NAME) = soundex ('Meyer’);

(Should match: Maier, Meier, Mayer, Meyer).

— Other functions of interest: lower, substr, length.

e Date functions:
Several date-related functions are useful:

— sysdate — current date and time, e.g.,

select L.NAME, L.BOOK
from LIBRARY_BOOKS L
where L.DUE_DATE < sysdate

— last_day — last day of the month, e.g.,

select L.NAME, L.BOOK
from LIBRARY_BOOKS L
where last_day (L.DUE_DATE) < sysdate;

— months_between — difference in months betwen 2 dates, e.g.,

select L.NAME, L.LBOOK
from LIBRARY_BOOKS L
where months_between (L.DUE_DATE), sysdate) > 3;

e Conversion functions: to convert from one data type to another.
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— to_char — converts from any data type to a character string, e.g.

select M.TITLE, M.YEAR
from MOVIES M
where M.TITLE = to_char (10)

— to_date — converts character data in the specified format to a date,
e.g.,

select P.NAME
from  PATIENTS P
where P.BIRTHDAY = to_date (24-Jan-66,'DD)

The function to_date figures out the day of the week for 24-Jan-66
for use in the comparison.
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Chapter 9

Summary

Course Notes on Database Systems
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9.1 CS 321: A Summary

e What did we learn in this course?

Concepts:

— What is a database? How is it different from a simple file system?
= File system does not provide recovery, concurrency, fast querying
etc.

— Data Models.
= The Relational Model (tables), constraints.

— Relational databases: relational algebra.
= o, 1, X etc.

— Relational databases: SQL.
= select statement, create table, update etc.

— Example: Oracle.
= Structure of Oracle, using SQLPlus for SQL queries.

— Database programming in Oracle.
= Using the C-library (OCI) and embedded SQL.

— Physical implementation: file structures.
= Heapfiles, hashfiles, sorted files, disk 1/0.

— B-trees and B+-trees
= Insertion, search and deletion.

— Hashing
= Extendible hashing, linear hashing.

— Sorting
= Binary merge-sort, polyphase merge-sort, snowplow method.

— Query processing
= Developing a query plan, evaluating different plans.
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— Database design: normalization
= Theory of Functional Dependencies (FD’s), normal forms: 2NF, 3NF,
BCNF
— Recovery

= Shadow paging, Log-based recovery, redo’s and undo’s.

— Concurrency

= Problems with concurrent execution, serializability, locking, dead-
lock.

e Advanced topics we have not covered:

— Database systems (of interest to dbase system developers):
« Details of implementing a transaction manager
= Including code for locking, recovery, buffer management.

* Advanced query processing
= Query plan enumeration, transformation heuristics.

x Disk subsystem implementation
= Disk I/O, partitions and extents, directory management.

x Parallel databases
= parallel algorithms for implementing relational operators.

x Distributed databases
= Concurrency control and recovery in a distributed system.

— Database theory:

x Proofs for results on functional dependencies and normal forms.
* Higher normal forms.
% Detailed algorithms for decomposition and minimal covers.

* logic databases, deductive databases.
— Applications development:

* Generating reports.
* Oracle Report, combining forms and report.
* Client-server application development, web-based interfaces.

x ODBC and standard interfaces to other database systems.
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x JDBC and Java-related interfaces.
— Text processing and document retrieval:
% String and pattern search algorithms
= string search, approximate search, regular expression search.
« Indices for text data, keyword-searching.

* Organizing document databases
= indices, clustering, thesaurus construction.

x Data compression
= Huffman coding, Liv-Zempel algorithm.
— Other data models:

x Network and hierarchical models.
x Object-oriented databases, persistent objects.
x Object-relational databases.
— Non-traditional databases:
x Geographic and spatial databases.
= Storage and retrieval of maps, geographic queries.

* Image and multimedia databases.
= Storage and retrieval of image, audio and video data.

x Scientific databases
= Databases for CAD, astronomy, DNA and medical applica-
tions.

x Temporal databases
= history-related queries.

— New business applications:
* Data mining.

* Online Analytical Processing (OLAP) and multidimensional
databases.
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9.2 Object-Oriented and Object-Relational
Databases

e The development of OO (Object-Oriented) and OR (Object-Relational)
databases is motivated by:

— Supporting new data types: image, spatial and multimedia data.

— Providing applications developers with mechanisms to define their
own data types, their own operators.

— Allowing for efficient implementation of the above.
— Integrating a dbase-like file system (with recovery and concurrency)
into a high-level programming language (like C++).

— Providing applications programmers with powerful OO features (in-
heritance, encapsulation).

e Consider supporting image data:
— We want to allow users to store and retrieve images in a variety of
formats (GIF, Postscript, Xbitmap, JPEG, etc).

— We want to allow some kinds of querying, e.g., to determine if two
images are of approximately equal intensity.

— Currently, most commercial systems have a data type for binary
(raw bits) data.

— Thus, an image can be stored as follows:

create table IMAGE_TABLE ( bit IMAGE,
varchar NAME,
char(3) TYPE,
number CODE);

— Now, a C program can be written (as a client) to retrieve images
and work with them (e.g., to compute mean intensity etc).
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— Unfortunately, this “compute-at-the-client” design causes lots of
data to move back and forth between client and server memory:

Step 2
Transfer image to client memory

Server memory
Step 3
compute or A
modify Step 4 Step 1
transfer to server Obtain image
= from server disk
Client memory Step 5 '
write to
server
disk
Server disk

— Thus, a query that searches through the whole dbase of images will

cause a lot of data transfer
= better to have all the work done at the server.

— Some database systems provide SQL-like functions to support non-
traditional data.

* These are usually very limited (e.g., only very few data types).

« Also, there is no programmer flexibility in defining new types
and functions.
e Object-Oriented Databases.
OODB vendors take the view that:

— Object-oriented programming is here to stay (e.g., C++, Smalltalk,
Java).

— Objects are the natural way to treat all types of data.

— If database models can’t handle objects, then it’s time to change

database software.

e There are three schools of thought on this matter:
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— Pure OO:

x Forget the concerns of dbase folks and instead simply design
persistence into a programming language, e.g., persistent C++.

x What does persistence mean? All objects that are written into
are stored in an object repository and can be retrieved later.

x Dbase vendors then can use a persistent language to develop
dbase-specific libraries for applications programmers.

x Do not provide a database server.
— OODB:

* Since pure-OO folks don’t really care about dbase concerns (such
as recovery and concurrency), design a dbase-specific object
repository.

x Provide an interface via an object-oriented language but provide
a full-fledged database server.

« Allow applications programmers to program assuming persistent
objects.

* Handle recovery and concurrency (and efficient memory man-
agement).

x Provide a library for SQL programmers (parser, interpreter,
query optimizer etc).

— Object-Relational:

* Relational systems aren’t broken — let’s instead amend them to

handle newer data types.

* Allow programmers to define new data types and functions that
manipulate the data types.

x The system then loads programmer-defined functions into the
server (incorporating it as server code) to handle the new types.

e Object-Oriented Databases (OODB):

— In a typical implemention, an application programmer will define an
object using an Object Definition Language, e.g.,
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object definition my object {

private data:
int size; // For a sizexsize image
real image[100][100];

methods:
int get_size ();
set_size (int val);
real®™® get_image ();
set_image (real™* I);

}

— The programmer then compiles this using a special compiler for the
language.
— The compiler produces C++ output (in a .h file) that looks like the

above:

class my_object {
private:
int size;
float image[100][100]
public:
int get_size ();
void set_size (int);
float ** get_image () ;
void set_image (float** I);

+;

— Then, the programmer is expected to write code for the functions
in the class.

— Finally, the system compiles the code for use when the object is
manipulated.

— An applications programmer then defines the object using an en-
capsulation (usually via templates in C++):
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encap<my_object> A;
A.set_size (5); // Not allowed (won’t work)
A.update->set_size(5) // Works. Goes via the encapsulation.

The trick is to define the encapsulation so that it returns a pointer
(usually a const pointer in C++). Then, an applications program-
mer cannot modify the data
= must go via a member function of the encapsulation instead
= server has control over modification.

— Since updates go via the OO-system, the data remains at the server,
allowing for recovery and concurrency control.

— Example: The SHORE (Scalable Heterogeneous Object REposi-
tory) System, developed at the University of Wisconsin, Madison.

e The Object-Relational approach:

— The programmer is allowed to create types and new functions.
— Creating a type:

* Suppose we want to create an image type called image.

« First, create the image type in C:

typedef struct image {
int size;
float image[100] [100];
} image;

* Then, create two C functions that handle I/O for this new data

type:
image* image_in (char *data)
{
// Code to take in raw data and put it in the struct
+

char* image_out (image* I)
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{

// Code to take in an image and put out char data, e.g

}

and compile them.
x Now, tell the database what you’ve done:
CREATE FUNCTION image_in (charx)
RETURNS image
AS ’/usr/mom3/joe/321/image.o’
LANGUAGE ’C’;

CREATE FUNCTION image_out (image)
RETURNS charx*
AS ’/usr/mom3/joe/321/image.o’
LANGUAGE ’C’;

x Next, create the type in the database:
CREATE TYPE image ( size = 10002,
input = image_in,
output = image_out);

* Finally, create manipulation functions and declare them.

« After all of this is done, an applications programmer can use the
new data type in a query:

SELECT name
FROM image_file
WHERE approx_equals (image_file.image, :test_image);

— Example: Postgres95 (University of California, Berkeley), Illustra
(part of Informix), Oracle 8.
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9.3 Spatial Information Systems: Introduction

e Standard relational databases store and manipulate alphanumeric data:

— Vast majority of data consists of simple ASCII text.

— Numbers (reals, integers) are stored using standard numeric repre-
sentations.

— Data sizes are most often known in advance.
— Data is carefully organized:

* At high-level: relations.
x At low-level: file systems, indices.

e Newer applications demand the ability to store different kinds of data,
e.g., Image data, Video data, Geometric data, Scientific data.

e Image data:

— Application example: X-rays in a medical database.
— Data type: 2D images (e.g., JPEG images).
— Typical queries:

* “Retrieve Smith’s shoulder X-rays”

* “Find all X-rays similar to this one”

e Video data:

— Application example: Sports.
— Data type: Video clips in a suitable format (e.g., MPEG).
— Typical queries:

*+ “Find all scenes in which Michael Jordan scores over 3 defend-

ers”.

* “Find all scenes containing Olympic pole vaults”.
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e Geometric data:

— Application example: CAD database.
— Data type: points, lines, polygons.
— Typical queries:
* (Architecture) “Find all floor plans similar to this one”.

* (VLSI) “Find all chip layouts which use less than 10 square mi-
crons of area”.

— Application example: Geographic Information System (GIS).
— Typical queries:
x “Find the nearest hospital to this school”.
x “Find all towns and counties covered by the hurricane path”.

e Scientific data:

— Application example: data recorded from weather satellites and
probes.

— Data type: vectors of numbers.
— Typical queries:
x “Find all previous hurricanes with similar air-pressure patterns.”

x “Find all measurements with this pressure-temperature combi-
nation”.

e Other kinds of non-standard data:

— Financial data (stock prices, macroeconomic indicators, etc).
— 3D data (terrain and contour maps).

— Audio data (ultrasound, music, sonar).

— Temporal data (time-specific data).

— Typical query: “Find similar stock price patterns in history” (given
a particular 1-week trend).
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e A spatial information system:

— stores and manipulates spatial data:

*

*

Image data: usually gray-scale or color images.

Geometric data: usually points, lines, polygons and polygonal
maps.

— supports queries related to spatial information:

*

*

distance-related (e.g., “nearest hospital”).

spatial relationships (e.g., “Find lakes Northwest of Richmond”).

— also allows annotation using text and searching using text.

e Image and geometric data are quite different:

— Image data:

*

*

*

*

usually larger in size (must store each pixel).

easy to display.

easy to obtain (via photography).

difficult to extract information from.

querying by annotation is easy (using text annotation), e.g.,
“Find Smith’s X-rays”.

querying by context is hard, e.g., “Does this fingerprint exist in
the dbase?”

— Geometric data:

*

*

*

*

usually smaller in size (only need to store endpoints of lines).
special rendering software needed (graphics).
difficult to obtain (usually requires manual intervention).

easier to extract information from
= searching is easier.
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e Current state-of-the-art in image databases:
— Examples: IBM’s QBIC, MIT Multimedia Lab (Photobook), Virage
Corp., several medical dbases.
— Query by annotation (easy).
— Query by content (hard, varies with vendor).

x Queries based on physical characteristics are a little easier, “Find
all images that are 40% white and 40% black”

= use color histograms.
A sample from QBIC:

x Similarity searches based on similarity metrics, e.g., “Find all
images similar to this one”.

* Object recognition is hard (manual annotation is often needed).
e Current state-of-the-art in geometric databases:

— Examples: Arclnfo, Intergraph, U.S. Census (TIGER) project.
— Query by annotation (easy).
— Several geometric queries are efficiently implemented:

x queries based on distance.

* object relationships (directional and topological).

* range queries (using a query rectangle).

x spatial joins.
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e Note: there’s a big difference between implementing a query and imple-
menting it efficiently:
— Example: color-percentage example above.
— Wrong way:
« search all images.

x compute color percentages for each image.

x test condition for each image.
— Right way:
% use an index.
x the index results in a narrowing down the list of images to test.
= a key problem in spatial dbases: designing useful indices for
various kinds of data.

e [ssues in spatial information systems:

— Data storage:

% Store images in compressed or uncompressed form?

* Store maps as collections of line segments or store individual
polygons separately?

— Display:
* Image display tool (like xv) needed.
x Map display tool needed.

— Input/conversion:

x conversion of raster data to geometric data and vice-versa.
* extraction of features.

x correlation with text data.
— Indexing.
— High-level issues:

x How to integrate with relational system.

* Query languages.
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* Query optimization.
e Why relational dbases are inadequate for spatial queries:

— Consider storing an image as an attribute, e.g, a 256 X256 image:

create table PATIENT ( NAME char(20),
SSN char(11),
DIAGNOSIS  char(100),
XRAY image(256,256) );

— One option is to store each image with each tuple:

Name Diagnosis << XRAY

SSN

This will make the file very large
= standard relational operations will be slow (even text-only

queries)

— Another option: store images separately and use a pointer:

Name Diagnosis /7

—

SSN pointer to image file

image

— While storage issues are straightforward, the real problem is query-
ing
= can’t use SQL for querying by content.
— One solution: use C API to implement image-specific queries
= a common solution (image query tool needed).

— Another solution: modify relation system to allow for non-standard
data and new functions
=> object-relational approach.

— Discard relational approach altogether
= object-oriented dbases.
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— Another example: consider storing geometric data, e.g.,

create table CITY ( NAME char(20),
XVALUE real,
YVALUE real );

— Then, the query

select NAME

from CITY C1, CITY C2

where Cl1.NAME=‘Richmond’ and
(sqr(C1.XVALUE-C2.XVALUE)+sqr(C1.YVALUE-C2.YVALUE)) < 10000;

finds all cities within 100 miles of Richmond.

— However, more complicated queries are not possible in SQL (e.g.,

intersection and containment queries).

— Storing polygons as collections of lines (an old approach) can be
inefficient, e.g.,

(2.9)
(5.4)

13

(1,1) (3,1)
In a relational dbase, the polygon would typically stored as:

POLYGON NAME LINENUM LINE.ID

2 1 37
P 2 43
P, 3 44
P, 4 A7
P, 5 12
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LINE LINE.ID STARTX STARTY ENDX ENDY

12 1 3 1 1

37 1 1 3 1
43 3 1 Y 4
44 5 4 2 3
47 2 5 1 3

This is inefficient for many reasons:

* Duplication of points (only the vertices of the polygon are
needed).

* Any processing of the polygon will have to use the LINE relation
= if it’s large, disk [/O needed.

x Repeated access of the POLYGON relation to retrieve the line
segments itself takes up CPU time.
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9.4 Geometric Databases: Introduction

e Geometric databases form the core of Geometric Information Systems
(GIS)

= most examples will concern GIS.
e Data types:
— 0-D: points
* Points are specified using a (planar) coordinate system.
* In a GIS points are cross-referenced to latitude/longitude.
* Points are used for landmarks, for cities/towns etc at large scales.
x Points are used for query specification.
— 1-D: line segments and lines:
x Line segments are specified by end points.
* Lines are sequences of line segments (with common end points).
* Lines are used to represent road systems, rivers and boundaries.
— 2-D: polygons, polygonal maps and networks:

* A polygon is an ordered collection of line segments with exactly
one point in common between successive line segments.

« A simple polygon has intersections only between successive line
segments.

* Polygons are used to represent regions (countries, states, lakes
etc).

x A polygonal map is a collection of polygons.

x Polygonal maps are used for complex regions, e.g., a country
map showing states.

*x A network is a Euclidean graph: a collection of vertices some of
which have an edge between them.
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x Networks are used to represent road maps, river maps and trans-
portation systems.

— Other geometric objects:
x Special polygons: e.g., triangles, rectangles.

x Circles, ellipses.
x Text labels.

— Example: Consider the following map of downtown Washington, DC
(taken from the TIGER Census Project):
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A close-up view of the area near the White House reveals:

Note the representation using line segments.
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e Formal theory underlying geometric dbases:

— (Euclidean) Geometry.

— Computational Geometry: efficient algorithms for manipulating ge-
ometric objects.

— Topology (to a lesser extent): formal theory of spatial properties.
e Storage issues:

— Points and line segments have fixed-size storage.

— For polygons, store list of vertices in order (using, say, clockwise
order)
= one option: use heapfile with variable-size records.

— Note: Large polygons may cross block boundaries
= need a robust file system.

— Most systems today allow the storage of BLOBs (Binary Large OB-
jects) for images, polygons etc.

— Some dbases create specific types, e.g., Postgres has a polygon type.
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e Types of queries:

— Range queries:

* Example: “Find all lakes withing 100 miles of Richmond”.

*x Example: “Retrieve all objects that intersect with or are con-

tained in a specified query rectangle.

A database of geometric objects
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Query rectangle

A completely contained object

Objects that intersect

— Nearest neighbor queries:

x Example: “For each elementary school, find the nearest hospi-

tal.”

x Distances are usually Euclidean distances, but may also be
street /driving distances.

— Spatial joins:

x Example: Given two files of spatial objects, find all pairs of

objects, one from each file, that intersect.
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e Indices:

— Several types of indices exist: for point data, for polygonal data.
— Indices greatly speed up access.

— Example: consider a file with 10,000 polygonal objects and a query
rectangle:

x Naive approach: scan through all objects and compute intersec-
tion with query rectangle.
x Better: use a spatial index.

— Key problem in spatial indexing: index should capture “spatialness”
of data.

e An important difference between standard relational databases and spa-
tial databases:

— In standard relational databases, we pretty much ignored CPU costs
in processing data
= only focused on I/O costs.

— In spatial databases, CPU costs are also significant.

— Example: Suppose we want to report intersection points of two poly-
gons:

x One approach: test each segment of first polygon against each
segment of the other.
« If both polygons have 1000 segments each

— 10% intersection line intersection tests
= can be very time consuming!
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10.1 Spatial Information Systems: Introduction

e Standard relational databases store and manipulate alphanumeric data:

— Vast majority of data consists of simple ASCII text.

— Numbers (reals, integers) are stored using standard numeric repre-
sentations.

— Data sizes are most often known in advance.
— Data is carefully organized:

* At high-level: relations.
x At low-level: file systems, indices.

e Newer applications demand the ability to store different kinds of data,
e.g., Image data, Video data, Geometric data, Scientific data.

e Image data:

— Application example: X-rays in a medical database.
— Data type: 2D images (e.g., JPEG images).
— Typical queries:

* “Retrieve Smith’s shoulder X-rays”

* “Find all X-rays similar to this one”

e Video data:

— Application example: Sports.
— Data type: Video clips in a suitable format (e.g., MPEG).
— Typical queries:

*+ “Find all scenes in which Michael Jordan scores over 3 defend-

ers”.

* “Find all scenes containing Olympic pole vaults”.
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e Geometric data:

— Application example: CAD database.
— Data type: points, lines, polygons.
— Typical queries:
* (Architecture) “Find all floor plans similar to this one”.

* (VLSI) “Find all chip layouts which use less than 10 square mi-
crons of area”.

— Application example: Geographic Information System (GIS).
— Typical queries:
x “Find the nearest hospital to this school”.
x “Find all towns and counties covered by the hurricane path”.

e Scientific data:

— Application example: data recorded from weather satellites and
probes.

— Data type: vectors of numbers.
— Typical queries:
x “Find all previous hurricanes with similar air-pressure patterns.”

x “Find all measurements with this pressure-temperature combi-
nation”.

e Other kinds of non-standard data:

— Financial data (stock prices, macroeconomic indicators, etc).
— 3D data (terrain and contour maps).

— Audio data (ultrasound, music, sonar).

— Temporal data (time-specific data).

— Typical query: “Find similar stock price patterns in history” (given
a particular 1-week trend).
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e A spatial information system:

— stores and manipulates spatial data:

*

*

Image data: usually gray-scale or color images.

Geometric data: usually points, lines, polygons and polygonal
maps.

— supports queries related to spatial information:

*

*

distance-related (e.g., “nearest hospital”).

spatial relationships (e.g., “Find lakes Northwest of Richmond”).

— also allows annotation using text and searching using text.

e Image and geometric data are quite different:

— Image data:

*

*

*

*

usually larger in size (must store each pixel).

easy to display.

easy to obtain (via photography).

difficult to extract information from.

querying by annotation is easy (using text annotation), e.g.,
“Find Smith’s X-rays”.

querying by context is hard, e.g., “Does this fingerprint exist in
the dbase?”

— Geometric data:

*

*

*

*

usually smaller in size (only need to store endpoints of lines).
special rendering software needed (graphics).
difficult to obtain (usually requires manual intervention).

easier to extract information from
= searching is easier.
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e Current state-of-the-art in image databases:
— Examples: IBM’s QBIC, MIT Multimedia Lab (Photobook), Virage
Corp., several medical dbases.
— Query by annotation (easy).
— Query by content (hard, varies with vendor).

x Queries based on physical characteristics are a little easier, “Find
all images that are 40% white and 40% black”

= use color histograms.
A sample from QBIC:

x Similarity searches based on similarity metrics, e.g., “Find all
images similar to this one”.

* Object recognition is hard (manual annotation is often needed).
e Current state-of-the-art in geometric databases:

— Examples: Arclnfo, Intergraph, U.S. Census (TIGER) project.
— Query by annotation (easy).
— Several geometric queries are efficiently implemented:

x queries based on distance.

* object relationships (directional and topological).

* range queries (using a query rectangle).

x spatial joins.
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e Note: there’s a big difference between implementing a query and imple-
menting it efficiently:
— Example: color-percentage example above.
— Wrong way:
« search all images.

x compute color percentages for each image.

x test condition for each image.
— Right way:
% use an index.
x the index results in a narrowing down the list of images to test.
= a key problem in spatial dbases: designing useful indices for
various kinds of data.

e [ssues in spatial information systems:

— Data storage:

% Store images in compressed or uncompressed form?

* Store maps as collections of line segments or store individual
polygons separately?

— Display:
* Image display tool (like xv) needed.
x Map display tool needed.

— Input/conversion:

x conversion of raster data to geometric data and vice-versa.
* extraction of features.

x correlation with text data.
— Indexing.
— High-level issues:

x How to integrate with relational system.

* Query languages.
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* Query optimization.
e Why relational dbases are inadequate for spatial queries:

— Consider storing an image as an attribute, e.g, a 256 X256 image:

create table PATIENT ( NAME char(20),
SSN char(11),
DIAGNOSIS  char(100),
XRAY image(256,256) );

— One option is to store each image with each tuple:

Name Diagnosis << XRAY

SSN

This will make the file very large
= standard relational operations will be slow (even text-only

queries)

— Another option: store images separately and use a pointer:

Name Diagnosis /7

—

SSN pointer to image file

image

— While storage issues are straightforward, the real problem is query-
ing
= can’t use SQL for querying by content.
— One solution: use C API to implement image-specific queries
= a common solution (image query tool needed).

— Another solution: modify relation system to allow for non-standard
data and new functions
=> object-relational approach.

— Discard relational approach altogether
= object-oriented dbases.
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— Another example: consider storing geometric data, e.g.,

create table CITY ( NAME char(20),
XVALUE real,
YVALUE real );

— Then, the query

select NAME

from CITY C1, CITY C2

where Cl1.NAME=‘Richmond’ and
(sqr(C1.XVALUE-C2.XVALUE)+sqr(C1.YVALUE-C2.YVALUE)) < 10000;

finds all cities within 100 miles of Richmond.

— However, more complicated queries are not possible in SQL (e.g.,

intersection and containment queries).

— Storing polygons as collections of lines (an old approach) can be
inefficient, e.g.,

(2.9)
(5.4)

13

(1,1) (3,1)
In a relational dbase, the polygon would typically be stored as:

POLYGON NAME LINENUM LINE.ID

2 1 37
P 2 43
P, 3 44
P, 4 A7
P, 5 12
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LINE LINE.ID STARTX STARTY ENDX ENDY

12 1 3 1 1

37 1 1 3 1
43 3 1 Y 4
44 5 4 2 3
47 2 5 1 3

This is inefficient for many reasons:

* Duplication of points (only the vertices of the polygon are
needed).

* Any processing of the polygon will have to use the LINE relation
= if it’s large, disk [/O needed.

x Repeated access of the POLYGON relation to retrieve the line
segments itself takes up CPU time.
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10.2 Geometric Databases: Introduction

e Geometric databases form the core of Geometric Information Systems
(GIS)

= most examples will concern GIS.
e Data types:
— 0-D: points
* Points are specified using a (planar) coordinate system.
* In a GIS points are cross-referenced to latitude/longitude.
* Points are used for landmarks, for cities/towns etc at large scales.
x Points are used for query specification.
— 1-D: line segments and lines:
x Line segments are specified by end points.
* Lines are sequences of line segments (with common end points).
* Lines are used to represent road systems, rivers and boundaries.
— 2-D: polygons, polygonal maps and networks:

* A polygon is an ordered collection of line segments with exactly
one point in common between successive line segments.

« A simple polygon has intersections only between successive line
segments.

* Polygons are used to represent regions (countries, states, lakes
etc).

x A polygonal map is a collection of polygons.

x Polygonal maps are used for complex regions, e.g., a country
map showing states.

*x A network is a Euclidean graph: a collection of vertices some of
which have an edge between them.
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x Networks are used to represent road maps, river maps and trans-
portation systems.

— Other geometric objects:
x Special polygons: e.g., triangles, rectangles.

x Circles, ellipses.
x Text labels.

— Example: Consider the following map of downtown Washington, DC
(taken from the TIGER Census Project):
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A close-up view of the area near the White House reveals:

Note the representation using line segments.
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e Formal theory underlying geometric dbases:

— (Euclidean) Geometry.

— Computational Geometry: efficient algorithms for manipulating ge-
ometric objects.

— Topology (to a lesser extent): formal theory of spatial properties.
e Storage issues:

— Points and line segments have fixed-size storage.

— For polygons, store list of vertices in order (using, say, clockwise
order)
= one option: use heapfile with variable-size records.

— Note: Large polygons may cross block boundaries
= need a robust file system.

— Most systems today allow the storage of BLOBs (Binary Large OB-
jects) for images, polygons etc.

— Some dbases create specific types, e.g., Postgres has a polygon type.
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e Types of queries:

— Range queries:

* Example: “Find all lakes withing 100 miles of Richmond”.

*x Example: “Retrieve all objects that intersect with or are con-

tained in a specified query rectangle.

A database of geometric objects
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Objects that intersect

— Nearest neighbor queries:

x Example: “For each elementary school, find the nearest hospi-

tal.”

x Distances are usually Euclidean distances, but may also be
street /driving distances.

— Spatial joins:

x Example: Given two files of spatial objects, find all pairs of

objects, one from each file, that intersect.
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e Indices:

— Several types of indices exist: for point data, for polygonal data.
— Indices greatly speed up access.

— Example: consider a file with 10,000 polygonal objects and a query
rectangle:

x Naive approach: scan through all objects and compute intersec-
tion with query rectangle.
x Better: use a spatial index.

— Key problem in spatial indexing: index should capture “spatialness”
of data.

e An important difference between standard relational databases and spa-
tial databases:

— In standard relational databases, we pretty much ignored CPU costs
in processing data
= only focused on I/O costs.

— In spatial databases, CPU costs are also significant.

— Example: Suppose we want to report intersection points of two poly-
gons:

x One approach: test each segment of first polygon against each
segment of the other.
« If both polygons have 1000 segments each

— 10% intersection line intersection tests
= can be very time consuming!
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11.1 Peano Curves: Introduction

e A Peano Curve Indez is a spatial index constructed from a unidimen-
sional key (and often using a unidimensional index).

e Recall: unidimensional indices can actually be used for multiple at-
tributes:

— Example: Consider EMP (FNAME, LNAME, SSN, SALARY).
— Suppose we want to handle queries on FNAME-LNAME values.

— To answer equality queries, a hash table can be used on the con-
catenation of the two, e.g.,

Hash table

Hash function (""Joe Sixpack")
=1101...01

FNAME LNAME

Joe | Sixpack
1101...01 34—

— For range queries, a B+-tree on FNAME-LNAME can be used.
e Consider using a unidimensional index for point data:

— Hash tables

« Can be used for equality queries.

* Useless for range or nearest-neighbor queries.
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— What about B4-trees?

x We’d have to pick some linear order in which to store the point
data.

* Example: consider the following point data: (5,3), (1, 1), (5,4),
(5,5), (3,3), (4,2), (4,3), (1,2), (1,4), (3,1), (2,1), (2,4).

5 — °
4 + ° °
3 + ° ° °
21 e .
1+ e ° °
| | | | |
[ [ [ [ |

% Suppose we use column-major order:

5 1 File in linear order

4 1 11
(1.2)
3 T (1.4
(2.1)

(2,4)
G0
(3,3
| | | | | (4,2)

1 2 3 4 5 (4,3)
(5.3)
(5.4)
(5.9)

* For a nearest-neighbor search, we would still have to search the
whole file.
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* Example: consider the query point ¢ = (4,4):

s nearest point 1D

(1.2)
(1.4)
(2,1)

(2,4)
3.1)
(3,3)
I R R B N L@é2)

1 2 3 4 5 N L)
“'\‘ (513)
1654
(5,9

File in linear order

The nearest points are (5,4) and (4,3). But how do we locate,
for example, (5,4) in the file quickly?
= need to map (4,4) to (5,4)’s location in file.

e Mapping a 2D-value to a 1D-value:

— Consider the function F(z,y) =5(x — 1) + y.

— If we compute F' for each of the points in the above example, we

get:
5 1T e 25
4 — 4 e 09 e 24
13 18

3 T ° ° 23
2 2@ °17
1Ll *g *g

| | | | |

| | | | |
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— Suppose now we store the points in order of F-value and include the
F-value in each record:

point F-value
_ (1,1) 1
5 25 T
4+ 4 ° 24 X

13 18 (2.1)

3+ 23 24 |9
31 |11
2 + 2 33) |13
17 42 |17
171 6 11 43) |18
—t—+—+— G2
G4 |24
1 2 3 4 5 RS

— Notice: it’s the same order as before.

— Consider the nearest-neighbor query ¢ = (4, 4):

point F-value
_ (1.1) 1
5 25 (1.2) >
4+ 4 O U 42 cA 2
13 18 2.1)
3 T 23 (2,4) 9
sorted by
2 (3.1) 11 F-value
2 T (3,3) 13
17 (4,2) 17
191 6 11 (4,3) 18
——t—t— o2
(5,9 24
1 2 3 4 5 (5.5) 5

F(q) = F(4,4) = 5%(4-1)+4 = 19

* Compute F(q) = F(4,4) = 19.
x Use key=19 to search the sorted file using binary search
= search ends between keys 18 and 23.

x Use keys 18 and 23 as starting point for nearest-neighbor search.
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e What other formulas (like F'(z,y) = 5(z — 1) 4+ y) might be useful?

— For nearest-neighbor queries, the following property would be useful:

For points a = (z, yo) and b = (z1, y1):
zo ~ 71 and yo & y1 = F(20,y0) = F(z1, y1)-

i.e., if a “is close to” b, then F'(a) should be approximately equal to
F(b).

— Can we design such a function?

— Consider F(z,y) =zy  (product):

* Rationale:

xo, Yo both large = xgyy large
x1,y; both large = x1y; large

* Example: consider points (4,3) and (5,4)
= F(4,3) = 12 and F(5,4) = 20.

* Similarly for points (1,2) and (1,1):
= F(1,2) =2 and F(1,1) = 1.

* On the other hand, consider (5,1) and (1,5):
= F(5,1) =5 = F(1,5), but they are not close.
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x Let’s join the dots in F-order:

= the F-curve jumps all over the place.

e Consider the following unusual function:

— This function is defined only on k-bit integers, in the range 0, . . .

for some k (we can pick k as large as we want).
— Define F(z,y) = interleave z’s and y’s bits.

— Example: consider 2-bit integer coordinates (k = 2).
Suppose x =1 and y = 3
= binary(z) = 01 and binary(y) = 11
= interleaved bitstring = 0111 (decimal: 7)

= F(1,3)=T1.
X: 0 1
F(X,y): 0 1 1 1

— Example: consider 5-bit integer coordinates (k = 5).
Suppose r = 20 and y = 6
= binary(z) = 10100 and binary(y) = 00110
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= interleaved bitstring = 1000110100 (decimal: 564).
— F(20,6) = 564.

x: 1 0 1 0 0
y: 0 0 1 1 0
lllllllll

F(x,y): 1 0 0 0 1 10 10 O

— Suppose we consider k£ = 2 and compute F' for all possible points
= 16 possible points.

— Then, join the dots in F; order:

0101 0111 1101 1111 3
3 11
2
2 10
1
1 o1
0
0 o0
0000 0010 1000 1010
00 01 10 11 0 1 2 3

0 1 2 3
— This ordering method is the Z-order.

e Why should Z-order be better than, say, column-major order?
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?
2 AN ¢
1
0
0 1 2 3 0 1 2 3
Z-order Column-major order

— Let Fy(z,y) denote the Z-value of a point (z,y) and let Fr(z,y)
denote the corresponding F'-value using column-major ordering.

— Note: column-major ordering is: Fo(z,y) = cx + y where c is the
column size.
— Let’s apply the following test to each order:
x Pick a distance d, e.g., d = 3.
x Set count := 0.
x For each point p in the set:
- Identify N(p) = neighboring points of p.
- For each point ¢ € N(p), set count := count + 1, if
[F(p) — F(q)| < d.

— Thus, we are counting how often a neighbor occurs within a short
distance (d) along the linear ordering F'.
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— Here’s a comparison of F; and Fp:

Size d Using Fz Using Fy
k=2 1 24 28

2 24 44

3 42 62
E=3 1 112 112

2 112 176

3 112 248

This example shows that the chances of finding spatial neighbor
“close by” in the file are higher using the Z-order
= point neighbors are more often clustered together in a file using Fz
than using Fp.

e Because of its self-similar nature, the Z-ordering often referred to as a
fractal ordering. (Also called a space-filling curve — Hausdorff dimension

= 2). Discovered by the mathematician Giuseppe Peano in the late 19th
century.

Note: a 2F x 2F curve is obtained from a 2¥~! x 2¥~1 curve by the following
steps:

— Make four copies and place them in a square.

— Join appropriate points in the four copies (by adding three line seg-

ments).
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11.2 Peano Curve Indices

e So far, we've only dealt with integer-valued coordinates in a power-of-2
square.

e What’s needed for a useful index:

— The ability to handle arbitrary real-valued coordinates.
— A mechanism for storing and searching the data.

— A mechanism for nearest-neighbor queries.
e Key ideas:

— We will assume MBR of data is known in advance:

MBR of data

) T— / ------ T

) E—— —— —

Li( U:x
— Select a granularity for the Peano key
= select a power-of-2 — 2%,

— Impose an imaginary grid on the MBR of size 2¥ x 2F e.g., if k = 2:

Uy .................. E E ...........

I S oo
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— Label rows and columns of grid 0,...,2% — 1
= each grid cell has an address [i, j] where 0 < i,5 < 2F — 1.

— To compute the Peano-key of a point p = (x¢, yo):

* Find the cell [4, 7] containing p.
* Compute the Peano-value of (i,7) = F(i,7).
«x Example: if Z-order is being used, interleave bits of ¢ and j.

* Return the Peano-value F'(i,j) as the Peano-key of p.
— Note:

« Points in the same cell have the same Peano-key
= we will allow duplicates
= it’s not strictly a key.

* Notation: use PK(p) to denote the Peano-key of point p.

x* PK(p) is an integer in the range 0, ..., 2% — 1.

— Create a tuple for point p and include p’s Peano-key:

x and y coordinates of p
Peano key of p
Other attributes

PK(p)| x0 | yO

— Insert tuple in a standard unidimensional index, such as a B+-tree
using the Peano-key attribute as the search key.

— To handle a nearest-neighbor query:
* Compute the Peano-key of the query point ¢, PK(q).

* Use the search-value PK (q) to search in the unidimensional in-
dex.

* After finding closest (by PK-value) point in index, proceed with
remainder of nearest-neighbor search.

e Notation: we will use

— PKy(p) to denote the Peano-key using Z-order.
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— PK¢(p) to denote the Peano-key using column-major order.

— PKp(p) to denote the Peano-key using Hilbert order.
e We distinguish between two kinds of settings:

1. Applications which require frequent insertions and deletions:
— In this case, a B+4-tree is used to store the tuples.
— The leaf-level of the B+-tree is useful for range searches.

2. Applications which do not require many insertions and deletions:
— Usually, the data is a set of points that doesn’t change much.

— In this case, the tuples are placed in a sorted file
= sorted by Peano-key.

— Binary search is used for handling queries.
e Example:

— Consider the following data set with MBR L, = 1.0,U, = 3.4 and
L,=6.5U,=8.5:

o (147.9) [ ps (2.0,81) | po  (1.4,6.6)
p (1.1,6.9) | ps  (2.7,7.3) | po (1.7,6.8)
ps (21,7.1) | pr (1.8,7.6) | pu  (L7,7.7)
pe (1.1,7.4) | ps (3.3,6.8) | p12 (3.2,7.6)

— Suppose we use a 23 x 23 grid
= cell addresses have 3-bit coordinates.

8.5 .................... : : ............

e | e

1.0 3.4

— Note: size of cell is 0.3 x 0.25.
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— We will use Z-order.

e Examples of Peano-key calculation:
—p1 = (1.4,7.9):
x Compute x-coordinate of cell:

1.4—-1.0
15
0.3

x Compute y-coordinate of cell:

7.1 —-6.5
s
0.25

= Cell [1,5].
* Compute Peano-key of [1,5]:
- Binary(1) = 001 (k = 3 bits).
- Binary(5) = 101.
- Interleave: 010011 = 19.
- Thus, PK,(1.4,7.9) = 19.

— pr = (1.8,7.6):

x Compute x-coordinate of cell:

1.8 —-1.
{ 8—1 0| _ 5
0.3

x Compute y-coordinate of cell:

{7.6 — 6.5| _4
0.25

= Cell [2,4].
* Compute Peano-key of [2.4]:
- Binary(1) = 010 (k = 3 bits).
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- Binary(5) = 100.
- Interleave: 011000 = 24.
- Thus, PK7(1.8,7.6) = 24.

— pu = (1.7,7.7):

x Compute x-coordinate of cell:

{1.7 — 1.0

0.3

x Compute y-coordinate of cell:

= Cell [2,4].

{7.7 — 6.5

0.25

* Compute Peano-key of [2,4]:

- Binary(1) = 010 (k = 3 bits).

- Binary(5) = 100.
- Interleave: 011000 = 24.
+ Thus, PKz(1.7,7,7) = 24.

|-
|-

e Similarly, we compute the Peano-key of the remaining points:

x,y) PKZ(xay)
) 19
) 1

2.1,7.1) 14
) b

Point

Ps
Ps
p7
Ps

PKy (IL‘, y)
30
39
24
43

Point

P9

P1o
P11
P12

PKZ("L.ay)

24
28

and create a sorted file:
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8.50
111
8.25 ,\ ’\ ,\ PK-value _ Coordinates
' 1 11,609 p2
1o p5. 3 | 1466 po
500 ¢ pl 5 | 11,74 p4
1ot 9 17,68 p10
7.75 ¥ \l n
1001 N p1le ~ o2 14 21,71 p3
7.50 = b7 19 | 14,79 pl
o1r | °* ,\ ~ I\pG ~ 24 | 18,76 p7
7.25 24 1.7, 7.7 pll
010
7.00 P3q \ 30 | 20,81 p5
001 g -1 \ P8 39 | 27,73 p6
6.75 o 43 | 3.3,6.8 p8
000 ° 09 \l ‘ \l 58 |[3.2,7.6 p12
o5 Sorted file

000 001 010 011 100 101 110 111
1.0 13 1.6 1.9 2.2 2.5 2.8 3.1 3.4

e Nearest-neighbor query example: ¢ = (1.2, 8.1)
— Compute PKz(q):
* Compute x-coordinate of grid cell containing g:

1.2—-1.0
R
0.3

x Compute y-coordinate of grid cell containing q:

8.1— 6.5
e bl
0.25

x Compute Peano-key:
- Binary(0) = 000.
- Binary(6) = 110.
- Interleave: 010100 (decimal: 20).
= PKy(q) = 20.
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— Use PKz(q) = 20 to search in sorted file (binary search).

8.50
111
8.25 ,\ ’\ ,\ PK-value Coordinates
' 1 1.1,6.9 p2
110 cl PS 3 14,66 po
8.00 o pl 5 11,7.4 p4
101 9 1.7,6.8 p10
7.75 ¥ \l .
100 ~ plle ~ p12 14 21,71 p3
7.50 = b7 19 | 14,79 pl
o1 | * ,\ ™~ r\:’e ™~ 24 18,76 p7
7.25 24 17,77 p11
010
7.00 P3s \ 30 |20,8.1 p5
w1 | *P? o P19 od | [ 2773 p6
675 o 43 | 33,68 P8
000 | ° 09 \l ‘ \l 58 [3.2,7.6 p12
650 Sorted file
000 001 010 011 100 101 110 111

1.0 T 13 16 19 22 25 28 31 34 Seachendshere

— Nearest Peano-keys in file:
* PKz(p1) = 19 in 2nd block.
*x PKz(p7) = 24 in 2nd block.
* PKz(p11) = 24 in 2nd block (Must consider others with identical

keys).
— Compute distances to these points:
w dist(q,p1) = (1.2 — 1.4)% + (8.1 — 7.9)2) "> = 0.28.
v dist(q,pr) = (1.2 — 1.8)2 + (8.1 — 7.6)2)"/* = 0.78,
v dist(q,pn) = (1.2 — 1L.7)2 + (8.1 — 7.7)2) "> = 0.64.

= pp is closest with distance d = 0.28.

— Draw an imaginary square with ¢ as center and d as half-side:
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8.50 o1 >
111
8.25 — TN ,\ ’\ ,\ PK-value  Coordinates
: N 1 1.1,6.9 p2
=110 A 12 ps 3 | 14,66 po
8.00 = $pT 5 1.1,7.4 p4
1o I N ) 9 1.7,6.8 p10
7.75 ¥ V °
100 ~ plle ~ p12 14 (21,71 p3
7.50 = b7 19 | 14,79 p1
o11 | ® \ ~ r\:’e ~ 24 | 18,76 p7
7.25 24 17,77 p1l
010
7.00 P3s \ 30 [20,8.1 p5
o1 | p2 o P10 \ o8 39 27,73 p6
6.75 [ 43 3.3,6.8 p8
000 | ° 09 \l ‘ \l 58 [3.2,7.6 p12
6.50 Sorted file
000 001 010 011 100 101 110 111

1.0 T 13 16 19 22 25 28 31 34 Seachendshere

— Find cells covered by square
= [0,5], [1,5], [0,6], [1,6], [0,7], [1,7].
— Compute Peano-keys of these cells:

PK4(0,5) =17
PKz(1,5) = 19
PKz(0,6) = 20
PK4(1,6) = 22
PKz(0,7) =21
PKz(1,7) = 23

— Sort the above keys using this metric: the distance of each cell to
the query point
(Use closest corner of cell in computing distance).

— For each of the above Peano-keys in sort order:
If distance of cell is greater than d, stop. Otherwise,
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* Search for the key in the sorted file (using binary search).
* Find closest Peano keys to the key (in the file).

x Compute distances to those points.

« If any point’s distance is less than d, use that point.

x Set d to closest distance so far.

— In this example, since 2nd block contains all Peano keys in the range
14-24
= don’t need to search further.

— Final result: nearest-neighbor of ¢ is p;.
e Nearest-neighbor query example: ¢ = (2.4, 7.1)
— Compute PKz(q):
x Compute x-coordinate of grid cell containing q:

24— 1.
S
0.3

x Compute y-coordinate of grid cell containing q:

71-6.5
o )=
0.25

* Compute Peano-key:
- Binary(0) = 100.
- Binary(6) = 010.
- Interleave: 100100 (Decimal: 36)
= PKy(q) = 36.

— Use PKz(q) = 36 to search in sorted file (binary search).
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8.50

111
8.25

110
8.00

101
7.75

100
7.50

011
7.25
— 010
7.00

001
6.75

000
6.50

,\ ’\ ,\ PK-value Coordinates
1 1160
PS 3 14,66
e pL 5 11,74
9 |17.68
b N
~ pl 07 ~ p12 14 [21,71
o B 19 (14,79
¢ ,\ ™~ I\:’G ™~ 24 | 18,76
24 17,77
1\
P3q o 30 20 81
*p2 o P19 \ 39 (27,73
P8
. 23 33,68
o \l ‘ \l 58 32,76
P9
Sorted file
000 001 010 011 100 101 110 111

Search ends here

1.0 13 1.6 1.9 2.2 T 2.5 2.8 3.1 3.4

— Nearest Peano-keys in file:

* PKz(ps) = 30 in 2nd block.
* PKz(ps) = 39 in 2nd block.

— Compute distances to these points:

« dist(q,ps) = (2.4 — 2.0)2 + (7.1 — 8.1)?)

« dist(q,ps) = (2.4 — 2.7)2 + (7.1 — 7.3)?)

2 _ 11

Y2 _ 0.36.

= pg is closest with distance d = 0.36.

— Draw an imaginary square with ¢ as center and d as half-side.

— Find cells covered by square
= [3,0], [4,0], [5,0], [6,0], [3,1], [4,1], [5,1], [6,1], [3,2], [4,2], [5,2], [6,2],
13,3], [4,3], [5,3], [6,3].
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8.50
111
8.25 ,\ ’\ ,\ PK-value Coordinates
' 1 1.1,6.9 p2
110 PS 3 14,66 p
8.00 o Pl 5 11,74 p4
101 9 1.7, 6.8 p10
7.75 ‘il \l S
100 ~ plle ] ~ p12 14 21,71 p3
P 1
7.50 . a 15 | 37 | 39 19 14,79 p
011 \ IN b6 I 45]™ 24 18,76 p7
' 11
7.25 1a 6 : 24 1.7, 7.7 p
— 010 1N p3
o0 | o N B\ 30 20,81 ps
w1 | *P? o P19 | 1 \ BN BN od |20 [2773 p6
A | | . 43 (33,68 p8
NN
000 o =T ATTNTT 58 3.2,7.6 p12
p9 10 32 34 40
6-50 Sorted file

000 001 010 011 100 101 110 111

10 13 16 19 22 T 25 28 31 34 Seachendshere

— Sort by distance: (Spiral order)

= [3,1], [4,1], [5,1], [3,2], [4,2], [5,2], [3,3], [4,3], [5,3], [5,0], [6,2], [3,0],
14,01, [6,0], [6,1], [6,3]-

— Compute Peano-keys of these cells:

PKy(3,1) =11, PK(4,1) = 33, PK(5,1) = 35, PK(6,1) = 41
PKy(3,2) = 14, PKz(4, )_36, PKz(5,2) = 38, PKZ(S,B): 15,
PKy(4,3) = 37, PKz(5,3) = 39, PK4(6,3) = 45, Z(6,2) — 44
PK(5,0) = 34, PK4(3,0) = 10, PK4(4,0) = 32, PK4(6,0) = 40

— For each of the above Peano-keys:

* Search for the key in the sorted file (using binary search).
* Find closest Peano keys to the key (in the file).

« Compute distances to those points.
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— Final result: nearest-neighbor of ¢ is p3 = (2.1,7.1).

e Note: when searching for multiple cells, it is more efficient to keep track
of which blocks have been processed
= process block by block.
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11.3 The Hilbert Curve

e The Hilbert Curve is another space-filling fractal.

e It is thought to be slightly “better” than the Z-curve (in terms of
neighbor-proximity).

e As with the Z-curve, one starts with a power-of-2:

2X2 4x4 8x8

[l SeN LT
(11T

117 m‘m Q'EQ'S
l

JnT as

thin nhdn

General rule for creating higher-order curves:

— Start with lower order curve.
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— Make 4 copies and place in a square pattern.

— Rotate bottom-left copy clockwise by 90°.

— Rotate bottom-right copy anti-clockwise by 90°.

— Join in the order: bottom-left, top-left, top-right, bottom-right.

o As with the Z-order, we first impose a 2¥ x 2 grid over the data MBR.

e The Hilbert-key of a point is the Hilbert-key of the cell containing the
point
= we need to define the function PKy (3, j) for a cell address [i, j].

e For the Z-order, we interleaved ¢ and j’s bits. The Hilbert-key is more
complicated to compute.

e Consider the creation of an 2% x 2% curve using a 2¢~! x 28! curve.

J 1T o1 L

— : :
i . I_I I_I . ::I I::
00 8 . 00 # e
“00 01 10 11° Reflect about diagonal 00 01 10 11°
111 111
110 ¢ [ ] [ ] ® 110 o ® [ ] ®
101 101
100 e—=o —o —o —o 100 &—o oe—e: iie—e —o
011 ® -+ o—o¢ o 011 +—o—¢ ®
010 0—I ’ —e 010 I—~ ¥ 0—I

000 &—e o o—9 o—o 000 & ° —o o

7000 001 010 011 100 101 110 111 ™. 7000 001 010 011 100 101 110 111 °

Reflect about diagonal
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— Four copies (of a 2¥~! x 2#~1) curve are made and arranged in a
square.

— The bottom two copies are rotated.

— Each rotation can also be considered a reflection:

* The bottom-left copy is reflected about a 45° line.

* The bottom-right copy is reflected about a 135° line.

— The computation of a Hilbert-key PK (i, j) reduces to this problem:

— Observation: the first two bits of H; depend on the quadrant:

*x Suppose a = aj_1ai_2 . .. aq is the binary representation of i.

x Suppose b = bi_1bi_5...by is the binary representation of j.

a2
0

al
0

a0
1

b2
1

b1l

0

o]0]
1

* We need to compute hog_1hog—o ... hy, the Hilbert-key of (i, j)
using a and b.

— Notation: let Hy(a,b) denote the Hilbert-key obtained using the
lowest k-order bits of bitstrings a and b.

11

10

01

00

11

10

01

H3
[ ] [ ] [ ] [ ]
010000 31 32 101111
16 011111 100000 47
01111
lp b L [ ]
15*___1———0~——4 45} 110000
[
2
J q
1 o . 63
000000 111111

000 001 010 011 100 101 110 111

612

b0

01-prefix 10—prefix
H2 H2
00—prefix 11-prefix
H2 H2
(reflected) (reflected)
0 1

a0




= hog—1 = ag—1 and hop_2 = ap_1 D by_1.

— Each quadrant contains an Hj,_j-curve, except that the bottom two

quadrants contain reflected Hy_1 curves.

— Consider the coordinates 001 and 110
= it turns out that H3(001,110) = 010111.

— We know that 01 are the first two bits of Hj.

— What about the others?
= use the smaller H-curves in each quadrant (recursively).

111

— (110

101

=

00

11

10

01

00

H3 H2
11 ® o
*——=0 1
10 ¢ G
0111
01 *
32 47
& ® 0
00 e ® ® ®
48 00 01 10 11
0 1
H1
01 10
63 1 I
0 11
000 001 010 011 100 101 110 111 0 11
0 ! 0 1
H3 (001, 110)
=01 H2(01, 10)
=01 01 H1(1,0)
=01 01 11

— The above example was easy because no reflections were involved.

— Example with reflection:
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H3

~ H2
111 1
1
10 @ A ¢ 0 ¢ [
l —_—
101 01 N ]
I 16 31 32 47 0 " 1110
] T 00 e—e o,
1 e l5 — . 4 48 00 01 10 11
14 0 1
— |10 O ¥
0 001110 .~ H1
i I_I—o—< 0_1 e
1 ﬁ) 10
00 &1 g L 63

000 001 010 011 100 101 110 111

T 0 1
H3 (000, 010)
=00 H2 (45-deg reflection of 00, 10)
=00 H2 (10, 00)
=00 11 H1 (135-deg reflection of 0,1)
=00 11 H1(1,1)
=00 11 10

e Implementing reflection:

— About the 45°-line: switch x and y coordinates.

— About the 135°-line: Subtract z and y from 2% and switch.

e Let a'®) denote the lowest k bits of a bitstring a.

e Recursive algorithm for computing Hy(a, b):

A A A

hog—1 = ap—1.
hog—2 = ag—1 @ bj_1.
if bk—l = 1 return hgk_lhgk_ng_l(a(k_l), b(k_l))

else if a,_; = bp_1 = 0 return hgk_lh%_QHk_l(b(k—l), a(k—l))

00 11

else return hgk_lhgk_ng_l(Qk_l —1- b(k_l), Zk_l —1- a(k_l))
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11.4 R-trees: Introduction

e An R-tree is a spatial index that supports insertion, search and deletion
of spatial objects.

e R-trees are similar to B+-trees:

— An R-tree is an index; the actual data is in a heapfile.

— Each R-tree node has a minimum and maximum occupancy.
— Internal and leaf nodes are different.

— Internal nodes are used for navigation.

— Leaf nodes contain datapointers.
However, R-trees are also different from B-+-trees:

— In a B or B+-tree, a search traverses a unique path from the root.
— In an R-tree, a search may require traversing multiple paths to the
leaf level.

e Minimum Bounding Rectangles:

— A Minimum Bounding Rectangle (MBR) of an object is the the
smallest rectangle that completely contains the object.

— Conventionally, MBR’s are constrained to have sides parallel to the
axes.

— An MBR of a collection of objects is the smallest rectangle enclosing
all the objects.

— An MBR of a collection of MBR’s My, M, ..., M, is the smallest
rectangle enclosing My, M, ..., M.

e While the data objects are usually polygons, they can really be anything,
as long as an MBR can be computed for each object (e.g., a circle).

e Point data have degenerate MBR's.
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e An R-tree works only with MBR'’s: you insert MBR’s, you delete MBR’s
and you search for MBR's.

Thus, a user

— inserts an object into a heapfile (thereby obtaining a datapointer),
— computes the object’s MBR, and
— inserts the MBR and datapointer into the R-tree.

For example:

— Suppose the object is a circle with center (5.0,4.0) and radius 3.0.

— Suppose the object is inserted into block# 873 as the 6th tuple.
= the datapointer is (873,6).

— The MBR is the rectangle with

* Lower left corner: the point (2,1).
* Upper right corner: the point (8,7)

10

— The item inserted into the R-tree is the MBR and the
datapointer: [ <(2,1), (8,7)>, (873,6) ] (6 numbers).
= an R-tree leaf entry is of the form [MBR, datapointer].
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e Description of R-tree nodes:

— Leaf nodes:

* A leaf node contains [MBR, datapointer/ entries.

* Fach leaf node contains a maximum M entries
= M is determined by the blocksize.

x Fach leaf node contains at least % entries.
— Internal nodes (except the root):

* An internal node contains [MBR, treepointer] entries.
* The treepointer points to a (child) node at the next level.

* The MBR value is the MBR of all the MBR’s in the child node.

* Fach internal node contains between % and M entries.

— The root node:
« The root may contain fewer than % entries.

x The root node contains at least 1 entry.

All nodes also contain a boolean value (indicating whether it’s a leaf)

and an integer (the number of current entries).
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Structure of R-tree nodes (example):

1 entry MBR

Not a VA
leaf > 0 | 1 | (2,1) (8,10) | ,

/ ‘ i
Leaf . Y tree pointer
2 entries ./
/ y
4
12|1@yE7 |, |69710) | \
7 A
/ datapointer \ datapointer
y \

Conceptual view:

(2,1) (8,10)

V4
(2,1) (8,7) (5,9) (7,10)

How this relates to the object data:

MBR of all child MBR’s

'

|||||||||||||
|||||||||||||||||||||||||||||||||

||||||||

.
K
KS
\
N
K
8
\
A

internal node

(2,1) (8,10)

y leaf-level node

(2,1) (8,7) (5.,9) (7,10)

Object MBR’s
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e Example of computing M:
— Block size 256 bytes.

— 2 bytes used for block-specific information.

— 4 bytes per MBR coordinate
= 16 bytes per MBR

— 6 bytes per datapointer or tree pointer
= 16+6 = 22 bytes per entry.

— Max entries M = % = 11 entries.

e NOTE: it is the user’s responsibility to:

— insert a data object tuple into a heapfile;
— compute the MBR;
— present the R-tree with the datapointer and MBR.

Why not have the R-tree do the heapfile insertion?

— The R-tree would have to know how to compute the MBR.

— Object tuple sizes depend on type of object
= e.g., circle is fixed-size, polygons are variable-size.

— MBR computations depend on the type of object
= e.g., radically different for polygons and circles.

— We want the R-tree to be independent of the object type
= R-tree cannot compute MBR or know tuple size.
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11.5 Insertion in an R-tree

e Key ideas:

R-tree insertion is similar to B4+-tree insertion:

— Find the appropriate leaf node by navigating down the tree.
— Insert into leaf node if space is available.

— If the leaf node is full, split the leaf node and make an insertion at
the parent level.

— If the parent is full, split the parent ... and so on, recursively.
What’s different in an R-tree:

— The input is an MBR (and a datapointer).

— In finding an appropriate leaf node:

* Start at the root.

x Pick the subtree whose MBR needs the least expansion to acco-
modate the new rectangle.

*x Go to this child node and repeat the search criterion until the
leaf-level is reached.

— If space is available in the leaf-level, insert the node.

— Next, go back up the path taken from the root, and adjust (expand)
successive parent MBR’s to accomodate the new insertion.

— If a split is required:
+ Place entries 1,..., 2] in the left child (current node).

x Place entries |2 | +1,..., M in newly-created right node.

* Place new rectangle in the right child.
* Compute new MBR’s for both left and right child.
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« At the parent’s level, adjust the left child’s MBR and insert the
new right child’s MBR
= this may cause a split
= split parent ... etc.

e Consider the following simple example with circle objects:

10

Circle 6:  center at (5,4), radius 3
Circle 7:  center at (8,1), radius 2
Circle 8:  center at (9,4), radius 2
Circle 9:  center at (1,1), radius 2
Circle 10: center at (8,8), radius 2

0 1 2 3 4 5 6 7 8 9 10

We are going to insert the circle objects in the order 6,7,8,9,10.

In the example, M = 2
= at most 2 entries per node
= at least 1 entry per node.

e Initially: create empty root.

e Insert circle 6:

— User computes MBR of object: [(2,1) (8,7)].

— Search for appropriate leaf:
= only root node.
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— Space available = insert MBR.

10

L
6——

(2,1) (8,7)
5

3

,—

I Y
| | | | | |

®7)

e Insert circle 7

— User computes MBR of object: [(7,0) (9,2)].

— Search for appropriate leaf:
= only root node.

— Space available = insert MBR.
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(2,1) (8,7)

(7,0) (9,2)

e Insert circle &:

— User computes MBR of object: [(8,3) (10,5)].

(9.2)

— Search for appropriate leaf:
= root is already a leaf.

— Node is full = split node:

* Place half the entries in left node (current node):
= [(2,1) (8,7)].

* Compute MBR of left node (call it Mp):
= [(2,1) (8,7)].

* Create new block (right node).

* Place remaining entries in right node:
= [(7,0) (9,2)].

* Place new MBR in right node.

* Compute MBR of right node (call it Mpg):

= [(7,0) (10,5)].
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f

insert at next level f

MBR ML: (2,1) (8,7) MBR MR: (7,0) (10,5)

(2,1) 8,7)

(7,0) (9,2) (8,3) (10,5)

x Insert M and Mpg in parent:

= no parent
= create new root:

W
W
\
K
\
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\“‘
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W
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“w
W

New root

\
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\
“w
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\
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(2,1) (8,7) (7,0) (10,5)

R

v
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W
\
W
v
W
W
W

(o2}
I
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=
4
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2
v
e
RTTLAA
'
|||||

"
|||||||

"
|||||||||

LIREERRR RN =T

=

o
=
N
w
IN
o
o
~
[ee]
©
5

(2,1) (8,7) (7,0) (9,2)

(8,3) (10,5)

e Insert circle 9:

— User computes MBR of object: [(0,0) (2,2)].

— Search for appropriate leaf:

x For each MBR in root, compute expansion needed to accomodate

new rectangle.

624



Extra area: 20 units

= 20 units of expansion needed for MBR [(2,1) (8,7)].

10 T

9+

8+

Extra area: 35 units

= 35 units of expansion needed for MBR [(7,0) (10,5)]
= select left subtree to search.

« Left child is at leaf level = search complete.

— Space available = insert new rectangle.
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— Work backwards up the path to the root and expand MBR’s along
the way to accomodate new rectangle
= expand [(2,1) (8,7)] to [(0,0) (8,7)].

\
K
RS
K
K
K
K
K
R
K
\
RS
.
.
\
K
\
.
RS
.
\
.
\
\
W
K
\
\
.
K
'
N
||||||||||
n

e
e
|||||||||
"
|||||

0,0 @®,7) || (7.0 (10,5) ’ / 9\
_
0 1

(2,1) (8,7) (0,0) (2,2) (7,0) (9,2) (8,3) (10,5)

e Insert circle 10:

— User computes MBR of object: (7,7) (9,9)].
— Search for appropriate leaf:

x For each MBR in root, compute expansion needed to accomodate
new rectangle.
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Extra area: 25 units

= 25 units of expansion needed for MBR [(2,1) (8,7)].

10 T

0 1 2 3 4 5 6 7 8 9 10

Extra area: 12 units

= 12 units of expansion needed for MBR [(7,0) (10,5)]
= select right subtree to search.

* Right child is at leaf level = search complete.
— No space available = split node:
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* Place half the entries in left node (current node):
= [(7,0) (9,2)].
* Compute MBR of left node (Mp):
= [(7,0) (9,2)].
* Create new block (right node).
x Place remaining entries in right node:
= [(8,3) (10,5)].
* Place new MBR in right node.
* Compute MBR of right node (Mp):
= [(7,3) (10,9)].

f Adjust at next level f insert at next level
MBR: (7,0) (9,2) MBR: (7,3) (10,9)
(7,0) (9,2) (8,3) (10,5) | (7,7) (9,9)

x Remember the MBR of the split node that was in the parent?
= [(7,0) (10,5)].

« This needs to be adjusted to accomodate the new left child
= new left child MBR is [(7,0) (9,2)] (My).
= old MBR entry is over-written with this value.

— Next, insert the new MBR (Mpg) into the parent.
— Parent is full = split node:
* Place half the entries in left node (current node):
= [(0,0) (8,7)].
* Compute MBR of left node (call this M):
= [(0,0) (8,7)].
* Create new block (right node of split).
* Place new MBR in right node.

* Compute MBR of right node (call this Mp):
= [(7,0) (10,9)].
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x These two MBR'’s are passed to the next level.

f Adjust at next level

MBR: (0,0) (8,7)

f insert at next level

MBR: (7,0) (10,9)

(0,0) (8,7)

(7,0) (9,2)

(7,3) (10,9)

— There is no next level
= create new root (with entries My and Mpg):

(0,0) (8,7)

(7,0) (10,9) T

(0,0) (8,7)

(7,0) (9,2)

(7,3) (10,9)

:::::

A R N NN

i

(2,1) (8,7)

(0,0) (2,2)

(7,0) (9,2)

(8,3) (10,5)

(7,7) (9,9)

629

=
o



e Pseudocode for insertion:

The following convention will be used:

— Calls to Disk functions return either a disk block number (an integer
type) or a memory address (an address type).
— D1SK-NEWBLOCK returns a block number.

— DISK-WRITEBLOCK and DISK-READBLOCK take a block number
as input.

— DIsSK-READBLOCK returns a memory address. Thus,
b := Disk-READBLOCK (blknum);

reads block number blknum into memory and returns the address,

which can be used as
b —leaf := false;

— The MBR’s will be stored in 6 —+R][1], b =R[2], ...

— b —child[i] refers to the node at the next level pointed to by the i-th
entry in b.
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Algorithm: RTREE-CREATE

Input: none.
Output: root block written to disk.

1.

N Ote N

Compute max_entries in an R-tree node;
root := DISK-NEWBLOCK();

b := DISK-READBLOCK (root);

b —leaf := true;

b —num _entries := 0;
DiSK-WRITEBLOCK (root);

return;
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Algorithm: RTREE-INSERT (R, D)

Input: MBR R and datapointer D.
Output: The pair <R,D> is inserted into the tree.

1.
2.
3.

oo

© N

11.
12.
13.
14.
15.
16.
17.
18.

19.

20.
21.
22.
23.
24.

Initialize stack;
b := DISK-READBLOCK (root);
blknum := root;
// First search for correct leaf
while b —leaf # true
Find k such that b —+R[k] needs the least expansion
among b —R[1],...,b =R[b —num entries| to accomodate R.
STACK-PUSH (blknum, k);
blknum := b —child[k];
b := DISK-READBLOCK (blknum);
endwhile
// Now b is the desired leaf
if b —num _entries < max_entries
// Space available = insert directly
b —num _entries := b —num entries 4 1;
b —R[b —num entries] := R;
R2 := BLock-MBR (b);
Disk-WRITEBLOCK (blknum);
RTREE-RECURSIVE-INSERT (R2, 0, false);
return;
endif
// Otherwise, a split is needed
(LeftR, RightR) := SPLIT-RTREE-NODE (b, R);
// Assume SPLIT-RTREE-NODE writes the two blocks
if b is not the root
RTREE-RECURSIVE-INSERT (LeftR, RightR, true);
else
CREATE-NEW-RTREE-ROOT (LeftR, RightR);
return,;
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Algorithm:  RTREE-RECURSIVE-INSERT (LeftR, RightR, new)

Input: MBR’s LeftR, RightR, and boolean New.
Output: The MBR’s are inserted into node obtained from stack.

1.
2.
3.

oo

© 0N

11.

12.
13.
14.
15.
16.
17.

18.
19.
20.
21.
22.
23.

if STACK-EMPTY () return

(blknum, k) := STACK-POP ();

b := DISK-READBLOCK (blknum);

// Re-adjust child rectangle to LeftR

b —R[k] := LeftR;

if not new
// No new MBR being added = only need to re-adjust
Disk-WRITEBLOCK (blknum);
R := Brock-MBR (b);
RTREE-RECURSIVE-INSERT (R, 0, false);
return,;

. endif

// Otherwise, we need to add RightR
if b —»num _entries < max_entries
// Space available = insert directly
b —num_entries := b —num_entries + 1;
b —R[b —num entries] := RightR;
R := BrLock-MBR (b);
Disk-WRITEBLOCK (blknum);
RTREE-RECURSIVE-INSERT (R, 0, false);
endif
// Otherwise, a split is needed.
(LeftR2, RightR2) := SpLIT-RTREE-NODE (b, RightR);
if b is not the root
RTREE-RECURSIVE-INSERT (LeftR2, RightR2, true);
else
CREATE-NEW-RTREE-ROOT (LeftR2, RightR2);
return;
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Algorithm:  CREATE-NEW-RTREE-ROOT (LeftR, RightR)

Input: MBR’s LeftR and RightR.
Output: A new root written to disk.

1.

ootk N

root := DISK-NEWBLOCK ();
b := DISK-READBLOCK (root);
b —num _entries = 2;

b —R[1] := LeftR;

b —R[2] := RightR;
D1sk-WRITEBLOCK (root);
return,;

Algorithm: SpLIT-RTREE-NODE (b, R, LeftR, RightR)

Input: block pointer b, MBR R.
Output: Split blocks written to disk, MBR’s for each block returned.

1.

© XN OotE W

median := (max_entries + 1) / 2;

b —num _entries := median;

LeftR := BLock-MBR (b);

blknum := DISK-NEWBLOCK ();

b2 := DiSk-READBLOCK (blknum);

Place entries median+1, ..., max_entries in b2;
Place new MBR R in 02;

RightR := Brock-MBR (b2);

Write blocks b and b2 to disk;

. return LeftR, RightR;
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11.6 Searching in an R-tree

e Key ideas:

— Searching usually consists of specifying a query rectangle.

— The R-tree is required to return all data MBR’s that intersect with

the given query rectangle.

— For example, consider the queries Q1, Q2, Q3, Q4:

(0,0) (8,7) (7,0) (10,9)

(0,0) (8,7)

(7,0) (9,2) (7,3) (10,9)

(2,1) (8,7) (0,0) (2,2) (7,0) (9,2)

(8,3) (10,5)

(7,7) (9,9)

* Q1 returns no MBR (and therefore no object).

*x Q2 returns MBR for Circle 10, although a subsequent retrieval
of the object reveals no intersection.

* Q3 returns the MBR of Circle 6 and the MBR of Circle 10 (if

touching counts as intersection).

* Q4 returns the MBR’s of circles 6,7 and 8.
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— Consider a query rectangle Q.

— Start the search by computing which of the MBR’s in the root in-
tersect with Q
= Explore all those corresponding subtrees.

— In general, for each internal node encountered, find all the MBR’s
which intersect with Q
= Explore all those corresponding subtrees.

— For a leaf node, return all MBR’s (and datapointers) that intersect

with Q.

e Example: Q = [(5, 8.8) (7.2, 10)].

— Check MBR’s in root
= (@ intersects only [(7,0) (10,9)]:

\
e
n
||||||
\
e
ant

(0,0) (8,7)

(7,0) (10,9)

(0,0) (8,7)

(7,0) (9,2) (7,3) (10,9)

(2,1) (8,7)

(0,0) (2,2)

(7,0) (9,2) (8,3) (10,5) | (7,7) (9,9)

— Explore the subtree of [(7,0) (10,9)].
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— Check MBR’s in child node (next level)
= (@ intersects only [(7,3) (10,9)]

10

(0,0) (8,7) (7,0) (10,9)

4\:"‘
(0.0 8,7) S
\\\\ 2__
(7,0) (9,2) (7,3) (10,9)
1—K9
[
0 1
(2,2) (8,7) (0,0) (2,2) (7,0) (9,2) (8,3) (10,5) | (7,7) (9,9)

— Explore the subtree of [(7,3) (10,9)].

— Check MBR’s at next (leaf) level
= Q intersects [(7,7) (9,9)]
= return the corresponding datapointer.
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e Example: Q = [(6,1) (8,4)].

— Check MBR’s in root
= Q intersects both MBR’s
= must explore both subtrees.

v
\\\\\\
A

w
e
\\\\\\
v
w

vy,
\\\\\
\\\\\\\
‘9
‘9

[y
n
|||||||
I
ant

(0,0) (8,7)

(7,0) (10,9)

(0,0) (8,7)

(7,0) (9,2) (7,3) (10,9)

(2,1) (8,7)

(0,0) (2,2)

(7,0) (9,2)

(8,3) (10,5)

(7,7) (9,9)

— Explore first subtree (child of [(0,0) (8,7)]).

— Check MBR’s at next level
= Q intersects [(0,0) (8,7)]
= must explore subtree of [(0,0) (8,7)].

— Check MBR’s of child of [(0,0) (8,7)]:
= @ intersects [(2,1) (8,7)]

= return corresponding datapointer.
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(0,0) (8,7) (7,0) (10,9)
ooen || || /&
(7.0)(9.2) | (7.3 (109)
en@EN 0022 (7.0) (9.2) 83) (105) [ (7.7) (9.9)

o

— Are there unexplored subtrees?

= yes, right subtree of root.

— Check subtree of [(7,0) (10,9)].

= (@ intersects both MBR’s
= must explore both subtrees.
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©,0 87 || (7.0 (10,9
(0,0) (8,7)

(7.0) (9.2)
@1 @7 (0022 (7,0)(9.2) (8,3) (10,5) | (7,7) (9,9)

— Check subtree [(7,0) (9,2)]
= Q intersects MBR [(7,0) (9,2)]
= return corresponding datapointer.
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(0,0) (8,7) (7,0) (10,9)

(0,0) (8,7)

(7,0) (9,2) (7,3) (10,9)

y

(21)(®.7) ](0.0)(22) (7.0092) " 83) (105) [ (7.7) (9.9)

o

— Any unexplored subtrees?
= check [(7,3) (10,9)] at the second level
= check MBR’s at leaf level
= (Q intersects (touches) MBR [(8,3) (10,5)].

= return corresponding datapointer.
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— Summary: datapointers for circles 6,7 and 8 are returned.
e The above examples illustrate what’s good and bad about an R-tree:

— An R-tree works well when a query rectangle interects only a few
high-level MBR'’s
= search is similar to a B+-tree.

— An R-tree works poorly when a query intersects many high-level
MBR’s
= lots of subtrees must be explored
= cannot provide O(logn) minimum performance.

— Worst-case, the whole tree might have to be searched.

e Pseudocode for search:
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Algorithm: RTREE-SEARCH (Q)

Input: Query rectangle Q.

Output: List of MBR’s (with associated datapointers).
1. Initialize MBR-list.
2.  RTREE-RECURSIVE-SEARCH (root, Q);

Algorithm: RTREE-RECURSIVE-SEARCH (blknum, Q)

Input: block number blknum, query rectangle Q.
Output: if a leaf MBR in blknum intersects Q, add it to MBR-list.
1. b := Disk-READBLOCK (blknum);

2. for i <1 to b —num entries

3 if Q intersects b —R]i]

4 if b —leaf = true

5 Add R[i] to MBR-list;

6. else

7 RTREE-RECURSIVE-SEARCH (b —child[i], Q);
8 endif

9. endfor

10. return;
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Algorithm: RTREE-GETNEXT

Input: none.
Output: next MBR in MBR-list if one exists, NULL otherwise.
1. if MBR-list is empty
2. return null,
3. else
4. return next MBR in list;
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11.7 Rtrees: Discussion

e Better splitting algorithms:

— The splitting algorithm above might as well be called Random since
no effort is made to separate MBR’s prudently.

— Consider the following example (with M = 3):

10

Insert data MBR’s 1,2,3, and 4.
— After inserting MBR’s 1,2 and 3, we get:

(3,0) (4,1) (8,8) (9,9) 1,1) (2,2)

— The insertion of MBR [(6,7) (7,9)] causes a split.
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— Using the simple splitting algorithm:

(3,0) (4,1)

(1,2) (9,9)

(3,0) (4,1)

(8,8) (9,9) (1,1) (2,2)

(6,7) (7,9)

This corresponds to the parent MBR/s:

10

Q1

Q2

Consider the queries:

7 8 9 10

* Query Q1 (unnecessarily) searches the right subtree.

x Query Q2 searches both subtrees.
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— Instead, consider a different split during the insertion of MBR 4:

(1,0) (4,2) (6,7) (9,9)

G0 #1 @122 88) (9.9 [(67)(7.9)

which corresponds to the parent MBR’s:

10

57 Ql

— Q1 does not need searching of subtrees.
— Q2 searches only one subtree.

— What was the problem with the simple method?
= rectangles were randomly distributed among the split nodes.

— Is it possible to do better?
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— Quadratic split algorithm:

x Consider a node to be split.

* For each pair of rectangles, R; and R;:
- compute MBR of the pair R;, R;;
- compute area of pair-MBR
- compute joint area of R; and Rj;

- compute deadspace area:
Area(pair-MBR) - (Area(R;) + Area(R;));
* Pick pair with largest such difference.
« Place these rectangles in different nodes.
« For each remaining rectangle:
- Compute resulting MBR if it were placed in each block.
- Place it in block whose MBR needs least enlargement to ac-
comodate it.
— Note identifying the pair takes quadratic (in the number of entries
per node) time (why?).

— Similar linear heuristics also exist.
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e Variants of R-trees:

— R+-trees:
x In an R-tree, MBR’s overlap
= multiple overlaps could cause searching multiple subtrees.
x R+-trees eliminate overlap.

x Instead, object MBR’s themselves are split and duplicated at the
leaf-level.

x While R+4-trees do not overlap MBR’s, they however duplicate
object MBR’s
= a tradeoff.

*x R+-trees work well in some applications.
— R*-trees:
x When a node is split, MBR'’s are re-inserted into the R-tree
= greater (tree-wide) reorganization during split.

x In practice, R*-trees are thought to work slightly better than
R-trees and R+-trees.

— Hilbert-Rtrees:
x Similar to R-tree except that Hilbert-values of the MBR’s are

used n addition.

x Define the Hilbert-value of an MBR to be the Hilbert value of its
center.

x Each data MBR descriptor also contains its Hilbert-value.

x Each interior node of the tree also contains the largest Hilbert
value among all the MBR’s in the node.
(Define LHV = largest Hilbert-value of an interior node).

x Search is exactly the same as in the R-tree.

x Insertion differs slightly from R-tree insertion:

- In an R-tree, the child whose MBR needs the least expansion
is selected.

- In a Hilbert R-tree, the child whose MBR’s Hilbert value is
closest to the input MBR’s Hilbert value is selected.
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- When working back up the tree to update MBR’s, the LHV
values are re-computed up the tree.

e Bulk-loading of R-trees:
— Given a large collection of data objects, it is inefficient to load the
R-tree by successive insertions.
— Bulk-loading algorithms:

x are faster;

% achieve faster packing.

— Various bulk loading algorithms exist
= most arrange MBR’s according to their centers.
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e Spatial joins using R-trees:

— What is a spatial join?

*

*

*

*

*

Consider two files of objects, F'4 and Fp.

A spatial join based on intersection (overlap) is a list of pairs of

objects, one from each file, that overlap.

We will use the convention that intersection includes “touching”.

Other spatial join operators are possible. For example, a con-

tainment join will have all those pairs of objects (O4, Op) where
O4 € Fy,0p € Fp such that Op is completely contained in O 4.

Example (intersection join):
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FILE 1

Circle 1:
Circle 2:
Circle 3:
Circle 4:
Circle 5:

FILE 2

Circle 6:
Circle 7:
Circle 8:
Circle 9:
Circle 10:

center at (2,9), radius 2
center at (8,6), radius 2
center at (1,3), radius 2
center at (1,1), radius 2
center at (6,1), radius 2

center at (5,4), radius 3
center at (8,1), radius 2
center at (9,4), radius 2
center at (1,1), radius 2
center at (8,8), radius 2



The tuples that get joined are:

From first file From second file

Circle 2 Circle 6
Circle 2 Circle 10
Circle 3 Circle 9
Circle 4 Circle 9
Circle 5 Circle 6
Circle 5 Circle 7

— The straightforward algorithm is a nested loop (as in the case of
relational databases).

— The R-tree can be used effectively by scanning one file (say, File 1)
tuple-by-tuple, and using an R-tree for the second file:

x Insert items from File 2 into R-tree.

x Scan tuples in File 1.

* For each tuple (object) scanned in File:
- Compute MBR of object.
- Use this MBR as query rectangle in R-tree.
- Retrieve list of intersected object-MBR’s.

.- Test for true intersection.
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11.8 Deletion in an R-tree

e Several deletion methods are known. We will consider only one.
e Key ideas:

— Find object MBR using search and delete from leaf
= Leaf may or may not underflow.

— If leaf does not underflow:

x Compute block MBR of leaf after deletion.
* Adjust this value in the parent.

x Now, the parent’s own MBR has changed
= adjust MBR entry in grandparent...

* ... and so on, recursively all the way to the root.
— If leaf underflows:

* Try to borrow from (any) sibling:
- If possible, re-arrange MBR’s with sibling to get more com-
pact block-MBR’s (as we did in splitting).
- Recompute MBR’s all the way up to the root.
« If borrow is not possible, merge with sibling if possible:
- Recompute block MBR of merged node.
- Propagate MBR’s to root.
x If no sibling is available, collapse one level.

« If merging causes underflow at parent’s level, merging may need
to be propagated upwards.

e Example with M =3
= at least |2 ] = 1 entries per node.
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(0,3) (6,7) (3,0) (10,5)

= \;
(0,3) (2,4) (4,6) (6,7) (3.1) (6,5) (5,0) (10,2)
yZ / 14 \
(0,3) (2,4) (4,6) (6,7) (3,1) (4,2) (5,0 (7,1)
(4,4) (6,5) (8,1) (10,2)

e Delete [(4,4) (6,5)]:

— Delete at leaf level.
— Adjust node MBR: [(3,1) (4,2)].
— Adjust at parent’s level: [(3,1) (4,2)].

— Adjust parent’s MBR
= compute MBR of [(3,1) (4,2)] and [(5,0) (10,2)]
= [(3,0) (10,2)].
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— Adjust at next level (root).

— Root reached = done.

10

TULIIILFFRRFRRRRERRRERE

ppppppp

(0,3) (6,7)

(3,0) (10,2)

(0,3) (2,4)

(4,6) (6,7)

Y

¥/

(0,3) (2,4)

(4,6) (6,7)

e Delete [(3,1) (4,2)]:

— Delete at leaf
= underflow.

— Borrow from sibling (borrow [(8,1) (10,2)]).
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(3,1) 4,2)

(5,0) (10,2)

4

\

(3.1) 4,2)

(5,0) (7,1)

(8.1) (10,2)




— Recompute MBR’s at parent’s level
= [(8,1) (10,2)] and [(5,0) (7,1)].

— Recompute parent’s MBR
= [(5,0) (10,2)].

— Re-write this value at grandparent’s level:

658

o
ui
ol
B I
4
i
.
S
T :
— ] R
o 1 2 s 4 5 & 1 8 10
(0,3) (6,7) (5,0) (10,2)
_ T
(0,3) (2,4) (4,6) (6,7) (8,1) (10,2) (5,0) (7,1)
- Vi 14 \
(0,3) (2,4) (4,6) (6,7) (8,1) (10,2) (5,0) (7,2)




e Delete [(8,1) (10,2)1:

— Delete from leaf

= underflow.

— Cannot borrow from sibling

= merge.

— Recompute MBR’s all the way up.

(0,3) (6,7)

(5.0) (7,1)

(0,3) (2,4)

(4,6) (6,7)

Y2

¥/

0,3) (2,4)

(4.6) (6,7)
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(5,0) (7,1)

4

(5,0) (7.1)




e Delete [(5,0) (7,1)1:

— Delete from leaf

= underflow.

— No sibling

= borrow at parent’s level.

— Recompute MBR’s as needed.

10 7

1 2 3 4 5 6 7 8 9 10
(0,3) (2,4) (4,6) (6,7)
= \;
(0,3) (2,4) (4,6) (6,7)
£ 4
0,3) (2,4 (4,6) (6,7)

660




e Delete [(4,6) (6,7)]:

— Delete at leaf
= underflow.

— Cannot borrow or merge

= look at parent’s level.

— Merge at parent’s level.

10 7]

(0,3) (2,4)

£

(0,3) (2,4)
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11.9 Grid Files: Introduction

e A grid file is an index structure for multidimensional queries — queries
on multiple attibutes.

e Recall: B-trees, B+-trees and Hashing were used for unidimensional
queries.

e Example of a multidimensional query:
Consider the relation

PASSENGER (NAME, SSN, FLTID, MILES)

and the query: “Find all passengers with names that begin with letters
in A—E and have between 10000 and 40000 miles”.

In SQL:

select P.NAME, P.MILES
from PASSENGER P
where P.NAME >="A’ and P.NAME < 'F’
and P.MILES >= 10000 and P.MILES <= 40000;

Note: this is sometimes called a multikey query even though NAME and
MILES are not keys.

e Suppose we use a B+-tree on NAME:

— Suppose PASSENGER has 100,000 tuples with 20 tuples per block
= 5000 blocks.
— About 4-5 levels of the B+-tree.

— Suppose there are 20000 tuples in the A—E range
= 1000 data blocks if clustered.

— Also, scanning the leaf level of B+-tree will need, say, 400 blocks.
— The 1000 data blocks have to be tested for the MILES condition.
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— Suppose only 5 blocks satisfy the MILES condition
= lot of I/O for only a 5-block result.

e Key idea in a grid file:

— Create a grid directory:

0-5K 5K-10K 10K-20K 20K-50K 50K-100K

A-D """"""" """ Dl b Cells selected by query
= d z A-E and 10K < MILES < 40K
E-H ¥
I-L ’
M= P A A grid partition
Q-T -+—— Acell
Uu-27
f Grid directory
A scale Attila’ | |] 18K
David ||| 23K
AbEl 25K
A chain of e
data blocks —™ | Afthur 22K o
Caligula 31K . Darius 27K
NAME MILES
Edward 41K
Hannibal 36K

“

— Perform range search (A-E, 10000-40000) on each axis to determine
which cells apply.

— Use pointers in cells to get to data.
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e A grid file consists of:

— A grid directory:

% A collection of grid cells.

x Each cell contains a pointer to a chain of data blocks.
— One grid scale per dimension:

* A scale consists of the intervals in each dimension.
= e.g., the NAME scale above has A-D, E-H etc.

« Note: interval boundaries mark grid partitions.
— Chains of data blocks:
x Each cell points to a data block chain.

x Multiple cells may point to the same chain.
— Additional meta-data such as the number of data blocks, the number
of tuples etc.
e Main principle in grid files: choose partitions judiciously
= keep chains small.

Note: many implementations allow at most one block per chain.

e Grid files can be of more than 2 dimensions:

//
<7 A-J -
S
oy N FLT_ID 50-99
~
2L 7~ FLT_IDO0-49
NAME S Z// =

FLT_ID

664



e Grid files can be used for geometric point data. We will consider 2D
point data.

e Grid files support insertion, search and deletion of point data.
e Grid files support range queries efficiently.
e There are two basic types of grid file:

1. Grid files with fixed-size cells.

2. Grid files with variable-size cells.

e There are many different algorithms for insertion and deletion within
the class of grid files.
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11.10 Grid Files: Insertion

e We will study insertion via an example:

— Insert the following point data:

p1 (0.35,0.37) | ps  (0.82,0.87) | p11 (0.31,0.24)
py (0.74,0.23) [ pr  (0.25,0.53) | p1a  (0.94,0.35)
ps (0.55,0.81) [ ps  (0.24,0.77) | pis  (0.82,0.15)
ps (0.82,0.66) [ po  (0.23,0.35) | pis (0.05,0.12)
ps  (0.75,0.78) | pro (0.25,0.24) | pys  (0.03,0.24)

— We will assume all the point data falls in the unit square.
= i.e., assume MBR of the set of points is known.

— Assume blocksize = 64 bytes.

— Suppose we use

4 bytes  for x-coordinate (float)
4 bytes  for y-coordinate (float)
2 bytes  for a point ID (integer)
10 bytes for a text label (character string)

= totally 20 bytes
= 3 point-tuples per block.

e We will first consider the fixed-size cell version of the grid file.

The values z-interval and y-interval determine the size of each cell.
e Key ideas in inserting a point p = (zg, yo):

— Locate the cell that contains the point:

x Divide x-value by z-interval and round up:
T
14— {7 . w
z-interval
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x Divide y-value by y-interval and round up:

. Yo
<_ . 2 ===
J {y—mterval-‘
* This gives us Cell[s, j].
x Example: p = (0.74,0.33), z-interval=y-interval=0.2

[0.747
i |
0.2
0.33]
7l =9
0.2

= Cell[4,2]
— Retrieve cell from grid directory.
— Retrieve data block pointed to by cell.
— If space available, insert point in block.
— Otherwise, block is split:

x Try to use an existing partition.
« If no existing partition does the job, create a new partition.
x Insert point in appropriate block.

— Partitions or cuts are always made along cell boundaries.

— Sometimes, the grid needs to be refined
= double grid size.

— Try to alternate between vertical and horizontal partitions:

x Use a variable Current to indicate which direction.

* If a vertical cut (partition) is made:
= set Current := horizontal.

x Initially, say, Current := vertical.

e The example will emphasize concepts; we will consider implementation
details later.
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e Initially:

— Suppose we start with 5 X 5 grid in the unit square.

— Take z-interval=y-interval=0.2.

y—interval

Block b0

~<—> x-interval

Interval [0,1]

data block can
hold 3 points

— Initially, all grid cells point to a single data block, by.

— Clurrent := vertical.

e Insert p; = (0.35,

— Locate cell: [
= Cell[2,2].

0.37):

0.2

2

— Cell points to block b
= retrieve block b.

— Space availab

le

= insert point in block.

0] = 3, [437] =
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Block b0

1.0

.‘1

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Note: The point is shown in Cell[2,2] only for conceptual ease
= only the data block contains the point.

e Insert p, = (0.74,0.23):

— Locate cell: [M1 =4, [@1 =2
= Cell[4,2].

— Cell points to block b
= retrieve block by.

— Space available
= insert point in block.
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Block b0

1.0

11 |2

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

e Insert ps = (0.55,0.81):

— Locate cell: [%1 = 3, [%1 =5
= Cell[3,5].

— Cell points to block b
= retrieve block by.

— Space available
= insert point in block.

670



Block b0

1.0

11 (2 |3

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

e Insert py = (0.82,0.66):

— Locate cell: [%1 =9, [M1 =1
= Cell[5,4].

— Cell points to block b
= retrieve block by.

— Block by is full
= split needed.

— No existing partition available
= create new partition.

— Clurrent = vertical
= make a vertical partition to approximately halve the total num-
ber of points (4)

— Note: consider new point when making partition.

— Clurrent := horizontal.
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Block b0

Block bl

1.0 [ ............................. [ S {2 4

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

e Insert p; = (0.75,0.78):

— Locate cell: [%1 =4, [w] =1
= Cell[4,4].

— Cell points to block by
= retrieve block b;.

— Space available
= insert point.
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Block b0

1 3
Block bl
10 +—— . 1% T4
5 3|
o
0.8 : .
5
4 4
[ ]
0.6
3
0.4
[ J
2 1
2
[ ]
0.2
1
X T S S S ————
1 2 3 4 5
0.0 0.2 0.4 0.6 0.8 1.0

e Insert pg = (0.82,0.87):

— Locate cell: [%1 =5, [%1 =5
= Cell[5,5].

— Cell points to block by
= retrieve block by.

— Block b; is full
= split needed.

— No existing partition does the job
= create new partition.

— Current = horizontal
= make a horizontal partition.

— Clurrent := vertical.
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Block b0

1 3
10 T T ¥ T
: Block b2
5 : [ I
3 ° ; N
R & SU— 6. .. 6
0.8 3 asaeasans et sosussesusseny
4 ' > 4
. 11 ° Block bl
06 i T 7 2 |4
3 H I 3 e
0.4
°
2 1
2
°
0.2
1
X S St St S E—— ———
1 2 3 4 5
0.0 0.2 0.4 0.6 0.8 1.0

e Insert p; = (0.25,0.53):

— Locate cell: [%1 = 2, [@1 =3
= Cell[2,3].

— Cell points to block b
= retrieve block b.

— Space available
= insert point.
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1.0

0.8

0.6

0.4

0.2

0.0

Block b0

1|3 |7
""""""""""""""""""""""" Block b2
R & SU— 6. ... 6
[ JESRnenenN PYS SRNRNOREANIRNN
H 5 :
.4 Block bl
12 |4
*7
[ ]
1
2
[ ]
1 2 3 4 5
0.0 0.2 0.4 0.6 0.8 1.0

— Locate cell: [0'—241 =2, [0—771 =1

= Cell[2,4].

— Cell points to block b

= retrieve block by.

— Block b is full

= split needed.

— Clurrent = vertical

= No existing vertical partition is sufficient.

— However, the horizontal partition at 0.8 works

= use partition to split block by.

— Current := vertical.
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Block b3 Block b0

3 1 |7 |8
10 T/ T T T
Block b2
5 : [ I
3 ° ; B
________________________________________ o i B 6

0.8 Ry et sosussesusseny

4 8 > 5

. i o4 i Block b1

0.6 i T 1 2 |4 |5

3 | *7 e 1
0.4

[ J
2 1
2
[ J

0.2

1
00 = A

1 2 3 4 5
0.0 0.2 0.4 0.6 0.8 1.0

e Insert pg = (0.23,0.35):

— Locate cell: [%1 =2, [0—3’251 =2
= Cell[2,2].

— Cell points to block b
= retrieve block by.

— Block by is full
= split needed.

— Clurrent = vertical.
— No existing vertical partition is sufficient.
— No existing horizontal partition is sufficient.

— No new vertical partition (either at 0.2 or 0.4) is sufficient
= try new horizontal partition.
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— Horizontal partition at 0.4.

— Current := vertical.

1.0

0.8

0.6

0.4

0.2

0.0

Block b3 Block b4
3 7 8
""""""""""""""""""""""" Block b2
3 °
________________________________________ e i B 6
---------------------------------------------------- @ --feemmean,
[ ] 8 5
o4 Block b1l
12 |4
*7
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' -
[ ] [ ] :
9 1
2
[ ]
1 2 3 4 5
0.0 106 0.8 1.0
Possible vertical
partitions Block bo
1 ]9

e Insert pip = (0.25,0.24):

— Locate cell: [%1 =2, [%] =2

= Cell[2,

0.2
2.

0.2

— Cell points to block b
= retrieve block by.

— Space available
= insert point.
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1.0

0.8

0.6

0.4

0.2

0.0

Block b3 Block b4
3 7 8
""""""""""""""""""""""" 40 | Blockb2
3 ° PO
________________________________________ o i B 6
10000RRRRRRRY AASSSARRRRRIRR! ASSAAARRRRRREE RRRRRRRRANS o [,
[ ] 8 5
o4 Block b1l
J2 |a
*7
-
9
e 10 2 .
1 2 3 4
0.0 0.2 0.4 106 0.8 1.0
Y Block b0
1 9 10

e Insert p;; = (0.31,0.24):

— Locate cell: [%1 =2, [%1 =2

= Cell[2,2].

0.2

— Cell points to block b
= retrieve block by.

— Block by is full

= split needed.

— Clurrent = vertical
= No existing vertical partition is sufficient.
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— No existing horizontal partition is sufficient.

— Try vertical partition
= partitions at 0.2 and 0.4 are not sufficient.

— Try horizontal partition
= partitions at 0.2 and 0.4 are not sufficient.

1.0

0.8

0.6

0.4

0.2

0.0

Block b3 Block b4
3 7 8
""""""""""""""""""""""" 40 | K Blockb2
3 ° PO
________________________________________ e i B 6
---------------------------------------------------- P
.8 5
o4 Block b1
42 4
7
g 7
1
lO. ol 2.
1 b 2 ) 3% 4
0.0 0.2 0.4 106 0.8 1.0
% Block bo
1 9 10

— Need to refine grid
= double grid size

— x-interval := 0.1; y-interval := 0.1.

— Clurrent = vertical
= try vertical cut (at 0.3).
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— Clurrent := horizontal.

Block b3 Block b4
3 7 8
10 T O T T T T T T
10 |i 2k +{ Block b2
o i fllof. Al 6.} 6
------------------------------------------------ P T SRR -
8 g 5 :
7 o Block bl
42 |4 |5
6 7
Sl
4 9’; e
tpidl
3 1005 ol 2.
2 o
O N N S L R R A T e
0.0
112 3 )4 5.6 7 8 9 10
00 % 1.0
% Block b0 %, Block b5
9 10 1 11

e Insert p12 = (0.94,0.35):

— Locate cell: (z-interval=y-interval=0.1) [%—?{11 = 10, [%1 =4
= Cell[10,4].

— Cell points to block by
= retrieve block b;.

— Block by is full
= split needed.

— Clurrent = horizontal
= try existing horizontal partitions.
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— Horizontal partition at 0.4 is sufficient.

— Current := vertical.

Block b3 Block b4
3 7 8
10 T I T T T T T T
10 |i 2k +{ Block b2
9 N N N SO 4 NP S B . 6. .. 6
SR00NY DRSRONN! ROSRINN: JORRORN! AIRSRRN! SERNERE ARSORNN S04 PR SRNRRNN RESRRN
8 8. 5
; R ¥ 4 b
[ 25 J 1. Block b6
6 | " 11 e
SHE N P T T R R e
e o e e e s s Wit S Tt -
4 Qi 17
3 1005 oll 2. :
- 1. Block bl
2 '
2 112
O N T S L N R A T e
0.0
1 2 3 4 5 6 7 8 9 10
00 % 1.0
% Block b0 %, Block b5
9 10 1 11

e Insert pi3 = (0.82,0.15):

— Locate cell: [%1 =9, [%1 =2
= Cell[9,2].

— Cell points to block by
= retrieve block b;.

— Space available
= insert point.
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Block b3 Block b4

3 7 18
10 T T T T
10 |: P tl Block b2
S S N N I — NIPSE R N 61 . 6
el e ®
8 $ 5
: R 4 .
[ 25 J 1. Block b6
6 | " 11 e
Sl
4 Sija® 12
3 1005 011 2.
H Block b1
2 : 13 .
2 |12 13
O N T S L N R A T e
0.0
1:2 3 4 5.6 7 8 9 10
00 % 1.0
i Block b0 % Block b5
9 |10 1 J11

e Insert p;4 = (0.05,0.12):

— Locate cell: [%1 =1, [%1 =2
= Cell[1,2].

— Cell points to block b
= retrieve block by.

— Space available
= insert point.
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1.0
10

0.0

Block b3 Block b4
3 7 |8
""""""""""""""""""""" % E N Block b2
3 °
_________________________________________ it o.l..6 . ] 6
A R At S R R Fa i P RN
8 5
7 RS
d i I~.. Blockb6
7 14 |5
; Sij 17
o 011 2 :
: 10 i }: [ .
‘14 : Block bl
o e 13
: 2 |12]13
112 3 4 5,6 7 8 9 10
00 s 1.0
% Block b0 %, Block b5
9 |10]14 1 |1
e Insert pi5 = (0.03,0.24):
_ L0037 — 1 [0.24] —
Locate cell: [0‘11 =1, [0'1] =3

= Cell[1,3].
— Cell points to block b
= retrieve block by.

— Block by is full
= split needed.

— No existing vertical or horizontal partition is sufficient.

— Clurrent = vertical
= partition at 0.1.

— Clurrent := horizontal.
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Block b3 Block b4

3 7 8
10 T T T T T
10 |:  E i Block b2
; 3T . 0o
9 NS SRR RN S A — et il 6. 6
------------------------------------------------ Y A ——
8 E; 5
: iF 4 i
7 : . o i]~.. Block b6
5 | " 1 I
St oy
vl Qi 17
3 |e1gi | s ra 2
;14; ; Block bl
2|t i H ©13 i| ™
—+ - HH : 2 |12]13
0.0
1if2 =3 4 5 67 8 9 10
0.0 1.0

" Blockb0 . Block b7 ™. Block b5

14 | 15 9 |10 1 11

e To summarize:

— Locate cell for given point and retrieve corresponding data block.
— If block has space, insert point.
— Otherwise use splitting rules to split block:

« If an existing partition can be used, use it.
x Otherwise, create a new partition.

« If creating a partition doesn’t work, a grid refinement is needed.
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11.11 Grid Files: Nearest Neighbor Query

e Given a query point g = (zg,yo) we wish to find the closest point to q
in the grid file.

e Key ideas:

— Obtain the cell containing gq.

— Get the data block pointed to by the cell.

— Find the closest point among points in the block.
— Suppose d is the distance to this point.

— Consider a circle with radius d around q.

— Retrieve all cells that lie in or on the circle.

— Search corresponding data blocks.

e Example: ¢ = (0.75,0.65)

— Locate cell: [%1 = 8, [%1 =7
= Cell[8,7].

— Cell points to block bg
= retrieve block bg.

— Block bg has points ps and ps.
— Point py, = (0.82,0.66) is closest.

— d = dist(g, ps) = ((0.75 — 0.82) + (0.65 — 0.66)2)/* = 0.07.

— A circle about ¢ with radius 0.07 covers cells [7,6], [8,6], [9,6], [7,7],
8,71, 19,7], [7,8], [8,8], [9,8].
— For each of these cells:

« Retrieve block pointed to by cell:
= in the example, block bg.
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x Compute distance to points in block:

= in the example, no need to compute.

— Pick closest point
= py = (0.82,0.66).

1.0
10

0.0

Block b3 Block b4
3 7 8
""""""""""""""""""""" % E N Block b2
3 °
_____________________________________ U RN N o3 6
e oy e o BT
8 L
( > 4 b
L4 T Block b6
7 \ 4 |5
: ™~ Closest point in b6
S 12|
¢ 15 : ® 011 2
I 10 : [ s
14 Block b1
L 13
— 2 |12]13
1/ 2 3 4 5 6~7 8 9 10
00/ ’ 1.0
! Block b0 Block b7 . Block b5
14 | 15 9 |10 1 |11
e Example: ¢ = (0.55,0.45)
— . [0.557] 0451 _
Locate cell: [0‘11 = 6, [0'1] =95

= Cell[6,5].

— Cell points to block by
= retrieve block by.
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— Block b4 has points p7 and ps.
— Point p; = (0.25,0.53) is closest.

— d = dist(q, pr) = ((0.55 — 0.25)% + (0.45 — 0.53)?)
— A circle about ¢ with radius 0.31 covers cells that point to blocks

bl, b4, b5, bﬁ and b7.

— For each of these cells:

* Retrieve block pointed to by cell.

x Compute distance to points in block:

— Pick closest point
= p; = (0.35,0.37).

1.0

0.0

10

1/2

= 0.31.

Block b3 Block b4
3 7 8
""""""""""""""""""""" Block b2
3 °
_____________________________________ i b6 6
--------------------------------------- S IR 00790 - DNNNN S000a
g il
R E 4 .
: o ol Block b6
/ VI E
( d, ) i
B 9\5 iy 11 /12'5
= N 1 T
¢ 15 o o i 2 :
2142 10 \ HH > 3. Block bl
o % S N R § 13
— -+ 2 11213
1 2 >3 4 5 67 8 9 10
0.0} 1.0
i Block b0 Blockb7 . Block b5
14 | 15 9 |10 1 |11
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e Note: instead of using a circle to determine “must-see” cells, a square
can be used:

— Consider the above example.
— d = dist(q, p7) = 0.31.

— Construct the square that circumscribes the circle with radius 0.31
about ¢:

Block b3 Block b4

10 T
10 |i il Block b2
! ; CREE . R
CH N S N i NIPOR & U N 6] . 6
I'""' i Y ;""—";';';"4 —";’;t';'ﬁ """"
8 Fs 5 |
: 1 e & '
7 I 031)| ifi '4: {1...  Block b6
: i - H
6 | 7 i . 4 |5
5 . 1 1
5 |t Lo Aoifi || A
_____________ | DOR RORROROI DRRDROSY DRDRONE RNDRRNY DRRRRRS! AORSONSI ROSOON
4 P [ B t ®:
P 91 | 12 ¢
VT | IRE H
s o Wel® T R
R E 1 1 13) =t...  Block b1
2 |0 R E 2k ° AN
e 1 =r e =
1 S ¥ it 4
0.0 H ".’ '\‘ N

1i 2 3 4 5 67 8 9 10 ™~ Check all cells
: covered by square
0.0; 1.0

' Blockb0 . Blockb7 . Blockb5

laalas] | [o lao] | {2 ]m] |

— Check cells in the square.
— Advantage: easier to compute cells covered.

— Disadvantage: covers more cells.

e Range queries:
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Range queries can implemented by finding all the cells in the given range.

Example: find all point in the range [0.0,0.3].

— The range corresponds to all cells with x-coordinates in the range
[1,3]
= columns 1, 2 and 3.
— Next, identify all blocks in these columns
= b(), bg, by and b7.
— Retrieve points in these blocks:
= points 1,3,7,8,9,10,11,14,15.

— Identify which points lie in the desired range:
= points 7,8,9,10,14,15.
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11.12 Grid Files: Some Implementation Details

e Details: the grid directory

— What really is a grid directory?

« Basically, a collection of grid cells.
x Fach cell has a block pointer.

— Thus, in the previous example:

Block b3 Block b4
3 7 8
10 T T ¥ T T ¥ T T TI
10 i b3} o3 [ b3 b3 [, b3 b3i}: b2| b2 | b2 | b2 . Block b2
9 ib3fb3 | b3 fb3 [ b3|b3i}ib2|b2 b2 | b2 h 6
8 bafba | ba fba | b4 | b4 b6| b6 | b6 | b6
7 ibs §bs [ ba fba |ba [baifibpe|be |bs | beil-. ~— Block b6
6 ibafbs [bs fba [bs |bai}ive|be | b6 | b6 4 15
5 bafbs | bs foa | bsa | ba b6 | b6 | b6 | b6
4 boi§i 7| b7ifib5| b5 | b5 br| b1 | b1 | b1
3 Y b7| b7 b5 | b5 | bsidibl| b1 | b1 | b1
Block b1l
2 boi f i b7| b7idibs | b5 | psidibi| bL | b1 | b2
2 12 | 13
1 b0 b7| b7idibs| b5 | bsifibL| b1 | b1 | b1
0.0

0.0} 1.0
" Blockbo . Blockb7 ™ Block b5

14 | 15 9 |10 1 11

Note that each cell has a block pointer to the appropriate block.
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— How is the directory stored on disk?
* Cells have addresses, e.g., Cell[8,3].

We need to retrieve a cell given its address.

*

*

Suppose blocksize = 64 bytes.

*

Suppose a block pointer is 4 bytes
= a cell needs 4 bytes
= 16 cells per block.

*

If we stored the cells in row-major order:

3rd grid directory block

b7
b5
10 b3| b3 | b3 | b3 b3| b3 || L b2] b2 [ b2 | b2]) b5
b5
9 b3| b3 | b3 | b3 b3| b3 T T T 2] o1
bl
8 [ bal bsa [ ba | ba ba | ba b6| b6 | b6 | b6 7 | bl
b1l
7 T T T b4 | ba b6 | b6 | b6 | b6 o2
b4
6 ba | b4 | ba | b4 | ba | ba b6 | b6 b6 | b6 b4
b4
S [P4]Db4 [ b4 | ba [ba |ba | be | b6 b6 | be b4
= b4
— 4 o0 | o7 [ 167 | 5| b5 | bs| b1 | b1 b1 [or] b6
b6
3 bo | b7 | b7 b5 | b5 | b5 bl | b1 [ b1 | bl
2 b0 b7| b7 bs | b5 | psl|lb2| b1 | b1 | B2
1 b0 b7( b7 b5 | b5 [ b5 bl [ bl [ bl [ bi]

* Example: To obtain Cell[9,4]:
- Compute cell number in linear order: 3 x 10 + 9 = 39.
- Compute which block: H’—g] = 3rd block.
- Tth item in 3rd block
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e Note: we need to store the positions of the partition lines
= can be stored in an array or linked list.

e Details: nearest neighbor query

— Example: consider the query ¢; = (0.75,0.65).

— First, locate cell: {

= Cell[8,7].

1.0

0.0

10

— Retrieve grid block containing cell
= 7th grid directory block.

— Retrieve cell contents
= pointer to block bg.
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0.757 _ 0.657 _
W1 =38, [0.11 -
Block b3 Block b4
3 7 8
""""""""""""""""""""" % E N Block b2
3 °
_____________________________________ U NN U o3 6
e e R R et Sy e ST
8 L Ty
| i o |47 Block b6
H oC
.
7. 4 |5
L S 1!
I 10 : §: [ s
14 R B Block bl
o ' *13
= 2 |12 |13
1/ 2 3 4 67 8 9 10
0.0} k 1.0
i Block b0 Blockb7 . Block b5
14 | 15 9 |10 1 |1




— Retrieve block bg and check distance to each point
= point py is closest.

— d = dist(q, ps) = ((0.75 — 0.82)2 + (0.65 — 0.66)2)"/”

= 0.07.

— Consider a square with g as center and half-side= 0.07.

— Cells covered: [7,6], [8,6], [9,6], [7,7], [8,7], [9,7], [7,8], [8,8], [9,8].
— Search cells covered.

— Note: not all cells need to be searched, since some point to the same
blocks:

10 b3| b3 | b3 | b3 b3| b3| | [ b2] b2 | b2 | b2])
9 b3| b3 | b3 | b3 b3 | b3 T T 57 T 57
8 lbal bs | ba | ba ba | ba b6 | b6 | b6 | b6

o 5th directory

b4 | ba od| b6 | Ibe | b6 ff~ block
7 ba | ba | ba | b4 l ]

6 ba | b4 | ba [ bs [ b4 | ba b6 | b6 b6 | b6

5 | [P L% [ve |64 |04 | oo |vs]| [P0 2 H— ph Sirectory
4 b0 | b7 b7 b5| b5 | b5 bl | bl bl | p1 |

3 bo | b7 | b7 bs | b5 | bs bl | b1 | b1 | bl

2 bo b7| b7 b5 | b5 | bs|||b1 | b1 | b1 | b1

1 bo b7| b7 bS | b5 | PSTTTBITBT [ b | bi]

1 2 3 4 5 6 7 8 9 10

— The square covers only the 4th and 5th directory blocks
= first consider all the square-cells in the 4th directory block
= fewer disk accesses.
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11.13 Grid Files: Variable-Size Cells

e The fixed-size cell version has a few drawbacks:

— Highly non-uniform point distributions can cause multiple grid re-
finements
= the grid directory can occupy a lot of space.

— A lot of cells in the grid directory point to the same block
= unnecessary redundancy.

— A grid refinement results in a lot of copying
= time-consuming step.

e In the variable-size version:

— The grid directory grows more rapidly, but does not need refinement.
— Fewer cells point to the same block.

— No grid refinement is needed. Instead, the grid directory only grows
one column and row for each partition.

e Consider the same example as before:

— Insert the following point data:

p1 (0.35,0.37) [ ps (0.82,0.87) | p11 (0.31,0.24)
po (0.74,023) | pr  (0.25,0.53) | p1a  (0.94,0.35)
ps (0.55,0.81) | ps  (0.24,0.77) | pi3  (0.82,0.15)
pi (0.82,0.66) | po  (0.23,0.35) | piu  (0.05,0.12)
ps (0.75,0.78) | pro (0.25,0.24) | pys  (0.03,0.24)

— We will assume all the point data falls in interval [0,1]
= i.e., assume MBR of the set of points is known.

— Assume blocksize = 64 bytes.

— Suppose we use
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4 bytes  for x-coordinate (float)
4 bytes  for y-coordinate (float)
2 bytes  for a point ID (integer)
10 bytes for a text label (character string)

= totally 20 bytes
= 3 point-tuples per block.

e Key ideas in inserting a point p = (zg, yo):

— Locate the cell that contains the point:

x Use the Xscale to locate the x-interval containing the point.

*

Use the Yscale to locate the y-interval containing the point.
x Then, retrieve the corresponding cell.

Next, retrieve the block pointed to by the cell.

If space available, insert point in block.

Otherwise, the block is split:

- Try to use an existing partition.

*

*

*

- If no existing partition works, create a new one.
- Insert point in appropriate block.
- If a vertical partition was created, update Xscale.

- If a horizonal partition was created, update Yscale.

*

Try to alternate between vertical and horizontal partitions.
- Use a variable Current to indicate which direction.
- If a vertical cut (partition) is made (or used):
= set Current := horizontal.

- Initially, say, Current := vertical.

e The example will emphasize concepts; we will consider implementation
details later.

Note: in the fixed-size cell example, each grid-picture stood for both the
grid directory and the data description. In the variable-size version, the
directory and data description are drawn separately.

e Initially:
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— A sufficiently large contiguous area on disk is allocated for the grid

directory (to allow it to grow).

— Initially, there is only one cell, pointing to an empty block.

— Clurrent := vertical.
block b0
10—
0.9 -
0.8 T
0.7 +
g 1 | bo
0.6 T
1 5 1
05
0.4
03 T
0.2 + !
i 00| 1.0
0-1 7 : Yscale
R W I | i B N R M
0 | | | | | | | | 1
0 01 02 03 04 05 06 07 08 09 10 . 221
______________ 1 0.0 | 1.0
1 _______________ x I
Column1 =" T scale

~<— extendsfrom0.0to 1.0 ———=>

e Insert p; = (0.35,0.37):

— Locate cell:

Grid directory

x Take the x-value, 0.35, and use the Xscale to see which interval

it lies in

= lies in the interval [0.0,1.0]
= corresponds to column 1.
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x Take the y-value, 0.37, and use the Yscale to see which interval

it lies in

= lies in the interval [0.0,1.0]
= corresponds to row 1.

— Retrieve Cell[1,1] of the grid directory.

— Retrieve the block it points to
= block by.

— Block by has space available

= insert point.

block b0

10 e
0.9 —
0.8
0.7 T4
: 1 | bo
0.6 —
1 i 1
0.5
0.4 —
: °
: 1
0.3 T
0.2 T4 !
i 00| 1.0
0.1 7 Yscale
""" ) IR A A N M M MR MR
0 | | | | | | | | | 1
0 01 02 03 04 05 06 07 08 09 1.0
00| 1.0
1
Xscale
e Insert p, = (0.74,0.23):

— Locate cell:
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x Take the x-value, 0.74, and use the Xscale to see which interval
it lies in
= lies in the interval [0.0,1.0]
= corresponds to column 1.
x Take the y-value, 0.23, and use the Yscale to see which interval
it lies in
= lies in the interval [0.0,1.0]
= corresponds to row 1.

— Retrieve Cell[1,1] of the grid directory.

— Retrieve the block it points to
= block by.

— Block by has space available
= insert point.
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1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

b0 Grid directory
1
i 00| 1.0
Yscale
S - ) | ] I ) ) I ) | i
I I I I I I I I I 1
01 02 03 04 05 06 07 08 09 10
0.0 | 1.0
1
Xscale
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e Insert ps = (0.55,0.81):

— Locate cell:
x Take the x-value, 0.55, and use the Xscale to see which interval
it lies in
= lies in the interval [0.0,1.0]
= corresponds to column 1.
x Take the y-value, 0.81, and use the Yscale to see which interval
it lies in
= lies in the interval [0.0,1.0]
= corresponds to row 1.

— Retrieve Cell[1,1] of the grid directory.

— Retrieve the block it points to
= block by.

— Block by has space available
= insert point.
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block b0

1 2 3

10
0.9 —~

i .
0.8 T 3
0.7 +

: 1 | bo
0.6 —

1 i L

05 T
0.4 —~

: °

: 1
03 T 5

i .
02 T !

i 00| 1.0
0.1 7 Yscale

""" ) M ) B M N B M M
0 | | | | | | | | | 1

0 01 02 03 04 05 06 07 08 09 10

00| 1.0
1
Xscale
e Insert py = (0.82,0.66):

— Locate cell:

Grid directory

x Take the x-value, 0.82, and use the Xscale to see which interval

it lies in

= lies in the interval [0.0,1.0]
= corresponds to column 1.

x Take the y-value, 0.66, and use the Yscale to see which interval

it lies in

= lies in the interval [0.0,1.0]
= corresponds to row 1.

— Retrieve Cell[1,1] of the grid directory.

— Retrieve the block it points to
= block by.
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— Block by is full
= split block.

— Clurrent = vertical
= use vertical partition so that half the points are in a block.

— For example, partition at 0.6.

— Add new column to grid directory.

— Update Xscale to contain new interval (with correct column num-

ber).
— Clurrent := horizontal.
block b0 block b1l
1 3 2 4
0t
0.9 T
i o
0.8 1 s
0.7 + 4
; ° 1 | bo ||b1
0.6
1 5 1 2
0.5 T Grid directory
0.4 T4
: °
: 1
0.3 | 5
: °
0.2 T !
; 00| 1.0
01 ; : Yscale
""" ) MRS Nt M MR S Mt Ml M
0 | | | | | | | | 1 12
01 02 03 04 05 06 07 08 09 10
0.0 06|10
1 2
Xscale

e Insert p; = (0.75,0.78):
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— Locate cell:
x Take the x-value, 0.75, and use the Xscale to see which interval
it lies in
= lies in the interval [0.6,1.0]
= corresponds to column 2.
x Take the y-value, 0.78, and use the Yscale to see which interval
it lies in
= lies in the interval [0.0,1.0]
= corresponds to row 1.

— Retrieve Cell[2,1] of the grid directory.

— Retrieve the block it points to
= block b;.

— Block b; has space available
= insert point.
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block b0 block bl
1 3 2 4 5

10 T I
09 T

3e 5
0.8 °
0.7 + 4

i . 1 |bo ||b1
0.6

1 5 1 2

0.5 T Grid directory
0.4 T4
0.3 ——' 2

: °
02 T+ !

; 00| 1.0
017 Yscale

""" R I RS N IS S e IR M
0 | | | | | 1 12

0O 01 02 03 04 05 06 07 08 09 10

00|06 ] 10
1 2
Xscale

e Insert pg = (0.82,0.87):

— Locate cell:

x Take the x-value, 0.82, and use the Xscale to see which interval

it lies in

= lies in the interval [0.6,1.0]
= corresponds to column 2.

x Take the y-value, 0.87, and use the Yscale to see which interval

it lies in

= lies in the interval [0.0,1.0]
= corresponds to row 1.

— Retrieve Cell[2,1] of the grid directory.

— Retrieve the block it points to

= block b;.
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— Block b; is full
= split block.

— No existing partition works.

— Clurrent = horizontal
= use horizontal partition so that half the points are in a block.

— For example, partition at 0.7.

— Add new row to grid directory.

— Update Yscale to contain new interval (with correct row number).

— Current := vertical.

1.0
0.9
0.8
0.7
0.6
0.5
1 0.4
0.3
0.2

0.1

e Insert p; = (0.25,0.53):
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block b0 block b2
1 |3 5 6
B 3eifi 5 ©
: ] o 2 |bo ||b2
i S
i 21 4 1 b0 bl
Lo
i Grid directory
| . 1
B 1 i
i 2
B e 1|2
000710
d Yscale
""" 3 N R N W S S M) M
I I I I I HL I I 1 2
01 02 03 04 05 0.6 ':'0.7 08 09 10
! 00|06 ]| 10
1 2
Xscale
2 4 block b1l



— Locate cell:
x Take the x-value, 0.25, and use the Xscale to see which interval
it lies in
= lies in the interval [0.0,0.6]
= corresponds to column 1.
x Take the y-value, 0.53, and use the Yscale to see which interval
it lies in
= lies in the interval [0.0,0.7]
= corresponds to row 1.

— Retrieve Cell[1,1] of the grid directory.

— Retrieve the block it points to
= block by.

— Block by has space available
= insert point.
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block b0 block b2

1 ls 7] [sle ] |
10 T e
0.9 —H i

2 a s .

selft 5 0
R i o : 2 | bo || b2
0.7 e e

; ° ;

; 4 i 1 b0 bl
0.6

i 7e i 5 ! 2
05 T iy Grid directory

1 04

; °

: 1
0.3 2 :

: ° :
02 5 12

; 00|07 10
O'l_i 2 : Yscale

""" )R SR S R "II'I
0 | | | | | T | | 1 12

0 01 02 03 04 05 06 ,:' 07 08 09 10

i 000610
1 ! 2
: Xscale
2 4 block b1

e Insert ps = (0.24,0.77):

— Locate cell:
x Take the x-value, 0.24, and use the Xscale to see which interval
it lies in
= lies in the interval [0.0,0.6]
= corresponds to column 1.
x Take the y-value, 0.77, and use the Yscale to see which interval
it lies in
= lies in the interval [0.7,1.0]
= corresponds to row 1.

— Retrieve Cell[1,2] of the grid directory.
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Retrieve the block it points to

= block by.

Block by is full
= split block.

Current = vertical

= Try existing vertical partitions
= None can be used.

Horizontal partition at 0.7 can be used to

Update grid directory.

Current := vertical.

split bg.

block b3 block b2
3 8 5 6
10 T I
09 — ° 5
08 1 3¢ >
: : o3 ° 2 | b3 b2
0.7 oo
: o 1 b0 bl
: 4
0.6
i 7e o2
05 | Grid directory
04 T
0.3 ——' 1
. i 2
°
0.2 T ! 2
; 00|07 |10
017 Yscale
""" P T
0 | T | | T | | 1 12
0 01 02/ 03 04 05 06 ,:' 0.7 08 09 1.0
; ] 00|06 10
block b0 1 2
Xscale
1 7 2 4 block b1l
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e Insert pg = (0.23,0.35):

— Locate cell:
x Take the x-value, 0.23, and use the Xscale to see which interval
it lies in
= lies in the interval [0.0,0.6]
= corresponds to column 1.
x Take the y-value, 0.35, and use the Yscale to see which interval
it lies in
= lies in the interval [0.0,0.7]
= corresponds to row 1.

— Retrieve Cell[1,1] of the grid directory.

— Retrieve the block it points to
= block by.

— Block by has space available
= insert point.
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1.0
0.9
0.8
0.7
0.6
0.5
1 0.4
0.3
0.2

0.1

e Insert pip = (0.25,0.24):

block b3 block b2
s ls| | Isle | |
T .
1 3e 5 °
; L] L 2 | b3 b2
A S
| 4 1 b0 bl
i 7e v
- Grid directory
e
_A )
L J 1 |2
; 00|07 10
BE Yscale
""" 3 R Rl SRR SR BRSNS S i My M
I (A I I I I 1 2

0 01 02703 04 05 06 ;07 08 09 1.0

i 00|06 |10
block b0/ 1 / 2

K Xscale
1 7 9 2 block b1

— Locate cell:

x Take the x-value, 0.25, and use the Xscale to see which interval

it lies in

= lies in the interval [0.0,0.6]
= corresponds to column 1.

x Take the y-value, 0.24, and use the Yscale to see which interval

it lies in

= lies in the interval [0.0,0.7]
= corresponds to row 1.

— Retrieve Cell[1,1] of the grid directory.
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— Retrieve the block it points to
= block by.

— Block by is full
= split block.

— No existing partition works.

— Clurrent = vertical
= use vertical partition so that half the points are in a block.

— For example, partition at 0.3.
— Add new column to grid directory.

— Update Xscale to contain new interval (with correct column num-

ber).
— Note: columns are out of order in Xscale.

— Clurrent := horizontal.
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1.0

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

block b3 block b2
3 8 5 6
T .
1 3e 5 °
; 8e ° 2 | b3 b2 b3
A S b4
| 4 1 b0 bl
7.5 1 2 3
- i & Grid directory
T 9 it
H . 1.0
aE i 1
: : 2
: °
L 10 . 1 ]2
00]07]| 10
__' : i ; Yscale
""" ) It I SRR S pu el Ry By B S ol
I I I IR I I [ 1 3 2
0 01 02703 04 05 06 07 08 09 1.0
1 3 E 2 ] 00[03|06]|10
Xscale
7 9 10 1 2 4
block b0 block b4 block bl

e Insert p; = (0.31,0.24):

— Locate cell:

x Take the x-value, 0.31, and use the Xscale to see which interval

it lies in

= lies in the interval [0.3,0.6]
= corresponds to column 3.

x Take the y-value, 0.24, and use the Yscale to see which interval

it lies in

= lies in the interval [0.0,0.7]
= corresponds to row 1.

— Retrieve Cell[3,1] of the grid directory.
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— Retrieve the block it points to
= block by.

— Block b4 has space available
= insert point.

block b3 block b2
3 8 5 6
0 T T e
0.9 i
2 s ¢
0.8 1 3eil: 5 ° 5
el 8e H . g 2 | b3 ||b2|]|D3
0.7 oo
: °, 1 |[bo ||bL ||b4
0.6 T ;
i 7eili 1k 5 t2 3
05 - B ; Grid directory
1 4T o ifi
H e j:0
03 -+ 1
) : 2
: 10 e °
11 °
0.2 T ! 2
; 00]07]|10
01 _d vp i ; Yscale
""" g bt Sttt Mttt Wbl Ihthin AR St MAa
0 | - | - | | T 1 13 12
0 01 02703 04 05 306 07 08 09 1.0
1/ 3 i 2 ; 00030610
' l ' Xscale
7 9 10 1 11 2 4
block b0 block b4 block bl

e Insert p12 = (0.94,0.35):

— Locate cell:
x Take the x-value, 0.94, and use the Xscale to see which interval
it lies in
= lies in the interval [0.6,1.0]
= corresponds to column 2.

713



x Take the y-value, 0.35, and use the Yscale to see which interval

it lies in

= lies in the interval [0.0,0.7]
= corresponds to row 1.

— Retrieve Cell[2,1] of the grid directory.

— Retrieve the block it points to
= block b;.

— Block b; has space available
= insert point.

1.0
0.9
0.8
0.7
0.6
0.5
1 0.4
0.3
0.2

0.1

block b3 block b2
3 |8 5 |6
- .
1 3e 5 °
: 8e ° 2 | b3 ||[b2||P3
A S b4
| 4 1 bo bl
T . 5 : Grid directory
__E 9.5 E. 1205
L i1 i
: : 2
H [ ] N J
| 10etion . WE
00|07 10
_d : i ; Yscale
""" I i S e ] o M M M
| T | [ | | T 1 13 ]2
0 01 02/ 03 04 05 ".‘0.6 0.7 0.8 0.9':' 1.0
1/ 3 2 g 00|03 (0610
Xscale
7 [9 [10 1 |11 2 |4 |12
block b0 block b4 block bl

e Insert pi3 = (0.82,0.15):
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— Locate cell:

x Take the x-value, 0.82, and use the Xscale to see which interval
it lies in
= lies in the interval [0.6,1.0]
= corresponds to column 2.

x Take the y-value, 0.15, and use the Yscale to see which interval
it lies in
= lies in the interval [0.0,0.7]
= corresponds to row 1.
— Retrieve Cell[2,1] of the grid directory.

— Retrieve the block it points to
= block b;.

— Block by is full
= split block.

— No existing partition works.

— Clurrent = horizontal
= use horizontal partition so that half the points are in a block.

— For example, partition at 0.3.

— Add new row to grid directory.

— Update Yscale to contain new interval (with correct row number).
— Note: rows are out of order in Yscale.

— Current := vertical.
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block b3 block b2 block b5

3 8 5 6 4 12
10 T T
0.0 - H . i 3 |bo ||b5 ||ba
2 i 11 Lo
0.8 __E 3 .i H 5 6 \ E
R 8e e . Lo 2 | b3 ||[b2 ||b3
: ° : 1 | b0 ||bl |]|Db4
06 - 1 i v
3 i oili 1 | 1 2 3
05 T Grid directory
0.4 12 |
: 9l ‘e 1 S E o
0.3 ' o
H [ ] [ N H
: 10 11 il (] : 1 3 2
02 T~ i i EE) s
1 i i | 3 | 00| 03]07] 10
01 __: ; i i Yscale
""" i i Sttt it e ol Aot W M
0 1 [ 1 [ 1 1 (I TERE
0 01 02703 04 05 306 07 08 09 1.0
1/ 3 y 2 H 00|03 |06]|10
' I I Xscale
7 9 10 1 11 2 13
block b0 block b4 block b1

e Insert p4 = (0.05,0.12):

— Locate cell:
x Take the x-value, 0.05, and use the Xscale to see which interval
it lies in
= lies in the interval [0.0,0.3]
= corresponds to column 1.
x Take the y-value, 0.12, and use the Yscale to see which interval
it lies in
= lies in the interval [0.0,0.3]
= corresponds to row 1.

— Retrieve Cell[1,1] of the grid directory.
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— Retrieve the block it points to
= block by.

— Block by is full
= split block.

— The horizontal partition at 0.3 works.

— However, for the sake of creating an interesting example, we will
change the policy a little and use a fresh vertical partition.

— Clurrent = vertical
= use vertical partition so that half the points are in a block.

— In this case, use partition at 0.1.
— Add new column to grid directory.

— Update Xscale to contain new interval (with correct column num-

ber).

— Current := horizontal.
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block b3 block b6 block b2 block b5

s {s [ | [7 1o fao] [sfe[ | [4]12] |
10— —~— 1 7 T

5 00 - . 3 bo [ b5 || b4 || e
os | -V L
: : 8e | H ° S 2 | b3 b2 b3 b3
0.7 A e

; °, : 1 | bo ||[b1 |[b4 || b6
0.6 __i e 3 e 3 I ;

3 D 7ei H § 1 2 3 4
05 ¢ i}i Grid directory
04—+ i} 12 |

S & 9.5 iol : _________________________ o
0.3 ' o
H [ ] [ ] N H
: 10 11 o ° 5 1 |13 |2
1 0.2 % if: i il 2 ;
e . & i ° : 0.3
L Lieil ] 11 13 0.0 07|10
' 141 Yscale
Sl M el S e el AN W
0 7 1 1 - 1 1 T 1 14 [3 |2
0 {01 02 03 04 05 306 07 08 09 10
' Y ‘ 1
1} 4 3 | 2 ; 00|01({03]|06]10

Xscale

lal [ 2] f[o [1a] |
block b0 block b4 block b1

e Insert pi5 = (0.03,0.24):

— Locate cell:
x Take the x-value, 0.03, and use the Xscale to see which interval
it lies in
= lies in the interval [0.0,0.1]
= corresponds to column 1.
x Take the y-value, 0.24, and use the Yscale to see which interval
it lies in
= lies in the interval [0.0,0.3]
= corresponds to row 1.

— Retrieve Cell[1,1] of the grid directory.
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— Retrieve the block it points to
= block by.

— Block by has space available
= insert point.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

block b3 block b6 block b2 block b5
3 7 9 10 5 6 4 12
L 3 |bo ||b5 |[|ba |]|D6
: °
1 3e 5 °©
: 8e . 2 | b3 ||b2||b3 ||P3
RS S % S 1 |bo ||b1 ||b4 |]|DbE
; P i 4
: 7eili 5 to2z 3
T i ; Grid directory
uE i 12
905 iol __________________________ o
o ° S
- 10 11 ° 1 3 2
15 2
o ° 0.3
__E.E 13 0.0 0.71 1.0
14 ¥ : Yscale
Pyt [l S 1 el I 1 1 1
: T T T T T 7 1 2 3 >
0 : 01 02 03 04 05 06 07 08 09 10
' y ! 0.1
1.: 4 3 2 0.0 03 (06|10
: Xscale

laalas| | [o Jua]| Jlo [1s] |

block b0

block b4

block bl
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e Implementation details: Xscale and Yscale

— For example, consider Xscale.

— Recall: Xscale provides the mapping between intervals on the x-axis
and grid directory columns:

1 3 2 1 4 3 2
00(03]07]|10 00|01 ]03]06]|10
Yscale Xscale

— Implementation options:

1. Array implementation:
*x Fach array element would contain interval endpoints and a
row or column number, e.g.,

typedef struct scale_type {
int index;
double low, high;

s

scale_type *Xscale, *Yscale;

Xscale[2] .1low = 0.1; Xscale[2] .high = 0.3;
Xscale[2] .index = 4;

*x Advantages: binary search can be used while searching.

* Disadvantages: insertions (into array) require expansion of

array
= memory reallocation and copying overhead.

2. Linked-list implementation:
x Place Xscale elements in a linked-list.
* Advantages: insertion is efficient.

* Disadvantages: Search has linear cost. List needs to be cre-
ated every time the scale is read from disk.
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e Implementation details: the grid directory.

— Recall: the grid directory is a 2D-array that adds columns and rows
incrementally, e.g.,

b3
2 b0 b2 add column 3 2 b3 b2
—
1 |bo ||bl 1 |bo [|bl |]|b4
1 2 1 2 3
Grid directory Grid directory

— Implementation options:

1. Standard row-major order array:

* To implement row-major order, the row size has to be known
= number of columns is needed in advance.
« Initially, select a large enough array size and allocate space
for it.

x Note: when the desired array is small, space is wasted in
array blocks:

Array in use

wasted space

7 4

N

\

Disk block

« If array fills up, an expansion may be needed
= allocate new, larger array and copy over data.

* Advantages: straightforward implementation.
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*x Disadvantages: Reallocation and copying overhead during ex-

pansion. Inefficient use of space when array size is small.

2. L-order implementation:

«x Note: grid directory expansions can be quite irregular

= several column expansions in sequence, for example.

« The L-order implementation always adds both a row and col-
umn whenever an expansion is desired:

expand

« The array elements are stored in L-order:

6 36 |35 |34 (33 (32 (31
5 25 |24 |23 |22 |21 | 30
4 16 |15 | 14 | 13 | 20 | 29
— 3 9 8 7 12 | 19 | 28
2 4 3 6 11 | 18 | 27
1 1 2 5 10 | 17 | 26
1 2 3 4 5/\ 6

Access element [5,3]

16

1st block
of directory

17
18
19

32

2nd block
of directory

* To access element [5,3] of the array, we need to find the L-

order number corresponding to [5,3]
= L-order number is 19.

* The L-order number is used to fetch the correct block and

value within the block.

*x Advantages: if grid directory is small, it may occupy only a

few blocks
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= grid directory can reside in memory.

« Disadvantages: non-standard computation of array offsets.
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e Next, consider a nearest neighbor query:

— Example: consider the query ¢; = (0.75,0.65).
— First, locate grid cell:

x Find column using Xscale:
= 0.75 € [0.6,1.0]
= column 2.

x Find row using Yscale:

= 0.65 € [0.3,0.7]
= row 3.

— Retrieve grid cell [2,3]:
* Compute L-order number of [2,3]

= L-order number is 6.

x Retrieve item from grid blocks.
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1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

block b3

block b6

block b2

block b5

= block b5.

slsl | [z lofso] [slel | [alsz] |
—~ /3 oo |[os |[oa |[ o6
: ° S —
1 3e 5 °©
i ge . 2 |b3||b2|[b3 ||b3
__ """""" """"""""""""" q004 """" 1 | 6o blA b4 || b6
Bl I
—‘ Grid directory
T sl 2
_% 10eit e 2 """"""""" T3 |2
i ° .3 0003|0710
a4} . B : Yscale A
e gy [y |
0i01 02 03 04 05 306 07 08 09 10 sl R R
11 4 3 o 00| 01]03]06] 10
s ! Xscale /|\
[1alas] |2 [ma] {2 [13] |
block b0 block b4 block bl
Retrieve block pointed to by cell
Closest point in bs: py = (0.82,0.66).
d = dist(q, ps) = ((0.75 — 0.82)% + (0.65 — 0.66)2)"/> = 0.07.

Consider a square with ¢ as center and half-side= 0.07.
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block b3

block b6

block b2

block b5

s s | | Lz 1o [0}

s 1o | ] [als2] |

1.0 g
AR A S A [ [
0.9 | | 3 |bo |65 ||ba || b6
5 3e | 5 |
1 T
08 : 8e | o | 2 | b3 ||b2||Db3 ||P3
0.7 T T e ———— -
P ] i ot i 1 |bo |[|b1 ||b4a |]|Db6
06 1 if e e ; \
RS I I ; -0 /|\ 4
3 P 70} P | E 1 2 3
0.5 T R & : :
- i ;| ! a
L i L | s
04 T i & : 12 ;
9 o ) 1 o - _o__i
0.3 —forb s 1r ___________ 'r ___________
'y o:lie
Lo 10 11 A . I 1 3 2
1 o § | +13 00|03 |07/ 10
01 __'14 . : | | Yscale ll\ ll\
0 Sl Sl 1 i B I Tt T 1
H I I I ‘,‘ I I I :' 1 4 3 2
0 ':IO.l 02 03 04 05 06 (07 08| 09 1.0
1 4 3 B 2 ! 00)01(03|06]10
" Xscale

laalas| | [o fua]| Jlo [1s] |

block b0

block b4

block b1

— Find all the x-intervals covered by square
= only the [0.6,1.0] interval.

— Find all the y-intervals covered by square
= [0.3,0.7] and [0.7,1.0].

— Retrieve corresponding grid cells
= cells [2,3] and [2,3].

— Retrieve blocks pointed to by these cells
= blocks by and b;.

— Test against all points in these blocks
= py4 is closest.
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e Pseudocode for the variable-size case:
— We will assume Xscale and Yscale are implemented with arrays (for
ease of presentation).

— The nearest-neighbor query is considered, but code for range search
is omitted.

— The following functions are used:

* GRIDFILE-CREATE (xlow,xhigh,ylow,yhigh) — Create a new
gridfile given MBR of data set.

GRIDFILE-INSERT (p) — Insert the point p into the gridfile.

*

*

L-ORDER (7, j) — Find the L-order value of cell i, j.

*

GRIDFILE-FINDCELL (p) — Find the grid cell containing the
point p.

*

GRIDFILE-PARTITION (S, Sy) — Find a partition, using points
sorted by x-value and by y-value.

*

GRIDFILE-UPDATE-DIRECTORY (ptype,bnum,l,J) — Adjust di-
rectory entries for an existing partition.

*

GRIDFILE-EXPAND-DIRECTORY (ptype,pval,bnum,l,J) — Ad-
just directory entries for a newly created partition.

* GRIDFILE-NEAREST-NEIGHBOR (q) — Locate the data point
closest to the query point q.

— We will assume the grid directory is simply a list of blocknumbers
in L-order.
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Algorithm:  GRIDFILE-CREATE (xlow, xhigh, ylow, yhigh)

Input: MBR of region.
Output: First data block and first dir block, written to disk.

1.

© 0N otE W

Xscale[l].low := xlow;

Xscale[l1].high := xhigh;

Xscale[l].index := 1;

Yscale[l].low := ylow;
1]

Yscale|1|.high := yhigh;
Xscale[l].index := 1;
num_columns := 1;
num_rows := 1;
Current := vertical;

// Create new data block

. bnum := DISK-NEWBLOCK();
11.
12.
13.
14.
15.
16.
17.
18.

b := DISK-READBLOCK (bnum);

b —num_entries := 0;

D1sK-WRITEBLOCK (bnum);

Compute max_entries allowed in a block;

min_entries := |« % max_ entries| ; // Usually, o = 0.5

k := L-ORDER (1,1);

Set k-th entry of directory file to bnum and write to disk;
return,;
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Algorithm:  GRIDFILE-INSERT (p)

Input: point p.
Output: p is inserted into the gridfile.

A

© 0N

11.
12.
13.

14.

15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

// First, find cell and get appropriate data block.
(I,J) := GRIDFILE-FINDCELL (p);
(7,7) = (Xscale[l].index, Yscale[J].index);
k := L-ORDER (3,j);
bnum := k-th entry in grid directory;
b := DISK-READBLOCK (bnum);
// Check if space available for direct insert.
if b —»num_entries < max_entries;

Insert point in b and update b’s header;

DiSK-WRITEBLOCK (bnum);

return,;
endif;
// Otherwise, block needs to be split.

= {points in b} U {p};

Sx = SORT-BY-XVALUE (S);
Sy := SORT-BY-YVALUE (95);
// Find the partition.
(ptype, pval, I, J') := GRIDFILE-PARTITION (S, Sy);
// Create new block, assign points between old and new blocks.
bnum?2 := DISK-NEWBLOCK ();
b2 := DISK-READBLOCK (bnum2);
if ptype € {existing vertical, new_vertical}

for each p € Sy

if p.x < pval
put p in block b;
else
put p in block b2;

else // partition was horizontal

// Similar to above — code omitted.
endif;
// continued...
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Algorithm: GRIDFILE-INSERT ... continued

// Write the blocks and update directory.
25. DI1SK-WRITEBLOCK (bnum);
26. DISK-WRITEBLOCK (bnum?2);
27. if ptype = existing vertical
28. GRIDFILE-UPDATE-DIRECTORY (vertical, bnum?2, I'; J);
29. else if ptype = new _vertical

30.  GRIDFILE-EXPAND-DIRECTORY (vertical, pval, bnum, bnum?2, I'; J);
31. else if ptype = existing_horizontal

32. GRIDFILE-UPDATE-DIRECTORY (horizontal, bnum2, I, J');

33. else

34. GRIDFILE-EXPAND-DIRECTORY (horizontal, pval, bnum, bnum2, I, J);
35. return;

Algorithm: GRIDFILE-FINDCELL (p)

Input: point p.

Output: coordinates of the cell containing point p.
1. Find I such that Xscale[/].low < p.x < Xscale[l].high;
2. Find J such that Yscale[J].low < p.y < Yscale[l].high;
3. return (I, J);
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Algorithm:  GRIDFILE-PARTITION (Sy, Sy)

Input: sets of points Sy, Sy.
Output: partition type, partition, index into Xscale or Yscale.

A

© N

11.
12.
13.
14.
15.
16.
17.
18.

19.

20.
21.
22.
23.
24.
25.

26.
27.

// Try existing partitions first.
if Current = vertical
for I := 1 to num columns-1 do
pval := Xscale[/].high;
S" = {p € Sx : p.x < pval};
if |S’| >min_entries and |S — S’| >min_entries
// We’ve found a suitable partition.
Current := horizontal;
return (existing vertical, pval, I, 0);
endif
endfor
// Now try existing horizontal partitions.
for J := 1 to num rows-1 do
pval := Yscale[J].high;
S" = {p € Sy :py < pval};
if |S’| >min_entries and |S — S’| >min_entries

Current := vertical;
return (existing horizontal, pval, J, 0);
endif
endfor

else // Try horizontal first, then vertical;
// Similar to above - code omitted.
endif
// 1f existing partitions didn’t work, we need to create one;
if Current = vertical
pval := average of the two middle values in Sy;
Current := horizontal;
Find I such that Xscale[I].low < pval < Xscale[]].high;
return (new_vertical, pval, I, 0);
else // Find a new horizontal partition.
// Similar to above — code omitted.
endif; 731
return,;




Algorithm:  GRIDFILE-UPDATE-DIRECTORY (ptype, bnum, I, J)

Input: partition type, block number, Xscale or Yscale index.
Output: Change block pointer to bnum in appropriate cell.
if ptype = vertical
i = Xscale[l 4 1].index;
J := Yscale[J].index;
k := L-ORDER (i,7);
Change k-th entry in directory to bnum and write to disk;
return,;
else // Horizontal partition
// Code omitted — similar to above.
endif;

—

© 00N otE W
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Algorithm: GRIDFILE-EXPAND-DIRECTORY (ptype, pval, bnum,
bnum2, I, J)

Input: partition type and value, block number, Xscale or Yscale index.
Output: new row or column in directory.
1. if ptype = vertical
// Add a new column to Xscale, shift right.

2. num_columns := num_columns + 1;
3. for ¢ := num_columns downto 7 + 1;
4. Xscale[i] := Xscale[i — 1];
5. Xscale[I + 1].low := pval;
6. Xscale[[].high := pval;
7. Xscale[] + 1].index := num_columns; //New column #
// Next, we need to create a new column.
8. i := Xscale[l].index;
9. i’ := Xscale[I + 1].index;
10. for j := 1 to num_rows do
// Copy column ¢ to new column 7'
11. k := L-ORDER (i,7);
12. blknum := k-th entry in directory file;
// Replace each occurence of bnum with bnum?2.
13. if blknum = bnum
14. blknum := bnum?2;
15. k' := L-ORDER (7, j);
16. Write blknum to entry &’ in directory file;
17. endfor;
18. return,;

19. else // Horizontal partition.

// Code is omitted — similar to above.
20. endif;
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Algorithm: GRIDFILE-NEAREST-NEIGHBOR (q)

Input: query point q.
Output: closest point to ¢ in data set.
1. (I,J) := GRIDFILE-FINDCELL (p);
2. (4, j) := (Xscale[/].index, Yscale[J].index);
3. k := L-ORDER (4,7);
4 bnum := k-th entry in directory file;
5. b := DISK-READBLOCK (bnum);
6. p := closest point in b to query point g¢;
7. d := distance(p, q);
8. closest := p;
9. Create new blocklist B and add bnum to it;
10. Consider square S about ¢ with halfside=d;
11. Find all cells Cy = (i1, 41), - - -, Cp = (i, jn) that overlap S;
12. Sort list of cells by distance to g (using closest corner);
13. form := 1ton do
14.  if distance(C),,q) < d

15. k := L-ORDER (i, jm);

16. blknum := k-th entry in directory file;
17. if blknum ¢ B

18. Add blocknum to B;

19. p := closest point in blknum to g;
20. d" = distance(p, q);

21. ifd <d

22. d .= d;

23. closest := p;

24. endif;

25. endif;

26. endif;

27. endfor;

28. return (closest, d);
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11.14 Grid Files: Deletion

e Deletion operation: given a point, delete it from the grid file.
e T'wo approaches to deletion:

1. Lazy deletion:
— Locate point in data block:
x Identify correct grid cell.
« Retrieve block pointed to by cell.
— Delete point from block.
— Leave grid directory untouched.
— Periodically, rebuild entire grid file.
2. Full deletion:
— Locate point in data block:
% Identify correct grid cell.
* Retrieve block pointed to by cell.
— Decide whether block underflows (too few points in block).

— If underflow, then merge block with a suitable “neighboring”
block
= part of merging policy.

e Lazy deletion is straightforward.
= we will only consider full deletion.

e A merging policy involves

1. Deciding when a block underflows (and needs to be merged).

2. Deciding which (among several neighboring blocks) to merge with.

Note: it is not always possible to merge (see example below).
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e Consider the following example:

— Fixed-size cell version with the following points:

1.0
10

0.0

— Delete following points (in order): ps, p13, D6, P3, P14, P7, P10s P8, P11-

Block b3 Block b4
3 7 8
"""""""""""""""""""" Block b2
3 ° 5
___________________________________ IR R I N 6
------------------------------------------------- T T
g 5
a1 &
o i |-, Block b6
7. 4 5
B i 12|
o1gi | eifid? 2 5
P 10 i §: °
14 5 Block bl
o ' *13 g
Ad 2 |12 13
1 23 4 5 67 8 9 10
0.0} S ‘ 10
" Blockb0 . Blockb7 Block b5
14 | 15 9 |10 1 |11

— Merging policy:

* Merge when a block is less than half-full
= in this example, merge when a block has 0 or 1 points.

*x Among neighbors, pick the cell with the fewest points. If there

are several, pick in clockwise order starting from North.
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* Merging is triggered only by deletes.
e Delete p; = (0.74,0.23):

— Locate cell
= Cell[8,3].

— Retrieve block
= block b;.

— Delete from block b;.

— Block does not underflow.
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1.0
10

0.0

Block b3 Block b4
3 7 8
"""""""""""""""""""" Block b2
3 °
___________________________________ NPE T R -1 6
------------------------------------------------- @--fmmmeefeean
g 5
|
o Block b6
7. 4 5
| i 17
b R ¥ RS :
¢ 15 B i'll /] 2 ) ,
7 = Ay 7 Block b1
o ' ~—1e13 N
— 12 | 13
1i 2 3 4 5 67 8 9 10
0.0} S ‘ 10
" Blockb0 ™. Block b7 . Blockbs
14 | 15 9 10 1 11

e Delete p13 = (0.82,0.15):

— Locate cell
= Cell [9,2].

— Retrieve block
= block b;.

— Delete from block
= causes underflow.
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— Can merge with either block b7 or block bg.

= select bg (priority: start from North).

— Return block b; to free space.

1.0
10

0.0

Block b3 Block b4
3 7 |8
"""""""""""""""""""" Block b2
3 °
___________________________________ NPE T R -1 6
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e Delete ps = (0.82,0.87):

— Locate cell
= Cell [9,9].
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0.0

— Retrieve block
= block b,.

— Delete from block
= causes underflow.

— Among neighboring blocks (b3 and bs), b3 has the fewest elements
= merge with bs.

— Return by to free space.
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e Delete p3 = (0.55,0.81):
— Locate cell
= Cell [6,9].

— Retrieve block
= block bs.

— Delete from block
= causes underflow.

— Cannot merge with any other block
= retain empty block.
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e Delete p4 = (0.05,0.12):

— Locate cell
= Cell [1,2].

— Retrieve block
= block by.

— Delete from block
= causes underflow.

— Block by can only be merged with by.
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— Remove partition after column 1.

— Return by to free space.

1.0
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e Delete p; = (0.25,0.53):

— Locate cell

= Cell [3,6].
— Retrieve block
= block by.

— Delete from block
= causes underflow.

— Can’t merge with any other block.
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e Delete pi; = (0.03,0.24):

— Locate cell
= Cell [1,3].

— Retrieve block
= block b5.

— Delete from block
= no underflow.
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e Delete pip = (0.25,0.24):
— Locate cell
= Cell [3,3].

— Retrieve block
= block b;.

— Delete from block
= causes underflow.

— Can only merge with block bs.

— Remove partition after column 6.
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e Delete ps = (0.24,0.77):

— Locate cell
= Cell [4,8].
— Retrieve block
= block by.

— Delete from block
= underflow.

— Can only merge with block b5, but b5 is full
= retain empty block.
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e Delete p;; = (0.31,0.24):

— Locate cell
= Cell [4,3].

— Retrieve block
= block b5.

— Delete from block
= no underflow.
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e Delete p; = (0.35,0.37):

— Locate cell
= Cell [4,4].

— Retrieve block
= block b5.

— Delete from block
= causes underflow.
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— Merge with by.
— Remove horizontal partition after row 4.

— Return b4 to free space.

Block b3

1.0
10

7| i . ‘.. Block b6

6 | 1 14 |5

12

ol)

N —

.........................................................................

0.0

Block b5

e Implementation details: deletion

— There are two significant aspects to implementing deletion:

1. Merging blocks.
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2. Shrinking the grid directory.

These aspects differ in the two versions (fixed-size cells and variable-

size cells).

e Fixed-size cell version:

— Merging two blocks requires overwriting the cells of one of the blocks.

— Example: merge blocks b; and b5 below

1.0

0.0
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i b3} b3 [ b3 fb3 | b3 b3i}ib2| b2 [ b2 | b2 Block b2
b3} b3 | b3 | b3 b3| b3:fib2| b2 | b2 | b2t 16
bafvs [ bsa fbs |bs | bai}ine|be | b6 | b6:
ba§bs |bs §bs | bs |baifine|bs | b6 | b6t Block b6
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— To remove a partition, we need to keep track of partitions
= use array or linked-list.

— If the current set of partitions allow a coarser directory
= grid directory can be coarsened.

— Coarsening the directory is an expensive operation

= similar to refinement.

e Variable-size version:

— Merging requires adjusting elements in the grid directory.

— Example: merge by and b5
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— When a partition is removed, the grid directory can be reduced
= expensive operation.
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e Since collapsing the grid directory is expensive, it is often left in ex-
panded form.
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11.15 Grid Files: Summary

e The grid file is an index structure designed to support multikey queries.
e A grid file consists of:

— A grid directory.

— Grid scales (partitions).

— Data blocks.

— Meta-data such as the interval sizes, grid directory size etc.

e A grid file is a conceptual structure: several implementations are possi-
ble.

We have seen two:

— A grid file using fixed-size cells.

— A grid file using variable-size cells.
e Several varieties of insertion are possible:

— We alternated between vertical and horizontal partitions.
— It might be better to use more vertical partitions if the data tends
to be horizontally distributed.
e Likewise, several deletion strategies are possible.

Shrinking the directory during deletion is an expensive operation
= not worth implementing.

If deletions are not common, lazy deletion is a good option.
e For general data, grid files are useful for range searches.

e For geometric point data, grid files are also useful for nearest-neighbor
queries.
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Chapter 12

Geometric Query Processing

Course Notes on Database Systems
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12.1 Geometric Query Processing:
Introduction

e Query processing in relational databases:

— Query trees are transformed using relational algebra properties.

— Disk I/O is the chief metric.

— Several methods for efficiently implementing relational operators.
e Query processing in a geometric database:

— Query processing involves implementing geometric “operators”:

x Topological operators: e.g., containment, overlap (intersection),
disjunction
x Directional operators: e.g., southwest, above, below.
x Search operators: e.g., range queries, nearest neighbor queries,
spatial joins.
— Often, CPU costs are quite high
= 1/0 is not the only cost consideration.

— Currently, geometric query processing is only in the (early) research

stages.

e We will focus on fast algorithms for certain well-defined in-memory ge-

ometric computations
= problems in computational geometry.

e Examples of problems:

— Point location (polygon): given a query point ¢ and a polygon P, is
qe P?

— Point location (polygonal map): given a query point ¢ and polygonal
map (region) M, which polygon in M contains g7
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— Range search: given a query rectangle R and a collection of points
S, which points lie in R?

— Diameter: given a collection of points S, find two that are farthest
apart.

— Nearest neighbor (point): given a collection of points S and a query
point ¢, what is the nearest point to ¢ in S?

— Nearest neighbor (set): given a collection of points S, find the nearest
neighbor of each point.

— Intersection (pair): find whether two given geometric objects inter-
sect.

— Intersection (set): given a collection of geometric objects find all
pairs that intersect.

e Many of these problems come in two versions:

1. Single-shot: only a single query is given.

2. Repetitive-mode: several queries are to be handled.

For example, consider the point location (polygon) problem: given a
polygon P determine whether a given query point is inside P.

1. Single-shot version:
— Given a single query point ¢ and a polygon P consisting of n
points, is ¢ € P?
— Here, options are limited
= must process all points in P
= computation is at least O(n) (assume P has n points).

— Main question of interest: is there an algorithm that performs
no worse than O(n)?

2. Repetitive-mode version:

— Given a polygon and many query points ¢, ..., ¢n,, determine
which points are in P?
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— Here, we could treat each query point separately using the single-
shot algorithm O(n) times
= O(mn) for all the points.

— On the other hand, we can preprocess the polygon P (at cost

O(f(n))).
— After preprocessing, cost of answering a point query is O(g(n))
per point
= cost for all points is O(mg(n)).
— Example: f(n) =nlogn and g(n) =logn
= O(logn) per point query.

— Usually, there is also a storage cost to consider.
e Some useful definitions:

— We will consider the standard Euclidean plane IR

— A polygon is a collection of n vertices vy,...,v, and n (directed)
edges eq, ..., e, where
1. €; :Uivi+1,i: 1,...,n— 1.

2. e, = vpv1.
— A simple polygon is a polygon in which only successive edges inter-
sect:
=eNe;j=0ifj#i+1lorifi=mn,j#1.

4
(convex)

A polygon (not simple) A simple polygon

— Assumption: we will assume that all polygons henceforth are simple.

— Convention: vertices are numbered in counter-clockwise order.
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— A vertex is conver if its internal angle is no larger than 180°.

— A vertex is concave if its internal angle is larger than 180°.

— A conver polygon is a polygon with no concave vertices.

— 0P denotes the boundary of polygon P.

— For a point ¢, we will use either ¢ = (z¢, yo) or (¢.x, q.y) to denote

the individual coordinates.

e Example of implementation:

typedef struct point {

double x; // x-coordinate
double y; // y-coordinate
} point;

typedef struct polygon {

long n; // Number of vertices
point *v; // Coordinates of vertices
} polygon;
polygon P;

P->v = (point *) malloc (sizeof (point) * (4));
P->n = 3;

P->v[1].x = 0.0; P->v[1].y = 0.0;
P->v[2] .x = 1.5; P->v[2].y = 3.5;
P->v[3].x = 0.5; P->v[3].y = 4.5; // A triangle.
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12.2 The Point Location Problem:
Introduction

e We will consider the polygon version of the problem (the polygonal map

version is not much more complex).
e Single-shot version: given a query point ¢ and a polygon P, is ¢ € P?

e The Ray-Crossings method:

Polygon P

— Draw a line (ray) from ¢ in any one direction.
— Count the number of intersections with edges of P.

— If number of intersections is odd
= q€P
else
=q ¢ P.
— Why does this work?

x Picture walking along the ray from infinity towards gq.
« When you cross an edge for the first time, you are “in”.
*x Next time you cross an edge you are “out”.

x The next time, you are “in”, etc.
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o/
NV

/

e Details:

— Suppose the point ¢ has coordinates ¢ = (zg, yo).
— Which ray emanating from ¢ do we use?
= use y = ¢ (horizontal line) going right of ¢ (to +o0).

— How do we know which edges of P intersect with y = x(?
= must test each edge against the line y = x.

— What if intersection point lies to the left of ¢7 e.g., intersection with
edge e is to the left of ¢:

>

= must make sure intersection point is to the right of gq.
— What about degenerate cases?

x ray passes through a vertex;
x ray passes through an edge;
* query point is on an edge.

x query point is on an vertex.
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Here, the ray from ¢ passes through edge e and vertex v. Point ¢
lies on OP.

— Convention: ¢ € P if ¢ € OP.

— If ¢ is collinear with an edge but not contained in it
= ignore edge (in counting crossings).

— If ray passes through a vertex
= count as 2 crossings (each edge counts).

e To summarize: for each edge, make sure that at least one point is strictly
above (below) while the other point is on or below (above).
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e Pseudocode:

1.

2
3
4.
5

Algorithm: RAY-CROSSINGS (g, P)

Input: query point ¢, polygon P.
Output: true, if ¢ € P; false, otherwise.

num crossings := 0;
for each edge e = (u,v) in P
if e contains ¢
return true;
if (u.y > q.y and v.y < q.y)
or (u.y < q.y and v.y > q.y)
// Compute intersection point with ray y = q.x

¢ := INTERSECTION-POINT (g, e);
if cx > q.x
num_crossings := num_crossings + 1;
endif
endfor

if num_crossings is odd
return true;

else
return false;

e Algorithm complexity:

— Each edge is tested against the ray once.

— Each intersection computation is O(1)
= O(n) overall.

e The ray-crossings method is suited to the single-shot type of query.

Consider the repetitive mode, e.g., 5000 queries on a 10,000-point poly-

gon

= 5 x 107 intersection computations.
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12.3 Point Location Using 2D-Hashing

e For repetitive-mode queries, it is often better to organize the edges in
the polygon in some way
= reduce the number of tests per point.

e Key ideas in 2D-hashing;:

— Consider an imaginary grid superimposed on the given polygon:

10

10 //\

\//

14 12 .
! \ 7 L — [ °
15
6 < 13/ e

25

A 19</17 L
| YN

7
/
A\
5 l8>
p
/4
/\
\

1 2 3 4 5 6 7 8 9 10
— For each cell (bucket), identify the edges that intersect the cell, e.g.,

Cell [5,7]: edges 11, 12.
Cell [3,4]: edges 16, 21, 22, 23.

— For each cell, store the list of edges that intersect the cell
= the cell-list for each cell.
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— For empty cells, identify whether the cell is inside the polygon or
not.

— Given a query point g:
x Identify the cell containing the point.

x If cell is empty, determine location of point using location of cell
(inside or outside).

x Otherwise, test query point against all edges in cell-list.

*x Find closest edge and use it to determine whether q € P.

— Example: ¢ = (7.5,8.5):

10

10 //\

14 12

\//

7 ///\/ ,Sr/ ’
15
6 <\ 1!/ 7/
1R
S AN 2] ~ds
4 <\TA\ N 5‘—1

1 2 3 4 5 6 7 8 9 10
* ¢ lies in Cell [7,8].
* Cell [7,8] is empty.

* Cell [7,8] is entirely contained in P
= ¢ is contained in P.
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— Example: ¢ = (3.75,4.5):

10

8 11
N
14 12
8

7 ///\ » ; _— 9

15
6 < 1!/ e

N,

5 18 %

A

1 2 3 4 5 6 71 8
* ¢ lies in Cell [3,4].

* Cell [3,4] is not empty.

* Cell [3,4] has edges 16, 21, 22 and 23.

x Edge 23 is closest.

% ¢ is to the left of edge 23
= q € P.

e Preprocessing cost:

— Suppose we use a k X k grid.

— Each polygon edge intersects at most O(k) cells.

= O(k) insertions per edge
= O(nk) insertions overall.
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e Storage cost:
— O(k?) for the cells.
— O(nk) for the edges in the cell-lists.
e Query cost per point query:
— Worst-case, all edges hash to a single cell:
: /
~
\\l
3 P> o
Z—=a
-

: \

1 2 3 4

/\\{I_

Here, Cell [3,3] has all edges.
= ¢ must be tested against all edges
= O(n) worst-case.

— If the edges are somewhat uniformly distributed, then hopefully each

n

cell has approximately O({z) edges.
e Choosing k:
— To make O(7%) = O(1), we need k = O(y/n).

— Preprocessing cost: O(ny/n).
— Storage cost: O(n).
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e Sometimes it is better to use different partitions along x and y axes:

— Consider this example:

15 13 11 9 7 5 3

2
x n = 15 edges.
*x k=n=~4
= a4 x 4 grid:
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15 13 11 9 7 5 3

1 2 3 4

Each cell as at least 4 edges
= O(y/n) edges per cell
= query cost is O(y/n).
— Instead, suppose we use different x and y partitions:

x Let k, — number of x divisions.

* Let k, = number of y divisions.

+ Example: take k, = 8 and k, = 2 (in example above):

769



15 13 11 9 7 5 3

14 12 10 8 6 4
1

1 2 3 4 5 6 7 8
* 2 edges per cell in most cells = better!
— Intuition:

* Consider walking along 0P.
* You tend to walk a lot along the y-direction
x Thus, to separate out the edges thin long slabs are needed

= more divisions along x direction.

— A heuristic for choosing k, and k;:

* Consider an edge e with endpoints (zg,y9) and (z1,y1):

(x1,y1)

(x0,y0)
e e
x_e

x Define the projections:

A
Te = ‘1’1 - Io‘

1>

Ye \yl - y0|
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* Define the total horizontal (projected) length:
D, = ze: Te

* Define the total vertical (projected) length:
D, = 2 Ye

* Let L, and L, be the span of the polygon in the x and y direc-
tions, respectively.

* Thus, there will be more “y-travel” per unit-length if

= we want more x-partitions if

D, D,
< > -
L, L,

= take
k. D, / L,

* But we still want k,k, = O(n).

* Let o be a parameter associated with the algorithm.
* Then, pick k, and &, such that

k.k, = an

and
ﬁ D,/L,

k, " Dy/L,
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* This gives

L.D,)?
k, = {om y}

k, = {omL‘ZD”Z}

* Previous example (with o = 1.0):

L x=7

Y

| S
15 13 11 9 7 5

Ly=7.25

=Y

N
—
-

+ L, =7.0 and L, = 7.25.

- To compute D,:
edge 1 has length 7
7 odd-numbered edges have length 0.25
= 1.75
7 even-numbered edges have length 0.75
= 5.25
= D, =70+ 175+ 5.25 = 14.00.
- To compute D,:
edge 1 has length 0
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edges 2 and 15 have length 7.25

= 14.5
12 remaining edges have length 6.5 each
= 78
= D, =0+ 14.54+ 78 = 92.5.
- This gives

7.0 X 92.5
o= 415 % o
" { o 7.25 x 14.0

7.25 x 14.0) 2
k, = {15 x —— 2~ 77" _ 1
v { 0 x 7.0><92.5} >

}2 —9.78

- Thus, k; = 10 and &, = 2 are appropriate choices.
e Some implementation details:

— Use a 2D-array for the buckets (cells).
— Use a linked list to store the edges associated with each bucket.
— To create the hashtable:

* Find the minimum and maximum x values among all vertices.
* Find the minimum and maximum y values among all vertices.

x Create the boundary points for the grid
= essentially the MBR of the polygon.

— Process edges one by one.
— For each edge:

x Find out which cells are traversed by the edge.
* Add the edge to each such cell (bucket).

* For example:
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|/

/

1 2 3 a4
Edge traverses cells [1,1], [1,2], [1,3], [2,3] and [2,4].
— What about edges that pass through a cell crosspoint?

/

1 2 3 4

Insert in the edge lists of all adjoining cells.
Above, insert edge into cells [1,1], [1,2], [1,3], [2,2], [2,3] and [2,4].

774



— To process a query point:

*x Find the cell containing the query point.

x Fxample:

A kx =4
85 —+
2 [ )
45 ky =2
1
05 +
| ' | 2 | ® | ! |
I I I I ™

73 94 115 136 157
In this example (¢ = (12.6,6.4)):
- The grid boundaries are [7.3,15.7] (x-axis) and [0.5,8.5] (y-
axis).

-k, =4

= x-length of cell is 2.1.
ky =2

= y-length of cell is 4.0.
. 4 x-intervals: [7.3,9.4], [9.4,11.5], [11.5,13.6], [13.6,15.7).
- 2 y-intervals: [0.5,4.5], [4.5,8.5].
- To get x-interval: divided by interval length

12.6 — 7.3

= 2.52
2.1

= 3rd column.

- Similarly, the y-interval is given by

6.4 —0.5

= 1.475
4.0

= 2nd row.
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* Once the correct bucket (cell) is identified, there are two cases
to consider.

« CASE 1: The bucket has edges
- Find the closest edge to point.
- Recall: each edge is directed.
- Find out which side of the edge (left or right) the point lies.

- If point is to the left, it is inside the polygon. Otherwise, it
is outside.

- Why does this work?

query point is to the left query point is to the right
(inside the polygon) (outside the polyon)

Recall: the points are in counter-clockwise order.
« CASE 2: the bucket has no edges

- In this case, the bucket is either completely inside or com-
pletely outside the polygon.

- Use this to determine the location of the point.

Note: locations of empty buckets are identified during prepro-
cessing.

e Additional implementation details:

— How do we know whether a point is to the left of a directed edge?

— First, consider finding the area of a triangle:
Given 3 points A = (ag,ay), B = (bs,by),C = (¢, ¢y), the area of
triangle ABC is given by:

1
Area(A, B,C) = §(a$by — ayby + ayc, — azcy + bycy — bycy)
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— It turns out that if A, B and C are in counter-clockwise order, then
Area(A, B,C) > 0. In general:

Cc B

A A
Area(A,B,C) >0 Area(A,B,C) <0 Area(A,B,C) =0

— The area calculation can be used to see if point C' is to the left of
edge (A, B)
= C'is left of (A, B) if Area(A, B,C) > 0.
— Hence if we have a function double area (point A, point B, point C)

we can write

boolean left (point A, point B, point C)

{
return area (A,B,C) > 0;
+
boolean lefton (point A, point B, point C)
{
return area (A,B,C) >= 0;
+
boolean collinear (point A, point B, point C)
{
return area (A,B,C) == 0;
+

— Note: using integer coordinates will give exact results.

— A related issue: how do we check whether a point C is on the seg-
ment (A, B)?
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* See if C' is collinear with A, B.

« If so, check to see if C’s x-value is between A’s x-value and B’s
x-value.

— How does one check edge intersections?

x It is not enough to simply use line equations and analytic geom-
etry. For example:

c C
— B
__—8 A D
D
A
Equation of line AB intersects Segments intersect

but the segment does not.

x For proper intersection:
- Segment C'D forces A and B on different sides of C'D.
- Segment AB forces C' and D on different sides of AB.

* Suppose we have a function called area_sign() that returns the
sign of the area of a triangle.

« Then, for proper intersection we want:
1. area_sign(A,B,C) * area_sign(A,B,D) < 0 and
2. area_sign(C,D,A) * area_sign(C,D,B) < 0.

*x Note: the above conditions don’t allow collinearity:

Cc

D
A

Here, B is collinear with C, D.

x Thus, to include collinearity of one endpoint as part of proper
intersection, a separate test is needed.
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12.4 Point Location: The Slab Method

e One of the most effective unidimensional searching methods is binary
search.

Binary search requires organizing the data (sorting) to suit binary search.

e Main idea behind the slab method: organize the data (polygon vertices
and edges) to facilitate binary search.

e Key ideas:
— Construct the polgon’s MBR.

— Pass a horizontal line through each polygon vertex.

" 4 L g

— The lines partition the MBR into horizontal slabs.
— Each slab is a collection of trapezoids ordered left to right.

— The trapezoids are horizontal trapezoids: the two parallel edges are
parallel to the x-axis.

— Some trapezoids are triangles: one side has zero length.
— Each trapezoid is either completely inside or completely outside the

polygon.
— Suppose we have identified the status (inside or outside) of each

trapezoid.
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— To process a point query g = (2, o):
« Identify the correct slab.
x Search for the proper trapezoid within the slab.

* Return status of trapezoid (inside or outside).
e Details:

— Use binary search to identify the correct slab
= slab intervals must be stored in an array.

— To construct slab array, the vertices of P need to be sorted by y-
value.

— For each slab, we need to know which polygon edges cut through
the slab:
«x Maintain an array of edges for each slab.
x Process polygon edges one by one.
x For each edge, check which slabs it intersects.
* Add edge to that slab’s array.

— Edges within a slab have to be ordered left to right
= sorting needed.

— In sorting edges, we need to “compare” two edges. How?

« While placing edges in a slab’s array, find intersection point with
mid-line of slab.

\V

Mid-line of slab s6 Edges are ordered by these
intersection points
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* While processing edges in a slab, sort by these intersection
points.

— Use any non parallel edge to determine if a trapezoid is inside or
outside.

/

Trapezoid is outside (left edge goes up)

— For each trapezoid, store left and right edges.
— To determine if a point is inside a particular trapezoid:

« Check intersections of trapezoid edges with the line y = yy.

« If intersection points are on either side of point
= point is inside.

\Mme side of g

Intersection points on either side of q

— Given a query point ¢ = (zg, yo):
x Use binary search with yy to find correct slab.

x Use binary search with zg, yo to find correct trapezoid.

*x Return status of trapezoid.
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e Preprocessing time:

— O(nlogn) to sort vertices by y-value.

— Each edge may pass through O(n) slabs

= O(n?) insertions into slab arrays.

— Each slab may have O(n) trapezoids
= O(nlogn) to sort within a slab
= O(n%logn) to sort all slabs.

— Identification for each trapezoid takes O(1) time
= Overall, O(n?).

Thus, preprocessing time is O(n?logn).
e Storage cost:

— O(n) slabs
= O(n) intervals.

— Each slab may have O(n) trapezoids
= O(n?) for trapezoids.

Thus, O(n?) storage is needed.

Worst-case example:

3 trapezoids

5 trapezoids
7 trapezoids
9 trapezoids
11 trapezoids

I 13 trapezoids
11 trapezoids
9 trapezoids
7 trapezoids
5 trapezoids
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By adding more zig-zags between u and v, additional slabs can be added.

Total number of trapezoids is of the order

(const) B+5+7+...)
= O(n?)

e Query cost:

— O(logy n) for binary search among slabs.

— O(logy n) for binary search within a slab.

= O(logyn) overall.

Note: the constant is small: 2[log, n] steps for search.

e Summary:
— Preprocessing: O(n?logn).
— Storage: O(n?).
— Query: O(logn).

e Can we do better?

— It’s unlikely that query time can be improved (Improvement would
result in faster unidimensional search).
— Storage cost cannot be improved for this method.
— What about preprocessing?
x Consider two adjacent slabs.

* Once we’ve sorted one slab (takes O(nlogn) time), how much
time does it take to sort the next one?

* Currently, O(nlogn).

x However, how different are the two slabs?

« If they are similar it should be possible to use that information
to reduce sorting time.
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12.5 Plane Sweep

e Plane sweep is a fundamental method in computational geometry
= useful as part of several algorithms.

e For simplicity of presentation, we’ll first consider polygons with unique
vertex y-values
= no two points lie on the same horizontal line.

e Key ideas:

1

— Consider a horizontal line above the polygon.

— Picture moving the line towards the lowest point of the polygon.
— Stop the line (temporarily) at each vertex the line encounters.

— Some processing occurs at each stop.

— Example: above the line starts by sweeping down from vertex 5.
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Next stop in sweep is vertex 3.
= vertices are visited in the order: 5,3,6,4,2,7,1.

— Notation: let vj; denote the vertex encountered in the i-th stop of

the plane sweep.
= U = 5,1)[2] = 3,...,1)[7] = 1.

— Each stop is a slab boundary.

— At each stop: create the correct order of edges (left-to-right) in the
slab immediately below.

1

— Example: when the sweep is at vertex 3, the second slab is processed.
— Denote the ordered list of edges for slab 7 by L.

= e.g., Ly = e5,eq4,€3, €.
— The key observation:

* Suppose we have created Ly at the i-th stop in the sweep.

* Next, we want to create Ly q).
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* Question: how different is Ljj,q) from L;?

* Answer: not much!

— Example:
* Li3) = eg, €4, €3, €3 (in that order).
* Now sweep down to vy = 4.
* Ly = eg, €2.
* Observe: to get Ly from L3, remove ey, 3.
= ey4, e3 are the edges incident at vyy).

*x Note: both ey and e3 go “up”.

1

— Example: Consider the sweep from vy =5 to vy = 3.
* L[l] = €5, €4.

* L[Q] = €5, €4, €3, €2.
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x Here, we added e3, es.

* e3, ex are incident to vy

x Note: both e3 and ey point “down”.

— Example: Consider the sweep from vjg = 3 to vz = 6.
* Lo = €5, €4, €3, €2.
* L3 = eg, €4, €3, €2.
x Here, we deleted e; and added eg.
x Note: eg points up, e; points down.
— Thus, at each step in the sweep, one of three cases occur:

1. Both incident edges are above the vertex:

Sweep line

= delete e, €' from current list.

2. Both incident edges are below the vertex:
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Sweep line

= add e, ¢’ to current list.
3. One edge is above and one is below:

Sweep line
e1

= delete e, add €'.

— Note: when edges are added, they have to be added at the right
place (to maintain left-to-right order).

e Complexity:
— At each step in the sweep, we need to find the right place in current
list
= O(n) work at most (since list can have O(n) elements).

— Once we’ve found the right place, adding and deleting takes O(1)
time.
— n vertices in sweep
= O(n?) overall.
— Thus, using plane sweep speeds up preprocessing for the Slab
Method from O(n?logn) to O(n?).
— Note:

x By using a height-balancing tree to represent the current list,
the plane sweep can be done in O(nlogn) time.
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* Insertions and deletions cost O(logn) in a height-balanced tree.

* Examples of height-balanced trees: AVL trees, red-black trees,
2-3 trees.

— However, it does not help in the Slab Method, since O(n?) work is
needed to build the slab arrays.

— Implementation using a height-balanced tree is more complex than
implementation with a simple list.

e Some details:

— How do we decide whether e is left of ¢’?

no relation between e and €’

e is left of €’

e is left of e’

no relation between e and €’

— To decide the relation between two edges
= compare the x-values of the points of intersection with sweep
line.

— Note: intersection computation is O(1).

— Handling horizontally collinear points is more complex:

10 9

sweep line

5 trapezoids

In the example above:

x Fach collinear point is handled separately.
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Point vq1: delete ey, add eq.
Point vg: delete eg.

Point v7: add eg.

Point v5: add e;5.

Point v4: no action.

Point v3: add es.

T T R

Observation: horizontal edges are ignored (they are not needed
for the trapezoids).

e Plane sweeps and topological sorts.

— Suppose we use the notation (e;, e;) to denote e; is left-of e;.

— Note that the left-of relation is a partial order.

L[1] =eb, e4

L[2] =e€b, e4,e3, e2
L[3] =e€6, e4, e3, e2

__L[4] =e6,e2
2 L[5 =e6,el

L[6] =e7,el

— Example: for the polygon above

* In creating L) = es, e4, the pair (es, e4) is added to the relation:

* In creating Ly = e3, e4, €3, €2, the pairs (e3, e2) and (e4, e3) are
added to the relation:

(=)

* In creating L3 = eg, €4, €3, €2, the pair (eg, e4) is added to the

relation:
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* In creating Ly = eg, €2, nothing is added.

—

eg, €1, the pair (eg, e1) is added:

x In creating L

—

3]

er, e1, the pair (e7, eq) is added:

x In creating L

—

6]

— The Directed Acyclic Graph (DAG) thus created can be processed
in O(n) time to create a topologically sorted list.

— How?
1. Visit (any) leftmost node.

2. Print the node and delete it from the DAG.
3. If DAG is not empty, go to 1.

— Example: es, eg, €7, €1, e4, €3, €9.
— The list is not unique.

— Property of list: if e; precedes e; in the list and a sweep line passes
through both, then e; is left-of e;.

— Topologically sorted lists are useful in other geometric algorithms.
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— Note: it takes O(nlogn) time to create a topologically sorted list
(O(log n) per tree operation, O(n) for topological sort).
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12.6 The Trapezoid Tree

e Recall: the slab method takes up O(n?) space
= too much for some applications.

e Example: n = 10,000
= n® = 10"
= may not fit into memory.

e The trapezoid tree
— uses O(nlogn) space;
— requires O(nlogn) preprocessing time;
— handles queries in time O(logn).
This is close to optimal:
— O(n) space;
— O(nlogn) preprocessing time;
— O(logn) per query.
However, creating a trapezoid tree is a bit complicated.
e Key ideas:

— Consider the drawback of the slab method:
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3 trapezoids

5 trapezoids
7 trapezoids
9 trapezoids
11 trapezoids

13 trapezoids
11 trapezoids
9 trapezoids
7 trapezoids
5 trapezoids

this edge appears in too many slabs

Long edges span several slabs.
— The slab decomposition is a flat one.
— The trapezoid tree uses a hierarchical decomposition:
x The polygon is broken down into smaller and smaller trapezoids.
x It avoids having the same edge show up in too many trapezoids.
— Example (to give the general idea):
« First, the polygon is enclosed in an MBR:

1 trapezoid Z0

1 2

« The MBR is itself a trapezoid - we will call this Z.
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x Trapezoid Z is partitioned via a horizontal line into two trape-
zoids, Z; and Zs.
x The horizontal line goes through the median y-value in %

= vertex 3.

g U e :
: trapezoid Z1+" :

5

Sl g e R

trapezoid Z0's
median line

trapezoid z2 <

1 2
«x Each sub-trapezoid is processed recursively.
x To process the upper trapezoid Z;:
- Look for edges that span the whole trapezoid.
- Edges e; and eg span Zj.
- Use these edges to vertically partition 2
= creates 3 sub-trapezoids: Z3, Z4, Z5:
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trapezoid Z1

1

x Now process each of Z3, Z4, Z5 in turn.
% /3 is empty = no further processing needed
= simply determine whether Z3 is inside or outside P
= Z3 is outside.
% /4 is empty = no further processing needed
= simply determine whether Z3 is inside or outside P.
= /4 1s inside.
x /5 is not empty = process it recursively.
x Note: the trapezoids are drawn slightly inside their actual
boundaries for emphasis.
x Split Z5 horizontally by passing a line through the y-value of its
median point.
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Z3 Z5's median Iine’

1

x This creates trapezoids Zg and Z7.
x g is empty
= it is outside P.

x /7 is first vertically partitioned by all the edges that span Z7
vertically.

7

I

Z3

3

1

x This results in trapezoids Zg, Zg, Z19.
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*

*

*

*

Zs is empty and outside.

Zg is empty and inside.

Z1p is empty and outside.

This completes the processing of the first upper trapezoid, Z;.

The original lower trapezoid, Z remains to be processed.

Zy is spanned by edges e; and e

= Z is vertically partitioned into three trapezoids Z11, Z12, Z13.

7

trapezoid Z2

Z11

712

Z13

1

Of these, Z11 and Zi3 are empty.

Z11 1s outside.

Z13 18 outside.

Z19 is partitioned horizontally by its median y-value

= upper trapezoid Zi4, lower trapezoid Zi;.
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Z13

211 714

........................ T, A T T

/ZlZ’s medié{n line 215 \

1

x /15 is empty and inside.

* /14 needs further processing.

x /14 1s spanned by edges e; and eg
= vertically partition into Zi4, Z17, Z1s.

e

N

LY

1

x /16 is empty and inside.

x /17 is empty and outside.
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* /13 is horizontally partitioned
= upper trapezoid Zi9, lower trapezoid Zy.

7

Z11 Z16

215 Z18's median line

1
x 19 is empty and inside.
x /9o is spanned by edges ez and ey
= vertically partition into Zs1, Z99 and Zs3:

7

/ 713
z17 722
z11 716
721 793

Z15
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— What good is it to decompose a polygon into a trapezoid hierarchy?

— A decomposition is useful if it helps with searching
= try to represent decomposition in a tree.

— First, let’s consider a straightforward “containment” tree:

x Initially, Z, was decomposed into Z; and Zs
= create a root Zy with children Z; and Zs:

g QR ———n——— e, RO :
trapezoid Z1+" :

5

Sl g e R

trapezoid Z0's
median line

trapezoid z2 <

* 7 is partitioned (vertically) into Z3, Z4, Z5:
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trapezoid Z1

z

|zs | |z4 | |25 |

* We could continue in this fashion until the whole tree is built.

« Unfortunately, this approach does not bound the degree of a tree
node, for example:

trapezoid Z

In this case, the trapezoid shown decomposes into too many
“child” trapezoids

= a node can have O(n) children in the tree

= cannot provide O(logn) search time.
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— The solution is to limit the degree of each node, e.g., at most two
= binary tree.

— To handle cases like the above one, simply create a balanced tree:

create a 1 balanced tree

74 Z10

72 |25| |28| |212|
[z | (=] [z

— Once a tree has been created, how are queries processed?

x The coordinates of a query point are used to navigate down the
tree.

x The leaf level contains empty trapezoids.
«x Each trapezoid is either inside or outside the polygon.

x The status of a query point is the status of the leaf-trapezoid it
lies in.
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— Note:

x Some trapezoids were partitioned vertically; others horizontally.

x Consider a horizontal partition:

R QU e :
: trapezoid Z1+

5

......................................................................................................................

trapezoid Z0's
median line

trapezoid 22 <

Horizontal partition R Based on vertex 3

Z0 |[H|3

x To decide which subtree
= compare y-value of point with y-value of partition line
= use y-value of vertex 3.
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*x Next, consider a vertical partition:

7
Z3 75
5
.
Z4
N 3
trapezoid Z1
4
1
I Z0 |H|3
Z1 | V|6
/ \ edge 6 forms a vertical partition
V|7 Z5 |H|5
¥ edge 7 forms a vertical partition
Z3 | L Z4 | L
- r leaf

« To decide which subtree, see if point lies on left or right of edge
segment.
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e Implementation: key ideas

— Recall:
« The polygon is hierarchically subdivided into trapezoids.

* A division is either horizontal (using a median y-value) or vertical
(using a spanning edge).

« If more than one edge spans a trapezoid, a balanced subtree
needs to be constructed.

x The initial trapezoid is the MBR.

x The initial trapezoid is the root of the tree.

— We will write a recursive function
root := MAKE-TRAPEZOID-SUBTREE (Z))

such that the tree is obtained using the initial trapezoid Z.

left subtree right subtree

— This function will create the left and right subtrees recursively.
— Data needed for each trapezoid Z (to process it):

x /’s boundary:

Z .top top parallel line of Z

Z .bottom bottom parallel line of Z

Z leftedge  the polygon edge that forms Z’s left edge
Z .rightedge the polygon edge that forms Z’s right edge

x /.n — The number of polygon points in Z.
x Z .v|[1],...,Z.v[Z.n] — the polygon points in Z.

x /.edgelist — polygon edges that pass through the interior of Z,
topologically sorted.
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e Version 1.0 of MAKE-TRAPEZOID-SUBTREE:

MAKE-TRAPEZOID-SUBTREE (Z)
if 7 is empty
— create a leaf node
— check containment in P
— return leaf node pointer

endif

// Otherwise, proceed with partition
Find median vertex in Z
Create upper and lower trapezoids Zy and Zp,
// Process edges in Z’s edge list
for each edge e = (a, b) in Z.edgelist
// Test e with respect to Zy:
if a or bisin 2y
insert in Zy;’s vertex list
if e spans 2y
// Create new trapezoid recursively
— Treat e as right edge of trapezoid Z
— Create Z’s edgelist and vertex list
endif
// Test e with respect to Zp:
// Similar to above
endfor

Note:

— Trapezoids in for-loop are created left to right.

— By scanning the edges left to right, we will have the edge list for
each trapezoid by the time the trapezoid’s right edge is scanned.
= this is why we keep the edges in a topologically sorted list.
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Consider the for-loop:

— When the tree node for Z is created, what is done with it?

— If several edges span Zy, we will end up with a collection of (inde-

pen

— These subtrees have to be placed in a balanced tree
= balancing mechanism needed.

— Balancing must be done after the for-loop.

dent) subtrees in the for-loop.

e More about balancing;:

— Consider an example:

*

E S

Z U

Z1

Z4

upper
trapezoid

e3

zZL .
lower trapezoid :5

Z's median line

Here, trapezoid Z has been horizontally partitioned into Z; and

Zr. (Only Zy is shown).

Zy has edges e3o and ey for left and right sides.

Edges es7, €19, €7 and ez are spanning edges.

The spanning edges create 5 subtrapezoids.

These trapezoids are placed in a balanced tree.
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x For example, the balanced tree could turn out to have ejg as
root:

el9 |V

Lz v ] [ 1v] ]

x This would become a subtree of Z:

|e27|V|

* Note that Zy is only a transient trapezoid (not actually appear-
ing in the tree).

x Another way to think about it:

— Now, the trapezoids Zi,...,Z5 are recursively created in the for-
loop
= 7 (could be a huge tree) is created before Z3.

— But, balancing needs to be done later — after the for-loop.
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— What to do:

* Create a list of subtrees (one for Z;, one for Z; etc) while inside
the for-loop.

« Use list as input to a balancing algorithm outside the for-loop.
— Note that some tree nodes are “edge” (vertical) nodes.
— Thus, list should contain these edges.
— We will create a balance-list inside the for-loop:

* A balance-list is a (linked) list of items.

x Each item is either a spanning edge or a trapezoid tree node.

— Example (above):

node

node

node

node

trapezoid edge trapezoid edge trapezoid
node node node node node
Z1 e27 z2 el9 Z3

edge trapezoid edge trapezoid edge

node

e7

Z4

e3

Z5

e2

e Version 2.0 of MAKE-TRAPEZOID-SUBTREE:

MAKE-TRAPEZOID-SUBTREE (Z)
if Z is empty
— create a leaf node
— check containment in P

— return leaf node pointer
endif

// Otherwise, proceed with partition

Find median vertex in Z

Create upper and lower trapezoids Zy and Zp,
Create a left-balance-list and right-balance-list
// Process edges in Z’s edge list

for each edge e = (a, b) in Z.edgelist
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// Test e with respect to Zy:
if a or nisin 2y
insert in Zp’s vertex list
if e spans 2y
// Create new trapezoid recursively
— Treat e as right edge of trapezoid Z
— Left edge of Z := current_left_edge
— temp_node := MAKE-TRAPEZOID-SUBTREE (Z)
— add temp_node to left-balance-list
— Make an edge node out of e and add to left-balance-list
— current_leftedge = e
endif
// Test e with respect to Zp:
// Similar to above, except use right-balance-list
endfor
// Now create root of subtree and balance the two lists
Create root of subtree R
R.leftchild := BALANCE (left-balance-list)
R.rightchild assn BALANCE (right-balance-list)
return R

e Details: should points on the boundary of a trapezoid Z be included in
Z’s vertex list?

median?

\ \ include this? \

Convention:

— Do not consider points on top and bottom sides of trapezoid.
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— Do consider points on left and right sides.

e Details: Creating the initial trapezoid Z

top

‘ polygon P

i bottom

left boundary edge

right boundary edge

— Create MBR.

— Some MBR edges are not in P.
— Assume P’s edges are eq,...,e,.
— Create special codes for

x left boundary edge
x right boundary edge

These will be needed in trapezoids.
— Only need y-values of top and bottom edges of MBR.
— To create Zy’s edgelist
= use plane-sweep to topologically sort edges in P.
e Details: what does a tree node contain?

Suppose Znode is a tree node.

— Znode.leaf — A boolean indicating whether Znode is a leaf.
— Znode.vertical — is this a vertical or hortizontal partition?

— Znode.ymedian — if horizontal, we need the y-value of the hortizontal
partition.
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— Znode.edge — if vertical, we need the spanning edge.
— Zmnode.leftchild — pointer to left subtree.
— Znode.rightchild — pointer to right subtree.

e Details: balancing a balance-list

— Recall: a balance-list is a (linked) list of tree nodes.

— Each node is either the root to a subtree or a spanning edge, alter-
nating in the list.

— Let’s use the notation: Zie12ses ... Zse;.
— We need to create a balanced tree out of this list.

— Note: each Z; is a subtree (itself containing trapezoids etc). Thus,
it is better to think of the list as:

— Observe: subtrees can be of different sizes

= must take sizes of subtrees into account while balancing.
— Define:

Z.node_weight = 1, if Z was horizontally partitioned
1, if Z is a leaf trapezoid
0, otherwise
Z .weight = Z.node_weight
+ Z leftchild—weight
+ Z.rightchild—weight.

Informally: Z’s weight is the number of leaf trapezoids plus the
number of non-edge nodes in the subtree with Z as root.

— In balancing, we create a weight-balanced tree.

— To create the tree from the list Zie; ... Zrep:
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x Find the smallest m such that

weight(Z;)

mn 1
> weight(Z;) > 5
' 1

k
Z:]_ =

7

* Create a tree rooted at e;,_1 (a vertical node):

€m-1
balance (Z o €
( 1€, ,Zm_lem_l) /m\
[recursive call] Zm balance (Z ML EmMAL b Zk er )

[recursive call]

x Note: several special cases exist for bottoming out of the recur-
sion.

e Pseudocode:

Algorithm: MAKE-TRAPEZOID-TREE (P)

Input: polygon P.
Output: root of trapezoid tree
1. R := CompuTE-MBR (P);

2. Z.top := R.topright.y;

3. Z.bottom := R.bottomleft.y

4. Z.leftedge := LEFTMOST-EDGE-OF-MBR;
5. Z.rightedge := RIGHTMOST-EDGE-OF-MBR,;
6. Z.edgelist := TOPOLOGICAL-SORT (P);

7. Add Z.rightedge to Z.edgelist;

8. Z.v := NONBOUNDARY-VERTICES (P,Z);

9. root := MAKE-TRAPEZOID-SUBTREE (Z);
10. return root;
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Algorithm: MAKE-TRAPEZOID-SUBTREE (Z)

Input: Trapezoid Z.
Output: Root of subtree containing Z and its subtrapezoids.

1.

NS U N

©

10.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.
24.
25.
26.
27.
28.

R := Z’s parameters (top, bottom etc);
if Z.n =0 // Empty trapezoid = recursion ends

R.weight = 1;
R.leaf := true;
R.inside := CHECK-INSIDE (Z);
return R;
endif
// Otherwise, create horizontal cut
ymedian := MEDIAN-VERTEX-Y VALUE (%);

Initialize trapezoids and balance-lists;
for each edge e = (a,b) in Z.edgelist
// Check top trapezoid
if a above ymedian add a to Zy;
if b above ymedian add b to Zy;
if e spans 2y
Zy.leftedge := current_leftedge;
Zy.rightedge = e;
Add e to Zy.edgelist;
r = MAKE-TRAPEZOID-SUBTREE (Zy);
Add r to left-balance-list;
Add e to left-balance-list;
current_leftedge := e;
Reset Zy;
endif
// Check bottom trapezoid Zr. Similar to above — omitted
endfor
R.leaf := false;
R.leftchild := BALANCE (left-balance-list);
R.rightchild := BALANCE (right-balance-list);
R.weight := 1 4+ R.leftchild—weight 4+ R.rightchild—weight;
return R;
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e Most other functions are straightforward. Only BALANCE() is a little
complex:

— BALANCE can be written recursively.
— Several special cases for ending recursion have to be considered:
1. Balance list is empty
= return null pointer.

2. Balance list is a single trapezoid Z
= create a leaf node and return it.

3. Balance list: Zjeq

= return
€1
PN
Zl null
4. Balance list: Zie1Z9e9
= return
€1
N .
Zl 2
Zz/ \ null
5. Balance list: 216122€2Z3
= return
€1
N,
Z; 2
ZZ/ \Zg

6. Remaining cases use recursion:

(a) Balance list: Ziey ... Zn-16m-1Zmem - - - Z1ey

= return
€m-1
e
balance (Z ; e Lo A ) / m\
[recursive call] Zm balance (Z n+1€ms1 o+« - - » Zk ek )

[recursive call]
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(b) Balance list: Z,,e,, ... Zre, (m turns out to be 1)
= return

€m

/N

Zm balance (Z m+1€m+1 + - - - » Z ek )

[recursive call]

(c) Balance list: Zje; ... Zpe, (m turns out to be k)
= return

balance (Z1 e1 ..., Zn-1€m-1) Zm

[recursive call]

e Why does it all work?

To show that query time is O(logn), it is sufficient to show that any
path from root to leaf in the tree is of length at most O(logn).

Consider the path from the root to any leaf node.
— How many horizontal-partition nodes can we encounter along the
way?!

x The first H-node encountered cuts the number of points by half
(approximately).

* This (half) set is further cut in half by the next H-node...etc.

* You can successively partition at most [logn] times.

— What about vertical nodes?
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— Note that a single edge can be revisited many times on the path:

leaf trapezoid

this edge could be revisited
several times

A trapezoid
subtrapezoids

— How many times can a single edge be revisted?
= worst-case, as many times as it is cut horizontally
= at most [logn]| times.

— How many different edges can we visit?

« Every time we visit an edge, we go into either the left or right
space partitioned by the edge.

* This partitioning (with n edges can occur at most O(logn) times
by the balancing mechanism.

* Since balancing can result in an error by +1, it’s at most 2[logn|.

— Some of these edges could be revisted (O(logn) visits per edge)
= O(log®n) overall?

— No! The total number of revisits cannot exceed the number of hor-
izontal cuts
= [logn] revisits overall.

— Thus, path length < 4[logn]
Thus, we’ve shown that

— Query time is O(logn).

— Storage is O(nlogn).
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What about preprocessing time?

— O(nlogn) for the topological sort.

— If we ignore the for-loop in MAKE-TRAPEZOID-SUBTREE, only O(1)
work is done per node creation
= O(nlogn) work overall.

— Consider the total work done over all executions of the for-loop:
x It is bounded by the number of edge-fragments created.
* O(1) work per edge-fragment.
* But an edge is fragmented at most [logn] times.

* Therefore, n edges are fragmented at most n[logn] times
= O(nlogn) work overall.

Thus, preprocessing is O(n logn).
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12.7 Point Location: Summary

e Summary of methods covered:

— Ray-Crossings Method:
x O(n) per query.
* O(n) storage (only for polygon).
* No preprocessing.
« Ideal for single-shot query.
— 2D-Hashing:

* O(1) per query (average, with uniform assumption), O(n) worst-
case.

x O(n) storage (average, with uniform assumption), O(n?) worst-
case.

* O(ny/n) preprocessing (average, with uniform assumption),
O(n?) worst-case.

*x Fasy to implement, practical.
— Slab-Method:

* O(logn) per query.

x O(n?) preprocessing.

x O(n?) storage.

x Easy to implement.

« Too much storage required for large n.
— Trapezoid Method:

* O(logn) per query.

* O(nlogn) preprocessing.

* O(nlogn) storage.
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*x Implementation more complex.

* Good worst-case efficiency.
e Other methods:

— Triangulation-Tree Method:
* Triangulate polygon (can be done in time O(n)).
x Use coarse triangulations higher up the tree.
* O(nlogn) preprocessing.
* O(logn) per query.
* O(n) storage.
= optimal!
* Much more complex to implement than Trapezoid Method. (Tri-
angulation is difficult to implement).

— Persistent-Tree Method:

x Also optimal.

x Complex implementation.
e Current research:

— Data structures for point location that allow insertion and deletion
of edges and points.

— Practical, easy-to-implement and efficient algorithms.
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12.8 The Set Diameter Problem

e Query: given a collection of points S = {s1,...,s,}, find two that are
farthest apart.

e FExample:
sl
°
s2
e 4
s3 .S
L s5
SBNO
[
s7 >
[

Here, s; and sg are farthest apart.
e Note: the problem has only a single-shot form.
o All-pairs Method:

— Enumerate all possible pairs of points.
— For each pair compute distance between points.

— Pick pair with the largest distance
= diameter.

— Complexity: ( ;L ) = O(n?).

o (Convex-Hull Method:

— Compute convex hull of S in time O(nlogn).

— Compute diameter of Hull(S) in time O(n).
= O(nlogn) overall.

Next, we will consider the details of each of the above computations.
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12.9 Convex Hull: Introduction

e What is the conver hull of a set of points S7?
= the smallest (in perimeter) convex polygon that encloses S.

e Example:

s8

\ Interior point
Hull point

e Equivalent definitions:

— The set of all convex combinations of points in S.
= If S = {s1,...,8,}, then for real numbers o; > 0 that satisfy
>;a; = 1, the convex combination Y°; ;s; is a point.

— The intersection of all half-spaces than contain S.
e Computing the convex hull: the Gift-Wrapping Method:

— Suppose the given points are nails on a board.

— Wrap a string around
= you get the convex hull.

— How to wrap?

x Start with a point on the hull:
= Pick the lowest point. If there are several, pick the rightmost lowest
point.
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* Wrap the string around counter-clockwise
= make left turns with each bend in the string.

* To decide next point where string turns:

- For each point: compute angle required to turn to the point
(left-turn).

- Pick the point that requires the least turning angle.
* At each step we compute O(n) angles. There are at most O(n)
steps
= O(n?) computation.
— Example:

x Pick start: rightmost lowest point, sg.

rightmost lowest point

« Compute angles to all other points from lowest line:

sl
"o S2
s3 ‘
o S, ‘.34 s5
s8 L B o
_____________ iS6 .-
57.‘""""':::::: ".:'.’_/ __________
least angle

* The least angle is the angle to s;
= 55 is the next point
= (86, 55) is a hull edge.

* Compute angles to all other points from edge (sg, s5):
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* The least angle (counter-clockwise) is the angle to sy
= 51 is the next point
= (83, 51) is the next hull edge.

x ... continue until the start point is reached:

sl

s8

825



12.10 Convex Hull: Graham’s Scan

e Key ideas:

— Find any point ¢ (not necessarily in S) that is internal to Hull(S).

— Make ¢ the origin and sort sq,...,s, by angle (using polar coordi-
nates).

— Find a hull point and label it r;.

— Label the points rq,...r, in counter-clockwise sort order.

— Example:

— Next, consider groups of 3 consecutive points, r;_1, 7, rii1.
— If angle r;_17r;r;11 is a right-turn then r; is internal to the hull, e.g.,

7 right turn from r5 to r6 to r7

lett turn from r7 to r8 to r9

— By successively scanning groups of points, get rid of points internal
to hull.
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e Details: find the internal point (origin)

— The centroid of any three non-collinear points must be internal to
the hull (since it’s internal to the hull of the 3 points).

— To find 3 non-collinear points in S
x Pick any two points a and b.
% Scan remaining points.
* For each point scanned, check if it’s collinear with (a, b).
 If all points are collinear with (a, b), then S is a line (degenerate
case).

x Otherwise, we will find a 3rd point ¢ that’s not collinear with a
and b.

* Note: this takes O(n) time.
(a+b+c).

Qo=

— Compute centroid of the three points: a =

e Details: sorting the points in S by angle

— One approach:
« Translate coordinates so that ¢ is the origin.

+ Compute angles for each point using tan=1.
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x Sort points by angle.
— A better approach:

« Translate coordinates so that ¢ is the origin.
x Observation: for sorting, we don’t really need to compute angles;
we only need to compare them.
x Comparison criterion:
b

q
Angle 3 is greater than angle « if b is left-of line segment (g, a).

e Details: removal of some radially collinear points:

— Among radially collinear points, retain only the outermost:
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This point cannot be on the hull

Here, we retain only a (for hull computation).
e Details: finding at least one hull point

— Find lowest point in S (point with least y-value).

— If there are several such points, pick rightmost
= rightmost lowest point.

— Label this point ry.

— Label remaining points in counter-clockwise sort order.

‘ 6 r5 r4
r8
.......... t’. r3
. o BV
/’ rl

rightmost lowest point
e Details: computing the hull

— Create a doubly-linked list of points in sort-order rq,...,r, such
that:

* Next(rz-) = Tj+1-

* Prev(r;) = ri_1.

829



— Note: Next(r,) = 1 and Prev(ry) = r,.
— Note: if r; gets deleted from the list, then
* Next(r;_1) = ri41.

* PI‘GV(’I"H_l) =T
— Scan groups of 3 points, deleting “right-turn points”:

Current := 7rq;
while Next(Current) # ry
a := Next(Current);
b := Next(a);
if (Current, a, b) is a left turn
Current := a;
else
Delete a;
if Current # r; // We don’t want to go past

Current := Prev(Current);
endif
endwhile

— After execution, the list has the hull vertices in counter-clockwise
order.

Note: r1 cannot be deleted because it is a hull point.

e FExample:

— Suppose we have found internal point ¢ and labeled the the points
in counter-clockwise sort-order:

830



r4

— Initial list: 71,79, 13, 74,75, 76, 77, T8, T'9.

— Step 1:

x Current = rq.

% 11,79, 73 18 a left turn.

= advance Current. "

x Current := rs.

x List: ry, 79,73, 74,75, 76, 77, T8, T9.

— Step 2:

x Current = ro.

* 19,173,418 & right turn.
= delete rs.

x Current := ry.

* List: r1,72,T4,75,76, 77,78, T9.

— Step 3:
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* Current = r;.

% 171,79, T4 18 a left turn.
= advance Current.

x Current = rs.

x List: rq, 79,14, 75, 76, 77,78, T9.
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— Step 4:

* Current = r.

% 1o, T4, 75 18 a left turn.
= advance Current.

* Current := ry.

x List: rq, 79,14, 75, 76, 77,78, T9.

— Step 5:

* Current = ry.

% 14,75, 76 18 a left turn.
= advance Current.

x Current := r;.

x List: rq, 79,74, 75, 76, 77,78, T9.

— Step 6:

* Current = r;.

% T35,7T6, 7 18 & right turn.

= delete rg. 4

* Current := ry.

x List: rq, 79, ryq, 75,77, 78, T9.
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— Step T:

* Current = ry.

% 14,735,771 a right turn. \ .
, r4

= delete r;. e =gt
x Current := rs. 8 °
x List: rq,re, 14, 77,78, T9. S e ‘r3
t """""""""" > )
g “rl

— Step 8:

* Current = rs.

% 1o, T4, 177 18 a left turn.
= advance Current

* Current := ry.

x List: rq, 79, 74,77, 78, 9.

— Step 9:

* Current = ry.

* r4,77,78 18 a left turn.
= advance Current

x Current := r7.

x List: rq, 79, 14,77, 78, 9.
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— Step 10:

x Current = rr.

% Tr7,T8,T9 is a left turn.
= advance Current

x Current := rg.

x List: rq, 79, 14,77, 78, 9.

— Step 11:

x Current = rg.

% rg,T9,r1 18 a left turn.
= stop.

x List: rq, 79, 14,77, 78, 9.

Hull: r1,r2,r4,r7,r8,r9
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e Complexity of scan:

— At most n deletes.
— At most n advances of Current.

— O(1) work for checking left or right turn.
= O(n) for scan.

e Overall complexity of Graham’s scan:
— O(n) for finding internal point gq.
— O(nlogn) for sorting by angle.

— O(n) for scan.
= O(nlogn) overall.

e Note: it can be shown that O(nlogn) is a lower bound
= Graham’s scan is optimal.

e Note: Graham’s scan does not generalize to 3D. Other fast algorithms,
such as Quickhull (divide and conquer), do generalize.
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12.11 Diameter of a Convex Polygon

e Definition: L is a support line of polygon P if L passes through a vertex
of P but not its interior.

Example:

not a support line

support line

e Points a and b of a polygon P are called antipodal if there exist parallel
support lines through a and b

Example:

o
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Here a and b are antipodal, but a and ¢ are not.

e Observation: the diameter of P is the largest distance among antipodal
pairs.

Intuition: think of calipers.
e Some definitions:

— Consider some vertex b € P with incident edges (a, b) and (b, ¢).

— Draw infinite lines through edges (a,b) and (b, ¢).
— (Call these lines the ab and bc lines respectively.
— Define a(b):
* The vertex farthest away from the ab line (perpendicular dis-

tance).

x If there are several such vertices, pick the one first encountered
in a counter-clockwise walk from b.

— Define §(b):
* The vertex farthest away from the bc line (perpendicular dis-
tance).

x If there are several such vertices, pick the one first encountered
in a clockwise walk from b.
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— Define E(b) as the set of all vertices encountered in a walk from «/(b)
to 6(b) (endpoints included).

e Observation: for each point s € E(b), b and s are antipodal.
Why?

— Consider rotating the ab line counter-clockwise about the point b
towards the bc line.

support \
line

— All intermediate positions in this rotation cannot be support lines
through b.

— Thus, any support line through a point d before a(b) cannot have a
parallel support line through b.

— A similar argument holds for 6(b).
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— Finally, any support line of a point e € E(b), has a parallel support
line through b:

e Another observation: a(c) > a(b), i.e., for the next point past b (i.e., ¢),
the start of F(c) occurs past the start of E(b).

840



e Another observation: in finding «/(b)

— we scan vertices in counter-clockwise order;

— the distances increase monotonically, and then decrease monotoni-
cally
= we stop before the first decrease occurs.

e at)

— Note: this property is due to convexity.
e An O(n) algorithm to generate all antipodal pairs:
— Start with any vertex v; and find a(vy), d(v1).
= O(n) worst-case.
— Scan F(v;) as it’s being created (and check distances).

— Find antipodal range F(v;) for successive points v;.

* We only need search past a(v;_1) to look for a(v;).
* We only need search past §(v;_1) to look for §(v;).

= only one scan needed
= O(n) time.

— While creating antipodal pairs, record maximum distance.
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e Details: Finding the farthest vertex from a line:

— One approach: use standard coordinate geometry to compute dis-
tance of a point from a line

(9]

Pick vertex with largest distance.
— Better approach:

x We only need to compare distances, rather than compute them.

x Distances can be compared by comparing areas:

% Since area = % base X height and base = ab, an area comparison

is really a height comparison.
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e Define ¢'(b):

— The vertex farthest away from the bc line.

— If there are several, pick the one first encountered in a counter-
clockwise direction.

e Note:
— the distance of 6(b) from the bec line is the same as the distance of
6'(b)
= we don’t have to search past ¢’(b) in generating antipodal dis-
tances.

— 0'(b) = a(c)
= start search for E(c) where E(b) ended.

e Summary of set diameter computation:

— Find convex hull of given set S
= O(nlogn) time.

— Generate antipodal pairs and check distances
= O(n) time.

= O(nlogn) time overall.
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e Recall: the All-Pairs Method took O(n?).
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12.12 Data Mining: An Introduction

e What is data mining?

— Def: Data mining is the process of extracting hidden patterns or
trends in large data sets for the purpose of prediction.

— The basic idea: comb through available data, looking for unusual
unobvious patterns and report them.

e Why is data mining important?

— Businesses are interested in exploiting knowledge about patterns.

— Standard statistical techniques (multivariate analysis) work only on
numeric data and with few variables.

e Examples of applications:

— Banking.

x Suppose a bank sifted through its archives and discovered the
following statistic:
“TT percent of loan defaults involved (1) a customer in the age
group 18-21, (2) a car loan for a red sportscar and (3) income
group $15,000-$20,000”.

*x The bank can use this pattern to avoid giving loans.

* Similarly, some unobvious patterns can indicate likely attributes
of a “good” customer.

* Today, many banks (e.g., Citibank, Signet) use information ex-
tracted by data mining algorithms.
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— Sports.

* Suppose a basketball team (e.g., Chicago Bulls) sifted through
their records and discovered the following: “On 60 percent of
plays in which Scottie Pippen is defended by the opposing guard,
the Bulls eventually win the possession.”

« The coach can use this pattern to improve chances of winning.
« Today, several NBA teams use Advanced Scout, a data mining
package to produce such statistics.

— Retail industry.

x By sifting through customer purchase data, a grocery store dis-
covers that “40 percent of customers that buy wine also buy a
specialty cheese”.

« The store can use the information in marketing and display
strategies.

e Several types of data mining:

— Association rule mining: Find “rules” of the sort “77 percent of loan
defaults with attributes A,B,C also have attributes X and Y”.

— Clustering: Find groupings of data based on available attributes
based on the structure of the data, e.g., “90 percent of renters in the
Williamsburg area fall into either the 18-25 or 65-75 age groups”.

— Classification: Find natural groupings of data based on available at-
tributes that seek to predict an outcome. e.g. group bank customers
into three groups: (1) “most-likely to repay”; (2) “most-likely to de-
fault” and (3) “don’t know”.

— Other: finding patterns in sequences (Stock Market application),

deviation detection (Fraud detection application).
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e Types of data sets:

— Most data sets are large relational tables, with many attributes, e.g.,
bank customers may collect 50-100 attributes on a loan application.

— Some data sets are unnormalized “basket” data, such as the list of
items checked out by each customer at a grocery store.

e Why data mining is an interesting problem:

— Typical data sets are very large with many attributes, e.g.,

« Census data: about 400 attributes per individual.
* Retail store data: millions of transactions, thousands of attribute
types.

— A naive approach of trying all possible rules causes a combinatorial
explosion, e.g,

* Consider a relation R(Aj, Ay, ..., A1go) where each attribute
value is boolean.

x Suppose we are interested in generating rules of the sort
AilAig R Aik — Alej2 R Ajm
e.g., of the 100 records with A3A4A7 true, 68 of them also have

AlAg true.
* Consider all possible combinations of A; A;, ... A;, — Aj A}, ... A;

m*

x For each such combination, scan relation R to count percentages.
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12.13 Association Rule Mining: Introduction

e Consider data collected at a supermarket checkout counter:

— The system records customer purchases in a variable-size record (un-
normalized), e.g.

rosr=<kEggs, bread, pasta, milk, cheese, beer, soap>.

(Customer 257 bought eggs, bread etc).

— The system has thousands of such customer purchase-records each
day.

— An association rule seeks to answer questions like:
when pasta and pasta sauce are bought, what is the probability that
mushrooms are also purchased?

— In terms of available data, this question can be rephrased as:
among those records that contain both pasta and pasta sauce, how
many also contain mushrooms?

— Why is this question useful?
The answer (if high) can drive pricing and display strategies
= package discount for the combination of pasta and mushrooms.

— Suppose our data has 100,000 records, of which

x 30,000 records contain pasta and pasta sauce;
* 22,500 of these 30,000 records contain mushrooms.

Then, we have the association rule

{pasta, pasta sauce} — {mushrooms}
with

support = 22,500/100,000 = 0.225
confidence = 22500/30,000 = 0.75
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— Intuition: 75 percent of the time when pasta and pasta sauce are
bought, mushrooms are also bought.

e Both support and confidence are important:

— Consider the rule
{Non-alcoholic beer} — {chips}.

— Suppose

confidence = 0.9
support = 0.001

— Thus, 90 percent of customers that buy non-alcoholic beer also buy
chips.
— But, this pattern occurs only in 0.1 percent of the data
= not an important rule.

e Def: an association rule X — Y, where X and Y are sets of attributes,
satisfies confidence level ¢ and support s if:

1. the actual confidence is at least ¢ and

2. the actual support is at least s.

e The association rule mining problem: given a confidence level ¢ and
a support level s, find all rules that satisfy ¢ and s.
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12.14 Association Rule Mining: Problem
Formulation

e Notation:

— Let I ={I4,15,...,1,} be a set of items.

Think of I as {eggs,cheese,pasta,...} in the supermarket example.
(Set of all possible supermarket products).

— A subset of items X C [ will sometimes be called an itemgroup.
— We will use letters like X and Y to denote itemgroups.

— Let R = {ry,r9,...,m,} be a set of unnormalized records (basket
data).

Here, r; is the set of items bought by customer i,
e.g. T957 ={pasta, pasta sauce, tomatoes, beef, soap}

Thus, Vi :r; C I.
— Def: a record r € R contains itemgroup X if X C r.
— Let R(X) ={r € R : r contains X}.

— For any itemgroup X, let a(X) = |R(X)|, the number of records
that contain X.

— For any itemgroup X, define the support of X to be

_ a(X)
— Define
FR) = (X €1+ 6(x) = S = ).

(All the itemgroups satisfying support s).
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— Def: A rule X — Y is an assoctation rule satisfying support s and
confidence c if

1. X and Y are itemgroups (i.e., X,Y C I).

2. X and Y are disjoint (i.e., X NY = 10).

3. At least s fraction of records contain both X and Y, i.e.,
a(XUY)

4. Of those records containing X, at least ¢ fraction contain Y, i.e.,

a(XUY)
alX) —

C.

e Example: I = {milk, eggs, pasta, pasta sauce, cheese}
R is given by:

ry = <milk, eggs>

ro = <milk, eggs>

r3 = <milk, eggs, cheese>

ry = <milk, pasta, cheese>

rs = <eggs, pasta sauce, cheese>

r¢ = <pasta, pasta sauce>

r; = <pasta, pasta sauce, cheese>

rg = <pasta, pasta sauce, cheese>

rg = <milk, eggs, pasta, pasta sauce, cheese>
rip = <milk, pasta, pasta sauce, cheese>

— Consider X={eggs, pasta sauce}. Then,

R(X) = {rs 1o}

a(X) = 2
B(X) = 130:0.2
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— Consider X={milk, eggs}.

R(X) — {rla ro, T3, ’I"g}

a(X) = 4
B(X) = 11‘0:0.4

— Consider X={milk,eggs} and Y={eggs}
= not a valid rule since X NY # (.

— X — Y is a potential association rule where X={milk} and
Y ={eggs,pasta,cheese}.

— Consider X={milk,eggs} and Y'={cheese}. Then

|R|] = 10
a(X) = 4
a(XUY) = 2
2
BXUY) = 0= 0.2

Hence

support = B(XUY) = 7| = 10" 0.2
XUY 2
confidence = % = 1 = 0.5

Thus, X — Y with support 0.2 and confidence 0.5.
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— Suppose s = 0.3. Since |R| = 10, we want all itemgroups that
appear in at least 3 records, i.e.,

a(X)

> 0.3}

Here, Fy3(R) ={ {milk}, {eggs}, {pasta}, {pasta sauce}, {cheese},
{milk,eggs}, {pasta, pasta sauce}, {milk,pasta}, {milk,cheese},
{pasta,cheese}, {pasta,pasta sauce,cheese}, {milk,eggs,cheese},
{milk,pasta,cheese} }.

e Def: A rule X — Y is a I-RHS rule if |Y| = 1.
(Right-hand side has only one item).

e Typical restriction on problem: find all 1-RHS association rules (satis-
fying given s and c).

Examples of 1-RHS rules from above:

{milk} —  {eggs}
{eggs} —  {milk}
{pasta} —  {cheese}
{pasta,cheese} — {milk}
{milk,eggs} —  {cheese}

Note that
{milk} — {eggs,cheese}

is a rule but not a 1-RHS rule.
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e An observation:

— Suppose we have computed (X)) (support) for each possible item-
group X.

— Consider a rule X — Y. Then,

BXUY)  a(XUY)/[R|
B(X) a(X)/|R|
a(XUY)
a(X)
= confidence of rule X — Y

— Thus, given only support numbers for itemgroups, we can compute
rule confidences.

— Also, for a rule X — Y to meet the required support s, we must
have (X UY) > s
= X UY € F(R).

— Note that S(X UY) > s = B(X) > s.
= X, X UY € Fy(R).
= The association rule mining problem reduces to finding itemgroups
with large enough support, i.e., computing F;(R).

— Thus, for the remainder we will focus on simply identifying Fy(R),
the set of itemgroups with large enough support.

Typically, we will want to output each itemgroup and its actual
support.
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12.15 Two Naive Algorithms

e Algorithm: NAIVE-1 (R, I, s)

— Generate all possible itemgroups and initialize a counter for each.

Note: All possible itemgroups = 27 = all possible subsets of I.
— Scan R once and count support for each itemgroup.

— Output those itemgroups satisfying s.
e Analysis of NAIVE-1:

— How many possible itemgroups with I = {I,...,I,,}?
= [2| = 2l = 2m
— If m is large (say, m > 100), 2™ is too big for main memory.
— Also, if |Fs(R)| is small, we waste time updating counts for item-
groups not in Fy(R).
e Algorithm: NAIVE-2 (R, I, s)

— while not over do

x Generate a new itemgroup.

x Scan R to obtain support.

x if support > s, retain itemgroup.
— endwhile
— Output all itemgroups retained.

e Analysis of NAIVE-2:

— Too many scans of the data.
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e Key observation: X ¢ F,(R) = X UY ¢ F,(R) for any Y.
(If itemgroup X does not satisfy s, neither will any extension of X such
as X UY)

Example: if {milk} occurs in only 0.1 fraction of records, then
{milk,eggs} occurs in no more than 0.1 fraction of records.

This observation is used in better algorithms.
e We will use the following example for illustration:

I = {A B,C,D,E}
rn = <AB>

ro = <A, B>

r3 = <A B E>
ry. = <ACFE>
rs = <B,D,E>
re = <C,D>

rr = <C,D,E >
rs = <C,D,E>
rg = <A B,C,D,E>
ro = <ACD,E>
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12.16 Algorithm Record-Derived-Itemgroups

e Key ideas:

— Consider the itemgroup ABD and the item E. If ABD has poor
support then so does ABDFE, the extension of ABD to FE.

Thus, B(ABD) < s = B(ABDE) < s.

— We will assume the items are lexicographically ordered.
Thus, we will extend AC'F to ACFG but not ACDF.
(Because ACDF will be considered when ACD is extended).

— The support for a tentative extension can be estimated using inde-
pendence:

~

B(ABDE) = 5(ABD)S(E).
For example, if S(ABD) = 0.4 (40 percent of R) and B(E) = 0.6 is

known from previous iterations, then

~

B(ABDE) = 0.4 x 0.6 = 0.24.

Of course, independence may turn out to be a poor approximation.
— The algorithm makes multiple scans of data. In each scan:

* Counts are maintained for various itemgroups.

« At the end of each scan, itemgroups with low support are dis-
carded.

x As each record is encountered, the items within it are used to
create new potential itemgroups.

« If the estimated support is high, additional extensions are con-
sidered.

x If the estimated support is low, an itemgroup is placed in a
Next_Frontier set (to be re-examined at the end of the pass).
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— Generally, if an itemgroup was mistakenly placed in the Next_Frontier
set (support underestimated), it’s count will actually be high, and
therefore is considered for extension later.

— If an itemgroup was mistakenly extended too much (support over-
estimated), it will be discarded at the end of the scan.
— Example: consider the itemgroup A, B and the record {A, B, D, E, F'}.

x Itemgroup AB can be extended to create the following potential
itemgroups: ABD, ABE, ABF, ABDE, ABDF, ABEF and
ABDEF.

* Suppose it turns out

B(ABD) > s
B(ABE) < s
B(ABF) > s
Then,
- ABD can be extended to the next size (ABDE or ABDF)
lexicographically.

- ABE is not extended (and placed in Next_Frontier).

- ABF cannot be extended because the record has nothing
beyond F'.

- Since ABD got extended to ABDFE, we consider expanding
ABDE to ABDEF (if the estimated support is good).

— Why are low-estimate itemgroups kept around in Next_Frontier?
= need to compute counts in case estimate was bad
= they may still satisfy s.

e Pseudocode:

— Note: A first pass is done separately to initialize counts for the
1-item itemgroups.

— Assume that the set of items is [ = {I1,..., [, }.
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Algorithm: RECORD-DERIVED-ITEMSETS (R, I, s)

Input: Set of records R, set of items I, support s.
Output: Collection of itemgroups with large enough support.
1. Large := 0
// First pass
Vk: «a[li] := 0 // Initialize counts
for j ;= 1to |R|do
for £ := 1tomdo
if Ik € rj
a[[k] = a[[k] + 1;
for k .= 1tom
BIL] = alLil/|R];
if B[I] > s
Large := Large U {[;};
endfor;
// All other passes.
12. Frontier := [I; // Keep Frontier sorted by size.
13. while Frontier # ()

© 00N otk W

_ =
™)

4. H = 0
15.  for j := 1to |R| // Scan data.
16. for each itemgroup X € Frontier
17. if X € record r;
18. G := COMPUTE-EXTENSIONS (X, I, r);
19. for each Y € G
20. ifYeH
21. Y .count := Y.count + 1;
22. else
23. H = HU{Y}
24. Y.count := 1;
25. endif;
26. endfor;
27. endfor;
28. endfor;
.. continued
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Algorithm: RECORD-DERIVED-ITEMSETS ... continued

29.
30.
31.

32

33.
34.
35.

// Identify itemgroups that satisfy s.
for each Y € H
if Y.count/|R| > s
Large := Large U {Y'};
. // Set next frontier to be considered for extension
Frontier := Next_Frontier N Large;
endwhile;
return Large;
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Algorithm:

20. until No

CoMPUTE-EXTENSIONS (X, I, r)

Output: Extensions of X.
1. k := |X]|;
2. G = {X};
3. repeat
4 No_change := true;

// Compute extensions for size k.
5. for each Y € G’ such that |Y| =k

Input: an itemgroup X, the set of items I, record r.

Next_Frontier := Next_Frontier U Y;

19. k =k +1;

_change or k = m;

21. return G := G'UNext_Frontier;

// Suppose Y = I; I;, ... 1.
6. for! .= jp+1tom
7. if I; € record r
8. Z = Y U{[};

// See if Z is worth the trouble.

0. 812 == AIY]+ AL
10. if B[Z] > s
11. G = G'U{Y};
12. No_change := false;
13. else
14.
15. endif;
16. endif;
17. endfor;
18. endfor;

e Example: s = 0.3

— First pass: a(A) =6, a(B) =5, a(C)
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B(A) = 0.6, B(B) = 0.5, B(C) =0.6, 5(D) = 0.6, B(F) =0.7.
Frontier = {A, B,C, D, E'}
— Second pass:
1. When 1 =< A, B > is scanned:

* The only possible extension is AB (BA is not considered
because it is not a lexicographic extension).

« BAB) = B(A)B(B) = 0.3
= AB.count := 1.
« H={AB}.
2. When ry =< A, B > is scanned:
% Only extension possible is AB.
x AB.count = 2, H = {AB}.
3. When r3 =< A, B, E > is scanned:
* Extensions (with support):
G = {AB(0.3), AE(0.42), BE(0.35), ABFE(0.21)}.
*x AB.count=3, BE.count=1, ABFE.count=1.
x H={AB,AE, BE, ABE}.
* Next_Frontier={ABE?} (it’s estimate was not high enough).
4. When ry =< A,C, E > is scanned:
x G ={AC(0.36), AE(0.42), ACFE(0.252), CE(0.42)}.
* Counts: AB(3),AC(1),AE(2),ABE(1),ACE(1),BE(1),CE(1).
* Next_Frontier={ ABE, ACE}.
5. When r; =< B, D, > is scanned:
x G ={BD(0.3), BDE(0.21),
BE(0.35), DE(0.42)}.
* Counts: AB(3), AC(1),AE(2), ABE(1),ACE(1), BD(1), BE(2),
BDE(1),CE(1), DE(1).
* Next_Frontier={ABE, ACE,ADE, BDFE}.
6. When r¢ =< C, D > is scanned:
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* G={CD(0.36)}.
* Counts: AB(3), AC(1),AE(2), ABE(1),ACE(1),BD(1), BE(2),
BDE(1),CD(1),CE(1),DE(1).
* Next_Frontier={ABE, ACE,ADE, BDE}. (Unchanged).
7. When r; =< C, D, E > is scanned:
* G ={CD(0.36),CFE(0.42),CDE(0.252), DE(0.42)}.
* Counts: AB(3),AC(1),AE(2),ABE(1), ACE(1),BD(1),
BE(2),BDE(1),CD(2),CE(2),CDE(1),DE(2)}.
* Next_Frontier={ABE, ACE,ADE, BDE,CDE}.
8. When rg =< C, D, E > is scanned:
x G ={CD(0.36),CFE(0.42),CDE(0.252), DE(0.42)}.
* Counts: AB(3), AC(1), AE(2),ABE(1), ACE(1),BD(1), BE(2),
BDE(1),CD(3),CE(3),CDE(2),DE(3)}.

Continuing, the large itemgroups turn out to be:
Large = {A,B,C,D,E,AB,AC,AE,ACE, BE,CD,CE,CDE, DE}.

— Third pass:

* Here, the size 3 itemgroups are {ACE,CDE}.

They were expected-small but turned out to have enough sup-
port.

* These can’t be expanded (they end in E)
= we’re done.

— Final result:

A B,C,D,E,AB, AC, AE, ACE, BE,CD,CE,CDE, DE.
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12.17 Algorithm Pass-Derived-Itemgroups

e In the previous algorithm, the following problem arises:

— Suppose a record has items < A, B,C, D, E, F > and suppose that
{AC, AD,CD,CE} are in the current Frontier.

— Potential extensions include {ACF, ADF,CDF,CEF}.

— If all of them have small expectations, we’re still going to maintain
counts for them
= the algorithm wastes time counting useless itemgroups.

— We will try to minimize this problem in the next algorithm.
e Key ideas in Algorithm PASS-DERIVED-ITEMGROUPS:

— In pass k only itemgroups of size k are considered.

— At the end of pass k— 1, we will have counts for the large itemgroups
of size k — 1
= we know Lj_1={large itemgroups of size k — 1}.
— Before starting pass k, we compute all possible itemgroups of size k.

— Example:

% Suppose in pass k = 5 we generate ACDFEF has a potential
itemgroup.

* We consider all possible (k — 1)-size subgroups, such as ACEF
and ADEF.

« If any of these subgroups is not in L;_1, we can reject ACDEF
immediately.

— Another idea used is to generate potential groups in an intelligent
way (exploiting lexicographic order):

* Suppose k =5 and Ly = {ABCD,ABCFE, BCDE, BCEF}.
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x The naive way to generate size-5 itemgroups would be to consider
all possible extensions of the above four itemgroups.

« Note instead, that the itemgroup ABCDE will be large only if
ABCD and ABCE are already large,
i.e., only if both ABC'D and ABCFE are in Ly.
= we will allow ABCDE to be generated only from ABCD and
ABCE.

« In general, we will generate X1 Xy ... X 1 X from X1 Xo. .. X 0 X 1
and X1 Xy ... X, 0X}.
x Interestingly, this “combining” can be stated as a join:
- Note that Li_1 is a collection of size-(k — 1) itemgroups.

- Suppose that each itemgroup is considered a tuple in a re-
lation called Lj_q, where the i-th attribute in a tuple is the
t-th item in the itemgroup.

- Example (k = 5): the tuple for ABCE will be the tuple
<A B,C,E >.

- Suppose the attribute names are itemy,..., itemy_1.

- The join statement is:

select p.itemy,...,p.itemy_ 1, q.itemy_;
from L,_,asp, Ly_1 asq
where p.item; = g.item;

and p.itemy_ 5 = ¢q.itemy_»
and p.item;_; < g.itemy_;

— One additional observation:

x Consider £ = 6 and suppose the join resulted in ABCDEF'.

* We now need to look at all possible subgroups (of size k — 1) of
ABCDEF.

x How many possible subgroups are there?
= at most 6 (drop one letter at a time for each size 5 string).

e Pseudocode:
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Algorithm: PASs-DERIVED-ITEMGROUPS (R, I, s)

Input: Set of records R, set of items I, support s.
Output: Collection of itemgroups with large enough support.
// First pass
1. Vk: a[ly] := 0 // Initialize counts
2. forj := 1to |R|do
3. for £ ;= 1tomdo
4 if I €r;
5 afly] = ofly] + 1;
// L[1] := BuiLD-SET (0);

6. fork := ltom

7. if a[l]/|R| > s

8. Ly = LU {]k}, // ADD-SET (L[l],]k),
// All other passes.

9. k := 2

10. while Ly_; # 0 // SET-NoT-EmpTY (L[1]);

11.  C := COMPUTE-JOIN (Lj_1, Ly_1);

12. // C := BUILD-SET (COMPUTE-JOIN (Lj_1, Lx—1));
13.  for each itemgroup X = I;, ... I;, € C' // Winnowing

14. [ =1, over := false;
15. while [ < k — 2 and not over
16. if Y = Ij1 R Ijj71ljl+1 . [jk ¢ Li_4 // NoT-IN-SET (L[k — 1], Y)
17. C = C—{Y}; // REMOVE-ELEMENT (C,Y)
18. over := true;
19. else
20. [ = 1+1;
21. endif;
22. endwhile;
23. endfor;
.. continued
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Algorithm: PASS-DERIVED-ITEMGROUPS ... continued

24.  fori := 1to R do // Check counts

25. for each k-sized itemgroup X € r; do
26. if X € C' // SET-MEMBER-OF (X, C)
27. X.count := X.count + 1;

28. endfor;

29. endfor;

30. L = {X € C: X.count> s};

31.  // Use BUILD-SET and ADD-SET here.
32. k = k+1;

33. endwhile;

34. return Up>qLy;

NOTE:

— The join computation is not shown.

— Some set operations are shown mathematically, with comments in-
dicating the kinds of set-manipulation functions needed.

e Example: (same example as before with s = 0.3)
— First pass: a(A) =6, a(B) =5, o(C) =6, a(D) =6, a(E) =T.
L, := {A,B,C,D,E).
— Second pass (k = 2):
* The (L1, L1)-join gives C = {AB, AC,AD,BC,BD,BE,CD,CE, DE}.

% Since each 1-size subset of each of these is in Li, the winnowing
does not remove anything from C.

x After a scan, the counts obtained are:

C = {AB(4), AC(3), AD(2), BC(1), BD(2), BE(3),CD(5), CE(5), DE(5)}
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* Those with high enough count (3 or more) are retained:
L « {AB, AC, AE, BE,CD,CE, DE}

— Third pass (k = 3):
* The (Ls, Ly)-join gives C = {ABC,ABE, ACE,CDE}, e.g.,

2nd part of join condition:
B<C

AB AC — ABC

joined result
first part of join condition:
A=A

2nd part of join condition:
B<E

{
AB AE ~—™ ABE

/T joined result

first part of join condition:
A=A

x Winnowing:
- For ABC, we need to check whether BC' € Ly

= not in Ly
= discard ABC'.

- For ABE, we need to check whether BE € Ly
= BFE € Ly
= retain ABFE.

- Continuing, we find that ABE, ACE,CDE are retained.

x After a scan, the counts are:
ABE(2),ACE(3),CDE(4).
* Those with high enough count (3 or more) are retained:

Ls = {ACE,CDE}.
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— Fourth pass (k = 4):
* The (Ls, L3)-join is empty.

— Final result:

A B,C,D,E,AB, AC,AE, BE,CD,CE, DE, ACE,CDE.
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12.18 Using Hashtrees: The Apriori Algorithm

e Recall that in the k-th pass of PASS-DERIVED-ITEMGROUPS:

— A set of size-k itemgroups is computed via a join.
— The set is pruned using the size-(k — 1) itemgroups.

— A scan is made to generate the count for each itemgroup.

e A run-time profile of the previous algorithm shows that a lot of time is
spent in generating counts:

— For each record, we need to figure out which counts should be up-
dated.

— Example:

« Suppose C = {ABC, ABD, ABE, ACE, BOE, BDE,CDE?}.

* Consider a record < A, B, D, E, F' >.
Which of the above itemgroups occur in the record?

* One way of checking: Record Subset method

1. generate all possible size-3 itemgroups in the record:
ABD,ABE,ABF, ADE, ADF,AEF, BDE, BDF, BEF, DEF
(10 itemgroups).

2. For each such itemgroup, check whether it is in C.

x For a record with n items and size-k itemgroups: ( Z )

= very large for even moderate sizes (e.g.,n = 20,k = 10).
* Another approach: Itemgroup Scan method
1. Scan each itemgroup in C.

2. Test whether each itemgroup is in the given record.
= will be slow if number of itemgroups is large.
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e Using a trie in the Record Subset method:

— To test whether whether ABC' is in C', one approach is to test the
string ABC' against each itemgroup in C.

— A faster approach is to use a suitable data structure, such as a trie.

— Example: suppose C = {ABD,ACD,ACE, BDFE}

root of trie

RN

— However, if the number of items is large (.e.g, 10°), the trie could

search path
for ACE

be very wide
= may not fit in memory.

— To reduce branching factor, some paths can be coalesced:

. root of trie

search path
for DX...

This is the basic idea used in the hashtree.
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e Hashtrees: key ideas

— Recall: in pass k, C is a list of size-k itemgroups.
— In pass k, a fresh hashtree is constructed for size-k itemgroups.

— The list of itemgroups is stored in an array, e.g.

typedef struct itemgroup_type {
char *itemgroup; // The actual itemgroup
int count; // The count, initially set to zero
} itemgroup_type;
itemgroup_type *itemgroup_array;
// Later
itemgroup_array[i] .count ++; // Incrementing the count

— The hashtree is like a B+-tree in some ways:

x The tree stores pointers to the actual data.

* In this case, the correct index into the itemgroup_array is
stored.

x The hashtree has internal and leaf nodes.
« Internal nodes are used for navigation.

* Leaf nodes contain pointers (offsets) to the itemgroup array.
— The hashtree is also different in many ways:

x The leaf nodes are not linked.

x The search is not in-order: which branch to take depends on a
hashing function.
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e FExample:
— Consider a hashtree with branching factor = 4.
(Typically, branching factor is higher).

— Suppose we want to check whether the itemgroup ACF is in the
itemgroup array:

Input: ACF
root
h(A) =1
[ interior
node
h('C’) =3
h(CF)=0 leaf node

\ pointer to array

* Apply the hashing function to A at the first level, to C' at the
next level and F' at the third level.

* Once at the leaf, search for F' in the leaf and follow the pointer
to the array.

overflow leaf node

« Note: the depth of the hashtree is always the itemgroup size
= we will always stop at the leaf level with the last item.

e [nsertion:

— First insert the itemgroup in the itemgroup array, and note the array
offset (pointer).
— Then find the appropriate leaf by doing a regular search.

— Insert in sorted order in the leaf, along with pointer to the itemgroup
array.

— If leaf is full, extend by adding an overflow leaf node.
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e Checking which subsets are in a record:

— In a search, we are given a record (e.g., < A,C, F,G, H >) and we
want to know which itemgroups are in the record
= need to increment their counters.

— One approach:

x Generate all possible size-k itemgroups of the record.

* For each such itemgroup, traverse the hashtree and see if it exists
in the itemgroup array.

x For every itemgroup that is found, increment the counter.
— Recursive approach:
« Rather than generate all possible size-k itemgroups, a simple
recursive method can be used.
* Observation: each subtree of the root is a size-(k — 1) hashtree.
* Thus, to check all itemgroups beginning with A:
- Hash A = say, we get the ‘1’ branch.
- The remainder of the record is < C, F, G, H >.

- Now apply the function recursively to the ‘1’ subtree with
record < C, F,G, H >.

*x Now, size-3 itemgroups in the record < A, C, F, G, H > can start
with any one of the items A, C or F.

* Thus, we do hash-search at the root for each of these (and the
reminder of the record).

* In the case of starting with F', the only possibility is to hash G
at the next level, then H at the third level.
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Input: FGH
r=<F,G,H>

h(F)=0

h (G) =2

h (H) =3

875



* But if we start with C' at the root:
- At the next level we have < F,G, H >.

- Both F' and G are hashed separately because we have three

possible size-2 itemgroups: F'G, FH and GH.
= the first items are F’ and G.

Input: CFGH r=<C,F,G,H>

h(G)=2 h(H)=3

e Pseudocode:

The algorithm has been called the Apriori Algorithm in the literature
(because “checking for low-support subgroups” is done prior to a scan).
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Algorithm: APRIORI (R, I, s)

Input: Set of records R, set of items I, support s.
Output: Collection of itemgroups with large enough support.

© 00N ootk W

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

// First pass
Vk: «a[li] := 0 // Initialize counts
for j := 1to |R| do
for £ := 1tomdo
if Ik € rj
ally] = a[ly] + 1;
h := HASHTREE-CREATE (1) // Size = 1.
for k := 1tom
if of1,)/|R) > s
HASHTREE-INSERT ([});
// All other passes.
k = 2,
while HASHTREE-NoOT-EMPTY (h)
C' := COMPUTE-JOIN (Lg_1, Ly_1);
h' := HASHTREE-CREATE (k);
for each itemgroup X =I;, ... I;, € C' // Winnowing
[ = 1; valid := true;
while [ < k£ — 2 and valid
[]Y =1 ... 1 L, ...I.
if not HASHTREE-RECURSIVE-SEARCH (h,Y)
valid := false;
else
[ == 1+4+1;
endif;
endwhile;
if valid // All subgroups checked out
HASHTREE-INSERT (R, X);
endfor;
.. continued
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Algorithm: APRIORI ... continued

27.  HASHTREE-DESTROY (h);

28. h := h/;
29. fori := 1to |R|do
30. HASHTREE-UPDATE-COUNTS (h, r;, k);

// Remove all itemgroups with low counts.
31.  for each itemgroup X € h do // X is in array
32. if X.count < s
33. HASHTREE-REMOVE-ITEMGROUP (h, X);
34. k = k+1;
35. endwhile;
36. return Ug>qLyg;

Algorithm: HASHTREE-UPDATE-COUNTS (h, T, k)

Input: hashtree id h, record r, size k.
Output: Counts are updated.
// Suppose r =< I, I;,,..., I >.
1. forp := 1tol—k
2. HASHTREE-RECURSIVE-UPDATE (7, p, k, h.root);
3. return;
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Algorithm: HASHTREE-RECURSIVE-UPDATE (7, p, k, node)

Input: record r, offset p, size k, hashtree node.
Output: Counts are updated.
// Suppose r =< I, I;,, ..., I; >.

1. if node.leaf = true // Bottom out of recursion.
2. if I; € node
3. follow pointer to itemgroup array and increment count;

// Note: count should be incremented only once
// for each record.

4 return;

5 endif;

6. endif;

7. ¢ := hashfunction ([} );

8. mnode2 := node.child[c];

9. forq .= p+1tol—k

10. HASHTREE-RECURSIVE-UPDATE (7, ¢, k — 1, node2);

11. return;
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Algorithm: HASHTREE-RECURSIVE-SEARCH (node, Y1)

Input: hashtree node, itemgroup Y, offset .
Output: true if itemgroup is in tree, false otherwise.
[/ Assume Y =I; ... ;.
1. if node.leaf = true
2 if I;, € node
3 return pointer to location in itemgroup array;
4 else
5. return NULL; // false
6. else
7 ¢ := hashfunction ([} );
8 node2 := node.child[c];
9. return HASHTREE-RECURSIVE-SEARCH (node2, Y, i+ 1);
10. endif;
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12.19 On-Line Analytical Processing (OLAP):
Introduction

e On-Line Analytical Processing (OLAP) is the term used for a class of
aggregate queries.

e Consider an airline (McValue Airlines) with the following data

SALES (YEAR, CONTINENT, FLT_TYPE, REVENUE).
where the FLT_TYPE is given by

FLT_TYPE DESCRIPTION

1 Short-domestic
2 Long-domestic
3 International

and where the data in SALES is: (revenue in millions)

SALES YEAR CONTINENT FLT.TYPE REVENUE

1997 Europe 1 125
1997 Europe 2 50
1997 Europe 3 225
1997 Asia 1 25
1997 Asia 2 75
1997 Asia 3 100
1997 N.America 1 325
1997 N.America 2 450
1997 N.America 3 75
1998 Europe 1 110
1998 Europe 2 40
1998 Europe 3 200
1998 Asia 1 20
1998 Asia 2 130
1998 Asia 3 50
1998 N.America 1 460
1998 N.America 2 170
1998 N.America 3 30
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Note: number of tuples =2 YEARs x 3 CONTINENTS x 3 FLT_TYPEs
= 18.

e Typical queries:

— What is the total 1997 revenue?
— Qutput the total revenue in each continent year-by-year.
— What is the total 1997 revenue for International flights?

— What is the total revenue on European domestic (long and short)
flights across all years?

— What is the maximum revenue in any European flight category in
any year?

NOTE:

— All the queries involve aggregate functions (sum and max above).

— The queries involve aggregates across various subsets of the at-
tributes.

The answers:

— What is the total 1997 revenue?
= $1,450 million.

— Output the total revenue in each continent year-by-year.

1997 Europe 400
1998 Europe 350
1997 Asia 200
1998 Asia 200
1997 N.America 850
1998 N.America 660

— What is the total 1997 revenue for International flights?
= $400 million.

— What is the total revenue on European domestic (long and short)
flights across all years?
= $325 million.
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— What is the maximum revenue in any European flight category in
any year?
= $225 million (International).

e Computing the queries in SQL:

— What is the total 1997 revenue?

select S.YEAR, sum(S.REVENUE)
from SALES S

where S.-YEAR = 1997

group by S.YEAR

— QOutput the total revenue in each continent year-by-year.

select S.YEAR, S.CONTINENT, sum(S.REVENUE)
from SALES S

group by S.YEAR, S.CONTINENT

order by S.CONTINENT

— What is the total 1997 revenue for International flights?

select S.FLT_TYPE, sum(S.REVENUE)
from SALES S

where S.-YEAR=1997 and S.FLT_TYPE=3
group by S.FLT_TYPE

What is the cost of computation?
— Consider the query “Output the total revenue in each continent
year-by-year.”
*x Need to sort data by continent and year.

x After sort, aggregates can be computed in a single scan.

— If data was sorted by (CONTINENT, YEAR), then it must be re-
sorted for aggregates on (FLT_TYPE).

— Generally, if the data is already sorted according to the desired
output, one scan is required.

— Otherwise, a sort is also needed.

883



12.20 OLAP: The CUBE View

e Most OLAP applications consider data with m + 1 attributes in which
m attributes are “parameter” attributes and the (m + 1)-st attribute is

the “aggregate” attribute.
E.g., in
SALES (YEAR, CONTINENT, FLT_.TYPE, REVENUE)

— REVENUE is the aggregate attribute.
(Sums are computed over REVENUE values.)

— YEAR, CONTINENT and FLT_TYPE are parameter attributes.

— Thus, there are 3 parameter attributes
= we call this a 3D aggregate problem.

— For m parameter attributes, it’s an m-dimensional aggregate prob-
lem.

In general, the data will be a relation R(A;1, ..., Ay, F') where

— Ay, ..., A, are the parameter attributes.

— F is the aggregate attribute.
The subcube with attributes A4;, ... A;, will be denoted by S(4;, ... A4;,).
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e [t is often convenient to view a 3D problem using a cube:
(Although strictly a cuboid, the term cube is used).

Original data

\ Europe
Q CONTINENT Asia \\ ‘ / / Europe

Europe 750
400 \ N.America \ \/ / .

\ R / A
\ Asia g 90 \ \ / / 350 400 s1a
1510 75 ™ 425 TN ~J 400] ] N.America
\T 205~ * 2\ //1998 " 200 }10
T...| 785> 150 <1997 YEAR | 200 —1 .=
N.America \ 620\ FLT_TYPE 3 / 660| .-
1 \ 105 | 850 /<\A 2D subcube
, \ /

1065 3
915 o ¥ w 1210 | TA 1D subcube
/ 680 1450] 7000

Only one of 1997
these is stored @@

680

T 2660
grand total

For m-dimensional data, there are several subcubes for each dimension
k < m.
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12.21 OLAP: Repeated Queries

e Typically, a manager or accountant sits at a terminal and queries on
several attribute subsets repeatedly
= multiple views required quickly.

If queries are generated via SQL statements
= could take a long time.

e Prior computation and storage of subcubes:

— It is better to materialize each subcube and store it.
— For example, the (YEAR,CONTINENT) subcube is computed as:
1997 Europe 400
1998 Europe 350
1997 Asia 200
1998 Asia 200

1997 N.America 850
1998 N.America 660

— Storage options:
1. Store each possible subcube separately:

* Store the subcube S(YEAR, CONTINENT) in a relation S1
(YEAR, CONTINENT).

* Store the subcube S(YEAR, FLT_TYPE) in relation S2
(YEAR, FLT_TYPE).

* Store the subcube S(CONTINENT, FLT_TYPE) in relation
S3 (CONTINENT, FLT_TYPE).

* Store the subcude S(YEAR) in relation S4 (YEAR).

* ...etc.

2. Store each subcube within the original relation using null values.
For example, the subcube S(YEAR, CONTINENT) is
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1997 Europe 400
1998 Europe 3950
1997 Asia 200
1998 Asia 200
1997 N.America 850
1998 N.America 660

These tuples would be extended with null’s and added to the
original data:

SALES YEAR CONTINENT FLT.-TYPE REVENUE

1997 Europe 1 125
1997 Europe 2 50
1997 Europe 3 225
1997 Asia 1 25
1997 Asia 2 75
1997 Asia 3 100
1997 N.America 1 325
1997 N.America 2 450
1997 N.America 3 75
1998 Europe 1 110
1998 Europe 2 40
1998 Europe 3 200
1998 Asia 1 20
1998 Asia 2 130
1998 Asia 3 50
1998 N.America 1 460
1998 N.America 2 170
1998 N.America 3 30
1997 Europe null 400
1998 Europe null 350
1997 Asia null 200
1998 Asia null 200
1997 N.America null 850
1998 N.America null 660

NOTE: since null already has a use, the use of the keyword all
has been proposed.

e An observation:

— The tuples for the subcube S(YEAR, CONTINENT) repeat the
strings “1997” and “1998”
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= a waste of space.

— The only real information is the collection of aggregates:

1997 Europe 400
1998 Europe 350
1997 Asia 200
1998 Asia 200
1997 N.America 850
1998 N.America 660

Therefore, it is more efficient to directly store the subcubes using
an internal representation of a matrix:
= called the multidimensional approach.

e Problems with large dimensions:

— A 20-dimensional data set has 220 subsets of attributes
= 220 possible subcubes.

— Many subcubes are of high dimension
= need to store high-dimensional matrices.
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12.22 The Multidimensional Approach:
Hash-Based Computation

e Some useful observations:

Computing sizes of subcubes:

— Consider the subcube S(YEAR, CONTINENT).

How many entries in the subcube?
2 YEAR’s, 3 CONTINENT’s
= 6 entries

— In general, for relation R(A;, ..., A,,) let
n(A;) = # values of attribute A; present.
Then, the size of subcube A4; A;,... A

ip 1S

SiZG(Ail c. Azk) = n(A“)n(Ah) c. n(Alk) = jli[l n(Alj)

— We have made an implicit assumption: all possible combinations of
values exist as tuples in the data
= the full-cube assumption. E.g., if 1997 exists as a YEAR and

Europe exists as a CONTINENT then < 1997, Europe > will exist
in some tuple.

Example:

— Consider the relation R(Aq, Ay, As, ') with

n(As) = 1000
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Thus, there are 4 x 50 x 1000 = 200, 000 tuples.
— Which subcubes need to be computed?
* The subcube S(A;AyAs3) is the given data.
* The three 2-dimensional subcubes S(A;Ay), S(A1A3) and S(AA3).
* The four 1-dimensional subcubes S(A4;), S(As), S(As) and
S(Ay).
— Suppose 1000 integers fit into a block.

— Sizes:

size(A1A2As) = 200,000 values = 200 blocks
size(A1A2) = 200 values = 1 block
size(A;As) = 4000 values = 4 blocks
size(AsA3) = 50,000 values = 50 blocks

) = 4 values = 1 block

) = 500 values = 1 block

)

= 1000 values = 1 block

size( Ay
size(As

size(As

e Computing each subcube via hashing:

— Scan original file.

— Hash tuples into hash table containing sums;

— Update appropriate sum for each tuple scanned.
For the above data:

= 6 scans of data
= 6 scans of 200,000 tuples.

Observe:

— Once the subcube S(A;A3) is computed, S(A;) can be computed
from a scan of S(A;As)
= only one block needs to be scanned.
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e The hash table:

— Consider computing the subcube A;As.

— There are 4000 values of A;As
= need a sum for each of these 4000 values.

— Create a hashtable with 4000 such sums.

— Scan data and hash each tuple to discover which sum to update.
Example:

— Suppose we are computing the subcube S(YEAR, CONTINENT).

— We will need a sum for each possible combination of YEAR and
CONTINENT:

1997 Europe
1998 Europe
1997 Asia

1998 Asia

1997 N.America
1998 N.America

In this case, we need 6 sums (the size of the subcube).

— In practice, the size of the subcube can be large
= many counters will be needed.

— As we scan the actual data, we need to add the revenue in a tuple
to the appropriate counter.

— A simple scan or binary search can be used, but hashing is very
efficient.

— If each sum is in a different bucket, a single access is needed for an

update.
e Example:
Consider the relation R(Aj, Ay, As, Ay, F') with
’I’L(AQ) = 50



1000
= 200

The subcubes are:

— 4-dim: A;AsA3A,.
— 3-dim: A;AyAs, A1AAy, A1A3Ay, AjAsAy.
— 2-dim: A Ay, A1As, A1Ay, AgAs, AsAy, AsAy.
— 1-dim: A;, Ay, A3, Ay
Sizes:
size(A1 A A3Ay) = 4 x 107 values = 40,000 blocks
size(A1A2As) = 200,000 values = 200 blocks
size(A1A2A4) = 40,000 values = 40 blocks
size(A1A3As) = 800,000 values = 800 blocks
size(AyA3Ay) = 107 values = 10,000 blocks
size(A1A2) = 200 values = 1 block
size(A1As) = 4000 values = 4 blocks
size(A1A4) = 800 values = 1 block
size(AsA3) = 50,000 values = 50 blocks
size(AsA4) = 10,000 values = 10 blocks
size(A3A4) = 200,000 values = 200 blocks

(Sizes of the 1-dim cubes not shown).

Construct a tree:

— Step 1: Place the subcube A; A3 A3A4 at the root:
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40,000 blocks  —+=— sijze of subcube

root ——————» Al A2 A3 A4

— Step 2: No choice of parent for 3-dim subcubes A;AsAs, A1AxAy,
A1A3Ay, AsA3A,.

40,000 blocks -+— sjze of subcube

root —————— Al A2 A3 A4

200 40 / \ 800 10,000

Al A2 A3 Al A2 A4 Al A3 A4 A2 A3 A4

— Step 3: For subcube A;A; pick smallest parent
= 40 blocks of A;AsA,.

40,000 blocks -+— sjze of subcube

root ——————» Al A2 A3 A4

200 40 / \ 800 10,000

Al A2 A3 Al A2 A4 Al A3 A4 A2 A3 A4

/1

Al A2

— Step 4: For subcube A;Aj pick smallest parent
= 200 blocks of A;AsAs.
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root —>

200

40,000 blo

cks -+— sjze of subcube

Al A2 A3 A4

=7 N\

10,000

Al A2 A3

Al A2 A4

Al A3 A4

A2 A3 A4

« /

Al A3

/1

Al A2

— Step 5: For subcube A A4 pick smallest parent
= 40 blocks of A1A5A,.

root —m>

40,000 blo

cks -+— gjze of subcube

Al A2 A3 A4

=7 -

 /

Al A3

200 10,000
Al A2 A3 Al A2 A4 Al A3 A4 A2 A3 A4
AN
Al A2 || Al A4

— ... continuing, we get the final tree:
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40,000 blocks -+— gsjze of subcube

root —————» Al A2 A3 A4

200 40 / \ 800 10,000

Al A2 A3 Al A2 A4 Al A3 A4 A2 A3 A4

N NS e

A1 A3 || A2 A3 AlLA2 || A1A4 || A2ZA4 || ASA4

Ve A\

A3 A4

Suppose memory size is 500 blocks. Several subtrees can be computed
in parallel:

40,000 blocks size of subcube

root ————— Al A2 A3 A4

200 4 800 10,000

Al A2 A3 Al A2 A4 Al A3 A4 QAZ A3 A4
4 / 50\ / /1 \ 1 0
A1 A3 || A2 A3 ALA2 [ ATA4 || A2A4 || A3 A4
/7T

A3 Al A2 Ad Less than 500 blocks
in each group
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12.23 Hierarchies on Attributes: Roll-up and
Drill-down

e What is a hierarchy on an attribute?

— Consider the attribute DATE in
SALES (DATE, CONTINENT, FLT_TYPE, REVENUE).

— There is a natural division of dates by YEAR and MONTH.
— YEAR and MONTH form a hierarchical division:

YEAR 1997 1998

MONTH JAN FEB ... DEC JAN FEB ... DEC
e Why is this important?

— Queries often use hierarchies.
— Example:

* A user requests aggregate revenue by the subcube (YEAR, CON-
TINENT).

« Then, if that’s interesting, the user wants to look at a breakdown
month-by-month
= a subcube addressed by (MONTH, CONTINENT).

x This is an example of drilling down a hierarchy.
— Example:
* A user requests aggregate revenue by (DATE, FLT TYPE).

x Then, a broader picture can be obtained by requesting the sum-
mary (MONTH, FLT _TYPE)

= a subcube addressed by (MONTH, CONTINENT).
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x This is an example of rolling up a hierarchy.

e Both drill-down and roll-up are useful OLAP operations.
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Chapter 13

Summary

Course Notes on Database Systems
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13.1 CS 780: A Summary

e What did we learn in this course?

Concepts:

— What is a database? How is it different from a simple file system?
= File system does not provide recovery, concurrency, fast querying
etc.

— Data Models.
= The Relational Model (tables), constraints.

— Relational databases: relational algebra.
= o, 1, X etc.

— Relational databases: SQL.
= select statement, create table, update etc.

— Example: Oracle.
= Structure of Oracle, using SQLPlus for SQL queries.

— Database programming in Oracle.
= Using the C-library (OCI) and embedded SQL.

— Physical implementation: file structures.
= Heapfiles, hashfiles, sorted files, disk 1/0.

— B-trees and B+-trees
= Insertion, search and deletion.

— Hashing
= Extendible hashing, linear hashing.

— Sorting
= Binary merge-sort, polyphase merge-sort, snowplow method.

— Query processing
= Developing a query plan, evaluating different plans.

899



— Database design: normalization
= Theory of Functional Dependencies (FD’s), normal forms: 2NF, 3NF,
BCNF
— Recovery

= Shadow paging, Log-based recovery, redo’s and undo’s.

— Concurrency

= Problems with concurrent execution, serializability, locking, dead-
lock.

— Spatial databases
= Introduction, issues, types of queries.
— Spatial indices
= Rtrees, Peano curves, grid files.
— Spatial query processing
= point location, convex hulls, intersections.

e Advanced topics we have not covered:

— Database systems (of interest to dbase system developers):
« Details of implementing a transaction manager
= Including code for locking, recovery, buffer management.

* Advanced query processing
= Query plan enumeration, transformation heuristics.

* Disk subsystem implementation
= Disk [/O, partitions and extents, directory management.

« Parallel databases
= parallel algorithms for implementing relational operators.

x Distributed databases
= Concurrency control and recovery in a distributed system.

— Database theory:

x Proofs for results on functional dependencies and normal forms.
* Higher normal forms.

* Detailed algorithms for decomposition and minimal covers.
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x Logic databases, deductive databases.
— Applications development:
* Generating reports.
* Oracle Report, combining forms and report.
* Client-server application development, web-based interfaces.
* ODBC and standard interfaces to other database systems.
x JDBC and Java-related interfaces.
— Text processing and document retrieval:
% String and pattern search algorithms
= string search, approximate search, regular expression search.
« Indices for text data, keyword-searching.

* Organizing document databases
= indices, clustering, thesaurus construction.

x Data compression
= Huffman coding, Liv-Zempel algorithm.
— Other data models:

x Network and hierarchical models.
x Object-oriented databases, persistent objects.
x Object-relational databases.
— Non-traditional databases:
* Image and multimedia databases.
= Storage and retrieval of image, audio and video data.

x Scientific databases
= Databases for CAD, astronomy, DNA and medical applica-
tions.

*x Temporal databases
= history-related queries.

— New business applications:
* Data mining.

* Online Analytical Processing (OLAP) and multidimensional
databases.
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13.2 Object-Oriented and Object-Relational
Databases

e The development of OO (Object-Oriented) and OR (Object-Relational)
databases is motivated by:

— Supporting new data types: image, spatial and multimedia data.

— Providing applications developers with mechanisms to define their
own data types, their own operators.

— Allowing for efficient implementation of the above.
— Integrating a dbase-like file system (with recovery and concurrency)
into a high-level programming language (like C++).

— Providing applications programmers with powerful OO features (in-
heritance, encapsulation).

e Consider supporting image data:
— We want to allow users to store and retrieve images in a variety of
formats (GIF, Postscript, Xbitmap, JPEG, etc).

— We want to allow some kinds of querying, e.g., to determine if two
images are of approximately equal intensity.

— Currently, most commercial systems have a data type for binary
(raw bits) data.

— Thus, an image can be stored as follows:

create table IMAGE_TABLE ( bit IMAGE,
varchar NAME,
char(3) TYPE,
number CODE);

— Now, a C program can be written (as a client) to retrieve images
and work with them (e.g., to compute mean intensity etc).
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— Unfortunately, this “compute-at-the-client” design causes lots of
data to move back and forth between client and server memory:

Step 2
Transfer image to client memory

Server memory
Step 3
compute or A
modify Step 4 Step 1
transfer to server Obtain image
= from server disk
Client memory Step 5 '
write to
server
disk
Server disk

— Thus, a query that searches through the whole dbase of images will

cause a lot of data transfer
= better to have all the work done at the server.

— Some database systems provide SQL-like functions to support non-
traditional data.

* These are usually very limited (e.g., only very few data types).

« Also, there is no programmer flexibility in defining new types
and functions.
e Object-Oriented Databases.
OODB vendors take the view that:

— Object-oriented programming is here to stay (e.g., C++, Smalltalk,
Java).

— Objects are the natural way to treat all types of data.

— If database models can’t handle objects, then it’s time to change

database software.

e There are three schools of thought on this matter:
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— Pure OO:

x Forget the concerns of dbase folks and instead simply design
persistence into a programming language, e.g., persistent C++.

x What does persistence mean? All objects that are written into
are stored in an object repository and can be retrieved later.

x Dbase vendors then can use a persistent language to develop
dbase-specific libraries for applications programmers.

x Do not provide a database server.
— OODB:

* Since pure-OO folks don’t really care about dbase concerns (such
as recovery and concurrency), design a dbase-specific object
repository.

x Provide an interface via an object-oriented language but provide
a full-fledged database server.

« Allow applications programmers to program assuming persistent
objects.

* Handle recovery and concurrency (and efficient memory man-
agement).

x Provide a library for SQL programmers (parser, interpreter,
query optimizer etc).

— Object-Relational:

* Relational systems aren’t broken — let’s instead amend them to

handle newer data types.

* Allow programmers to define new data types and functions that
manipulate the data types.

x The system then loads programmer-defined functions into the
server (incorporating it as server code) to handle the new types.

e Object-Oriented Databases (OODB):

— In a typical implemention, an application programmer will define an
object using an Object Definition Language, e.g.,
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object definition my object {

private data:
int size; // For a sizexsize image
real image[100][100];

methods:
int get_size ();
set_size (int val);
real®™® get_image ();
set_image (real™* I);

}

— The programmer then compiles this using a special compiler for the
language.
— The compiler produces C++ output (in a .h file) that looks like the

above:

class my_object {
private:
int size;
float image[100][100]
public:
int get_size ();
void set_size (int);
float ** get_image () ;
void set_image (float** I);

+;

— Then, the programmer is expected to write code for the functions
in the class.

— Finally, the system compiles the code for use when the object is
manipulated.

— An applications programmer then defines the object using an en-
capsulation (usually via templates in C++):
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encap<my_object> A;
A.set_size (5); // Not allowed (won’t work)
A.update->set_size(5) // Works. Goes via the encapsulation.

The trick is to define the encapsulation so that it returns a pointer
(usually a const pointer in C++). Then, an applications program-
mer cannot modify the data
= must go via a member function of the encapsulation instead
= server has control over modification.

— Since updates go via the OO-system, the data remains at the server,
allowing for recovery and concurrency control.

— Example: The SHORE (Scalable Heterogeneous Object REposi-
tory) System, developed at the University of Wisconsin, Madison.

e The Object-Relational approach:

— The programmer is allowed to create types and new functions.
— Creating a type:

* Suppose we want to create an image type called image.

« First, create the image type in C:

typedef struct image {
int size;
float image[100] [100];
} image;

* Then, create two C functions that handle I/O for this new data

type:
image* image_in (char *data)
{
// Code to take in raw data and put it in the struct
+

char* image_out (image* I)
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{

// Code to take in an image and put out char data, e.g

}

and compile them.
x Now, tell the database what you’ve done:
CREATE FUNCTION image_in (charx)
RETURNS image
AS ’/usr/mom3/joe/780/image .o’
LANGUAGE ’C’;

CREATE FUNCTION image_out (image)
RETURNS charx*
AS ’/usr/mom3/joe/780/image .o’
LANGUAGE ’C’;

x Next, create the type in the database:
CREATE TYPE image ( size = 10002,
input = image_in,
output = image_out);

* Finally, create manipulation functions and declare them.

« After all of this is done, an applications programmer can use the
new data type in a query:

SELECT name
FROM image_file
WHERE approx_equals (image_file.image, :test_image);

— Example: Postgres95 (University of California, Berkeley), Illustra
(part of Informix), Oracle 8.
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