

- Multiple sequence alignments
 - Definition
 - The need for MSA
 - The MSA problem
 - MSA methods
- Editing and formatting alignments
 - Software packages available

MSA definition

The need for MSA

The MSA problem

MSA methods

 Multiple sequence alignment (MSA) can be seen as a generalization of Pairwise Sequence Alignment - instead of aligning two sequences, n sequences are aligned simultaneously, where n is > 2

Definition:

A multiple sequence alignment is an alignment of n > 2 sequences obtained by inserting gaps ("-") into sequences such that the resulting sequences have all length L and can be arranged in a matrix of N rows and L columns where each column represents a homologous position

Note:

MSA applies both to nucleotide and amino acid sequences

MSA definition

The need for MSA

The MSA problem

MSA methods

Sequence editors

To construct a multiple alignment, one may have to introduce gaps in sequences at positions where there were no gaps in the corresponding pairwise alignment

 \rightarrow multiple alignments typically contain more gaps than any given pair of aligned sequences

°.^ >	KESEE.EXI	E								_ 🗆	×
Ξ	File	Edit	Search	n fo <mark>R</mark> mat	Command	O ptions	Page 1	Seq 1	Pos 1		
										-	
Âm	_li_100	50 N	1 <u>c</u> cat	gcATGTCTA	IA <mark>GTT</mark> CACAC	TCTGGTACA	GTG <mark>AAA</mark> CCGC	G <mark>AA</mark> TGGCT	CA <mark>TT</mark> Aaa	t CAG	
M	e_em_98	38 N	2 ccat	GCATGTCTA	IA <mark>GTT</mark> CACAC	CCTCGTATG	GTGAAACCGC	GAATGGCT	CATTAAA	TCAG	
By	_au_100	02 N	3 ccat	GCATGTCTA	IAGTTCACAC	TCTCGTACG	GTGAAACCGc	9 <mark>aa</mark> tggct	CATTAAA	TCAG	
Ma	_sc_25	99 N	4 ccat	GCATGTCTA	IAGTTCACAC	TCTCGTACG	GTGAAACCGC	9 <mark>AA</mark> TGGCT	CATTAAA	TCAG	
Ε	r_sp_6 ¹	13 N	5 ccat	GCATGTCTA	IAGTACATAC	CTTTAAACG	GTGAAACCGc	9 <mark>aa</mark> tggct	CATTAAA	TCAG	
Мо	_ki_130	54 N	6 ccat	GCATGTCTA	AGTTCCCAC	TCTCGCACG	GTGAAACCGC	9 <mark>AA</mark> TGGCT	ÇATTAAA	TCAG	
				10	20			50		-60-	
Am	_11_100	50 N	1 TCGA	GGTTCCTTT	GATGATCCA	IAATCTACTT	GGATAACTGT	GGTAATTC	TAGAGCT	AATA	
M	e_em_98	38 N	2 TCGA	GGTTCCTTA	IGATGATCCA	IAATCTACTT	GGATAACTGT	GGTAATTC	TAGAGCT	AATA	
By	_au_100	02 N	3 TCGA	GgttcCTTA	IGATGATCCA	IAATCTACTT	GGATAACTGT	GGTAATTC	TAGAGOT	AATA	
Ma	_sc_25	99 N	4 TCGA	IGGTTCCTTA	IGATGATCCA	AATCTACTT	GGATAACTGT	GGTAATTC	TAGAGOT	AATA	
Ε	r_sp_64	13 N	5 CTAT	GGTTCCTTA	IGATCGTACC	TACTACATG	GATAACTGTA	GTAATTCT	AGAGOTA	ATAC	
Мо	_ki_130	54 N	6 TCGA	IGGTTCCTTA	IGATGATÇCA	IAAGCTACTT	GGATAACTGT	GGTAATTC	T <mark>aga</mark> got	AATA	
				70	80-	901-	100	110		120-	
Âm	_1i_100	50 N	1 CATG	CCTACCAGC	TCCGACCCG	GTGGGCCTC	GCTTCGGCTT	тссстатс	ACA <mark>GGGG</mark>	GGAG	
M	le_em_98	38 N	2 CATG	CCCAACCGC	TCCGACCTG	TAAAGGAAA	G <mark>A</mark> GCGCTTTT	<mark>atca</mark> gete	AAAACCA	GTCT	
By	_au_100	02 N	3 CATG	CCCACCAGC	TCC <mark>GA</mark> CCCC	TTCGCAAGG	A <mark>GGGGAAA</mark> GA	GCGCTTTT	ATTAGTT	CAAA	
Ma	_sc_25\$	99 N	4 CATG	CCCAACAGC	TCCGACCCG	CTTGGGGCC	CTCCTCGCAA	GGGGGGGGG	TCGCCcG	GCGG	
E	r_sp_6 ¹	13 N	5 ATGC	CACTATGCC	CTG <mark>A</mark> CCCGC	AAGGGAACG	GGTGGATTTA	<u>TTAG</u> AACA	GAACCAA	TCGG	
Мо	_ki_130	54 N	6 CATG	CCCGACAGC	TCCGACCGT	CGTCGCGTA	ACAGCGGCGG	CGGG <mark>ACGA</mark>	GCGCTTT	TATT	
				<u>130 </u>	<u> </u>	150	<u> </u>	170		180	
Âm	_1i_100	50 N	1 TCGG	IGTGGGG <mark>AC</mark> T	CCGTTGGGG	AAGAGCGCT	TTT <mark>ATTA</mark> GTT	C <mark>AAAaCC</mark> A	GTCGGGC	TTTC	
M	le_em_98	38 N		IGCCTCAAAA	ICCGGCAGTC	CCTTGGTGA	ATCTGGATAA	CTTTTTGC	CGATCGC	ATGG	
Ву	_au_100	02 N	3 ACCA	GTCGGGCCc	TC <mark>AC</mark> GGGTC	CGTCCCCTT	GGTG <mark>AC</mark> TCTG	G <mark>ATAAC</mark> TT	TGTGCCG	ATCG	
Ma	_sc_259	99 N	4 GGAA	GAGCGCTTT	T <mark>A</mark> TT <mark>A</mark> GTTC	AAAACCAGT	CGGGgCTCCC	AGCCCcGT	CCTCTTT	GGTG	
E	r_sp_6 ¹	13 N	5 TGGT	GGCTTCGGC	TGCTGCTGT	TGCAATCTG	G <mark>atgactct</mark> g	GATAACTT	CACTGAT	CGCG	
Мо	_ki_130	54 N	6 AGTT	GAAAACCAG	tcggCCTCG	CGGCCGTCC	CCTTGGTG <mark>A</mark> C	TCTGG <mark>a</mark> ta	ACTTTGA	GCCG	
					<u> </u>	<u> </u>	220 [_] -	230		240	-

°^ X	ESEE.EXE											_ □	×
Ξ	File E	dit	S	earch	fo <mark>R</mark> mat	Command	Options	Pa	ige 1	Seq 7	Pos 4		
													•
Am,	_li_1060	N N	1	ccatg	ICATGTCTA	AA <mark>GTT</mark> CACA	CTCTGGT <mark>AC</mark> A	I <mark>gtg</mark> aaa	CCGCG	AA <mark>TGGC</mark> T	CA <mark>TT</mark> Aaa	tCAG	
M	e_em_988	5 N -	2	ccatg	ICATGTCTA	AA <mark>GTT</mark> CACA	CCCTCGTATG	igtgaaa	CCGCG	AATGGCT	CA <mark>TT</mark> AAA	TCAG	
By	_au_1002	2 N _	3	ccatg	ICATGTCTA	AA <mark>GTT</mark> CACA	CTCTCGTACG	igtgaaa	CCGcg	AATGGCT	CATTAAA	TCAG	
Ma,	_sc_2599	N N	4	ccatG	ICATGTCT	AA <mark>GTT</mark> CA <u>C</u> A	CTCTCGTACG	igtgaaa	CCGcg	AATGGCT	CATTAAA	TCAG	
E	r_sp_643	5 N -	5	ccatg	JCATGTCTA	AA <mark>GTACAT</mark> A	CCTTT <mark>AAA</mark> CG	igtgaaa	CCGcgi	AA <mark>tggct</mark>	CA <mark>TT</mark> AAA	TCAG	
Mo,	_ki_1364	N -	6	ccatg	CATGTCT	AA <mark>GTT</mark> CCCA	CTCTCGCACG	igtgaaa	CCGcg	AATGGCT	CA <mark>TT</mark> AAA	TCAG	
				_	<u>101</u>	<u> </u>			401	50		-601	
Am,	_li_1060) N –	1	TCG <mark>A</mark> G	IGTTCCTTT	TG <mark>atgat</mark> cc	AAA <mark>TCT</mark> AC	:TTGG <mark>A</mark> T	AACTG	TGGT <mark>AA</mark> T	TCT <mark>AGA</mark> G	СТАА	
M	e_em_988	8 N -	2	TCG <mark>A</mark> G	IGTTCCTT	A <mark>gatgat</mark> cc	AAA <mark>TCT</mark> AC	:TTGG <mark>A</mark> T	AACTG	TGGT <mark>AA</mark> T	TCT <mark>AGA</mark> G	СТАА	
By	_au_1002	2 N -	3	TCGAG	igttcCTT	A <mark>gatgat</mark> cc	AAA <mark>TCT</mark> AC	:TTGG <mark>A</mark> T	AACTG	TGGT <mark>AA</mark> T	TCT <mark>aga</mark> g	CTAA	
Ma,	_sc_2599) N –	4	TCG <mark>A</mark> G	IGTTCCTT	A <mark>gatgat</mark> cc	AAATCTAC	:TTGG <mark>A</mark> T	AACTG	TGGT <mark>AA</mark> T	TCT <mark>AGA</mark> G	CTAA	
E	r_sp_643	8 N -	5	CTATG	IGTTCCTT	A <mark>gatcgt</mark> a-	CCTACTAC	:ATGG <mark>A</mark> T	AACTG	T <mark>AGT</mark> AAT	TCT <mark>aga</mark> g	CTAA	
Mo,	_ki_1364	N -	6	TCG <mark>A</mark> G	GTTCCTT	A <mark>gatgat</mark> cc	AAA <mark>GCT</mark> AC	:TTGG <mark>A</mark> T	AACTG	TGGT <mark>AA</mark> T	TCT <mark>aga</mark> g	CTAA	
						80J-		1	00 ¹	<u> </u>		120 ¹	
Am,	_li_1060	N N	1	TACAT	GCCTACC	A <mark>gctccg</mark> ac	CC <mark>G-</mark> GGG	· <mark>AA</mark> G	AGCGC.	TTTT <mark>A</mark> TT	A <mark>gtt</mark> caa	- <mark>Aa</mark> C	
M	e_em_988	8 N -	2	TACAT	GCCCAAC	C <mark>GCTCCG</mark> AC	CTA-GGA	· <mark>AA</mark> G	AGCGC	TTTT <mark>a</mark> tc	A <mark>gct</mark> caa	-AAC	
By,	_au_1002	2 N -	3	TACAT	GCCCACCA	A <mark>gctccg</mark> ac	CC <mark>G-GG</mark> A	· <mark>AA</mark> G	AGCGC	TTTT <mark>A</mark> TT	A <mark>gtt</mark> caa	-AAC	
Ma	_sc_2599) N -	4	TACAT	GCCCAACA	A <mark>gctccg</mark> ac	CCGCCcGGCG	iggg <mark>aa</mark> g	AGCGC	TTTT <mark>A</mark> TT	A <mark>gtt</mark> caa	-AAC	
E	r_sp_643	8 N -	5	TACAT	GCCACTA	TGCCCTG <mark>A</mark> C	CC <mark>G-GG</mark> A	· <mark>ACG</mark>	GGTGG	ATTT <mark>A</mark> TT	A <mark>G</mark> AACA <mark>G</mark>	-AAC	
Mo	_ki_1364	N I	6	TACAT	GCCCGACA	AGCTCCGAC	CGGCGGCGGC	GGG <mark>a</mark> cg	AGCGC	TTTT <mark>A</mark> TT	A <mark>GTTG</mark> AA	-AAC	
					-130 ¹	140	150 [_]	1	<u>601</u>			180 ¹	
Am,	_li_1060) N -	1	CAGTC	GG-TCCT	TTTT <mark>G-G</mark> T-	GACTCTG-	<mark>G-AT</mark> A		GTGCCG <mark>a</mark>	TCGCATC	GGTC	
M	e_em_988	8 N -	2	CAGTC	TG-TCCC	TT <mark>G-G</mark> T-	GAATCTG-	<mark>G-AT</mark> A	ACTTT	TTGCCG <mark>A</mark>	TCGC <mark>A-</mark> T	GGC-	
By	_au_1002	N N	3	CAGTC	GG-TCCC	CTT- <mark>G-GT</mark> -	GACTCTG-	<mark>G-AT</mark> A		GTGCCG <mark>a</mark>	TCGCA-C	GGC-	
Ma	_sc_2599	N	4	CAGTC	GG-TCCT	CTTT <mark>G-GT</mark> -	GACTCTG-	<mark>G-AT</mark> A		GTGCCG <mark>a</mark>	TC <mark>G</mark> C <mark>A-</mark> C	GGC-	
E	r_sp_643	8 N -	5	CAATC	GG-GCAA	TCT-GG <mark>A</mark> T-	GACTCTG-	-G-ATA	ACTTC	ACTGA	TCGCGTC	GGC-	
Мо	_ki_1364	N	6	CAGto	99-TCCC	CTT- <mark>G-G</mark> T-	GACTCTG-	-G-ATA	ACTTT	G <mark>agccg</mark> a	TCGCA-C	GGC-	
				_	-190	200	210 ^{_J} -	2	201-	230	J	240 ¹	-

Why do we need MSA?

- Multiple sequence alignment can help to develop a sequence "finger print" which allows the identification of members of distantly related protein family (motifs)
- Formulate & test hypotheses about protein 3-D structure
- MSA can help us to reveal biological facts about proteins, e.g.: (e.g. how protein function has changed or evolutionary pressure acting on a gene)
- Crucial for genome sequencing:
 - Random fragments of a large molecule are sequenced and those that overlap are found by a multiple sequence alignment program.
 - There should be one correct alignment that corresponds to the genomic sequence rather than a range of possibilities
 - Sequence may be from one strand of DNA or the other, so complements of each sequence must also be compared
 - Sequence fragments will usually overlap, but by an unknown amount and in some cases, one sequence may be included within another
 - All of the overlapping pairs of sequence fragments must be assembled into large composite genome sequence
- To establish homology for phylogenetic analyses
- Identify primers and probes to search for homologous sequences in other organisms

MSA definition

The need for MSA

The MSA problem

MSA methods

The alignment problem

How do we generate a multiple alignment? Given a pairwise alignment, just add the third, then the fourth, and so on, until all have been aligned. Does it work?

Example:		It is not self-evident how these	Taxon A	A	AGAC
		sequences are to be aligned together. Here are some possibilities:		В	AC
Taxon A	AGAC		Taxon (2	AG
Taxon B	AC				
			Taxon A	A	AGAC
Taxon A	AGAC		Taxon (2	AG
Taxon C	AG		Taxon H	В	AC
Taxon B	AC		Taxon H	В	AC
Taxon C	AG		Taxon (2	AG
			Taxon A	A	AGAC
			Taxon H	В	AC
			Taxon (2	AG
			Taxon A	A	AGAC

MSA definition

The need for MSA

The MSA problem

MSA methods

 It depends not only on the various alignment parameters but also on the order in which sequences are added to the multiple alignment

What happens when a sequence alignment is wrong?

MSA definition

The need for MSA

The MSA problem

MSA methods

- In pairwise alignments, one has a two-dimensional matrix with the sequences on each axis. The number of operations required to locate the best "path" through the matrix is approximately proportional to the product of the lengths of the two sequences
- A possible general method would be to extend the pairwise alignment method into a simultaneous N-wise alignment, using a complete dynamical-programming algorithm in N dimensions. Algorithmically, this is not difficult to do

But what about execution time?

MSA definition

The need for MSA

The MSA problem

MSA methods

MSA definition

The need for MSA

The MSA problem

MSA methods

O(c)	utopian
O(log n)	excellent
O(n)	very good
O(n²)	not so good
O(n³)	pretty bad
O(c ⁿ)	disaster

MSA methods

How to optimize alignment algorithms?

- Use structural information:
 - reading frame
 - protein structure
- Sequence elements are not truly independent but related by phylogeny

<mark>》</mark> Ві	ioEdi	t Sec	quence	e Aligr	nment Ec	litor - [C:\Thomm	iy\Acad	emy\Hydro	obiidae pro	ject\1	6S.bio]				_ 🗆	×
🎾 E	<u>-</u> ile [<u>E</u> dit	<u>S</u> eque	nce	Alignmen	t <u>V</u> iew	World Wi	de We <u>b</u>	<u>A</u> ccessory	Application	<u>r</u> na	<u>O</u> ptions	<u>W</u> indow	Help		_ 8	×
	B																
	旦	Co	urier Ne	ew.	▼ 11		в	60	total sequenc	es							
				_						_							
Mode	e: Sel	lect /	Slide 💽	-		Select	on:0			Sequence	Mask: N Mack:N	lone			Sta		_
						Positio	n. 352			rambenng	mask.h	ione			ruie O	erau) L	_
∎	Ι	D	Ī	<u>D</u> 🔮	∱ G/D ·	l- [£Ŧ	TTAG TTAG Atag atag Ctct ctct		CAT CA	T : ⁿ e:	6	MI 🖪	spee	d slow	Ψ
			▲ ▼		''' 32	0	1'''''' 330	, , , , , , , , , , , , , , , , , , ,	340 3	'''''''' 3	''' 50	· · · · ;	' '''' 360	'''' 3	''' 70	.	•
Adr	ìoh	ydr	cobi	CTAC	GTTT	CGTT	TTGATCC	AAAA	CATTTGA	TTAACAG	AATT	AG <mark>TT</mark> AO	CCGTAG	gga <mark>t</mark> a	A <mark>C</mark> AG	CA <mark>T</mark> A	
Alv	ani	a 1-	100	ATC(AATAA Manana	TATT	GATTAAA NNTCNTC				GA <mark>T</mark> A		GTAATT	TT <mark>C</mark> TT CCC T T	TAAG.	AGT'I	
Amn	1CO rog	ua ole	100		CATAZ	TGAT	CCAAAA	י <u>מיתית</u> י	ATATTIGA	ATTAAAA ADDATTAAAA	GTTA		GGG <mark>BT</mark> A	GGGAI ACAGC	AACA A m aa		
And	orh	ierc ig	ites	TTA	AAAAG	TAGA	TTGACTT	TGAT	CATAAG	TTTGAT	TAAC	AAAAT	TAGTTA	CCGTA	GGGA	TAAC	
Bai	kal	ia		TAAZ	AAAAC	TATA	TGTATTG	ATCC	AAAATAT	TGATTA	AAAA	AATTA	GTTACC	GTAGG	GATA	ACAC	
Bed	ldom	ieia	a	AAG	rttgtg	CATT	TGTGCTA	TGAT	CAAAAG	rttt <mark>ga</mark> t	TAAA	GG <mark>AA</mark> T'	FAGTTA	CCGTA	GGGA	TAAC	
Bit	hyn	ia		TAAJ	ACACTI	'A <mark>TT</mark> A	G <mark>C</mark> AA <mark>T</mark> GA	TCCG	AAA <mark>T</mark> ATT	GA <mark>TT</mark> AA	TAAA	ATTAG:	TT <mark>ACC</mark> G	TAGGG	A <mark>T</mark> AA	CAG	
Byt	hin	ell	.a 1	AA <mark>T</mark> A	ACCAA <mark>T</mark>	AAGT	AA <mark>T</mark> GA <mark>T</mark> C	CAAA	AAC <mark>T</mark> GATT	AAAAAA	ATTA	GCTAC	CGTAGG	GA <mark>T</mark> AA	CAGC.	A <mark>T</mark> AA	4
Cin	icin	nat	ia	ACT.		$\mathbf{T}\mathbf{T}\mathbf{T}\mathbf{T}$	GA <mark>TCC</mark> AA	AAAT.	rttgatt <i>i</i>	AACAGAA	TTAG	TTACC	G <mark>TA</mark> GGG	ATAAC.	AG <mark>C</mark> A	TAA	
Cox	ieļ	la				TAAT		GATC		CTGATT		GAATT	AGTTAC		GGAT	AAC	2
Eat	oni	eļl	a	TAA'.			TAATTAA Magamaga			AAATAGT	TACC		GATAAC		AATT DD <mark>C</mark> D		
Emm	eri	Cla	1 20	ATA NTA		CCTA	AIGAICC ATCATCC	AACAA 177777	CCTTTG	אאאא א <mark>חדי</mark> מממג מ <mark>תח</mark> ח	AAAT תתתת	TAGTT	ACCGTA ACCCTA	CCCAT	AACA AACA	GCA. CCA.	
Entrop	eri ai a	C18	1 30			DDDC	ATCALCC ACCTATA			אש ת מממג מחחימממנ		ATTA A	ADDDDC		AACA ACCG		4
Fai	naid rhe	. 83 n bi	, <u> </u>	ΨͲ <mark>Ϫ</mark>	PTTATZ	TTGA	ATTAGGG	GTAG	TACCCTZ	AGGGATA	ACAG	CACAA	PTTTTT	TTGAG	AGAC		
	vid	lona	- u a	AAT7	ATTATA	GCCT	ATTAGCT	ATGA	CCAAAA	TTTTGA	TCAA	GAGAA	TTAGTT	ACCGT	AGGG	ATAZ	Ą
Flu	vip	upa	a l	TTT7	TAAAC	CTTG	ATCCAAA	AAAT	TTGATTA	AAAAA	TAGT	TACCG	FA GGGA	TAACA	GCAT	AATC	
Gam	mat	ric	ula	AAA	ATATGO	TCAT	AAG <mark>CT</mark> A <mark>T</mark>	GATCO	CAAAAAA	rtt <mark>ga</mark> tt	AAAA	AAA <mark>TT</mark> AAA	AG <mark>TT</mark> AC	CGTAG	GG <mark>A</mark> T	AA <mark>C</mark> A	4
Geo	mel	ani	.a 8	TAAJ	A <mark>T</mark> AAA <mark>C</mark>	TAAT	AAG <mark>TTT</mark> A	IGA <mark>TC</mark>	CAGAAGA	ГТ <mark>С</mark> ТG <mark>А</mark> Т	TAAA	AGAA <mark>T</mark>	TAGTTA	CCG <mark>T</mark> A	GGG <mark>A</mark>	TAAC	
Geo	mel	ani	.a 8	TAAJ	A <mark>T</mark> AAAC	TAAT	AAGTTTA	IGA <mark>TC</mark>	CAGAATT	rt <mark>c</mark> tgat	ТААа	AGAA <mark>T</mark>	TAGTTA	CCG <mark>T</mark> A	GGgA	TAAC	
Gra	zia	na	256	TAA	ACTCAI	AAGT	TTTGATC		AATTTGA.	TAACAG	AATT	AGTTA	CCGTAG	GGA <mark>T</mark> A	ACAG	CAT	£
Hau	ıffe	nie	a 25	ATTA A		TAAG	TTTTGAT		AAGTTTT	JATTAAC	AGAA	ttagti	taccgt	aggga	taac	agea	1
He1	eob	ops	5		TAAG'I	TTTG	ATCCAAA amaacmu	ATAT.	I I GATTAA	AAAAA'I'	TAGT	TACCG			GCAI.	AAT.	
Hem	list	omi	.a		LIAAIA PTTT	TACAT	TACAAGTT TACAACT	TIGA.	ATCCAAAA	TTTTGA TTTTGA	TTAA ATTAA	AAGAA DDDDD	IIAGIT. ATTACT	TACCCI.	AGGG. TACC	CILA/	
пес	ero	cyc	:rus					ORIG					TINGI	TACCG	THOG	ORIF	
•			•	•													

How to optimize alignment algorithms?

BioEdit Sequence	e Alignment	: Editor - [C	C:\Thommy\Aca	ademy∖Hydro	biidae project\18	3S_aligned.bio]				_	미凶
🎾 Eile Edit Sequ	ience A <u>l</u> ignn	nent <u>V</u> iew	World Wide We	<u>b A</u> ccessory ,	Application <u>R</u> NA	<u>O</u> ptions <u>W</u> indow	Help			_	<u>a</u> ×
BB											
📮 📇 Courier N	lew 💌	11 💌	B	34 total sequenc	es						
Mode: Edit	▼ Insert	Selection Position	on:183 n: 12: Avenionia 2	241	Sequence Mask: No Numbering Mask:No	one one	Start ruler at: 1				
f I D I	<u> </u> 🔒 сл	- + - <u>@</u>					MI Scroll ·				
			150	160	170	180 T	190	200	··· ···· · 210	220 23	
Adriohydrobi	CCAACCG		<u>c</u>		<mark>2</mark>	IGACGGG			AAAGAGC-	GCUUUUAUCAGCUC	A
Adrioinsulan Alvania	CAACCG CAAACAG	CUCCGAC CUCCGAC	CCC		·	UCAACGGG		<mark>C</mark> G	AAAGAGC- GGAAAGAGC-	GCUUUUAUUAGUUC	A A
Alzoniella 2		CUCCGAC				JCACGGG			AAAGAG <mark>C</mark> -	GCUUUUAUCAGCUC	
Amnicola 106 Amphithalamu					(AGOCGGGG <mark>O</mark> GGGGA		GGAAGAGO-		A A
Antroselates	CUACCAG	CUCCGAC	CCGGGUGGGC	CUCGGUUC	G <mark>CUUUCC</mark> UUG	JCAAAGGGGGGG	AG <mark>UU</mark> GGG <mark>CC</mark> GGGG	AUUCCGUCA	GGAAGAG <mark>C</mark> -	GCUUUUAUUAGUUC	A
Ascorhis	A <mark>U</mark> ACAAG	CUCCGAC	C <mark>UC</mark> G			<mark>C</mark> AAGGGG-			<mark>ac</mark> gag <mark>c</mark> -	G <mark>CUUUUA</mark> UU <mark>A</mark> GUU <mark>C</mark>	A
Assiminea									GGAAAGAG <mark>C</mark> -	GCUUUUAUUAGUUC	A
Assiminea 16 Deciminos 22					GGI				GAAAGAGC-		
Assiminea 22 Avenionia 22	CCAACCG		C		U	JCACGGG			AAAGAGC-		A
Baicalia	CUAACAG	CUCCGAC	ccc			CCCUCA		- <mark>C</mark> GGG <mark>CCC</mark> G	-GAAAGAG <mark>C</mark> -	GCUUUUAUUAGUUC	A
Barleeia	CCCCCAG	CUCCGAC	CCC <mark>G</mark>		<mark>UI</mark>	JCC	<mark>12</mark>	: Avenionia_2241	∙GAAAGAG <mark>C</mark> -	G <mark>C</mark> UUUU <mark>A</mark> UU <mark>A</mark> GUUC	A
Beddomeia	CUAACAG	CUCCGAC	CC			GCA		AG	GGAAAGAG <mark>C</mark> -	GCUUUUAUUAGUUC	A
Belgrandia	CCAACCG				<mark>U</mark>				AAAGAGC-	GCUUUUAUCAGCUC	
Bitnynia Bythinelle 1					<mark>CIII</mark>			AACGG	GAAAGAGC-		
Bythiospeum	CUAACAG	CUCCGAC			· <mark>·</mark>	JCA		<mark>C</mark> G	GGAAAGAGC-	GCUUUUAUUAGUUC	A
Calopia	CUAGUAG	CUCUGAC	cc=		[JCA		<mark>cc</mark>	gg <mark>gaagagc</mark> -	GCUUUUAUUAGUUC	A
Cecina 2522	CCACCAG	CUCCGAC	ccc <mark>u</mark>		GG	J <mark>C</mark> A		<mark>AAC</mark> AG	GGAAAGAG <mark>C</mark> -	G <mark>CUUUUA</mark> UU <mark>A</mark> GUU <mark>C</mark>	A
Clenchiella								CG	GGAAAGAG <mark>C</mark> -	GCUUUUAUUAGUUC	A
Coxiella	CCACCAG							<mark>GCC</mark> GG	GAAAGAGC-		A A
Emmericia					<mark>C</mark> I	ICAC			GAAAGAGC	GCUUUUAUUAGUUC	A
Emmericia 30	CUAACAG	CUCCGAC	ccc		· <mark>c</mark> i	JCAC		<mark>c</mark> G	GGAAAGAG <mark>C</mark> -	GCUUUUAUUAGUUC	A
Erhaia 652	CCCCCAG	CUCCGAC	CCC <mark>G</mark>		· <mark>C</mark> l	U <mark>CUUC</mark> G <mark>CC</mark> GG-		<mark>G</mark> CG	GGAAAGAG <mark>C</mark> -	G <mark>C</mark> UUUU <mark>A</mark> UU <mark>A</mark> GUUC	A
Fairbankia	CCAACAG	CUCCGAC				JCA		<mark>C</mark> G	<u> GAAAGAG</u> C-	GCUUUUAUUAGUUC	A
Fissuria 243	CCAACCG				·	JG <u>ACGGG</u>			AAAGAGC-		
Fluviona	CCCACAG				c c				GGAAAGAGC-		
Fontigens	ACCCCAG	CUCCGAC	CCGCUUG		AA	CCA		GC	GGGAAGAGC-	GCUUUUAUUAGCUC	G
Gammatricula	CCACCAG	CUCCGAC	cccu		GG	JCA		<mark>AAC</mark> AG	GGAAAGAG <mark>C</mark> -	GCUUUUUAUUAGUUC	A
Geomelania 8	CCACCAG	CUCCGAC	CCCCGG		· <mark>ccgcc</mark> ugu	C <mark>UUCAC</mark> GGG <mark>C</mark> A	GG <mark>UCU</mark> GG	<mark>AA</mark> GG	GGAAAGAG <mark>C</mark> -	G <mark>CUUUUA</mark> UU <mark>A</mark> GUU <mark>C</mark>	A
Geomelania 8					<mark>ccgccu</mark> g <mark>u</mark> g		GG <mark>UCU</mark> GG	<mark>AA</mark> GG	GGAAAGAGC-	GCUUUUAUUAGUUC	A
Graziana 256 Novifiania 25						GCAAGGG			AAAGAGC-		A N
Haullenia 25 Heleoborg	CHACCAG		CC					<mark>C</mark> G	- AAAGAGO		A
Hemistomia	CCACCAG	CUCCGAC			·[JU		<mark>CC</mark> UG	GGAAAGAG <mark>C</mark> -	GCUUUUAUUAGUUC	A
Heterocyclus	CCGCCAG	CUCCGAC	CC <mark>U</mark> G		<mark>CG</mark>	CUGAAACG		GGGGA	GGGAAGAG <mark>C</mark> -	G <mark>CUUUUA</mark> UU <mark>A</mark> GUUC	A
Horatia 2598	CCAACCG	CUCCGAC	C		· <mark>U</mark> (G <mark>C</mark> AAAGG			AAAGAG <mark>C</mark> -	G <mark>CUUUUAUCAGC</mark> UC	A
Hydrobia 653	CCAACCG				· <mark>C</mark>	GOAAGGG			AAAGAG <mark>C</mark> -	GCUUUUAUCAGCUC	A
Hydrococcus								<mark>06</mark>			
rsiamia 2327			~						APPROACE_		

- For a given group of sequences, there is no single "correct" alignment, only an alignment that is "optimal" according to some set of calculations
 This is partly due to:
 - the complexity of the problem,
 - limitations of the scoring systems used,
 - our limited understanding of life and evolution
- Determining what alignment is best for a given set of sequences is really up to the judgment of the investigator
- Success of the alignment will depend on the similarity of the sequences. If sequence variation is great it will be very difficult to find an optimal alignment

MSA definition

The need for MSA

The MSA problem

MSA methods

XESEE.EXE	<u>_ </u>	SEE.EXE	X	
Page 4 Seq 10 Pos	234 🔺	4 Seq 10 Pos 235		Page 4 Seq 1 Pos 184 🔺
GCTTTAAATAATTTT-TTTGT GCTTTAAATAATAATTTTTTTGT	TAT- TAT-	FAAATAATTTTTT <mark>-TGTTA</mark> T- FAAATAATTTTTTTT <mark>GTTA</mark> T-		GCTTTAAATAATTTTTTT-GTTAT-
GCTTTAAATAATTTT <mark>-</mark> TTTGT GCTTTAAATAATTTTTTTTGT	TAT-	FAAATAATTTTTT <mark>-TGTTA</mark> T- FAAATAATTTTTTTTGTTAT-		GCTTTAAATAATTTTTTT-GTTAT- GCTTTAAATAATTTTTTTTGTTAT-
GCTTTAAATAATTTT-TTTGT		FAAATAATTTTTTTTTGTTAT-		GCTTTAAATAATTTTTTTT-GTTAT-
GCTTTAAATAATTTTCTTTGT				GCTTTAAATAATTTTCTTTGTTATT
GCTTTAAATAATTTT-TTTGA	TACC	TAAATAATTTTTT-TGATACC		GCTTTAAATAATTTTTTT-GATACC
GCTTAAAATAATTTT-TTTGA GCTTT <mark>AAA</mark> T <mark>AACTTTCTTTG</mark> T	TACC T <mark>A</mark> TT	TAAATAATTTTTTTTTGATACC TAAAT <mark>AAC</mark> TTTCTTTGTTATT		GCTTAAAATAATTTTTTGTTGTTACC GCTTTAAAATAACTTTCTTTGTTATT
GCTTTAAATAACTTTCTTTGT GCTTT <mark>AAA</mark> T <mark>AAC</mark> TTTCTTTGT	TATT	FAAATAACTTTCTTTGTTATT FAAATAACTTTCTTTGTTA		GCTTTAAATAACTTTCTTTGTTATT GCTTTAAATAACTTTCTTTGTTATT
GCTTTAAATAACTTTCTTTGT GCTTTAAATAACTTTCTTTGT	T <mark>ATT</mark> TATT	FAAATAACTTTCTTTGTTATT FAAATAACTTTCTTTGTTATT		GCTTTAAATAACTTTCTTTGTTATT
GCTTTAAATAACTTTCTTTGT	T <mark>A</mark> TT 240- ↓	TAAATAACTTTCTTTGTTATT	•	GCTTTAAATAACTTTCTTTGTTATT

MSA and gaps

Gaps can occur:

Before the first character of a string

CTGCGGG---GGTAAT |||||||||| --GCGG-AGAGG-AA-

Inside a string CTGCGGG---GGTAAT |||| |||||| --GCGG-AGAGG-AA-

After the last character of a string

```
CTGCGGG---GGTAAT
|||| |||||
--GCGG-AGAGG-AA-
```

MSA definition

The need for MSA

The MSA problem

MSA methods

Sequence editors

Note: In protein-coding nucleotide sequences most gaps have a length of 3N

- Works by progressive alignment: it aligns a pair of sequences then aligns the next one onto the first pair
- Most closely related sequences are aligned first, and then additional sequences and groups of sequences are added, guided by the initial alignments

Uses alignment scores to produce a phylogenetic tree

- Aligns the sequences sequentially, guided by the phylogenetic relationships indicated by the tree
- Gap penalties can be adjusted based on specific amino acid residues, regions of hydrophobicity, proximity to other gaps, or secondary structure
- Is available with a great web interface: <u>http://www.ebi.ac.uk/clustalw/</u>

MSA definition

The need for MSA

Also available as ClustalX (stand-alone MS-Windows software)

The MSA problem

MSA methods

ď,

ClustalX (1.81)

File Edit Alignment Trees Colors Quality Help

<u>_ | | ×</u>

Multiple Alignment Mode

Font Size: 10 🔻

			* ** * * * *
	1	Adriohydrobia	ATTAAAAGACAAGAAGACCCTATCGAGCTTAAAATAATTTTCTTTGTTATTA-GTTAATACCAGCTTCGTAGAAAAATTTTGGTTGG
	2	Peringia_608	ATTAAAAGACAAGAAGACCCTATCGAGCTTTAAATAATTTTCTTTGTTATTA-GGTAACACCGGTTTCAATGAAAAATTTTGGTTGG
	3	Hydrobia_653	ATTAAAAGACAAGAAGACCCTATCGAGCTTTAAATAATTTT-TTTGTTATAG-GGTAATACTAGTTTCAAAAAAAAATTTTGGTTGG
	4	Ventrosia_717	ATTAAAAGACAAGAAGACCCTATCGAGCTTAAAATAATTTT-TTTGATACCA-GGTAATACTAACTAACTAACTAACTTAGGTTGGTTGG
	5	Pseudamnicola_	ATTAAAAGACAAGAAGACCCTATCGAGCTTAAAATAATTTT-TTTGGTATAGTAATAATACCCCTACTCAAAAAAAAATTTTAGTTGG
	6	Cincinnatia_63	ATTGAAAGACAAGAAGACCCTATCGAGCTTTAAAAAATTTT-TTTGACATTATAAAAACAGTTTCATTAAAAAATTTTGGTTGG
	7	Notogillia	ATTGAAAGACAAAAAGACCCTATCGAGCTTTAAAAAATTTC-TTTGACATTATAAGAAAACTAGTTTCATTGAAAAATTTTGGTTGG
	8	Mercuria_2551	ATTGAAAGACAAGAAGACCCTATCGAGCTTAAAATGATTTT-TGTGATATTATGTTAAAATCAGTTTCATAAAAAAATTTTGGTTGG
	9	Fluvidona	ATTGAAAGACAAGAAGACCCTATCGAGCTTAAAAAAAA -TTTTATTAACACACATACCATAAGGATTAATTGTAAT AAAAAATTTTAGTTGG
	10	Fluvipupa	ATTGAAAGACAAGAAGACCCTATCGAGCTTTAAAAAA -ATTTATTAGATAACAATAAAA-ATGAATT-TAATAACAAATTTTAGTTGG
	11	Hemistomia	ATTGAAAGACAAGAAGACCCTATCGAGCTTTAAAAAA -TTTTATTAAAATAAAGTAGTTATAAAAA -CTAATTATAAT AAAAAATTTTAGTTGG
	12	Potamolithus	ATTGAAAGACAAGGAGACCCTATCGAGCTTAAAAAAAA-TTTTATTAAAAATAGTTATAAAAATTAAAAAATTAATAAT
	13	Heterocyclus	ATTGAAAGACAAGAAGACCCTATCGAGCTTAAAAAAAAATTTTTACTAAAGTAAAA_AGCCATAAAAGACTGATTATAGTAACCAATTTTGGTTGG
	14	Bithynia	ATTGATAGACAAGAAGACCCTATCGAGCTTTAAAATA-ATTAAATTAA
	15	Potamopyrgus_8	ATTGAAAGACAAGAAGACCCTATCGAGCTTAAAAAAA -TTTTGTTAAAATAAAATGACTATAAAAGAAGAACATCTGTACCAAAAAATTTTAGTTGG
	16	Alvania	ACTAAAAAGACGAGAAGACCCTATCGAGCTTTAAAAATTAATTAAAAAAATTAATAATGTTTTTGGTTGG
	17	Setia_477	ACTAAAAGACGAGAAGACCCTTTTTGAGCTTAAAAAATGAATTAAGTATTATAAAAATTTTT
	18	Fairbankia	ATAGAAGGACGAGAAGACCCTATGGAGCTAGAAGT-AACATACTA-CTATAGTATTAGCTTA
	19	Pseudomerelina	AATAAAGGACGAGAAGACCCTATAGAGCTGAATCTTAAAAGATTA-GTAAAATTTTTTTAGAGCTTGATTGG
	20	Pseudoliotia	ATAGAAGGACGAGAAGACCCTAGGAGCTTAAAAGGTGTAAATAGAATG-AGAATACTTTGGATTTGCATGCTT-TTTTCATTGG
	21	Eatoniella	ATTAATAGACAAGAAGAAGACCCTATCGAGCTTTAATTTTAGAGTTTTAATTTAATATATAATAATAATAATAATAATAA
	22	Hydrococcus	CCIGAAAGACAAGAAGAAGACCCIAICGAGCTIIAAAIAGCIGAGCCIAGICII-A-GGGCIACAIIIAIAGACCCCIIIIIAIGCICIIAAIIIIIAGIIGG
	23	Semisulcospira	ATTGAAGGACAAGAAGAAGACCCTGTCGAGCTTAAAAGACATCGTAGGAGTCTA-ATATATTTTTTAAATAAATTTTCTATTAAGCTTTTTAGTTGG
	24	Amnicola_1060	
	25	Antroselates	
	26	Balkalia Febrúa (52	
	27	Ernala_652	
	20	Moria_1364	
	29	Phrantela Vistodnobio	ATTGAAAGACAAGAAGACCCTATCGAGCTTTAAAAT-AGTTGTTGTGATGAA-TGGTGCTGTTAAGACAAATTTTAATGAAAAATTTTGGTTGG
	3U 21	Peddemoia	ATTGAAAGACAAGACAAGACCCTATCGAGGCTTAAAATTAGTTAG
	21	Accombic	ATTGAAAGACAAGACAAGACCCTATCGAGCTTAAAAGT AGTTGTTAATGAT-TAATACTGTTAAAGATATTTGAGT-GAAAGATTTGGTTGG
	32 22	ASCOFNIS Buthinglig 100	ATTGAAAGACAAGACAAGACCCTATCGAGCTTTAAAAT ATTTTATTGATAAC-ACTAACAAAAATTATTATTGATTGATTGGTTGG
	33	bythineila_100	ATTORAAGACAAGACCCTATCGAACTTTAAAAC-ATTTTACTGAACAC-TATCAAAAATTAATATCATTAAAAAATTTTGGTTGG
		ruler	200210220230240250260270280290.
			to taken the second
			المتحالية والمحملية والمحملية والمحالي والمحالي والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية وال
•			
	•	▶	

 PILEUP is the MSA program that is part of the Genetics Computer Group (GCG) sequence analysis package

Sequences are aligned pairwise using dynamic programming algorithm

- The scores are used to produce a phylogenetic tree, which is then used to guide the alignment of the most closely related sequences and groups of sequences
- Resulting alignment is a global alignment produced by the Needleman-Wunsch algorithm

MSA definition

The need for MSA

The MSA problem

MSA methods

- Attempt to correct initial alignment problems by repeatedly aligning subgroups of the sequences and then by aligning these subgroups into a global alignment of all the sequences
- MultAlin recalculates pair-wise scores during the production of the progressive alignment and uses these scores to recalculate the tree
- PRRP initial alignment is made to predict a tree, the tree is used to produce weights where the sequences are analyzed for the presence of aligned regions that include gaps
- SAGA based on genetic algorithm that is a machine-learning algorithm that attempts to produce alignments by the simulations of evolutionary changes in sequences

MSA definition

The need for MSA

The MSA problem

MSA methods

Sequence editors are used for:

- manual alignment/editing of sequences
- visualization of data
- data management
- import/export of data
- graphical enhancement of data for presentations

Examples:

- **CINEMA** (Color Interactive Editor for Multiple Alignments) web applet <u>http://www.biochem.ucl.ac.uk/bsm/dbbrowser/CINEMA2.02/kit.html</u>
- **GDE** (Genetic Data Environment) UNIX based <u>http://bimas.dcrt.nih.gov/gde_sw.html</u>
- GeneDoc MS Windows http://www.psc.edu/biomed/genedoc/
- MSA definition
- The need for MSA
- The MSA problem

Sequence editors

MSA methods

- **MACAW** local multiple sequence alignment program and sequence editing tool available by anonymous FTP from ncbi.nih.gov/pub/schuler/macaw
- **BioEdit** sequence alignment editor for MS Windows with web access and accessory applications (BLAST, local BLAST, ClustalW, Phylip and more)

BioEdit Sequence Alignment Editor - [C:\Thommy\Aca	ademy\Hydrobiidae project\18S_aligned.bioj	
🎾 File Edit Sequence Alignment View World Wide Wel	b Accessory Application RNA Options Window Help	_ B ×
	Add / Modify / Remove an Accessory Application	
	ClustalW Multiple alignment	
Courier New 🔽 11 🔽 B	BLAST +	
Mode: Select / Slide Selection:0	CAP contig assembly program	
Position. 13	DNADist> Neighbor phylogenetic tree	
டி I D I D 🔒 வை 🕂 🖭 🎆 🎇 👫 🛽	DNADist DNA distance matrix	
• • • • • • • • • • • • • • • • • • • •	DNAmlk DNA Maximum Likelihood program with molecular clock	
10 20	FastDNAml DNA maximum likelihood	80 90 100
Adriohydrobi <mark>CCAUGCAUGUCUAAGUUCACACU</mark>	Fitch Fitch-Margoliash and Least-Squares Distance Methods	JUAGA <mark>UGAUCCAA</mark> <mark>AUCUACUU</mark> GGA —
Adrioinsulan <mark>CCAUGCAUGUCUAAGUUCACACU</mark>	IdPlot identity plotter	JUAGAUGAUCCAAAUCUACUUGGA
	I Kitash Eitah Margaliash and Laast Squares Mathada with Evolutionary Clock	
	Ritsch Fitch-Margoliash and Least Squares Methods with Evolutionary Clock	
Amphithalamu CCAUGCAUGUCUAAGUUCACACU	NEIGHBOR Neighbor-Joining and UPGMA methods	
Antroselates CCAUGCAUGUCUAAGUUCACACU	Protdist> Fitch phylogenetic tree	JUUGAUGAUCCAAAUCUACUUGGA
Ascorhis CCAUGCAUGUCUAAGUUCACACU	2U Protdist protein distance matrix	JUAGAUGAUCCGAAUCUACUUGGA
Assiminea <mark>CCAUGCAUGUCUAAGUUCACACCO</mark>	Protoars protein parsimony method	JUAGAUGAUCCAAAUCUACUUGGA
Assiminea 16 CCAUGCAUGUCUAAGUUCACACCO		JUAGAUGAUCCAAAUCUACUUGGA
Assiminea 22 CCAUGCAUGUCUAAGUUCACACCC		
	CUC-GUACGG-UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	
Barcalla CCAUGCAUGUCUAAGUUCACACC		
Beddomeia CCAUGCAUGUCUAAGUUCACACU		JUAGAUGAUCCAAAUCUACUUGGA
Belgrandia CCAUGCAUGUCUAAGUUCACACU	CUC-GUACGG-UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	JUAGAUGAUCCAAAUCUACUUGGA
Bithynia CCAUGCAUGUCUAAGUUCACACUC	C <mark>UC-GCAC</mark> GG- <mark>UGAAACCGCGAAUGGCUCAUUAAAUCAGUC</mark> GAGGUUCC	JUAGAUGAUCCAAAUCUACUUGGA
Bythinella 1 CCAUGCAUGUCUAAGUUCACACU	C <mark>UC-GUAC</mark> GG- <mark>UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGA</mark> GGUUCC	JUAGAUGAUCCAAAUCUACUUGGA
Bythiospeum CCAUGCAUGUCUAAGUUCACACU	CUC-GUACGG-UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	JUAGAUGAUCCAAAUCUACUUGGA
Calopia CCAUGCAUGUCUAAGUUCACACUU		
Cecina 2522 CCAUGCAUGUCUAAGUUCACACCU	CUC-GUAUGG-UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	
Estopiella CCAUGCAUGUACAAGUUCACACCO		
Emmericia CCAUGCAUGUCUAAGUUCACACU		JUAGAUGAUCCAAAUCUACUUGGA
Emmericia 30 CCAUGCAUGUCUAAGUUCACACU	CCA-G <mark>UAC</mark> GG- <mark>UGAAACCGCGAAUGGCUCAUUAAAUCAGUCG</mark> AGGUUCC	JUAGAUGAUCCAAAUCUACUUGGA
Erhaia 652 <mark>CCAUGCAUGUCUAAGUUCACAC</mark> UC	C <mark>UC</mark> -G <mark>CAC</mark> GG- <mark>UGAAACC</mark> GCGAA <mark>UGGCUCAUUAAAUC</mark> AGUCGAGGUUCC	JU <mark>AGAUGAUCC</mark> AA <mark>AUCUAC</mark> UUGGA
Fairbankia <mark>CCAUGCAUGUCUAAGUUCACACU</mark>	CUC-GUACGG-UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	JUAGAUGAUCCAAAUCUACUUGGA
Fissuria 243 <mark>CCAUGCAUGUCUAAGUUCACACU</mark>	CUC-GUACGG-UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	JUAGAUGAUCCAAAGCUACUUGGA
Fluvidona CCAUGCAUGUCUAAGUUCACACU		
Cammatricula CCAUGCAUGUCUAAGUUCACACCO		
Geomelania 8 CCAUGCAUGUCUAAGUUCACACCO		JUAGAUGAUCCAAAUCUACUUGGA
Geomelania 8 CCAUGCAUGUCUAAGUUCACACCO	CUC-GUAUGG-UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	JUAGAUGAUCCAAAUCUACUUGGA
Graziana 256 CCAUGCAUGUACAAGUUCACACU	C <mark>UC-GUAC</mark> GG- <mark>UGAAACCGCGAAUGGCUCAUUAAAUCAGUC</mark> GAGGUUCC	JUAGAUGAUCCAAAUCUACUUGGA
Hauffenia 25 <mark>CCA<mark>UGCAUGUCUAAGUU</mark>CACACU</mark> O	C <mark>UC-GUAUGG-UGAAACCGCGAAUGGCUCAUU</mark> AAA <mark>UCAGUC</mark> GAGG <mark>UUCC</mark> I	JUAGA <mark>UGA<mark>UCC</mark>AA<mark>AUCUACUU</mark>GGA</mark>
Heleobops CCAUGCAUGUCUAAGUUCACACU	CUC-GUACAG-UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	JUAGAUGAUCCAAAUCUACUUGGA
Hemistomia CCAUGCAUGUCUAAGUUCACACU	UC-GUACGG-UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	JUAGAUGAUCCAAAUCUACUUGGA
Heterocyclus CCAUGCAUGUCUAAGUUCCCACU	UC-GCAUGG-AGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	
Horatia 2598 CCAUGCAUGUCUAAGUUCACACU		
Hydrogoggus CCAUGCAUGUCUAAGUUCACACU		
Islamia 2327 CCAUGCAUGUCUAAGUUCACACU	UC-GUACGG-UGAAACCGCGAAUGGCUCAUUAAAUCAGUCGAGGUUCC	JUAGAUGAUCCAAAGCUACUUGGA

Summary MSA

Definition:

A multiple sequence alignment is an alignment of n > 2 sequences obtained by inserting gaps ("-") into sequences such that the resulting sequences have all length L and can be arranged in a matrix of N rows and L columns where each column represents a homologous position

Why do we need MSA?

- Formulate & test hypotheses about protein 3-D structure
- MSA can help us to reveal biological facts about proteins
- Crucial for genome sequencing
- To establish homology for phylogenetic analyses
- Identify primers and probes to search for homologous sequences in other organisms

The MSA problem

- Most pairwise alignment algorithms are too complex to be used for n-wise alignments
- Alignment algorithms need to be optimized
 - * use structural information
 - * use phylogenetic information
 - * use conserved regions

MSA methods

- Progressive global alignment (starts with the most alike sequences)
 - * e.g., ClustalW, ClustalX, Pileup
- Iterative methods (initial alignment of groups of sequences that are revised)
 * MultAlin, PRRP, SAGA
- Alignments based on locally conserved patterns

Sequence editors

- CINEMA GDE, GeneDoc, MACAW, BioEdit

MSA definition

The need for MSA

The MSA problem

MSA methods